/* * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/concurrentG1Refine.hpp" #include "gc_implementation/g1/concurrentMark.hpp" #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1CollectorPolicy.hpp" #include "gc_implementation/g1/g1ErgoVerbose.hpp" #include "gc_implementation/g1/heapRegionRemSet.hpp" #include "gc_implementation/shared/gcPolicyCounters.hpp" #include "runtime/arguments.hpp" #include "runtime/java.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/debug.hpp" // Different defaults for different number of GC threads // They were chosen by running GCOld and SPECjbb on debris with different // numbers of GC threads and choosing them based on the results // all the same static double rs_length_diff_defaults[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static double cost_per_card_ms_defaults[] = { 0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015 }; // all the same static double young_cards_per_entry_ratio_defaults[] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; static double cost_per_entry_ms_defaults[] = { 0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005 }; static double cost_per_byte_ms_defaults[] = { 0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009 }; // these should be pretty consistent static double constant_other_time_ms_defaults[] = { 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 }; static double young_other_cost_per_region_ms_defaults[] = { 0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1 }; static double non_young_other_cost_per_region_ms_defaults[] = { 1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30 }; // Help class for avoiding interleaved logging class LineBuffer: public StackObj { private: static const int BUFFER_LEN = 1024; static const int INDENT_CHARS = 3; char _buffer[BUFFER_LEN]; int _indent_level; int _cur; void vappend(const char* format, va_list ap) { int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap); if (res != -1) { _cur += res; } else { DEBUG_ONLY(warning("buffer too small in LineBuffer");) _buffer[BUFFER_LEN -1] = 0; _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again } } public: explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) { for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) { _buffer[_cur] = ' '; } } #ifndef PRODUCT ~LineBuffer() { assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?"); } #endif void append(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); } void append_and_print_cr(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); gclog_or_tty->print_cr("%s", _buffer); _cur = _indent_level * INDENT_CHARS; } }; G1CollectorPolicy::G1CollectorPolicy() : _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1), _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), _all_pause_times_ms(new NumberSeq()), _stop_world_start(0.0), _all_stop_world_times_ms(new NumberSeq()), _all_yield_times_ms(new NumberSeq()), _summary(new Summary()), _cur_clear_ct_time_ms(0.0), _mark_closure_time_ms(0.0), _root_region_scan_wait_time_ms(0.0), _cur_ref_proc_time_ms(0.0), _cur_ref_enq_time_ms(0.0), #ifndef PRODUCT _min_clear_cc_time_ms(-1.0), _max_clear_cc_time_ms(-1.0), _cur_clear_cc_time_ms(0.0), _cum_clear_cc_time_ms(0.0), _num_cc_clears(0L), #endif _aux_num(10), _all_aux_times_ms(new NumberSeq[_aux_num]), _cur_aux_start_times_ms(new double[_aux_num]), _cur_aux_times_ms(new double[_aux_num]), _cur_aux_times_set(new bool[_aux_num]), _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)), _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _prev_collection_pause_end_ms(0.0), _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)), _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)), _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)), _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)), _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)), _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)), _non_young_other_cost_per_region_ms_seq( new TruncatedSeq(TruncatedSeqLength)), _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)), _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)), _pause_time_target_ms((double) MaxGCPauseMillis), _gcs_are_young(true), _young_pause_num(0), _mixed_pause_num(0), _during_marking(false), _in_marking_window(false), _in_marking_window_im(false), _known_garbage_ratio(0.0), _known_garbage_bytes(0), _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)), _recent_prev_end_times_for_all_gcs_sec( new TruncatedSeq(NumPrevPausesForHeuristics)), _recent_avg_pause_time_ratio(0.0), _all_full_gc_times_ms(new NumberSeq()), _initiate_conc_mark_if_possible(false), _during_initial_mark_pause(false), _last_young_gc(false), _last_gc_was_young(false), _eden_bytes_before_gc(0), _survivor_bytes_before_gc(0), _capacity_before_gc(0), _eden_cset_region_length(0), _survivor_cset_region_length(0), _old_cset_region_length(0), _collection_set(NULL), _collection_set_bytes_used_before(0), // Incremental CSet attributes _inc_cset_build_state(Inactive), _inc_cset_head(NULL), _inc_cset_tail(NULL), _inc_cset_bytes_used_before(0), _inc_cset_max_finger(NULL), _inc_cset_recorded_rs_lengths(0), _inc_cset_recorded_rs_lengths_diffs(0), _inc_cset_predicted_elapsed_time_ms(0.0), _inc_cset_predicted_elapsed_time_ms_diffs(0.0), #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away #pragma warning( disable:4355 ) // 'this' : used in base member initializer list #endif // _MSC_VER _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary)), _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary)), // add here any more surv rate groups _recorded_survivor_regions(0), _recorded_survivor_head(NULL), _recorded_survivor_tail(NULL), _survivors_age_table(true), _gc_overhead_perc(0.0) { // Set up the region size and associated fields. Given that the // policy is created before the heap, we have to set this up here, // so it's done as soon as possible. HeapRegion::setup_heap_region_size(Arguments::min_heap_size()); HeapRegionRemSet::setup_remset_size(); G1ErgoVerbose::initialize(); if (PrintAdaptiveSizePolicy) { // Currently, we only use a single switch for all the heuristics. G1ErgoVerbose::set_enabled(true); // Given that we don't currently have a verboseness level // parameter, we'll hardcode this to high. This can be easily // changed in the future. G1ErgoVerbose::set_level(ErgoHigh); } else { G1ErgoVerbose::set_enabled(false); } // Verify PLAB sizes const size_t region_size = HeapRegion::GrainWords; if (YoungPLABSize > region_size || OldPLABSize > region_size) { char buffer[128]; jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT, OldPLABSize > region_size ? "Old" : "Young", region_size); vm_exit_during_initialization(buffer); } _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime()); _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0; _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads]; _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads]; _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads]; _par_last_update_rs_times_ms = new double[_parallel_gc_threads]; _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads]; _par_last_scan_rs_times_ms = new double[_parallel_gc_threads]; _par_last_obj_copy_times_ms = new double[_parallel_gc_threads]; _par_last_termination_times_ms = new double[_parallel_gc_threads]; _par_last_termination_attempts = new double[_parallel_gc_threads]; _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads]; _par_last_gc_worker_times_ms = new double[_parallel_gc_threads]; _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads]; int index; if (ParallelGCThreads == 0) index = 0; else if (ParallelGCThreads > 8) index = 7; else index = ParallelGCThreads - 1; _pending_card_diff_seq->add(0.0); _rs_length_diff_seq->add(rs_length_diff_defaults[index]); _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]); _young_cards_per_entry_ratio_seq->add( young_cards_per_entry_ratio_defaults[index]); _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]); _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]); _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]); _young_other_cost_per_region_ms_seq->add( young_other_cost_per_region_ms_defaults[index]); _non_young_other_cost_per_region_ms_seq->add( non_young_other_cost_per_region_ms_defaults[index]); // Below, we might need to calculate the pause time target based on // the pause interval. When we do so we are going to give G1 maximum // flexibility and allow it to do pauses when it needs to. So, we'll // arrange that the pause interval to be pause time target + 1 to // ensure that a) the pause time target is maximized with respect to // the pause interval and b) we maintain the invariant that pause // time target < pause interval. If the user does not want this // maximum flexibility, they will have to set the pause interval // explicitly. // First make sure that, if either parameter is set, its value is // reasonable. if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) { if (MaxGCPauseMillis < 1) { vm_exit_during_initialization("MaxGCPauseMillis should be " "greater than 0"); } } if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { if (GCPauseIntervalMillis < 1) { vm_exit_during_initialization("GCPauseIntervalMillis should be " "greater than 0"); } } // Then, if the pause time target parameter was not set, set it to // the default value. if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) { if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { // The default pause time target in G1 is 200ms FLAG_SET_DEFAULT(MaxGCPauseMillis, 200); } else { // We do not allow the pause interval to be set without the // pause time target vm_exit_during_initialization("GCPauseIntervalMillis cannot be set " "without setting MaxGCPauseMillis"); } } // Then, if the interval parameter was not set, set it according to // the pause time target (this will also deal with the case when the // pause time target is the default value). if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1); } // Finally, make sure that the two parameters are consistent. if (MaxGCPauseMillis >= GCPauseIntervalMillis) { char buffer[256]; jio_snprintf(buffer, 256, "MaxGCPauseMillis (%u) should be less than " "GCPauseIntervalMillis (%u)", MaxGCPauseMillis, GCPauseIntervalMillis); vm_exit_during_initialization(buffer); } double max_gc_time = (double) MaxGCPauseMillis / 1000.0; double time_slice = (double) GCPauseIntervalMillis / 1000.0; _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time); _sigma = (double) G1ConfidencePercent / 100.0; // start conservatively (around 50ms is about right) _concurrent_mark_remark_times_ms->add(0.05); _concurrent_mark_cleanup_times_ms->add(0.20); _tenuring_threshold = MaxTenuringThreshold; // _max_survivor_regions will be calculated by // update_young_list_target_length() during initialization. _max_survivor_regions = 0; assert(GCTimeRatio > 0, "we should have set it to a default value set_g1_gc_flags() " "if a user set it to 0"); _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio)); uintx reserve_perc = G1ReservePercent; // Put an artificial ceiling on this so that it's not set to a silly value. if (reserve_perc > 50) { reserve_perc = 50; warning("G1ReservePercent is set to a value that is too large, " "it's been updated to %u", reserve_perc); } _reserve_factor = (double) reserve_perc / 100.0; // This will be set when the heap is expanded // for the first time during initialization. _reserve_regions = 0; initialize_all(); _collectionSetChooser = new CollectionSetChooser(); _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags } void G1CollectorPolicy::initialize_flags() { set_min_alignment(HeapRegion::GrainBytes); set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name())); if (SurvivorRatio < 1) { vm_exit_during_initialization("Invalid survivor ratio specified"); } CollectorPolicy::initialize_flags(); } G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) { assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max"); assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds"); assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds"); if (FLAG_IS_CMDLINE(NewRatio)) { if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) { warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio"); } else { _sizer_kind = SizerNewRatio; _adaptive_size = false; return; } } if (FLAG_IS_CMDLINE(NewSize)) { _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes); if (FLAG_IS_CMDLINE(MaxNewSize)) { _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes); _sizer_kind = SizerMaxAndNewSize; _adaptive_size = _min_desired_young_length == _max_desired_young_length; } else { _sizer_kind = SizerNewSizeOnly; } } else if (FLAG_IS_CMDLINE(MaxNewSize)) { _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes); _sizer_kind = SizerMaxNewSizeOnly; } } size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) { size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100; return MAX2((size_t)1, default_value); } size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) { size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100; return MAX2((size_t)1, default_value); } void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) { assert(new_number_of_heap_regions > 0, "Heap must be initialized"); switch (_sizer_kind) { case SizerDefaults: _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions); _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions); break; case SizerNewSizeOnly: _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions); _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length); break; case SizerMaxNewSizeOnly: _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions); _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length); break; case SizerMaxAndNewSize: // Do nothing. Values set on the command line, don't update them at runtime. break; case SizerNewRatio: _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1); _max_desired_young_length = _min_desired_young_length; break; default: ShouldNotReachHere(); } assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values"); } void G1CollectorPolicy::init() { // Set aside an initial future to_space. _g1 = G1CollectedHeap::heap(); assert(Heap_lock->owned_by_self(), "Locking discipline."); initialize_gc_policy_counters(); if (adaptive_young_list_length()) { _young_list_fixed_length = 0; } else { _young_list_fixed_length = _young_gen_sizer->min_desired_young_length(); } _free_regions_at_end_of_collection = _g1->free_regions(); update_young_list_target_length(); _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes; // We may immediately start allocating regions and placing them on the // collection set list. Initialize the per-collection set info start_incremental_cset_building(); } // Create the jstat counters for the policy. void G1CollectorPolicy::initialize_gc_policy_counters() { _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3); } bool G1CollectorPolicy::predict_will_fit(size_t young_length, double base_time_ms, size_t base_free_regions, double target_pause_time_ms) { if (young_length >= base_free_regions) { // end condition 1: not enough space for the young regions return false; } double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1)); size_t bytes_to_copy = (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes); double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy); double young_other_time_ms = predict_young_other_time_ms(young_length); double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms; if (pause_time_ms > target_pause_time_ms) { // end condition 2: prediction is over the target pause time return false; } size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes; if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) { // end condition 3: out-of-space (conservatively!) return false; } // success! return true; } void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) { // re-calculate the necessary reserve double reserve_regions_d = (double) new_number_of_regions * _reserve_factor; // We use ceiling so that if reserve_regions_d is > 0.0 (but // smaller than 1.0) we'll get 1. _reserve_regions = (size_t) ceil(reserve_regions_d); _young_gen_sizer->heap_size_changed(new_number_of_regions); } size_t G1CollectorPolicy::calculate_young_list_desired_min_length( size_t base_min_length) { size_t desired_min_length = 0; if (adaptive_young_list_length()) { if (_alloc_rate_ms_seq->num() > 3) { double now_sec = os::elapsedTime(); double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0; double alloc_rate_ms = predict_alloc_rate_ms(); desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms); } else { // otherwise we don't have enough info to make the prediction } } desired_min_length += base_min_length; // make sure we don't go below any user-defined minimum bound return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length); } size_t G1CollectorPolicy::calculate_young_list_desired_max_length() { // Here, we might want to also take into account any additional // constraints (i.e., user-defined minimum bound). Currently, we // effectively don't set this bound. return _young_gen_sizer->max_desired_young_length(); } void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) { if (rs_lengths == (size_t) -1) { // if it's set to the default value (-1), we should predict it; // otherwise, use the given value. rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq); } // Calculate the absolute and desired min bounds. // This is how many young regions we already have (currently: the survivors). size_t base_min_length = recorded_survivor_regions(); // This is the absolute minimum young length, which ensures that we // can allocate one eden region in the worst-case. size_t absolute_min_length = base_min_length + 1; size_t desired_min_length = calculate_young_list_desired_min_length(base_min_length); if (desired_min_length < absolute_min_length) { desired_min_length = absolute_min_length; } // Calculate the absolute and desired max bounds. // We will try our best not to "eat" into the reserve. size_t absolute_max_length = 0; if (_free_regions_at_end_of_collection > _reserve_regions) { absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions; } size_t desired_max_length = calculate_young_list_desired_max_length(); if (desired_max_length > absolute_max_length) { desired_max_length = absolute_max_length; } size_t young_list_target_length = 0; if (adaptive_young_list_length()) { if (gcs_are_young()) { young_list_target_length = calculate_young_list_target_length(rs_lengths, base_min_length, desired_min_length, desired_max_length); _rs_lengths_prediction = rs_lengths; } else { // Don't calculate anything and let the code below bound it to // the desired_min_length, i.e., do the next GC as soon as // possible to maximize how many old regions we can add to it. } } else { // The user asked for a fixed young gen so we'll fix the young gen // whether the next GC is young or mixed. young_list_target_length = _young_list_fixed_length; } // Make sure we don't go over the desired max length, nor under the // desired min length. In case they clash, desired_min_length wins // which is why that test is second. if (young_list_target_length > desired_max_length) { young_list_target_length = desired_max_length; } if (young_list_target_length < desired_min_length) { young_list_target_length = desired_min_length; } assert(young_list_target_length > recorded_survivor_regions(), "we should be able to allocate at least one eden region"); assert(young_list_target_length >= absolute_min_length, "post-condition"); _young_list_target_length = young_list_target_length; update_max_gc_locker_expansion(); } size_t G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths, size_t base_min_length, size_t desired_min_length, size_t desired_max_length) { assert(adaptive_young_list_length(), "pre-condition"); assert(gcs_are_young(), "only call this for young GCs"); // In case some edge-condition makes the desired max length too small... if (desired_max_length <= desired_min_length) { return desired_min_length; } // We'll adjust min_young_length and max_young_length not to include // the already allocated young regions (i.e., so they reflect the // min and max eden regions we'll allocate). The base_min_length // will be reflected in the predictions by the // survivor_regions_evac_time prediction. assert(desired_min_length > base_min_length, "invariant"); size_t min_young_length = desired_min_length - base_min_length; assert(desired_max_length > base_min_length, "invariant"); size_t max_young_length = desired_max_length - base_min_length; double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0; double