/* * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // Portions of code courtesy of Clifford Click class PhaseTransform; //------------------------------AddNode---------------------------------------- // Classic Add functionality. This covers all the usual 'add' behaviors for // an algebraic ring. Add-integer, add-float, add-double, and binary-or are // all inherited from this class. The various identity values are supplied // by virtual functions. class AddNode : public Node { virtual uint hash() const; public: AddNode( Node *in1, Node *in2 ) : Node(0,in1,in2) { init_class_id(Class_Add); } // Handle algebraic identities here. If we have an identity, return the Node // we are equivalent to. We look for "add of zero" as an identity. virtual Node *Identity( PhaseTransform *phase ); // We also canonicalize the Node, moving constants to the right input, // and flatten expressions (so that 1+x+2 becomes x+3). virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Compute a new Type for this node. Basically we just do the pre-check, // then call the virtual add() to set the type. virtual const Type *Value( PhaseTransform *phase ) const; // Check if this addition involves the additive identity virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const; // Supplied function returns the sum of the inputs. // This also type-checks the inputs for sanity. Guaranteed never to // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. virtual const Type *add_ring( const Type *, const Type * ) const = 0; // Supplied function to return the additive identity type virtual const Type *add_id() const = 0; }; //------------------------------AddINode--------------------------------------- // Add 2 integers class AddINode : public AddNode { public: AddINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeInt::ZERO; } virtual const Type *bottom_type() const { return TypeInt::INT; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ); virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------AddLNode--------------------------------------- // Add 2 longs class AddLNode : public AddNode { public: AddLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeLong::ZERO; } virtual const Type *bottom_type() const { return TypeLong::LONG; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual Node *Identity( PhaseTransform *phase ); virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------AddFNode--------------------------------------- // Add 2 floats class AddFNode : public AddNode { public: AddFNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeF::ZERO; } virtual const Type *bottom_type() const { return Type::FLOAT; } virtual Node *Identity( PhaseTransform *phase ) { return this; } virtual uint ideal_reg() const { return Op_RegF; } }; //------------------------------AddDNode--------------------------------------- // Add 2 doubles class AddDNode : public AddNode { public: AddDNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeD::ZERO; } virtual const Type *bottom_type() const { return Type::DOUBLE; } virtual Node *Identity( PhaseTransform *phase ) { return this; } virtual uint ideal_reg() const { return Op_RegD; } }; //------------------------------AddPNode--------------------------------------- // Add pointer plus integer to get pointer. NOT commutative, really. // So not really an AddNode. Lives here, because people associate it with // an add. class AddPNode : public Node { public: enum { Control, // When is it safe to do this add? Base, // Base oop, for GC purposes Address, // Actually address, derived from base Offset } ; // Offset added to address AddPNode( Node *base, Node *ptr, Node *off ) : Node(0,base,ptr,off) { init_class_id(Class_AddP); } virtual int Opcode() const; virtual Node *Identity( PhaseTransform *phase ); virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); virtual const Type *Value( PhaseTransform *phase ) const; virtual const Type *bottom_type() const; virtual uint ideal_reg() const { return Op_RegP; } Node *base_node() { assert( req() > Base, "Missing base"); return in(Base); } static Node* Ideal_base_and_offset(Node* ptr, PhaseTransform* phase, // second return value: intptr_t& offset); // Collect the AddP offset values into the elements array, giving up // if there are more than length. int unpack_offsets(Node* elements[], int length); // Do not match base-ptr edge virtual uint match_edge(uint idx) const; }; //------------------------------OrINode---------------------------------------- // Logically OR 2 integers. Included with the ADD nodes because it inherits // all the behavior of addition on a ring. class OrINode : public AddNode { public: OrINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeInt::ZERO; } virtual const Type *bottom_type() const { return TypeInt::INT; } virtual Node *Identity( PhaseTransform *phase ); virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------OrLNode---------------------------------------- // Logically OR 2 longs. Included with the ADD nodes because it inherits // all the behavior of addition on a ring. class OrLNode : public AddNode { public: OrLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeLong::ZERO; } virtual const Type *bottom_type() const { return TypeLong::LONG; } virtual Node *Identity( PhaseTransform *phase ); virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------XorINode--------------------------------------- // XOR'ing 2 integers class XorINode : public AddNode { public: XorINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeInt::ZERO; } virtual const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------XorINode--------------------------------------- // XOR'ing 2 longs class XorLNode : public AddNode { public: XorLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeLong::ZERO; } virtual const Type *bottom_type() const { return TypeLong::LONG; } virtual uint ideal_reg() const { return Op_RegL; } }; //------------------------------MaxNode---------------------------------------- // Max (or min) of 2 values. Included with the ADD nodes because it inherits // all the behavior of addition on a ring. Only new thing is that we allow // 2 equal inputs to be equal. class MaxNode : public AddNode { public: MaxNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {} virtual int Opcode() const = 0; }; //------------------------------MaxINode--------------------------------------- // Maximum of 2 integers. Included with the ADD nodes because it inherits // all the behavior of addition on a ring. class MaxINode : public MaxNode { public: MaxINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeInt::make(min_jint); } virtual const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } }; //------------------------------MinINode--------------------------------------- // MINimum of 2 integers. Included with the ADD nodes because it inherits // all the behavior of addition on a ring. class MinINode : public MaxNode { public: MinINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {} virtual int Opcode() const; virtual const Type *add_ring( const Type *, const Type * ) const; virtual const Type *add_id() const { return TypeInt::make(max_jint); } virtual const Type *bottom_type() const { return TypeInt::INT; } virtual uint ideal_reg() const { return Op_RegI; } virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); };