/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/connode.hpp" #include "opto/memnode.hpp" #include "opto/mulnode.hpp" #include "opto/phaseX.hpp" #include "opto/subnode.hpp" // Portions of code courtesy of Clifford Click //============================================================================= //------------------------------hash------------------------------------------- // Hash function over MulNodes. Needs to be commutative; i.e., I swap // (commute) inputs to MulNodes willy-nilly so the hash function must return // the same value in the presence of edge swapping. uint MulNode::hash() const { return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); } //------------------------------Identity--------------------------------------- // Multiplying a one preserves the other argument Node *MulNode::Identity( PhaseTransform *phase ) { register const Type *one = mul_id(); // The multiplicative identity if( phase->type( in(1) )->higher_equal( one ) ) return in(2); if( phase->type( in(2) )->higher_equal( one ) ) return in(1); return this; } //------------------------------Ideal------------------------------------------ // We also canonicalize the Node, moving constants to the right input, // and flatten expressions (so that 1+x+2 becomes x+3). Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); Node *progress = NULL; // Progress flag // We are OK if right is a constant, or right is a load and // left is a non-constant. if( !(t2->singleton() || (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { if( t1->singleton() || // Left input is a constant? // Otherwise, sort inputs (commutativity) to help value numbering. (in(1)->_idx > in(2)->_idx) ) { swap_edges(1, 2); const Type *t = t1; t1 = t2; t2 = t; progress = this; // Made progress } } // If the right input is a constant, and the left input is a product of a // constant, flatten the expression tree. uint op = Opcode(); if( t2->singleton() && // Right input is a constant? op != Op_MulF && // Float & double cannot reassociate op != Op_MulD ) { if( t2 == Type::TOP ) return NULL; Node *mul1 = in(1); #ifdef ASSERT // Check for dead loop int op1 = mul1->Opcode(); if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) || ( op1 == mul_opcode() || op1 == add_opcode() ) && ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) || phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) assert(false, "dead loop in MulNode::Ideal"); #endif if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? // Mul of a constant? const Type *t12 = phase->type( mul1->in(2) ); if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? // Compute new constant; check for overflow const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12); if( tcon01->singleton() ) { // The Mul of the flattened expression set_req(1, mul1->in(1)); set_req(2, phase->makecon( tcon01 )); t2 = tcon01; progress = this; // Made progress } } } // If the right input is a constant, and the left input is an add of a // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 const Node *add1 = in(1); if( add1->Opcode() == add_opcode() ) { // Left input is an add? // Add of a constant? const Type *t12 = phase->type( add1->in(2) ); if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" ); // Compute new constant; check for overflow const Type *tcon01 = mul_ring(t2,t12); if( tcon01->singleton() ) { // Convert (X+con1)*con0 into X*con0 Node *mul = clone(); // mul = ()*con0 mul->set_req(1,add1->in(1)); // mul = X*con0 mul = phase->transform(mul); Node *add2 = add1->clone(); add2->set_req(1, mul); // X*con0 + con0*con1 add2->set_req(2, phase->makecon(tcon01) ); progress = add2; } } } // End of is left input an add } // End of is right input a Mul return progress; } //------------------------------Value----------------------------------------- const Type *MulNode::Value( PhaseTransform *phase ) const { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Either input is ZERO ==> the result is ZERO. // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 int op = Opcode(); if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { const Type *zero = add_id(); // The multiplicative zero if( t1->higher_equal( zero ) ) return zero; if( t2->higher_equal( zero ) ) return zero; } // Either input is BOTTOM ==> the result is the local BOTTOM if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) return bottom_type(); #if defined(IA32) // Can't trust native compilers to properly fold strict double // multiplication with round-to-zero on this platform. if (op == Op_MulD && phase->C->method()->is_strict()) { return TypeD::DOUBLE; } #endif return mul_ring(t1,t2); // Local flavor of type multiplication } //============================================================================= //------------------------------Ideal------------------------------------------ // Check for power-of-2 multiply, then try the regular MulNode::Ideal Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { // Swap constant to right jint con; if ((con = in(1)->find_int_con(0)) != 0) { swap_edges(1, 2); // Finish rest of method to use info in 'con' } else if ((con = in(2)->find_int_con(0)) == 0) { return MulNode::Ideal(phase, can_reshape); } // Now we have a constant Node on the right and the constant in con if (con == 0) return NULL; // By zero is handled by Value