survivor_regions_evac_time = predict_survivor_regions_evac_time(); size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq); size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff(); size_t scanned_cards = predict_young_card_num(adj_rs_lengths); double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards) + survivor_regions_evac_time; size_t available_free_regions = _free_regions_at_end_of_collection; size_t base_free_regions = 0; if (available_free_regions > _reserve_regions) { base_free_regions = available_free_regions - _reserve_regions; } // Here, we will make sure that the shortest young length that // makes sense fits within the target pause time. if (predict_will_fit(min_young_length, base_time_ms, base_free_regions, target_pause_time_ms)) { // The shortest young length will fit into the target pause time; // we'll now check whether the absolute maximum number of young // regions will fit in the target pause time. If not, we'll do // a binary search between min_young_length and max_young_length. if (predict_will_fit(max_young_length, base_time_ms, base_free_regions, target_pause_time_ms)) { // The maximum young length will fit into the target pause time. // We are done so set min young length to the maximum length (as // the result is assumed to be returned in min_young_length). min_young_length = max_young_length; } else { // The maximum possible number of young regions will not fit within // the target pause time so we'll search for the optimal // length. The loop invariants are: // // min_young_length < max_young_length // min_young_length is known to fit into the target pause time // max_young_length is known not to fit into the target pause time // // Going into the loop we know the above hold as we've just // checked them. Every time around the loop we check whether // the middle value between min_young_length and // max_young_length fits into the target pause time. If it // does, it becomes the new min. If it doesn't, it becomes // the new max. This way we maintain the loop invariants. assert(min_young_length < max_young_length, "invariant"); size_t diff = (max_young_length - min_young_length) / 2; while (diff > 0) { size_t young_length = min_young_length + diff; if (predict_will_fit(young_length, base_time_ms, base_free_regions, target_pause_time_ms)) { min_young_length = young_length; } else { max_young_length = young_length; } assert(min_young_length < max_young_length, "invariant"); diff = (max_young_length - min_young_length) / 2; } // The results is min_young_length which, according to the // loop invariants, should fit within the target pause time. // These are the post-conditions of the binary search above: assert(min_young_length < max_young_length, "otherwise we should have discovered that max_young_length " "fits into the pause target and not done the binary search"); assert(predict_will_fit(min_young_length, base_time_ms, base_free_regions, target_pause_time_ms), "min_young_length, the result of the binary search, should " "fit into the pause target"); assert(!predict_will_fit(min_young_length + 1, base_time_ms, base_free_regions, target_pause_time_ms), "min_young_length, the result of the binary search, should be " "optimal, so no larger length should fit into the pause target"); } } else { // Even the minimum length doesn't fit into the pause time // target, return it as the result nevertheless. } return base_min_length + min_young_length; } double G1CollectorPolicy::predict_survivor_regions_evac_time() { double survivor_regions_evac_time = 0.0; for (HeapRegion * r = _recorded_survivor_head; r != NULL && r != _recorded_survivor_tail->get_next_young_region(); r = r->get_next_young_region()) { survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true); } return survivor_regions_evac_time; } void G1CollectorPolicy::revise_young_list_target_length_if_necessary() { guarantee( adaptive_young_list_length(), "should not call this otherwise" ); size_t rs_lengths = _g1->young_list()->sampled_rs_lengths(); if (rs_lengths > _rs_lengths_prediction) { // add 10% to avoid having to recalculate often size_t rs_lengths_prediction = rs_lengths * 1100 / 1000; update_young_list_target_length(rs_lengths_prediction); } } HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size, bool is_tlab, bool* gc_overhead_limit_was_exceeded) { guarantee(false, "Not using this policy feature yet."); return NULL; } // This method controls how a collector handles one or more // of its generations being fully allocated. HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size, bool is_tlab) { guarantee(false, "Not using this policy feature yet."); return NULL; } #ifndef PRODUCT bool G1CollectorPolicy::verify_young_ages() { HeapRegion* head = _g1->young_list()->first_region(); return verify_young_ages(head, _short_lived_surv_rate_group); // also call verify_young_ages on any additional surv rate groups } bool G1CollectorPolicy::verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group) { guarantee( surv_rate_group != NULL, "pre-condition" ); const char* name = surv_rate_group->name(); bool ret = true; int prev_age = -1; for (HeapRegion* curr = head; curr != NULL; curr = curr->get_next_young_region()) { SurvRateGroup* group = curr->surv_rate_group(); if (group == NULL && !curr->is_survivor()) { gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name); ret = false; } if (surv_rate_group == group) { int age = curr->age_in_surv_rate_group(); if (age < 0) { gclog_or_tty->print_cr("## %s: encountered negative age", name); ret = false; } if (age <= prev_age) { gclog_or_tty->print_cr("## %s: region ages are not strictly increasing " "(%d, %d)", name, age, prev_age); ret = false; } prev_age = age; } } return ret; } #endif // PRODUCT void G1CollectorPolicy::record_full_collection_start() { _cur_collection_start_sec = os::elapsedTime(); // Release the future to-space so that it is available for compaction into. _g1->set_full_collection(); } void G1CollectorPolicy::record_full_collection_end() { // Consider this like a collection pause for the purposes of allocation // since last pause. double end_sec = os::elapsedTime(); double full_gc_time_sec = end_sec - _cur_collection_start_sec; double full_gc_time_ms = full_gc_time_sec * 1000.0; _all_full_gc_times_ms->add(full_gc_time_ms); update_recent_gc_times(end_sec, full_gc_time_ms); _g1->clear_full_collection(); // "Nuke" the heuristics that control the young/mixed GC // transitions and make sure we start with young GCs after the Full GC. set_gcs_are_young(true); _last_young_gc = false; clear_initiate_conc_mark_if_possible(); clear_during_initial_mark_pause(); _known_garbage_bytes = 0; _known_garbage_ratio = 0.0; _in_marking_window = false; _in_marking_window_im = false; _short_lived_surv_rate_group->start_adding_regions(); // also call this on any additional surv rate groups record_survivor_regions(0, NULL, NULL); _free_regions_at_end_of_collection = _g1->free_regions(); // Reset survivors SurvRateGroup. _survivor_surv_rate_group->reset(); update_young_list_target_length(); _collectionSetChooser->clearMarkedHeapRegions(); } void G1CollectorPolicy::record_stop_world_start() { _stop_world_start = os::elapsedTime(); } void G1CollectorPolicy::record_collection_pause_start(double start_time_sec, size_t start_used) { if (PrintGCDetails) { gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print("[GC pause"); gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed"); } // We only need to do this here as the policy will only be applied // to the GC we're about to start. so, no point is calculating this // every time we calculate / recalculate the target young length. update_survivors_policy(); assert(_g1->used() == _g1->recalculate_used(), err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT, _g1->used(), _g1->recalculate_used())); double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0; _all_stop_world_times_ms->add(s_w_t_ms); _stop_world_start = 0.0; _cur_collection_start_sec = start_time_sec; _cur_collection_pause_used_at_start_bytes = start_used; _cur_collection_pause_used_regions_at_start = _g1->used_regions(); _pending_cards = _g1->pending_card_num(); _max_pending_cards = _g1->max_pending_card_num(); _bytes_in_collection_set_before_gc = 0; _bytes_copied_during_gc = 0; YoungList* young_list = _g1->young_list(); _eden_bytes_before_gc = young_list->eden_used_bytes(); _survivor_bytes_before_gc = young_list->survivor_used_bytes(); _capacity_before_gc = _g1->capacity(); #ifdef DEBUG // initialise these to something well known so that we can spot // if they are not set properly for (int i = 0; i < _parallel_gc_threads; ++i) { _par_last_gc_worker_start_times_ms[i] = -1234.0; _par_last_ext_root_scan_times_ms[i] = -1234.0; _par_last_satb_filtering_times_ms[i] = -1234.0; _par_last_update_rs_times_ms[i] = -1234.0; _par_last_update_rs_processed_buffers[i] = -1234.0; _par_last_scan_rs_times_ms[i] = -1234.0; _par_last_obj_copy_times_ms[i] = -1234.0; _par_last_termination_times_ms[i] = -1234.0; _par_last_termination_attempts[i] = -1234.0; _par_last_gc_worker_end_times_ms[i] = -1234.0; _par_last_gc_worker_times_ms[i] = -1234.0; _par_last_gc_worker_other_times_ms[i] = -1234.0; } #endif for (int i = 0; i < _aux_num; ++i) { _cur_aux_times_ms[i] = 0.0; _cur_aux_times_set[i] = false; } // This is initialized to zero here and is set during // the evacuation pause if marking is in progress. _cur_satb_drain_time_ms = 0.0; // This is initialized to zero here and is set during the evacuation // pause if we actually waited for the root region scanning to finish. _root_region_scan_wait_time_ms = 0.0; _last_gc_was_young = false; // do that for any other surv rate groups _short_lived_surv_rate_group->stop_adding_regions(); _survivors_age_table.clear(); assert( verify_young_ages(), "region age verification" ); } void G1CollectorPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) { _during_marking = true; assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now"); clear_during_initial_mark_pause(); _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms; } void G1CollectorPolicy::record_concurrent_mark_remark_start() { _mark_remark_start_sec = os::elapsedTime(); _during_marking = false; } void G1CollectorPolicy::record_concurrent_mark_remark_end() { double end_time_sec = os::elapsedTime(); double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0; _concurrent_mark_remark_times_ms->add(elapsed_time_ms); _cur_mark_stop_world_time_ms += elapsed_time_ms; _prev_collection_pause_end_ms += elapsed_time_ms; _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true); } void G1CollectorPolicy::record_concurrent_mark_cleanup_start() { _mark_cleanup_start_sec = os::elapsedTime(); } void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() { _last_young_gc = true; _in_marking_window = false; } void G1CollectorPolicy::record_concurrent_pause() { if (_stop_world_start > 0.0) { double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0; _all_yield_times_ms->add(yield_ms); } } void G1CollectorPolicy::record_concurrent_pause_end() { } template T sum_of(T* sum_arr, int start, int n, int N) { T sum = (T)0; for (int i = 0; i < n; i++) { int j = (start + i) % N; sum += sum_arr[j]; } return sum; } void G1CollectorPolicy::print_par_stats(int level, const char* str, double* data) { double min = data[0], max = data[0]; double total = 0.0; LineBuffer buf(level); buf.append("[%s (ms):", str); for (uint i = 0; i < no_of_gc_threads(); ++i) { double val = data[i]; if (val < min) min = val; if (val > max) max = val; total += val; buf.append(" %3.1lf", val); } buf.append_and_print_cr(""); double avg = total / (double) no_of_gc_threads(); buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]", avg, min, max, max - min); } void G1CollectorPolicy::print_par_sizes(int level, const char* str, double* data) { double min = data[0], max = data[0]; double total = 0.0; LineBuffer buf(level); buf.append("[%s :", str); for (uint i = 0; i < no_of_gc_threads(); ++i) { double val = data[i]; if (val < min) min = val; if (val > max) max = val; total += val; buf.append(" %d", (int) val); } buf.append_and_print_cr(""); double avg = total / (double) no_of_gc_threads(); buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]", (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min); } void G1CollectorPolicy::print_stats(int level, const char* str, double value) { LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value); } void G1CollectorPolicy::print_stats(int level, const char* str, int value) { LineBuffer(level).append_and_print_cr("[%s: %d]", str, value); } double G1CollectorPolicy::avg_value(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double ret = 0.0; for (uint i = 0; i < no_of_gc_threads(); ++i) { ret += data[i]; } return ret / (double) no_of_gc_threads(); } else { return data[0]; } } double G1CollectorPolicy::max_value(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double ret = data[0]; for (uint i = 1; i < no_of_gc_threads(); ++i) { if (data[i] > ret) { ret = data[i]; } } return ret; } else { return data[0]; } } double G1CollectorPolicy::sum_of_values(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double sum = 0.0; for (uint i = 0; i < no_of_gc_threads(); i++) { sum += data[i]; } return sum; } else { return data[0]; } } double G1CollectorPolicy::max_sum(double* data1, double* data2) { double ret = data1[0] + data2[0]; if (G1CollectedHeap::use_parallel_gc_threads()) { for (uint i = 1; i < no_of_gc_threads(); ++i) { double data = data1[i] + data2[i]; if (data > ret) { ret = data; } } } return ret; } bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) { if (_g1->concurrent_mark()->cmThread()->during_cycle()) { return false; } size_t marking_initiating_used_threshold = (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent; size_t cur_used_bytes = _g1->non_young_capacity_bytes(); size_t alloc_byte_size = alloc_word_size * HeapWordSize; if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) { if (gcs_are_young()) { ergo_verbose5(ErgoConcCycles, "request concurrent cycle initiation", ergo_format_reason("occupancy higher than threshold") ergo_format_byte("occupancy") ergo_format_byte("allocation request") ergo_format_byte_perc("threshold") ergo_format_str("source"), cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) InitiatingHeapOccupancyPercent, source); return true; } else { ergo_verbose5(ErgoConcCycles, "do not request concurrent cycle initiation", ergo_format_reason("still doing mixed collections") ergo_format_byte("occupancy") ergo_format_byte("allocation request") ergo_format_byte_perc("threshold") ergo_format_str("source"), cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) InitiatingHeapOccupancyPercent, source); } } return false; } // Anything below that is considered to be zero #define MIN_TIMER_GRANULARITY 0.0000001 void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) { double end_time_sec = os::elapsedTime(); double elapsed_ms = _last_pause_time_ms; bool parallel = G1CollectedHeap::use_parallel_gc_threads(); assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(), "otherwise, the subtraction below does not make sense"); size_t rs_size = _cur_collection_pause_used_regions_at_start - cset_region_length(); size_t cur_used_bytes = _g1->used(); assert(cur_used_bytes == _g1->recalculate_used(), "It should!"); bool last_pause_included_initial_mark = false; bool update_stats = !_g1->evacuation_failed(); set_no_of_gc_threads(no_of_gc_threads); #ifndef PRODUCT if (G1YoungSurvRateVerbose) { gclog_or_tty->print_cr(""); _short_lived_surv_rate_group->print(); // do that for any other surv rate groups too } #endif // PRODUCT last_pause_included_initial_mark = during_initial_mark_pause(); if (last_pause_included_initial_mark) { record_concurrent_mark_init_end(0.0); } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) { // Note: this might have already been set, if during the last // pause we decided to start a cycle but at the beginning of // this pause we decided to postpone it. That's OK. set_initiate_conc_mark_if_possible(); } _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0, end_time_sec, false); // This assert is exempted when we're doing parallel collection pauses, // because the fragmentation caused by the parallel GC allocation buffers // can lead to more memory being used during collection than was used // before. Best leave this out until the fragmentation problem is fixed. // Pauses in which evacuation failed can also lead to negative // collections, since no space is reclaimed from a region containing an // object whose evacuation failed. // Further, we're now always doing parallel collection. But I'm still // leaving this here as a placeholder for a more precise assertion later. // (DLD, 10/05.) assert((true || parallel) // Always using GC LABs now. || _g1->evacuation_failed() || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes, "Negative collection"); size_t freed_bytes = _cur_collection_pause_used_at_start_bytes - cur_used_bytes; size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes; double survival_fraction = (double)surviving_bytes/ (double)_collection_set_bytes_used_before; // These values are used to update the summary information that is // displayed when TraceGen0Time is enabled, and are output as part // of the PrintGCDetails output, in the non-parallel case. double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms); double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms); double update_rs_time = avg_value(_par_last_update_rs_times_ms); double update_rs_processed_buffers = sum_of_values(_par_last_update_rs_processed_buffers); double scan_rs_time = avg_value(_par_last_scan_rs_times_ms); double obj_copy_time = avg_value(_par_last_obj_copy_times_ms); double termination_time = avg_value(_par_last_termination_times_ms); double known_time = ext_root_scan_time + satb_filtering_time + update_rs_time + scan_rs_time + obj_copy_time; double other_time_ms = elapsed_ms; // Subtract the SATB drain time. It's initialized to zero at the // start of the pause and is updated during the pause if marking // is in progress. other_time_ms -= _cur_satb_drain_time_ms; // Subtract the root region scanning wait time. It's initialized to // zero at the start of the pause. other_time_ms -= _root_region_scan_wait_time_ms; if (parallel) { other_time_ms -= _cur_collection_par_time_ms; } else { other_time_ms -= known_time; } // Subtract the time taken to clean the card table from the // current value of "other time" other_time_ms -= _cur_clear_ct_time_ms; // Subtract the time spent completing marking in the collection // set. Note if marking is not in progress during the pause // the value of _mark_closure_time_ms will be zero. other_time_ms -= _mark_closure_time_ms; // TraceGen0Time and TraceGen1Time summary info updating. _all_pause_times_ms->add(elapsed_ms); if (update_stats) { _summary->record_total_time_ms(elapsed_ms); _summary->record_other_time_ms(other_time_ms); MainBodySummary* body_summary = _summary->main_body_summary(); assert(body_summary != NULL, "should not be null!"); // This will be non-zero iff marking is currently in progress (i.e. // _g1->mark_in_progress() == true) and the currrent pause was not // an initial mark pause. Since the body_summary items are NumberSeqs, // however, they have to be consistent and updated in lock-step with // each other. Therefore we unconditionally record the SATB drain // time - even if it's zero. body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms); body_summary->record_root_region_scan_wait_time_ms( _root_region_scan_wait_time_ms); body_summary->record_ext_root_scan_time_ms(ext_root_scan_time); body_summary->record_satb_filtering_time_ms(satb_filtering_time); body_summary->record_update_rs_time_ms(update_rs_time); body_summary->record_scan_rs_time_ms(scan_rs_time); body_summary->record_obj_copy_time_ms(obj_copy_time); if (parallel) { body_summary->record_parallel_time_ms(_cur_collection_par_time_ms); body_summary->record_termination_time_ms(termination_time); double parallel_known_time = known_time + termination_time; double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time; body_summary->record_parallel_other_time_ms(parallel_other_time); } body_summary->record_mark_closure_time_ms(_mark_closure_time_ms); body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms); // We exempt parallel collection from this check because Alloc Buffer // fragmentation can produce negative collections. Same with evac // failure. // Further, we're now always doing parallel collection. But I'm still // leaving this here as a placeholder for a more precise assertion later. // (DLD, 10/05. assert((true || parallel) || _g1->evacuation_failed() || surviving_bytes <= _collection_set_bytes_used_before, "Or else negative collection!"); // this is where we update the allocation rate of the application double app_time_ms = (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms); if (app_time_ms < MIN_TIMER_GRANULARITY) { // This usually happens due to the timer not having the required // granularity. Some Linuxes are the usual culprits. // We'll just set it to something (arbitrarily) small. app_time_ms = 1.0; } // We maintain the invariant that all objects allocated by mutator // threads will be allocated out of eden regions. So, we can use // the eden region number allocated since the previous GC to // calculate the application's allocate rate. The only exception // to that is humongous objects that are allocated separately. But // given that humongous object allocations do not really affect // either the pause's duration nor when the next pause will take // place we can safely ignore them here. size_t regions_allocated = eden_cset_region_length(); double alloc_rate_ms = (double) regions_allocated / app_time_ms; _alloc_rate_ms_seq->add(alloc_rate_ms); double interval_ms = (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0; update_recent_gc_times(end_time_sec, elapsed_ms); _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms; if (recent_avg_pause_time_ratio() < 0.0 || (recent_avg_pause_time_ratio() - 1.0 > 0.0)) { #ifndef PRODUCT // Dump info to allow post-facto debugging gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds"); gclog_or_tty->print_cr("-------------------------------------------"); gclog_or_tty->print_cr("Recent GC Times (ms):"); _recent_gc_times_ms->dump(); gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec); _recent_prev_end_times_for_all_gcs_sec->dump(); gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f", _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio()); // In debug mode, terminate the JVM if the user wants to debug at this point. assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above"); #endif // !PRODUCT // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in // CR 6902692 by redoing the manner in which the ratio is incrementally computed. if (_recent_avg_pause_time_ratio < 0.0) { _recent_avg_pause_time_ratio = 0.0; } else { assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant"); _recent_avg_pause_time_ratio = 1.0; } } } for (int i = 0; i < _aux_num; ++i) { if (_cur_aux_times_set[i]) { _all_aux_times_ms[i].add(_cur_aux_times_ms[i]); } } // PrintGCDetails output if (PrintGCDetails) { bool print_marking_info = _g1->mark_in_progress() && !last_pause_included_initial_mark; gclog_or_tty->print_cr("%s, %1.8lf secs]", (last_pause_included_initial_mark) ? " (initial-mark)" : "", elapsed_ms / 1000.0); if (_root_region_scan_wait_time_ms > 0.0) { print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms); } if (parallel) { print_stats(1, "Parallel Time", _cur_collection_par_time_ms); print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms); print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms); if (print_marking_info) { print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms); } print_par_stats(2, "Update RS", _par_last_update_rs_times_ms); print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers); print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms); print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms); print_par_stats(2, "Termination", _par_last_termination_times_ms); print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts); print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms); for (int i = 0; i < _parallel_gc_threads; i++) { _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i]; double worker_known_time = _par_last_ext_root_scan_times_ms[i] + _par_last_satb_filtering_times_ms[i] + _par_last_update_rs_times_ms[i] + _par_last_scan_rs_times_ms[i] + _par_last_obj_copy_times_ms[i] + _par_last_termination_times_ms[i]; _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time; } print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms); print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms); } else { print_stats(1, "Ext Root Scanning", ext_root_scan_time); if (print_marking_info) { print_stats(1, "SATB Filtering", satb_filtering_time); } print_stats(1, "Update RS", update_rs_time); print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers); print_stats(1, "Scan RS", scan_rs_time); print_stats(1, "Object Copying", obj_copy_time); } if (print_marking_info) { print_stats(1, "Complete CSet Marking", _mark_closure_time_ms); } print_stats(1, "Clear CT", _cur_clear_ct_time_ms); #ifndef PRODUCT print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms); print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms); print_stats(1, "Min Clear CC", _min_clear_cc_time_ms); print_stats(1, "Max Clear CC", _max_clear_cc_time_ms); if (_num_cc_clears > 0) { print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears)); } #endif print_stats(1, "Other", other_time_ms); print_stats(2, "Choose CSet", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); print_stats(2, "Ref Proc", _cur_ref_proc_time_ms); print_stats(2, "Ref Enq", _cur_ref_enq_time_ms); print_stats(2, "Free CSet", (_recorded_young_free_cset_time_ms + _recorded_non_young_free_cset_time_ms)); for (int i = 0; i < _aux_num; ++i) { if (_cur_aux_times_set[i]) { char buffer[96]; sprintf(buffer, "Aux%d", i); print_stats(1, buffer, _cur_aux_times_ms[i]); } } } // Update the efficiency-since-mark vars. double proc_ms = elapsed_ms * (double) _parallel_gc_threads; if (elapsed_ms < MIN_TIMER_GRANULARITY) { // This usually happens due to the timer not having the required // granularity. Some Linuxes are the usual culprits. // We'll just set it to something (arbitrarily) small. proc_ms = 1.0; } double cur_efficiency = (double) freed_bytes / proc_ms; bool new_in_marking_window = _in_marking_window; bool new_in_marking_window_im = false; if (during_initial_mark_pause()) { new_in_marking_window = true; new_in_marking_window_im = true; } if (_last_young_gc) { // This is supposed to to be the "last young GC" before we start // doing mixed GCs. Here we decide whether to start mixed GCs or not. if (!last_pause_included_initial_mark) { if (next_gc_should_be_mixed("start mixed GCs", "do not start mixed GCs")) { set_gcs_are_young(false); } } else { ergo_verbose0(ErgoMixedGCs, "do not start mixed GCs", ergo_format_reason("concurrent cycle is about to start")); } _last_young_gc = false; } if (!_last_gc_was_young) { // This is a mixed GC. Here we decide whether to continue doing // mixed GCs or not. if (!next_gc_should_be_mixed("continue mixed GCs", "do not continue mixed GCs")) { set_gcs_are_young(true); } } if (_last_gc_was_young && !_during_marking) { _young_gc_eff_seq->add(cur_efficiency); } _short_lived_surv_rate_group->start_adding_regions(); // do that for any other surv rate groupsx if (update_stats) { double pause_time_ms = elapsed_ms; size_t diff = 0; if (_max_pending_cards >= _pending_cards) diff = _max_pending_cards - _pending_cards; _pending_card_diff_seq->add((double) diff); double cost_per_card_ms = 0.0; if (_pending_cards > 0) { cost_per_card_ms = update_rs_time / (double) _pending_cards; _cost_per_card_ms_seq->add(cost_per_card_ms); } size_t cards_scanned = _g1->cards_scanned(); double cost_per_entry_ms = 0.0; if (cards_scanned > 10) { cost_per_entry_ms = scan_rs_time / (double) cards_scanned; if (_last_gc_was_young) { _cost_per_entry_ms_seq->add(cost_per_entry_ms); } else { _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms); } } if (_max_rs_lengths > 0) { double cards_per_entry_ratio = (double) cards_scanned / (double) _max_rs_lengths; if (_last_gc_was_young) { _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio); } else { _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio); } } // This is defensive. For a while _max_rs_lengths could get // smaller than _recorded_rs_lengths which was causing // rs_length_diff to get very large and mess up the RSet length // predictions. The reason was unsafe concurrent updates to the // _inc_cset_recorded_rs_lengths field which the code below guards // against (see CR 7118202). This bug has now been fixed (see CR // 7119027). However, I'm still worried that // _inc_cset_recorded_rs_lengths might still end up somewhat // inaccurate. The concurrent refinement thread calculates an // RSet's length concurrently with other CR threads updating it // which might cause it to calculate the length incorrectly (if, // say, it's in mid-coarsening). So I'll leave in the defensive // conditional below just in case. size_t rs_length_diff = 0; if (_max_rs_lengths > _recorded_rs_lengths) { rs_length_diff = _max_rs_lengths - _recorded_rs_lengths; } _rs_length_diff_seq->add((double) rs_length_diff); size_t copied_bytes = surviving_bytes; double cost_per_byte_ms = 0.0; if (copied_bytes > 0) { cost_per_byte_ms = obj_copy_time / (double) copied_bytes; if (_in_marking_window) { _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms); } else { _cost_per_byte_ms_seq->add(cost_per_byte_ms); } } double all_other_time_ms = pause_time_ms - (update_rs_time + scan_rs_time + obj_copy_time + _mark_closure_time_ms + termination_time); double young_other_time_ms = 0.0; if (young_cset_region_length() > 0) { young_other_time_ms = _recorded_young_cset_choice_time_ms + _recorded_young_free_cset_time_ms; _young_other_cost_per_region_ms_seq->add(young_other_time_ms / (double) young_cset_region_length()); } double non_young_other_time_ms = 0.0; if (old_cset_region_length() > 0) { non_young_other_time_ms = _recorded_non_young_cset_choice_time_ms + _recorded_non_young_free_cset_time_ms; _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms / (double) old_cset_region_length()); } double constant_other_time_ms = all_other_time_ms - (young_other_time_ms + non_young_other_time_ms); _constant_other_time_ms_seq->add(constant_other_time_ms); double survival_ratio = 0.0; if (_bytes_in_collection_set_before_gc > 0) { survival_ratio = (double) _bytes_copied_during_gc / (double) _bytes_in_collection_set_before_gc; } _pending_cards_seq->add((double) _pending_cards); _rs_lengths_seq->add((double) _max_rs_lengths); } _in_marking_window = new_in_marking_window; _in_marking_window_im = new_in_marking_window_im; _free_regions_at_end_of_collection = _g1->free_regions(); update_young_list_target_length(); // Note that _mmu_tracker->max_gc_time() returns the time in seconds. double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0; adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms); assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end."); } #define EXT_SIZE_FORMAT "%d%s" #define EXT_SIZE_PARAMS(bytes) \ byte_size_in_proper_unit((bytes)), \ proper_unit_for_byte_size((bytes)) void G1CollectorPolicy::print_heap_transition() { if (PrintGCDetails) { YoungList* young_list = _g1->young_list(); size_t eden_bytes = young_list->eden_used_bytes(); size_t survivor_bytes = young_list->survivor_used_bytes(); size_t used_before_gc = _cur_collection_pause_used_at_start_bytes; size_t used = _g1->used(); size_t capacity = _g1->capacity(); size_t eden_capacity = (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes; gclog_or_tty->print_cr( " [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") " "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" " "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->" EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]", EXT_SIZE_PARAMS(_eden_bytes_before_gc), EXT_SIZE_PARAMS(_prev_eden_capacity), EXT_SIZE_PARAMS(eden_bytes), EXT_SIZE_PARAMS(eden_capacity), EXT_SIZE_PARAMS(_survivor_bytes_before_gc), EXT_SIZE_PARAMS(survivor_bytes), EXT_SIZE_PARAMS(used_before_gc), EXT_SIZE_PARAMS(_capacity_before_gc), EXT_SIZE_PARAMS(used), EXT_SIZE_PARAMS(capacity)); _prev_eden_capacity = eden_capacity; } else if (PrintGC) { _g1->print_size_transition(gclog_or_tty, _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity()); } } void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time, double update_rs_processed_buffers, double goal_ms) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine(); if (G1UseAdaptiveConcRefinement) { const int k_gy = 3, k_gr = 6; const double inc_k = 1.1, dec_k = 0.9; int g = cg1r->green_zone(); if (update_rs_time > goal_ms) { g = (int)(g * dec_k); // Can become 0, that's OK. That would mean a mutator-only processing. } else { if (update_rs_time < goal_ms && update_rs_processed_buffers > g) { g = (int)MAX2(g * inc_k, g + 1.0); } } // Change the refinement threads params cg1r->set_green_zone(g); cg1r->set_yellow_zone(g * k_gy); cg1r->set_red_zone(g * k_gr); cg1r->reinitialize_threads(); int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1); int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta, cg1r->yellow_zone()); // Change the barrier params dcqs.set_process_completed_threshold(processing_threshold); dcqs.set_max_completed_queue(cg1r->red_zone()); } int curr_queue_size = dcqs.completed_buffers_num(); if (curr_queue_size >= cg1r->yellow_zone()) { dcqs.set_completed_queue_padding(curr_queue_size); } else { dcqs.set_completed_queue_padding(0); } dcqs.notify_if_necessary(); } double G1CollectorPolicy:: predict_young_collection_elapsed_time_ms(size_t adjustment) { guarantee( adjustment == 0 || adjustment == 1, "invariant" ); G1CollectedHeap* g1h = G1CollectedHeap::heap(); size_t young_num = g1h->young_list()->length(); if (young_num == 0) return 0.0; young_num += adjustment; size_t pending_cards = predict_pending_cards(); size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() + predict_rs_length_diff(); size_t card_num; if (gcs_are_young()) { card_num = predict_young_card_num(rs_lengths); } else { card_num = predict_non_young_card_num(rs_lengths); } size_t young_byte_size = young_num * HeapRegion::GrainBytes; double accum_yg_surv_rate = _short_lived_surv_rate_group->accum_surv_rate(adjustment); size_t bytes_to_copy = (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes); return predict_rs_update_time_ms(pending_cards) + predict_rs_scan_time_ms(card_num) + predict_object_copy_time_ms(bytes_to_copy) + predict_young_other_time_ms(young_num) + predict_constant_other_time_ms(); } double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) { size_t rs_length = predict_rs_length_diff(); size_t card_num; if (gcs_are_young()) { card_num = predict_young_card_num(rs_length); } else { card_num = predict_non_young_card_num(rs_length); } return predict_base_elapsed_time_ms(pending_cards, card_num); } double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards, size_t scanned_cards) { return predict_rs_update_time_ms(pending_cards) + predict_rs_scan_time_ms(scanned_cards) + predict_constant_other_time_ms(); } double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr, bool young) { size_t rs_length = hr->rem_set()->occupied(); size_t card_num; if (gcs_are_young()) { card_num = predict_young_card_num(rs_length); } else { card_num = predict_non_young_card_num(rs_length); } size_t bytes_to_copy = predict_bytes_to_copy(hr); double region_elapsed_time_ms = predict_rs_scan_time_ms(card_num) + predict_object_copy_time_ms(bytes_to_copy); if (young) region_elapsed_time_ms += predict_young_other_time_ms(1); else region_elapsed_time_ms += predict_non_young_other_time_ms(1); return region_elapsed_time_ms; } size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) { size_t bytes_to_copy; if (hr->is_marked()) bytes_to_copy = hr->max_live_bytes(); else { assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant"); int age = hr->age_in_surv_rate_group(); double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group()); bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate); } return bytes_to_copy; } void G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length, size_t survivor_cset_region_length) { _eden_cset_region_length = eden_cset_region_length; _survivor_cset_region_length = survivor_cset_region_length; _old_cset_region_length = 0; } void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) { _recorded_rs_lengths = rs_lengths; } void G1CollectorPolicy::update_recent_gc_times(double end_time_sec, double elapsed_ms) { _recent_gc_times_ms->add(elapsed_ms); _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec); _prev_collection_pause_end_ms = end_time_sec * 1000.0; } size_t G1CollectorPolicy::expansion_amount() { double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0; double threshold = _gc_overhead_perc; if (recent_gc_overhead > threshold) { // We will double the existing space, or take // G1ExpandByPercentOfAvailable % of the available expansion // space, whichever is smaller, bounded below by a minimum // expansion (unless that's all that's left.) const size_t min_expand_bytes = 1*M; size_t reserved_bytes = _g1->max_capacity(); size_t committed_bytes = _g1->capacity(); size_t uncommitted_bytes = reserved_bytes - committed_bytes; size_t expand_bytes; size_t expand_bytes_via_pct = uncommitted_bytes * G1ExpandByPercentOfAvailable / 100; expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes); expand_bytes = MAX2(expand_bytes, min_expand_bytes); expand_bytes = MIN2(expand_bytes, uncommitted_bytes); ergo_verbose5(ErgoHeapSizing, "attempt heap expansion", ergo_format_reason("recent GC overhead higher than " "threshold after GC") ergo_format_perc("recent GC overhead") ergo_format_perc("threshold") ergo_format_byte("uncommitted") ergo_format_byte_perc("calculated expansion amount"), recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable); return expand_bytes; } else { return 0; } } class CountCSClosure: public HeapRegionClosure { G1CollectorPolicy* _g1_policy; public: CountCSClosure(G1CollectorPolicy* g1_policy) : _g1_policy(g1_policy) {} bool doHeapRegion(HeapRegion* r) { _g1_policy->_bytes_in_collection_set_before_gc += r->used(); return false; } }; void G1CollectorPolicy::count_CS_bytes_used() { CountCSClosure cs_closure(this); _g1->collection_set_iterate(&cs_closure); } void G1CollectorPolicy::print_summary(int level, const char* str, NumberSeq* seq) const { double sum = seq->sum(); LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)", str, sum / 1000.0, seq->avg()); } void G1CollectorPolicy::print_summary_sd(int level, const char* str, NumberSeq* seq) const { print_summary(level, str, seq); LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)", seq->num(), seq->sd(), seq->maximum()); } void G1CollectorPolicy::check_other_times(int level, NumberSeq* other_times_ms, NumberSeq* calc_other_times_ms) const { bool should_print = false; LineBuffer buf(level + 2); double max_sum = MAX2(fabs(other_times_ms->sum()), fabs(calc_other_times_ms->sum())); double min_sum = MIN2(fabs(other_times_ms->sum()), fabs(calc_other_times_ms->sum())); double sum_ratio = max_sum / min_sum; if (sum_ratio > 1.1) { should_print = true; buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###"); } double max_avg = MAX2(fabs(other_times_ms->avg()), fabs(calc_other_times_ms->avg())); double min_avg = MIN2(fabs(other_times_ms->avg()), fabs(calc_other_times_ms->avg())); double avg_ratio = max_avg / min_avg; if (avg_ratio > 1.1) { should_print = true; buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###"); } if (other_times_ms->sum() < -0.01) { buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###"); } if (other_times_ms->avg() < -0.01) { buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###"); } if (calc_other_times_ms->sum() < -0.01) { should_print = true; buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###"); } if (calc_other_times_ms->avg() < -0.01) { should_print = true; buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###"); } if (should_print) print_summary(level, "Other(Calc)", calc_other_times_ms); } void G1CollectorPolicy::print_summary(PauseSummary* summary) const { bool parallel = G1CollectedHeap::use_parallel_gc_threads(); MainBodySummary* body_summary = summary->main_body_summary(); if (summary->get_total_seq()->num() > 0) { print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq()); if (body_summary != NULL) { print_summary(1, "Root Region Scan Wait", body_summary->get_root_region_scan_wait_seq()); if (parallel) { print_summary(1, "Parallel Time", body_summary->get_parallel_seq()); print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq()); print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq()); print_summary(2, "Update RS", body_summary->get_update_rs_seq()); print_summary(2, "Scan RS", body_summary->get_scan_rs_seq()); print_summary(2, "Object