/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_interface/collectedHeap.hpp" #include "opto/machnode.hpp" #include "opto/regalloc.hpp" //============================================================================= // Return the value requested // result register lookup, corresponding to int_format int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const { return (int)ra_->get_encode(node); } // input register lookup, corresponding to ext_format int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const { return (int)(ra_->get_encode(node->in(idx))); } intptr_t MachOper::constant() const { return 0x00; } relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; } jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; } jfloat MachOper::constantF() const { ShouldNotReachHere(); return 0.0; } jlong MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; } TypeOopPtr *MachOper::oop() const { return NULL; } int MachOper::ccode() const { return 0x00; } // A zero, default, indicates this value is not needed. // May need to lookup the base register, as done in int_ and ext_format int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } int MachOper::scale() const { return 0x00; } int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } int MachOper::constant_disp() const { return 0; } int MachOper::base_position() const { return -1; } // no base input int MachOper::index_position() const { return -1; } // no index input // Check for PC-Relative displacement relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; } // Return the label Label* MachOper::label() const { ShouldNotReachHere(); return 0; } intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; } //------------------------------negate----------------------------------------- // Negate conditional branches. Error for non-branch operands void MachOper::negate() { ShouldNotCallThis(); } //-----------------------------type-------------------------------------------- const Type *MachOper::type() const { return Type::BOTTOM; } //------------------------------in_RegMask------------------------------------- const RegMask *MachOper::in_RegMask(int index) const { ShouldNotReachHere(); return NULL; } //------------------------------dump_spec-------------------------------------- // Print any per-operand special info #ifndef PRODUCT void MachOper::dump_spec(outputStream *st) const { } #endif //------------------------------hash------------------------------------------- // Print any per-operand special info uint MachOper::hash() const { ShouldNotCallThis(); return 5; } //------------------------------cmp-------------------------------------------- // Print any per-operand special info uint MachOper::cmp( const MachOper &oper ) const { ShouldNotCallThis(); return opcode() == oper.opcode(); } //------------------------------hash------------------------------------------- // Print any per-operand special info uint labelOper::hash() const { return _block_num; } //------------------------------cmp-------------------------------------------- // Print any per-operand special info uint labelOper::cmp( const MachOper &oper ) const { return (opcode() == oper.opcode()) && (_label == oper.label()); } //------------------------------hash------------------------------------------- // Print any per-operand special info uint methodOper::hash() const { return (uint)_method; } //------------------------------cmp-------------------------------------------- // Print any per-operand special info uint methodOper::cmp( const MachOper &oper ) const { return (opcode() == oper.opcode()) && (_method == oper.method()); } //============================================================================= //------------------------------MachNode--------------------------------------- //------------------------------emit------------------------------------------- void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { #ifdef ASSERT tty->print("missing MachNode emit function: "); dump(); #endif ShouldNotCallThis(); } //---------------------------postalloc_expand---------------------------------- // Expand node after register allocation. void MachNode::postalloc_expand(GrowableArray *nodes, PhaseRegAlloc *ra_) {} //------------------------------size------------------------------------------- // Size of instruction in bytes uint MachNode::size(PhaseRegAlloc *ra_) const { // If a virtual was not defined for this specific instruction, // Call the helper which finds the size by emitting the bits. return MachNode::emit_size(ra_); } //------------------------------size------------------------------------------- // Helper function that computes size by emitting code uint MachNode::emit_size(PhaseRegAlloc *ra_) const { // Emit into a trash buffer and count bytes emitted. assert(ra_ == ra_->C->regalloc(), "sanity"); return ra_->C->scratch_emit_size(this); } //------------------------------hash------------------------------------------- uint MachNode::hash() const { uint no = num_opnds(); uint sum = rule(); for( uint i=0; ihash(); return sum+Node::hash(); } //-----------------------------cmp--------------------------------------------- uint MachNode::cmp( const Node &node ) const { MachNode& n = *((Node&)node).as_Mach(); uint no = num_opnds(); if( no != n.num_opnds() ) return 0; if( rule() != n.rule() ) return 0; for( uint i=0; icmp( *n._opnds[i] ) ) return 0; // mis-matched operands return 1; // match } // Return an equivalent instruction using memory for cisc_operand position MachNode *MachNode::cisc_version(int offset, Compile* C) { ShouldNotCallThis(); return NULL; } void MachNode::use_cisc_RegMask() { ShouldNotReachHere(); } //-----------------------------in_RegMask-------------------------------------- const RegMask &MachNode::in_RegMask( uint idx ) const { uint numopnds = num_opnds(); // Virtual call for number of operands uint skipped = oper_input_base(); // Sum of leaves skipped so far if( idx < skipped ) { assert( ideal_Opcode() == Op_AddP, "expected base ptr here" ); assert( idx == 1, "expected base ptr here" ); // debug info can be anywhere return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP]; } uint opcnt = 1; // First operand uint num_edges = _opnds[1]->num_edges(); // leaves for first operand while( idx >= skipped+num_edges ) { skipped += num_edges; opcnt++; // Bump operand count assert( opcnt < numopnds, "Accessing non-existent operand" ); num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand } const RegMask *rm = cisc_RegMask(); if( rm == NULL || (int)opcnt != cisc_operand() ) { rm = _opnds[opcnt]->in_RegMask(idx-skipped); } return *rm; } //-----------------------------memory_inputs-------------------------------- const MachOper* MachNode::memory_inputs(Node* &base, Node* &index) const { const MachOper* oper = memory_operand(); if (oper == (MachOper*)-1) { base = NodeSentinel; index = NodeSentinel; } else { base = NULL; index = NULL; if (oper != NULL) { // It has a unique memory operand. Find its index. int oper_idx = num_opnds(); while (--oper_idx >= 0) { if (_opnds[oper_idx] == oper) break; } int oper_pos = operand_index(oper_idx); int base_pos = oper->base_position(); if (base_pos >= 0) { base = _in[oper_pos+base_pos]; } int index_pos = oper->index_position(); if (index_pos >= 0) { index = _in[oper_pos+index_pos]; } } } return oper; } //-----------------------------get_base_and_disp---------------------------- const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const { // Find the memory inputs using our helper function Node* base; Node* index; const MachOper* oper = memory_inputs(base, index); if (oper == NULL) { // Base has been set to NULL offset = 0; } else if (oper == (MachOper*)-1) { // Base has been set to NodeSentinel // There is not a unique memory use here. We will fall to AliasIdxBot. offset = Type::OffsetBot; } else { // Base may be NULL, even if offset turns out to be != 0 intptr_t disp = oper->constant_disp(); int scale = oper->scale(); // Now we have collected every part of the ADLC MEMORY_INTER. // See if it adds up to a base + offset. if (index != NULL) { const Type* t_index = index->bottom_type(); if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass, // EncodeNKlass, LoadConNklass. // Memory references through narrow oops have a // funny base so grab the type from the index: // [R12 + narrow_oop_reg<<3 + offset] assert(base == NULL, "Memory references through narrow oops have no base"); offset = disp; adr_type = t_index->make_ptr()->add_offset(offset); return NULL; } else if (!index->is_Con()) { disp = Type::OffsetBot; } else if (disp != Type::OffsetBot) { const TypeX* ti = t_index->isa_intptr_t(); if (ti == NULL) { disp = Type::OffsetBot; // a random constant?? } else { disp += ti->get_con() << scale; } } } offset = disp; // In i486.ad, indOffset32X uses base==RegI and disp==RegP, // this will prevent alias analysis without the following support: // Lookup the TypePtr used by indOffset32X, a compile-time constant oop, // Add the offset determined by the "base", or use Type::OffsetBot. if( adr_type == TYPE_PTR_SENTINAL ) { const TypePtr *t_disp = oper->disp_as_type(); // only !NULL for indOffset32X if (t_disp != NULL) { offset = Type::OffsetBot; const Type* t_base = base->bottom_type(); if (t_base->isa_intptr_t()) { const TypeX *t_offset = t_base->is_intptr_t(); if( t_offset->is_con() ) { offset = t_offset->get_con(); } } adr_type = t_disp->add_offset(offset); } else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) { // Use ideal type if it is oop ptr. const TypePtr *tp = oper->type()->isa_ptr(); if( tp != NULL) { adr_type = tp; } } } } return base; } //---------------------------------adr_type--------------------------------- const class TypePtr *MachNode::adr_type() const { intptr_t offset = 0; const TypePtr *adr_type = TYPE_PTR_SENTINAL; // attempt computing adr_type const Node *base = get_base_and_disp(offset, adr_type); if( adr_type != TYPE_PTR_SENTINAL ) { return adr_type; // get_base_and_disp has the answer } // Direct addressing modes have no base node, simply an indirect // offset, which is always to raw memory. // %%%%% Someday we'd like to allow constant oop offsets which // would let Intel load from static globals in 1 instruction. // Currently Intel requires 2 instructions and a register temp. if (base == NULL) { // NULL base, zero offset means no memory at all (a null pointer!) if (offset == 0) { return NULL; } // NULL base, any offset means any pointer whatever if (offset == Type::OffsetBot) { return TypePtr::BOTTOM; } // %%% make offset be intptr_t assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr"); return TypeRawPtr::BOTTOM; } // base of -1 with no particular offset means all of memory if (base == NodeSentinel) return TypePtr::BOTTOM; const Type* t = base->bottom_type(); if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) { // 32-bit unscaled narrow oop can be the base of any address expression t = t->make_ptr(); } if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) { // 32-bit unscaled narrow oop can be the base of any address expression t = t->make_ptr(); } if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) { // We cannot assert that the offset does not look oop-ish here. // Depending on the heap layout the cardmark base could land // inside some oopish region. It definitely does for Win2K. // The sum of cardmark-base plus shift-by-9-oop lands outside // the oop-ish area but we can't assert for that statically. return TypeRawPtr::BOTTOM; } const TypePtr *tp = t->isa_ptr(); // be conservative if we do not recognize the type if (tp == NULL) { assert(false, "this path may produce not optimal code"); return TypePtr::BOTTOM; } assert(tp->base() != Type::AnyPtr, "not a bare pointer"); return tp->add_offset(offset); } //-----------------------------operand_index--------------------------------- int MachNode::operand_index( uint operand ) const { if( operand < 1 ) return -1; assert(operand < num_opnds(), "oob"); if( _opnds[operand]->num_edges() == 0 ) return -1; uint skipped = oper_input_base(); // Sum of leaves skipped so far for (uint opcnt = 1; opcnt < operand; opcnt++) { uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand skipped += num_edges; } return skipped; } //------------------------------peephole--------------------------------------- // Apply peephole rule(s) to this instruction MachNode *MachNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) { return NULL; } //------------------------------add_case_label--------------------------------- // Adds the label for the case void MachNode::add_case_label( int index_num, Label* blockLabel) { ShouldNotCallThis(); } //------------------------------method_set------------------------------------- // Set the absolute address of a method void MachNode::method_set( intptr_t addr ) { ShouldNotCallThis(); } //------------------------------rematerialize---------------------------------- bool MachNode::rematerialize() const { // Temps are always rematerializable if (is_MachTemp()) return true; uint r = rule(); // Match rule if( r < Matcher::_begin_rematerialize || r >= Matcher::_end_rematerialize ) return false; // For 2-address instructions, the input live range is also the output // live range. Remateralizing does not make progress on the that live range. if( two_adr() ) return false; // Check for rematerializing float constants, or not if( !Matcher::rematerialize_float_constants ) { int op = ideal_Opcode(); if( op == Op_ConF || op == Op_ConD ) return false; } // Defining flags - can't spill these! Must remateralize. if( ideal_reg() == Op_RegFlags ) return true; // Stretching lots of inputs - don't do it. if( req() > 2 ) return false; // Don't remateralize somebody with bound inputs - it stretches a // fixed register lifetime. uint idx = oper_input_base(); if (req() > idx) { const RegMask &rm = in_RegMask(idx); if (rm.is_bound(ideal_reg())) return false; } return true; } #ifndef PRODUCT //------------------------------dump_spec-------------------------------------- // Print any per-operand special info void MachNode::dump_spec(outputStream *st) const { uint cnt = num_opnds(); for( uint i=0; idump_spec(st); const TypePtr *t = adr_type(); if( t ) { Compile* C = Compile::current(); if( C->alias_type(t)->is_volatile() ) st->print(" Volatile!"); } } //------------------------------dump_format------------------------------------ // access to virtual