call if (con == 1) return NULL; // By one is handled by Identity call // Check for negative constant; if so negate the final result bool sign_flip = false; unsigned int abs_con = uabs(con); if (abs_con != (unsigned int)con) { sign_flip = true; } // Get low bit; check for being the only bit Node *res = NULL; unsigned int bit1 = abs_con & (0-abs_con); // Extract low bit if (bit1 == abs_con) { // Found a power of 2? res = new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1))); } else { // Check for constant with 2 bits set unsigned int bit2 = abs_con-bit1; bit2 = bit2 & (0-bit2); // Extract 2nd bit if (bit2 + bit1 == abs_con) { // Found all bits in con? Node *n1 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1)))); Node *n2 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit2)))); res = new (phase->C) AddINode(n2, n1); } else if (is_power_of_2(abs_con+1)) { // Sleezy: power-of-2 -1. Next time be generic. unsigned int temp = abs_con + 1; Node *n1 = phase->transform(new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(temp)))); res = new (phase->C) SubINode(n1, in(1)); } else { return MulNode::Ideal(phase, can_reshape); } } if (sign_flip) { // Need to negate result? res = phase->transform(res);// Transform, before making the zero con res = new (phase->C) SubINode(phase->intcon(0),res); } return res; // Return final result } //------------------------------mul_ring--------------------------------------- // Compute the product type of two integer ranges into this node. const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); // Fetch endpoints of all ranges int32 lo0 = r0->_lo; double a = (double)lo0; int32 hi0 = r0->_hi; double b = (double)hi0; int32 lo1 = r1->_lo; double c = (double)lo1; int32 hi1 = r1->_hi; double d = (double)hi1; // Compute all endpoints & check for overflow int32 A = java_multiply(lo0, lo1); if( (double)A != a*c ) return TypeInt::INT; // Overflow? int32 B = java_multiply(lo0, hi1); if( (double)B != a*d ) return TypeInt::INT; // Overflow? int32 C = java_multiply(hi0, lo1); if( (double)C != b*c ) return TypeInt::INT; // Overflow? int32 D = java_multiply(hi0, hi1); if( (double)D != b*d ) return TypeInt::INT; // Overflow? if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints else { lo0 = B; hi0 = A; } if( C < D ) { if( C < lo0 ) lo0 = C; if( D > hi0 ) hi0 = D; } else { if( D < lo0 ) lo0 = D; if( C > hi0 ) hi0 = C; } return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); } //============================================================================= //------------------------------Ideal------------------------------------------ // Check for power-of-2 multiply, then try the regular MulNode::Ideal Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { // Swap constant to right jlong con; if ((con = in(1)->find_long_con(0)) != 0) { swap_edges(1, 2); // Finish rest of method to use info in 'con' } else if ((con = in(2)->find_long_con(0)) == 0) { return MulNode::Ideal(phase, can_reshape); } // Now we have a constant Node on the right and the constant in con if (con == CONST64(0)) return NULL; // By zero is handled by Value call if (con == CONST64(1)) return NULL; // By one is handled by Identity call // Check for negative constant; if so negate the final result bool sign_flip = false; unsigned long abs_con = uabs(con); if (abs_con != (unsigned long)con) { sign_flip = true; } // Get low bit; check for being the only bit Node *res = NULL; unsigned long bit1 = abs_con & (0-abs_con); // Extract low bit if (bit1 == abs_con) { // Found a power of 2? res = new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1))); } else { // Check for constant with 2 bits set unsigned long bit2 = abs_con-bit1; bit2 = bit2 & (0-bit2); // Extract 2nd bit if (bit2 + bit1 == abs_con) { // Found all bits in con? Node *n1 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1)))); Node *n2 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit2)))); res = new (phase->C) AddLNode(n2, n1); } else if (is_power_of_2_long(abs_con+1)) { // Sleezy: power-of-2 -1. Next time be generic. unsigned long temp = abs_con + 1; Node *n1 = phase->transform( new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(temp)))); res = new (phase->C) SubLNode(n1, in(1)); } else { return MulNode::Ideal(phase, can_reshape); } } if (sign_flip) { // Need to negate result? res = phase->transform(res);// Transform, before making the zero con res = new (phase->C) SubLNode(phase->longcon(0),res); } return res; // Return final result } //------------------------------mul_ring--------------------------------------- // Compute the product type of two integer ranges into this node. const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const { const TypeLong *r0 = t0->is_long(); // Handy access const TypeLong *r1 = t1->is_long(); // Fetch endpoints of all ranges jlong lo0 = r0->_lo; double a = (double)lo0; jlong hi0 = r0->_hi; double b = (double)hi0; jlong lo1 = r1->_lo; double c = (double)lo1; jlong hi1 = r1->_hi; double d = (double)hi1; // Compute all endpoints & check for overflow jlong A = java_multiply(lo0, lo1); if( (double)A != a*c ) return TypeLong::LONG; // Overflow? jlong B = java_multiply(lo0, hi1); if( (double)B != a*d ) return TypeLong::LONG; // Overflow? jlong C = java_multiply(hi0, lo1); if( (double)C != b*c ) return