Copy", body_summary->get_obj_copy_seq()); print_summary(2, "Termination", body_summary->get_termination_seq()); print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq()); { NumberSeq* other_parts[] = { body_summary->get_ext_root_scan_seq(), body_summary->get_satb_filtering_seq(), body_summary->get_update_rs_seq(), body_summary->get_scan_rs_seq(), body_summary->get_obj_copy_seq(), body_summary->get_termination_seq() }; NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(), 6, other_parts); check_other_times(2, body_summary->get_parallel_other_seq(), &calc_other_times_ms); } } else { print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq()); print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq()); print_summary(1, "Update RS", body_summary->get_update_rs_seq()); print_summary(1, "Scan RS", body_summary->get_scan_rs_seq()); print_summary(1, "Object Copy", body_summary->get_obj_copy_seq()); } } print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq()); print_summary(1, "Clear CT", body_summary->get_clear_ct_seq()); print_summary(1, "Other", summary->get_other_seq()); { if (body_summary != NULL) { NumberSeq calc_other_times_ms; if (parallel) { // parallel NumberSeq* other_parts[] = { body_summary->get_satb_drain_seq(), body_summary->get_root_region_scan_wait_seq(), body_summary->get_parallel_seq(), body_summary->get_clear_ct_seq() }; calc_other_times_ms = NumberSeq(summary->get_total_seq(), 4, other_parts); } else { // serial NumberSeq* other_parts[] = { body_summary->get_satb_drain_seq(), body_summary->get_root_region_scan_wait_seq(), body_summary->get_update_rs_seq(), body_summary->get_ext_root_scan_seq(), body_summary->get_satb_filtering_seq(), body_summary->get_scan_rs_seq(), body_summary->get_obj_copy_seq() }; calc_other_times_ms = NumberSeq(summary->get_total_seq(), 7, other_parts); } check_other_times(1, summary->get_other_seq(), &calc_other_times_ms); } } } else { LineBuffer(1).append_and_print_cr("none"); } LineBuffer(0).append_and_print_cr(""); } void G1CollectorPolicy::print_tracing_info() const { if (TraceGen0Time) { gclog_or_tty->print_cr("ALL PAUSES"); print_summary_sd(0, "Total", _all_pause_times_ms); gclog_or_tty->print_cr(""); gclog_or_tty->print_cr(""); gclog_or_tty->print_cr(" Young GC Pauses: %8d", _young_pause_num); gclog_or_tty->print_cr(" Mixed GC Pauses: %8d", _mixed_pause_num); gclog_or_tty->print_cr(""); gclog_or_tty->print_cr("EVACUATION PAUSES"); print_summary(_summary); gclog_or_tty->print_cr("MISC"); print_summary_sd(0, "Stop World", _all_stop_world_times_ms); print_summary_sd(0, "Yields", _all_yield_times_ms); for (int i = 0; i < _aux_num; ++i) { if (_all_aux_times_ms[i].num() > 0) { char buffer[96]; sprintf(buffer, "Aux%d", i); print_summary_sd(0, buffer, &_all_aux_times_ms[i]); } } } if (TraceGen1Time) { if (_all_full_gc_times_ms->num() > 0) { gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s", _all_full_gc_times_ms->num(), _all_full_gc_times_ms->sum() / 1000.0); gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg()); gclog_or_tty->print_cr(" [std. dev = %8.2f ms, max = %8.2f ms]", _all_full_gc_times_ms->sd(), _all_full_gc_times_ms->maximum()); } } } void G1CollectorPolicy::print_yg_surv_rate_info() const { #ifndef PRODUCT _short_lived_surv_rate_group->print_surv_rate_summary(); // add this call for any other surv rate groups #endif // PRODUCT } #ifndef PRODUCT // for debugging, bit of a hack... static char* region_num_to_mbs(int length) { static char buffer[64]; double bytes = (double) (length * HeapRegion::GrainBytes); double mbs = bytes / (double) (1024 * 1024); sprintf(buffer, "%7.2lfMB", mbs); return buffer; } #endif // PRODUCT size_t G1CollectorPolicy::max_regions(int purpose) { switch (purpose) { case GCAllocForSurvived: return _max_survivor_regions; case GCAllocForTenured: return REGIONS_UNLIMITED; default: ShouldNotReachHere(); return REGIONS_UNLIMITED; }; } void G1CollectorPolicy::update_max_gc_locker_expansion() { size_t expansion_region_num = 0; if (GCLockerEdenExpansionPercent > 0) { double perc = (double) GCLockerEdenExpansionPercent / 100.0; double expansion_region_num_d = perc * (double) _young_list_target_length; // We use ceiling so that if expansion_region_num_d is > 0.0 (but // less than 1.0) we'll get 1. expansion_region_num = (size_t) ceil(expansion_region_num_d); } else { assert(expansion_region_num == 0, "sanity"); } _young_list_max_length = _young_list_target_length + expansion_region_num; assert(_young_list_target_length <= _young_list_max_length, "post-condition"); } // Calculates survivor space parameters. void G1CollectorPolicy::update_survivors_policy() { double max_survivor_regions_d = (double) _young_list_target_length / (double) SurvivorRatio; // We use ceiling so that if max_survivor_regions_d is > 0.0 (but // smaller than 1.0) we'll get 1. _max_survivor_regions = (size_t) ceil(max_survivor_regions_d); _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold( HeapRegion::GrainWords * _max_survivor_regions); } #ifndef PRODUCT class HRSortIndexIsOKClosure: public HeapRegionClosure { CollectionSetChooser* _chooser; public: HRSortIndexIsOKClosure(CollectionSetChooser* chooser) : _chooser(chooser) {} bool doHeapRegion(HeapRegion* r) { if (!r->continuesHumongous()) { assert(_chooser->regionProperlyOrdered(r), "Ought to be."); } return false; } }; bool G1CollectorPolicy::assertMarkedBytesDataOK() { HRSortIndexIsOKClosure cl(_collectionSetChooser); _g1->heap_region_iterate(&cl); return true; } #endif bool G1CollectorPolicy::force_initial_mark_if_outside_cycle( GCCause::Cause gc_cause) { bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle(); if (!during_cycle) { ergo_verbose1(ErgoConcCycles, "request concurrent cycle initiation", ergo_format_reason("requested by GC cause") ergo_format_str("GC cause"), GCCause::to_string(gc_cause)); set_initiate_conc_mark_if_possible(); return true; } else { ergo_verbose1(ErgoConcCycles, "do not request concurrent cycle initiation", ergo_format_reason("concurrent cycle already in progress") ergo_format_str("GC cause"), GCCause::to_string(gc_cause)); return false; } } void G1CollectorPolicy::decide_on_conc_mark_initiation() { // We are about to decide on whether this pause will be an // initial-mark pause. // First, during_initial_mark_pause() should not be already set. We // will set it here if we have to. However, it should be cleared by // the end of the pause (it's only set for the duration of an // initial-mark pause). assert(!during_initial_mark_pause(), "pre-condition"); if (initiate_conc_mark_if_possible()) { // We had noticed on a previous pause that the heap occupancy has // gone over the initiating threshold and we should start a // concurrent marking cycle. So we might initiate one. bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle(); if (!during_cycle) { // The concurrent marking thread is not "during a cycle", i.e., // it has completed the last one. So we can go ahead and // initiate a new cycle. set_during_initial_mark_pause(); // We do not allow mixed GCs during marking. if (!gcs_are_young()) { set_gcs_are_young(true); ergo_verbose0(ErgoMixedGCs, "end mixed GCs", ergo_format_reason("concurrent cycle is about to start")); } // And we can now clear initiate_conc_mark_if_possible() as // we've already acted on it. clear_initiate_conc_mark_if_possible(); ergo_verbose0(ErgoConcCycles, "initiate concurrent cycle", ergo_format_reason("concurrent cycle initiation requested")); } else { // The concurrent marking thread is still finishing up the // previous cycle. If we start one right now the two cycles // overlap. In particular, the concurrent marking thread might // be in the process of clearing the next marking bitmap (which // we will use for the next cycle if we start one). Starting a // cycle now will be bad given that parts of the marking // information might get cleared by the marking thread. And we // cannot wait for the marking thread to finish the cycle as it // periodically yields while clearing the next marking bitmap // and, if it's in a yield point, it's waiting for us to // finish. So, at this point we will not start a cycle and we'll // let the concurrent marking thread complete the last one. ergo_verbose0(ErgoConcCycles, "do not initiate concurrent cycle", ergo_format_reason("concurrent cycle already in progress")); } } } class KnownGarbageClosure: public HeapRegionClosure { G1CollectedHeap* _g1h; CollectionSetChooser* _hrSorted; public: KnownGarbageClosure(CollectionSetChooser* hrSorted) : _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { } bool doHeapRegion(HeapRegion* r) { // We only include humongous regions in collection // sets when concurrent mark shows that their contained object is // unreachable. // Do we have any marking information for this region? if (r->is_marked()) { // We will skip any region that's currently used as an old GC // alloc region (we should not consider those for collection // before we fill them up). if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) { _hrSorted->addMarkedHeapRegion(r); } } return false; } }; class ParKnownGarbageHRClosure: public HeapRegionClosure { G1CollectedHeap* _g1h; CollectionSetChooser* _hrSorted; jint _marked_regions_added; size_t _reclaimable_bytes_added; jint _chunk_size; jint _cur_chunk_idx; jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end) int _worker; int _invokes; void get_new_chunk() { _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size); _cur_chunk_end = _cur_chunk_idx + _chunk_size; } void add_region(HeapRegion* r) { if (_cur_chunk_idx == _cur_chunk_end) { get_new_chunk(); } assert(_cur_chunk_idx < _cur_chunk_end, "postcondition"); _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r); _marked_regions_added++; _reclaimable_bytes_added += r->reclaimable_bytes(); _cur_chunk_idx++; } public: ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted, jint chunk_size, int worker) : _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker), _marked_regions_added(0), _reclaimable_bytes_added(0), _cur_chunk_idx(0), _cur_chunk_end(0), _invokes(0) { } bool doHeapRegion(HeapRegion* r) { // We only include humongous regions in collection // sets when concurrent mark shows that their contained object is // unreachable. _invokes++; // Do we have any marking information for this region? if (r->is_marked()) { // We will skip any region that's currently used as an old GC // alloc region (we should not consider those for collection // before we fill them up). if (_hrSorted->shouldAdd(r) && !