void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const { format(ra, st); // access to virtual } #endif //============================================================================= #ifndef PRODUCT void MachTypeNode::dump_spec(outputStream *st) const { _bottom_type->dump_on(st); } #endif //============================================================================= int MachConstantNode::constant_offset() { // Bind the offset lazily. if (_constant.offset() == -1) { Compile::ConstantTable& constant_table = Compile::current()->constant_table(); int offset = constant_table.find_offset(_constant); // If called from Compile::scratch_emit_size return the // pre-calculated offset. // NOTE: If the AD file does some table base offset optimizations // later the AD file needs to take care of this fact. if (Compile::current()->in_scratch_emit_size()) { return constant_table.calculate_table_base_offset() + offset; } _constant.set_offset(constant_table.table_base_offset() + offset); } return _constant.offset(); } //============================================================================= #ifndef PRODUCT void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { int reg = ra_->get_reg_first(in(1)->in(_vidx)); st->print("%s %s", Name(), Matcher::regName[reg]); } #endif void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { // only emits entries in the null-pointer exception handler table } void MachNullCheckNode::label_set(Label* label, uint block_num) { // Nothing to emit } void MachNullCheckNode::save_label( Label** label, uint* block_num ) { // Nothing to emit } const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const { if( idx == 0 ) return RegMask::Empty; else return in(1)->as_Mach()->out_RegMask(); } //============================================================================= const Type *MachProjNode::bottom_type() const { if( _ideal_reg == fat_proj ) return Type::BOTTOM; // Try the normal mechanism first const Type *t = in(0)->bottom_type(); if( t->base() == Type::Tuple ) { const TypeTuple *tt = t->is_tuple(); if (_con < tt->cnt()) return tt->field_at(_con); } // Else use generic type from ideal register set assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds"); return Type::mreg2type[_ideal_reg]; } const TypePtr *MachProjNode::adr_type() const { if (bottom_type() == Type::MEMORY) { // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM const TypePtr* adr_type = in(0)->adr_type(); #ifdef ASSERT if (!is_error_reported() && !Node::in_dump()) assert(adr_type != NULL, "source must have adr_type"); #endif return adr_type; } assert(bottom_type()->base() != Type::Memory, "no other memories?"); return NULL; } #ifndef PRODUCT void MachProjNode::dump_spec(outputStream *st) const { ProjNode::dump_spec(st); switch (_ideal_reg) { case unmatched_proj: st->print("/unmatched"); break; case fat_proj: st->print("/fat"); if (WizardMode) _rout.dump(); break; } } #endif //============================================================================= #ifndef PRODUCT void MachIfNode::dump_spec(outputStream *st) const { st->print("P=%f, C=%f",_prob, _fcnt); } #endif //============================================================================= uint MachReturnNode::size_of() const { return sizeof(*this); } //------------------------------Registers-------------------------------------- const RegMask &MachReturnNode::in_RegMask( uint idx ) const { return _in_rms[idx]; } const TypePtr *MachReturnNode::adr_type() const { // most returns and calls are assumed to consume & modify all of memory // the matcher will copy non-wide adr_types from ideal originals return _adr_type; } //============================================================================= const Type *MachSafePointNode::bottom_type() const { return TypeTuple::MEMBAR; } //------------------------------Registers-------------------------------------- const RegMask &MachSafePointNode::in_RegMask( uint idx ) const { // Values in the domain use the users calling convention, embodied in the // _in_rms array of RegMasks. if( idx < TypeFunc::Parms ) return _in_rms[idx]; if (SafePointNode::needs_polling_address_input() && idx == TypeFunc::Parms && ideal_Opcode() == Op_SafePoint) { return MachNode::in_RegMask(idx); } // Values outside the domain represent debug info return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]; } //============================================================================= uint MachCallNode::cmp( const Node &n ) const { return _tf == ((MachCallNode&)n)._tf; } const Type *MachCallNode::bottom_type() const { return tf()->range(); } const Type *MachCallNode::Value(PhaseTransform *phase) const { return tf()->range(); } #ifndef PRODUCT void MachCallNode::dump_spec(outputStream *st) const { st->print("# "); tf()->dump_on(st); if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); if (jvms() != NULL) jvms()->dump_spec(st); } #endif bool MachCallNode::return_value_is_used() const { if (tf()->range()->cnt() == TypeFunc::Parms) { // void return return false; } // find the projection corresponding to the return value for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { Node *use = fast_out(i); if (!use->is_Proj()) continue; if (use->as_Proj()->_con == TypeFunc::Parms) { return true; } } return false; } //------------------------------Registers-------------------------------------- const RegMask &MachCallNode::in_RegMask( uint idx ) const { // Values in the domain use the users calling convention, embodied in the // _in_rms array of RegMasks. if (idx < tf()->domain()->cnt()) return _in_rms[idx]; // Values outside the domain represent debug info return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]; } //============================================================================= uint MachCallJavaNode::size_of() const { return sizeof(*this); } uint MachCallJavaNode::cmp( const Node &n ) const { MachCallJavaNode &call = (MachCallJavaNode&)n; return MachCallNode::cmp(call) && _method->equals(call._method); } #ifndef PRODUCT void MachCallJavaNode::dump_spec(outputStream *st) const { if (_method_handle_invoke) st->print("MethodHandle "); if (_method) { _method->print_short_name(st); st->print(" "); } MachCallNode::dump_spec(st); } #endif //------------------------------Registers-------------------------------------- const RegMask &MachCallJavaNode::in_RegMask(uint idx) const { // Values in the domain use the users calling convention, embodied in the // _in_rms array of RegMasks. if (idx < tf()->domain()->cnt()) return _in_rms[idx]; // Values outside the domain represent debug info Matcher* m = Compile::current()->matcher(); // If this call is a MethodHandle invoke we have to use a different // debugmask which does not include the register we use to save the // SP over MH invokes. RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask; return *debugmask[in(idx)->ideal_reg()]; } //============================================================================= uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); } uint MachCallStaticJavaNode::cmp( const Node &n ) const { MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n; return MachCallJavaNode::cmp(call) && _name == call._name; } //----------------------------uncommon_trap_request---------------------------- // If this is an uncommon trap, return the request code, else zero. int MachCallStaticJavaNode::uncommon_trap_request() const { if (_name != NULL && !strcmp(_name, "uncommon_trap")) { return CallStaticJavaNode::extract_uncommon_trap_request(this); } return 0; } #ifndef PRODUCT // Helper for summarizing uncommon_trap arguments. void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const { int trap_req = uncommon_trap_request(); if (trap_req != 0) { char buf[100]; st->print("(%s)", Deoptimization::format_trap_request(buf, sizeof(buf), trap_req)); } } void MachCallStaticJavaNode::dump_spec(outputStream *st) const { st->print("Static "); if (_name != NULL) { st->print("wrapper for: %s", _name ); dump_trap_args(st); st->print(" "); } MachCallJavaNode::dump_spec(st); } #endif //============================================================================= #ifndef PRODUCT void MachCallDynamicJavaNode::dump_spec(outputStream *st) const { st->print("Dynamic "); MachCallJavaNode::dump_spec(st); } #endif //============================================================================= uint MachCallRuntimeNode::size_of() const { return sizeof(*this); } uint MachCallRuntimeNode::cmp( const Node &n ) const { MachCallRuntimeNode &call = (MachCallRuntimeNode&)n; return MachCallNode::cmp(call) && !strcmp(_name,call._name); } #ifndef PRODUCT void MachCallRuntimeNode::dump_spec(outputStream *st) const { st->print("%s ",_name); MachCallNode::dump_spec(st); } #endif //============================================================================= // A shared JVMState for all HaltNodes. Indicates the start of debug info // is at TypeFunc::Parms. Only required for SOE register spill handling - // to indicate where the stack-slot-only debug info inputs begin. // There is no other JVM state needed here. JVMState jvms_for_throw(0); JVMState *MachHaltNode::jvms() const { return &jvms_for_throw; } //============================================================================= #ifndef PRODUCT void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { st->print("B%d", _block_num); } #endif // PRODUCT //============================================================================= #ifndef PRODUCT void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { st->print(INTPTR_FORMAT, _method); } #endif // PRODUCT