TypeLong::LONG; // Overflow? jlong D = java_multiply(hi0, hi1); if( (double)D != b*d ) return TypeLong::LONG; // Overflow? if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints else { lo0 = B; hi0 = A; } if( C < D ) { if( C < lo0 ) lo0 = C; if( D > hi0 ) hi0 = D; } else { if( D < lo0 ) lo0 = D; if( C > hi0 ) hi0 = C; } return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); } //============================================================================= //------------------------------mul_ring--------------------------------------- // Compute the product type of two double ranges into this node. const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; return TypeF::make( t0->getf() * t1->getf() ); } //============================================================================= //------------------------------mul_ring--------------------------------------- // Compute the product type of two double ranges into this node. const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; // We must be multiplying 2 double constants. return TypeD::make( t0->getd() * t1->getd() ); } //============================================================================= //------------------------------Value------------------------------------------ const Type *MulHiLNode::Value( PhaseTransform *phase ) const { // Either input is TOP ==> the result is TOP const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Either input is BOTTOM ==> the result is the local BOTTOM const Type *bot = bottom_type(); if( (t1 == bot) || (t2 == bot) || (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) return bot; // It is not worth trying to constant fold this stuff! return TypeLong::LONG; } //============================================================================= //------------------------------mul_ring--------------------------------------- // Supplied function returns the product of the inputs IN THE CURRENT RING. // For the logical operations the ring's MUL is really a logical AND function. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { const TypeInt *r0 = t0->is_int(); // Handy access const TypeInt *r1 = t1->is_int(); int widen = MAX2(r0->_widen,r1->_widen); // If either input is a constant, might be able to trim cases if( !r0->is_con() && !r1->is_con() ) return TypeInt::INT; // No constants to be had // Both constants? Return bits if( r0->is_con() && r1->is_con() ) return TypeInt::make( r0->get_con() & r1->get_con() ); if( r0->is_con() && r0->get_con() > 0 ) return TypeInt::make(0, r0->get_con(), widen); if( r1->is_con() && r1->get_con() > 0 ) return TypeInt::make(0, r1->get_con(), widen); if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) { return TypeInt::BOOL; } return TypeInt::INT; // No constants to be had } //------------------------------Identity--------------------------------------- // Masking off the high bits of an unsigned load is not required Node *AndINode::Identity( PhaseTransform *phase ) { // x & x => x if (phase->eqv(in(1), in(2))) return in(1); Node* in1 = in(1); uint op = in1->Opcode(); const TypeInt* t2 = phase->type(in(2))->isa_int(); if (t2 && t2->is_con()) { int con = t2->get_con(); // Masking off high bits which are always zero is useless. const TypeInt* t1 = phase->type( in(1) )->isa_int(); if (t1 != NULL && t1->_lo >= 0) { jint t1_support = right_n_bits(1 + log2_jint(t1->_hi)); if ((t1_support & con) == t1_support) return in1; } // Masking off the high bits of a unsigned-shift-right is not // needed either. if (op == Op_URShiftI) { const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); if (t12 && t12->is_con()) { // Shift is by a constant int shift = t12->get_con(); shift &= BitsPerJavaInteger - 1; // semantics of Java shifts int mask = max_juint >> shift; if ((mask & con) == mask) // If AND is useless, skip it return in1; } } } return MulNode::Identity(phase); } //------------------------------Ideal------------------------------------------ Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { // Special case constant AND mask const TypeInt *t2 = phase->type( in(2) )->isa_int(); if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); const int mask = t2->get_con(); Node *load = in(1); uint lop = load->Opcode(); // Masking bits off of a Character? Hi bits are already zero. if( lop == Op_LoadUS && (mask & 0xFFFF0000) ) // Can we make a smaller mask? return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF)); // Masking bits off of a Short? Loading a Character does some masking if (can_reshape && load->outcnt() == 1 && load->unique_out() == this) { if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) { Node *ldus = new (phase->C) LoadUSNode(load->in(MemNode::Control), load->in(MemNode::Memory), load->in(MemNode::Address), load->adr_type(), TypeInt::CHAR, MemNode::unordered); ldus = phase->transform(ldus); return new (phase->C) AndINode(ldus, phase->intcon(mask & 0xFFFF)); } // Masking sign bits off of a Byte? Do an unsigned byte load plus // an and. if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) { Node* ldub = new (phase->C) LoadUBNode(load->in(MemNode::Control), load->in(MemNode::Memory), load->in(MemNode::Address), load->adr_type(), TypeInt::UBYTE, MemNode::unordered); ldub = phase->transform(ldub); return new (phase->C) AndINode(ldub, phase->intcon(mask)); } } // Masking off sign bits? Dont make them! if( lop == Op_RShiftI ) { const TypeInt *t12 = phase->type(load->in(2))->isa_int(); if( t12 && t12->is_con() ) { // Shift is by a constant int shift = t12->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift); // If the AND'ing of the 2 masks has no bits, then only original shifted // bits survive. NO sign-extension bits survive the maskings. if( (sign_bits_mask & mask) == 0 ) { // Use zero-fill shift instead Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2))); return new (phase->C) AndINode( zshift, in(2) ); } } } // Check for 'negate/and-1', a pattern emitted when someone asks for // 'mod 2'. Negate leaves the low order bit unchanged (think: complement // plus 1) and the mask is of the low order bit. Skip the negate. if( lop == Op_SubI && mask == 1 && load->in(1) && phase->type(load->in(1)) == TypeInt::ZERO ) return new (phase->C) AndINode( load->in(2), in(2) ); return MulNode::Ideal(phase, can_reshape); } //============================================================================= //------------------------------mul_ring--------------------------------------- // Supplied function returns the product of the inputs IN THE CURRENT RING. // For the logical operations the ring's MUL is really a logical AND function. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by pre-check. const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { const TypeLong *r0 = t0->is_long(); // Handy access const TypeLong *r1 = t1->is_long(); int widen = MAX2(r0->_widen,r1->_widen); // If either input is a constant, might be able to trim cases if( !r0->is_con() && !r1->is_con() ) return TypeLong::LONG; // No constants to be had // Both constants? Return bits if( r0->is_con() && r1->is_con() ) return TypeLong::make( r0->get_con() & r1->get_con() ); if( r0->is_con() && r0->get_con() > 0 ) return TypeLong::make(CONST64(0), r0->get_con(), widen); if( r1->is_con() && r1->get_con() > 0 ) return TypeLong::make(CONST64(0), r1->get_con(), widen); return TypeLong::LONG; // No constants to be had } //------------------------------Identity--------------------------------------- // Masking off the high bits of an unsigned load is not required Node *AndLNode::Identity( PhaseTransform *phase ) { // x & x => x if (phase->eqv(in(1), in(2))) return in(1); Node *usr = in(1); const TypeLong *t2 = phase->type( in(2) )->isa_long(); if( t2 && t2->is_con() ) { jlong con = t2->get_con(); // Masking off high bits which are always zero is useless. const TypeLong* t1 = phase->type( in(1) )->isa_long(); if (t1 != NULL && t1->_lo >= 0) { int bit_count = log2_long(t1->_hi) + 1; jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count)); if ((t1_support & con) == t1_support) return usr; } uint lop = usr->Opcode(); // Masking off the high bits of a unsigned-shift-right is not // needed either. if( lop == Op_URShiftL ) { const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); if( t12 && t12->is_con() ) { // Shift is by a constant int shift = t12->get_con(); shift &= BitsPerJavaLong - 1; // semantics of Java shifts jlong mask = max_julong >> shift; if( (mask&con) == mask ) // If AND is useless, skip it return usr; } } } return MulNode::Identity(phase); } //------------------------------Ideal------------------------------------------ Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { // Special case constant AND mask const TypeLong *t2 = phase->type( in(2) )->isa_long(); if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); const jlong mask = t2->get_con(); Node* in1 = in(1); uint op = in1->Opcode(); // Are we masking a long that was converted from an int with a mask // that fits in 32-bits? Commute them and use an AndINode. Don't // convert masks which would cause a sign extension of the integer // value. This check includes UI2L masks (0x00000000FFFFFFFF) which // would be optimized away later in Identity. if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) { Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask)); andi = phase->transform(andi); return new (phase->C) ConvI2LNode(andi); } // Masking off sign bits? Dont make them! if (op == Op_RShiftL) { const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); if( t12 && t12->is_con() ) { // Shift is by a constant int shift = t12->get_con(); shift &= BitsPerJavaLong - 1; // semantics of Java shifts const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1); // If the AND'ing of the 2 masks has no bits, then only original shifted // bits survive. NO sign-extension bits survive the maskings. if( (sign_bits_mask & mask) == 0 ) { // Use zero-fill shift instead Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2))); return new (phase->C) AndLNode(zshift, in(2)); } } } return MulNode::Ideal(phase, can_reshape); } //============================================================================= //------------------------------Identity--------------------------------------- Node *LShiftINode::Identity( PhaseTransform *phase ) { const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this; } //------------------------------Ideal------------------------------------------ // If the right input is a constant, and the left input is an add of a // constant, flatten the tree: (X+con1)< X<type( in(2) ); if( t == Type::TOP ) return NULL; // Right input is dead const TypeInt *t2 = t->isa_int(); if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count if ( con == 0 ) return NULL; // let Identity() handle 0 shift count // Left input is an add of a constant? Node *add1 = in(1); int add1_op = add1->Opcode(); if( add1_op == Op_AddI ) { // Left input is an add? assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" ); const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); if( t12 && t12->is_con() ){ // Left input is an add of a con? // Transform is legal, but check for profit. Avoid breaking 'i2s' // and 'i2b' patterns which typically fold into 'StoreC/StoreB'. if( con < 16 ) { // Compute X << con0 Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) ); // Compute X<C) AddINode( lsh, phase->intcon(t12->get_con() << con)); } } } // Check for "(x>>c0)<in(2) == in(2) ) // Convert to "(x & -(1<C) AndINode(add1->in(1),phase->intcon( -(1<>c0) & Y)<in(1); int add2_op = add2->Opcode(); if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) && add2->in(2) == in(2) ) { // Convert to "(x & (Y<transform( new (phase->C) LShiftINode( add1->in(2), in(2) ) ); return new (phase->C) AndINode( add2->in(1), y_sh ); } } // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits // before shifting them away. const jint bits_mask = right_n_bits(BitsPerJavaInteger-con); if( add1_op == Op_AndI && phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) return new (phase->C) LShiftINode( add1->in(1), in(2) ); return NULL; } //------------------------------Value------------------------------------------ // A LShiftINode shifts its input2 left by input1 amount. const Type *LShiftINode::Value( PhaseTransform *phase ) const { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) return TypeInt::INT; const TypeInt *r1 = t1->is_int(); // Handy access const TypeInt *r2 = t2->is_int(); // Handy access if (!r2->is_con()) return TypeInt::INT; uint shift = r2->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts // Shift by a multiple of 32 does nothing: if (shift == 0) return t1; // If the shift is a constant, shift the bounds of the type, // unless this could lead to an overflow. if (!r1->is_con()) { jint lo = r1->_lo, hi = r1->_hi; if (((lo << shift) >> shift) == lo && ((hi << shift) >> shift) == hi) { // No overflow. The range shifts up cleanly. return TypeInt::make((jint)lo << (jint)shift, (jint)hi << (jint)shift, MAX2(r1->_widen,r2->_widen)); } return TypeInt::INT; } return TypeInt::make( (jint)r1->get_con() << (jint)shift ); } //============================================================================= //------------------------------Identity--------------------------------------- Node *LShiftLNode::Identity( PhaseTransform *phase ) { const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; } //------------------------------Ideal------------------------------------------ // If the right input is a constant, and the left input is an add of a // constant, flatten the tree: (X+con1)< X<type( in(2) ); if( t == Type::TOP ) return NULL; // Right input is dead const TypeInt *t2 = t->isa_int(); if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count if ( con == 0 ) return NULL; // let Identity() handle 0 shift count // Left input is an add of a constant? Node *add1 = in(1); int add1_op = add1->Opcode(); if( add1_op == Op_AddL ) { // Left input is an add? // Avoid dead data cycles from dead loops assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" ); const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); if( t12 && t12->is_con() ){ // Left input is an add of a con? // Compute X << con0 Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) ); // Compute X<C) AddLNode( lsh, phase->longcon(t12->get_con() << con)); } } // Check for "(x>>c0)<in(2) == in(2) ) // Convert to "(x & -(1<C) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<>c0) & Y)<in(1); int add2_op = add2->Opcode(); if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) && add2->in(2) == in(2) ) { // Convert to "(x & (Y<transform( new (phase->C) LShiftLNode( add1->in(2), in(2) ) ); return new (phase->C) AndLNode( add2->in(1), y_sh ); } } // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits // before shifting them away. const jlong bits_mask = jlong(max_julong >> con); if( add1_op == Op_AndL && phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) return new (phase->C) LShiftLNode( add1->in(1), in(2) ); return NULL; } //------------------------------Value------------------------------------------ // A LShiftLNode shifts its input2 left by input1 amount. const Type *LShiftLNode::Value( PhaseTransform *phase ) const { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) return TypeLong::LONG; const TypeLong *r1 = t1->is_long(); // Handy access const TypeInt *r2 = t2->is_int(); // Handy access if (!r2->is_con()) return TypeLong::LONG; uint shift = r2->get_con(); shift &= BitsPerJavaLong - 1; // semantics of Java shifts // Shift by a multiple of 64 does nothing: if (shift == 0) return t1; // If the shift is a constant, shift the bounds of the type, // unless this could lead to an overflow. if (!r1->is_con()) { jlong lo = r1->_lo, hi = r1->_hi; if (((lo << shift) >> shift) == lo && ((hi << shift) >> shift) == hi) { // No overflow. The range shifts up cleanly. return TypeLong::make((jlong)lo << (jint)shift, (jlong)hi << (jint)shift, MAX2(r1->_widen,r2->_widen)); } return TypeLong::LONG; } return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); } //============================================================================= //------------------------------Identity--------------------------------------- Node *RShiftINode::Identity( PhaseTransform *phase ) { const TypeInt *t2 = phase->type(in(2))->isa_int(); if( !t2 ) return this; if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1); // Check for useless sign-masking if( in(1)->Opcode() == Op_LShiftI && in(1)->req() == 3 && in(1)->in(2) == in(2) && t2->is_con() ) { uint shift = t2->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts // Compute masks for which this shifting doesn't change int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000 int hi = ~lo; // 00007FFF const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int(); if( !t11 ) return this; // Does actual value fit inside of mask? if( lo <= t11->_lo && t11->_hi <= hi ) return in(1)->in(1); // Then shifting is a nop } return this; } //------------------------------Ideal------------------------------------------ Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { // Inputs may be TOP if they are dead. const TypeInt *t1 = phase->type( in(1) )->isa_int(); if( !t1 ) return NULL; // Left input is an integer const TypeInt *t2 = phase->type( in(2) )->isa_int(); if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant const TypeInt *t3; // type of in(1).in(2) int shift = t2->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. // Such expressions arise normally from shift chains like (byte)(x >> 24). const Node *mask = in(1); if( mask->Opcode() == Op_AndI && (t3 = phase->type(mask->in(2))->isa_int()) && t3->is_con() ) { Node *x = mask->in(1); jint maskbits = t3->get_con(); // Convert to "(x >> shift) & (mask >> shift)" Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) ); return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift)); } // Check for "(short[i] <<16)>>16" which simply sign-extends const Node *shl = in(1); if( shl->Opcode() != Op_LShiftI ) return NULL; if( shift == 16 && (t3 = phase->type(shl->in(2))->isa_int()) && t3->is_con(16) ) { Node *ld = shl->in(1); if( ld->Opcode() == Op_LoadS ) { // Sign extension is just useless here. Return a RShiftI of zero instead // returning 'ld' directly. We cannot return an old Node directly as // that is the job of 'Identity' calls and Identity calls only work on // direct inputs ('ld' is an extra Node removed from 'this'). The // combined optimization requires Identity only return direct inputs. set_req(1, ld); set_req(2, phase->intcon(0)); return this; } else if( can_reshape && ld->Opcode() == Op_LoadUS && ld->outcnt() == 1 && ld->unique_out() == shl) // Replace zero-extension-load with sign-extension-load return new (phase->C) LoadSNode( ld->in(MemNode::Control), ld->in(MemNode::Memory), ld->in(MemNode::Address), ld->adr_type(), TypeInt::SHORT, MemNode::unordered); } // Check for "(byte[i] <<24)>>24" which simply sign-extends if( shift == 24 && (t3 = phase->type(shl->in(2))->isa_int()) && t3->is_con(24) ) { Node *ld = shl->in(1); if( ld->Opcode() == Op_LoadB ) { // Sign extension is just useless here set_req(1, ld); set_req(2, phase->intcon(0)); return this; } } return NULL; } //------------------------------Value------------------------------------------ // A RShiftINode shifts its input2 right by input1 amount. const Type *RShiftINode::Value( PhaseTransform *phase ) const { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) return TypeInt::INT; if (t2 == TypeInt::INT) return TypeInt::INT; const TypeInt *r1 = t1->is_int(); // Handy access const TypeInt *r2 = t2->is_int(); // Handy access // If the shift is a constant, just shift the bounds of the type. // For example, if the shift is 31, we just propagate sign bits. if (r2->is_con()) { uint shift = r2->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts // Shift by a multiple of 32 does nothing: if (shift == 0) return t1; // Calculate reasonably aggressive bounds for the result. // This is necessary if we are to correctly type things // like (x<<24>>24) == ((byte)x). jint lo = (jint)r1->_lo >> (jint)shift; jint hi = (jint)r1->_hi >> (jint)shift; assert(lo <= hi, "must have valid bounds"); const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); #ifdef ASSERT // Make sure we get the sign-capture idiom correct. if (shift == BitsPerJavaInteger-1) { if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0"); if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1"); } #endif return ti; } if( !r1->is_con() || !r2->is_con() ) return TypeInt::INT; // Signed shift right return TypeInt::make( r1->get_con() >> (r2->get_con()&31) ); } //============================================================================= //------------------------------Identity--------------------------------------- Node *RShiftLNode::Identity( PhaseTransform *phase ) { const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; } //------------------------------Value------------------------------------------ // A RShiftLNode shifts its input2 right by input1 amount. const Type *RShiftLNode::Value( PhaseTransform *phase ) const { const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) return TypeLong::LONG; if (t2 == TypeInt::INT) return TypeLong::LONG; const TypeLong *r1 = t1->is_long(); // Handy access const TypeInt *r2 = t2->is_int (); // Handy access // If the shift is a constant, just shift the bounds of the type. // For example, if the shift is 63, we just propagate sign bits. if (r2->is_con()) { uint shift = r2->get_con(); shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts // Shift by a multiple of 64 does nothing: if (shift == 0) return t1; // Calculate reasonably aggressive bounds for the result. // This is necessary if we are to correctly type things // like (x<<24>>24) == ((byte)x). jlong lo = (jlong)r1->_lo >> (jlong)shift; jlong hi = (jlong)r1->_hi >> (jlong)shift; assert(lo <= hi, "must have valid bounds"); const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); #ifdef ASSERT // Make sure we get the sign-capture idiom correct. if (shift == (2*BitsPerJavaInteger)-1) { if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0"); if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1"); } #endif return tl; } return TypeLong::LONG; // Give up } //============================================================================= //------------------------------Identity--------------------------------------- Node *URShiftINode::Identity( PhaseTransform *phase ) { const TypeInt *ti = phase->type( in(2) )->isa_int(); if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1); // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". // Happens during new-array length computation. // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] Node *add = in(1); if( add->Opcode() == Op_AddI ) { const TypeInt *t2 = phase->type(add->in(2))->isa_int(); if( t2 && t2->is_con(wordSize - 1) && add->in(1)->Opcode() == Op_LShiftI ) { // Check that shift_counts are LogBytesPerWord Node *lshift_count = add->in(1)->in(2); const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && t_lshift_count == phase->type(in(2)) ) { Node *x = add->in(1)->in(1); const TypeInt *t_x = phase->type(x)->isa_int(); if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) { return x; } } } } return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; } //------------------------------Ideal------------------------------------------ Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { const TypeInt *t2 = phase->type( in(2) )->isa_int(); if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant const int con = t2->get_con() & 31; // Shift count is always masked if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count // We'll be wanting the right-shift amount as a mask of that many bits const int mask = right_n_bits(BitsPerJavaInteger - con); int in1_op = in(1)->Opcode(); // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 if( in1_op == Op_URShiftI ) { const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); if( t12 && t12->is_con() ) { // Right input is a constant assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" ); const int con2 = t12->get_con() & 31; // Shift count is always masked const int con3 = con+con2; if( con3 < 32 ) // Only merge shifts if total is < 32 return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) ); } } // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". // If Q is "X << z" the rounding is useless. Look for patterns like // ((X<>> Z and replace with (X + Y>>>Z) & Z-mask. Node *add = in(1); if( in1_op == Op_AddI ) { Node *lshl = add->in(1); if( lshl->Opcode() == Op_LShiftI && phase->type(lshl->in(2)) == t2 ) { Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) ); Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) ); return new (phase->C) AndINode( sum, phase->intcon(mask) ); } } // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) // This shortens the mask. Also, if we are extracting a high byte and // storing it to a buffer, the mask will be removed completely. Node *andi = in(1); if( in1_op == Op_AndI ) { const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); if( t3 && t3->is_con() ) { // Right input is a constant jint mask2 = t3->get_con(); mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) ); return new (phase->C) AndINode(newshr, phase->intcon(mask2)); // The negative values are easier to materialize than positive ones. // A typical case from address arithmetic is ((x & ~15) >> 4). // It's better to change that to ((x >> 4) & ~0) versus // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. } } // Check for "(X << z ) >>> z" which simply zero-extends Node *shl = in(1); if( in1_op == Op_LShiftI && phase->type(shl->in(2)) == t2 ) return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) ); return NULL; } //------------------------------Value------------------------------------------ // A URShiftINode shifts its input2 right by input1 amount. const Type *URShiftINode::Value( PhaseTransform *phase ) const { // (This is a near clone of RShiftINode::Value.) const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) return TypeInt::INT; if (t2 == TypeInt::INT) return TypeInt::INT; const TypeInt *r1 = t1->is_int(); // Handy access const TypeInt *r2 = t2->is_int(); // Handy access if (r2->is_con()) { uint shift = r2->get_con(); shift &= BitsPerJavaInteger-1; // semantics of Java shifts // Shift by a multiple of 32 does nothing: if (shift == 0) return t1; // Calculate reasonably aggressive bounds for the result. jint lo = (juint)r1->_lo >> (juint)shift; jint hi = (juint)r1->_hi >> (juint)shift; if (r1->_hi >= 0 && r1->_lo < 0) { // If the type has both negative and positive values, // there are two separate sub-domains to worry about: // The positive half and the negative half. jint neg_lo = lo; jint neg_hi = (juint)-1 >> (juint)shift; jint pos_lo = (juint) 0 >> (juint)shift; jint pos_hi = hi; lo = MIN2(neg_lo, pos_lo); // == 0 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; } assert(lo <= hi, "must have valid bounds"); const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); #ifdef ASSERT // Make sure we get the sign-capture idiom correct. if (shift == BitsPerJavaInteger-1) { if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0"); if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1"); } #endif return ti; } // // Do not support shifted oops in info for GC // // else if( t1->base() == Type::InstPtr ) { // // const TypeInstPtr *o = t1->is_instptr(); // if( t1->singleton() ) // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); // } // else if( t1->base() == Type::KlassPtr ) { // const TypeKlassPtr *o = t1->is_klassptr(); // if( t1->singleton() ) // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); // } return TypeInt::INT; } //============================================================================= //------------------------------Identity--------------------------------------- Node *URShiftLNode::Identity( PhaseTransform *phase ) { const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; } //------------------------------Ideal------------------------------------------ Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { const TypeInt *t2 = phase->type( in(2) )->isa_int(); if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count // note: mask computation below does not work for 0 shift count // We'll be wanting the right-shift amount as a mask of that many bits const jlong mask = jlong(max_julong >> con); // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". // If Q is "X << z" the rounding is useless. Look for patterns like // ((X<>> Z and replace with (X + Y>>>Z) & Z-mask. Node *add = in(1); if( add->Opcode() == Op_AddL ) { Node *lshl = add->in(1); if( lshl->Opcode() == Op_LShiftL && phase->type(lshl->in(2)) == t2 ) { Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) ); Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) ); return new (phase->C) AndLNode( sum, phase->longcon(mask) ); } } // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) // This shortens the mask. Also, if we are extracting a high byte and // storing it to a buffer, the mask will be removed completely. Node *andi = in(1); if( andi->Opcode() == Op_AndL ) { const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); if( t3 && t3->is_con() ) { // Right input is a constant jlong mask2 = t3->get_con(); mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) ); return new (phase->C) AndLNode(newshr, phase->longcon(mask2)); } } // Check for "(X << z ) >>> z" which simply zero-extends Node *shl = in(1); if( shl->Opcode() == Op_LShiftL && phase->type(shl->in(2)) == t2 ) return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) ); return NULL; } //------------------------------Value------------------------------------------ // A URShiftINode shifts its input2 right by input1 amount. const Type *URShiftLNode::Value( PhaseTransform *phase ) const { // (This is a near clone of RShiftLNode::Value.) const Type *t1 = phase->type( in(1) ); const Type *t2 = phase->type( in(2) ); // Either input is TOP ==> the result is TOP if( t1 == Type::TOP ) return Type::TOP; if( t2 == Type::TOP ) return Type::TOP; // Left input is ZERO ==> the result is ZERO. if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; // Shift by zero does nothing if( t2 == TypeInt::ZERO ) return t1; // Either input is BOTTOM ==> the result is BOTTOM if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) return TypeLong::LONG; if (t2 == TypeInt::INT) return TypeLong::LONG; const TypeLong *r1 = t1->is_long(); // Handy access const TypeInt *r2 = t2->is_int (); // Handy access if (r2->is_con()) { uint shift = r2->get_con(); shift &= BitsPerJavaLong - 1; // semantics of Java shifts // Shift by a multiple of 64 does nothing: if (shift == 0) return t1; // Calculate reasonably aggressive bounds for the result. jlong lo = (julong)r1->_lo >> (juint)shift; jlong hi = (julong)r1->_hi >> (juint)shift; if (r1->_hi >= 0 && r1->_lo < 0) { // If the type has both negative and positive values, // there are two separate sub-domains to worry about: // The positive half and the negative half. jlong neg_lo = lo; jlong neg_hi = (julong)-1 >> (juint)shift; jlong pos_lo = (julong) 0 >> (juint)shift; jlong pos_hi = hi; //lo = MIN2(neg_lo, pos_lo); // == 0 lo = neg_lo < pos_lo ? neg_lo : pos_lo; //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; hi = neg_hi > pos_hi ? neg_hi : pos_hi; } assert(lo <= hi, "must have valid bounds"); const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); #ifdef ASSERT // Make sure we get the sign-capture idiom correct. if (shift == BitsPerJavaLong - 1) { if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0"); if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1"); } #endif return tl; } return TypeLong::LONG; // Give up }