_g1h->is_old_gc_alloc_region(r)) { add_region(r); } } return false; } jint marked_regions_added() { return _marked_regions_added; } size_t reclaimable_bytes_added() { return _reclaimable_bytes_added; } int invokes() { return _invokes; } }; class ParKnownGarbageTask: public AbstractGangTask { CollectionSetChooser* _hrSorted; jint _chunk_size; G1CollectedHeap* _g1; public: ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) : AbstractGangTask("ParKnownGarbageTask"), _hrSorted(hrSorted), _chunk_size(chunk_size), _g1(G1CollectedHeap::heap()) { } void work(uint worker_id) { ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, worker_id); // Back to zero for the claim value. _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id, _g1->workers()->active_workers(), HeapRegion::InitialClaimValue); jint regions_added = parKnownGarbageCl.marked_regions_added(); size_t reclaimable_bytes_added = parKnownGarbageCl.reclaimable_bytes_added(); _hrSorted->updateTotals(regions_added, reclaimable_bytes_added); if (G1PrintParCleanupStats) { gclog_or_tty->print_cr(" Thread %d called %d times, added %d regions to list.", worker_id, parKnownGarbageCl.invokes(), regions_added); } } }; void G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) { double start_sec; if (G1PrintParCleanupStats) { start_sec = os::elapsedTime(); } _collectionSetChooser->clearMarkedHeapRegions(); double clear_marked_end_sec; if (G1PrintParCleanupStats) { clear_marked_end_sec = os::elapsedTime(); gclog_or_tty->print_cr(" clear marked regions: %8.3f ms.", (clear_marked_end_sec - start_sec) * 1000.0); } if (G1CollectedHeap::use_parallel_gc_threads()) { const size_t OverpartitionFactor = 4; size_t WorkUnit; // The use of MinChunkSize = 8 in the original code // causes some assertion failures when the total number of // region is less than 8. The code here tries to fix that. // Should the original code also be fixed? if (no_of_gc_threads > 0) { const size_t MinWorkUnit = MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U); WorkUnit = MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor), MinWorkUnit); } else { assert(no_of_gc_threads > 0, "The active gc workers should be greater than 0"); // In a product build do something reasonable to avoid a crash. const size_t MinWorkUnit = MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U); WorkUnit = MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor), MinWorkUnit); } _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(), WorkUnit); ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser, (int) WorkUnit); _g1->workers()->run_task(&parKnownGarbageTask); assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity check"); } else { KnownGarbageClosure knownGarbagecl(_collectionSetChooser); _g1->heap_region_iterate(&knownGarbagecl); } double known_garbage_end_sec; if (G1PrintParCleanupStats) { known_garbage_end_sec = os::elapsedTime(); gclog_or_tty->print_cr(" compute known garbage: %8.3f ms.", (known_garbage_end_sec - clear_marked_end_sec) * 1000.0); } _collectionSetChooser->sortMarkedHeapRegions(); double end_sec = os::elapsedTime(); if (G1PrintParCleanupStats) { gclog_or_tty->print_cr(" sorting: %8.3f ms.", (end_sec - known_garbage_end_sec) * 1000.0); } double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0; _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms); _cur_mark_stop_world_time_ms += elapsed_time_ms; _prev_collection_pause_end_ms += elapsed_time_ms; _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true); } // Add the heap region at the head of the non-incremental collection set void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) { assert(_inc_cset_build_state == Active, "Precondition"); assert(!hr->is_young(), "non-incremental add of young region"); assert(!hr->in_collection_set(), "should not already be in the CSet"); hr->set_in_collection_set(true); hr->set_next_in_collection_set(_collection_set); _collection_set = hr; _collection_set_bytes_used_before += hr->used(); _g1->register_region_with_in_cset_fast_test(hr); size_t rs_length = hr->rem_set()->occupied(); _recorded_rs_lengths += rs_length; _old_cset_region_length += 1; } // Initialize the per-collection-set information void G1CollectorPolicy::start_incremental_cset_building() { assert(_inc_cset_build_state == Inactive, "Precondition"); _inc_cset_head = NULL; _inc_cset_tail = NULL; _inc_cset_bytes_used_before = 0; _inc_cset_max_finger = 0; _inc_cset_recorded_rs_lengths = 0; _inc_cset_recorded_rs_lengths_diffs = 0; _inc_cset_predicted_elapsed_time_ms = 0.0; _inc_cset_predicted_elapsed_time_ms_diffs = 0.0; _inc_cset_build_state = Active; } void G1CollectorPolicy::finalize_incremental_cset_building() { assert(_inc_cset_build_state == Active, "Precondition"); assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint"); // The two "main" fields, _inc_cset_recorded_rs_lengths and // _inc_cset_predicted_elapsed_time_ms, are updated by the thread // that adds a new region to the CSet. Further updates by the // concurrent refinement thread that samples the young RSet lengths // are accumulated in the *_diffs fields. Here we add the diffs to // the "main" fields. if (_inc_cset_recorded_rs_lengths_diffs >= 0) { _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs; } else { // This is defensive. The diff should in theory be always positive // as RSets can only grow between GCs. However, given that we // sample their size concurrently with other threads updating them // it's possible that we might get the wrong size back, which // could make the calculations somewhat inaccurate. size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs); if (_inc_cset_recorded_rs_lengths >= diffs) { _inc_cset_recorded_rs_lengths -= diffs; } else { _inc_cset_recorded_rs_lengths = 0; } } _inc_cset_predicted_elapsed_time_ms += _inc_cset_predicted_elapsed_time_ms_diffs; _inc_cset_recorded_rs_lengths_diffs = 0; _inc_cset_predicted_elapsed_time_ms_diffs = 0.0; } void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) { // This routine is used when: // * adding survivor regions to the incremental cset at the end of an // evacuation pause, // * adding the current allocation region to the incremental cset // when it is retired, and // * updating existing policy information for a region in the // incremental cset via young list RSet sampling. // Therefore this routine may be called at a safepoint by the // VM thread, or in-between safepoints by mutator threads (when // retiring the current allocation region) or a concurrent // refine thread (RSet sampling). double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true); size_t used_bytes = hr->used(); _inc_cset_recorded_rs_lengths += rs_length; _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms; _inc_cset_bytes_used_before += used_bytes; // Cache the values we have added to the aggregated informtion // in the heap region in case we have to remove this region from // the incremental collection set, or it is updated by the // rset sampling code hr->set_recorded_rs_length(rs_length); hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms); } void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) { // Update the CSet information that is dependent on the new RS length assert(hr->is_young(), "Precondition"); assert(!SafepointSynchronize::is_at_safepoint(), "should not be at a safepoint"); // We could have updated _inc_cset_recorded_rs_lengths and // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do // that atomically, as this code is executed by a concurrent // refinement thread, potentially concurrently with a mutator thread // allocating a new region and also updating the same fields. To // avoid the atomic operations we accumulate these updates on two // separate fields (*_diffs) and we'll just add them to the "main" // fields at the start of a GC. ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length(); ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length; _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff; double old_elapsed_time_ms = hr->predicted_elapsed_time_ms(); double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true); double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms; _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff; hr->set_recorded_rs_length(new_rs_length); hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms); } void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) { assert(hr->is_young(), "invariant"); assert(hr->young_index_in_cset() > -1, "should have already been set"); assert(_inc_cset_build_state == Active, "Precondition"); // We need to clear and set the cached recorded/cached collection set // information in the heap region here (before the region gets added // to the collection set). An individual heap region's cached values // are calculated, aggregated with the policy collection set info, // and cached in the heap region here (initially) and (subsequently) // by the Young List sampling code. size_t rs_length = hr->rem_set()->occupied(); add_to_incremental_cset_info(hr, rs_length); HeapWord* hr_end = hr->end(); _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end); assert(!hr->in_collection_set(), "invariant"); hr->set_in_collection_set(true); assert( hr->next_in_collection_set() == NULL, "invariant"); _g1->register_region_with_in_cset_fast_test(hr); } // Add the region at the RHS of the incremental cset void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) { // We should only ever be appending survivors at the end of a pause assert( hr->is_survivor(), "Logic"); // Do the 'common' stuff add_region_to_incremental_cset_common(hr); // Now add the region at the right hand side if (_inc_cset_tail == NULL) { assert(_inc_cset_head == NULL, "invariant"); _inc_cset_head = hr; } else { _inc_cset_tail->set_next_in_collection_set(hr); } _inc_cset_tail = hr; } // Add the region to the LHS of the incremental cset void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) { // Survivors should be added to the RHS at the end of a pause assert(!hr->is_survivor(), "Logic"); // Do the 'common' stuff add_region_to_incremental_cset_common(hr); // Add the region at the left hand side hr->set_next_in_collection_set(_inc_cset_head); if (_inc_cset_head == NULL) { assert(_inc_cset_tail == NULL, "Invariant"); _inc_cset_tail = hr; } _inc_cset_head = hr; } #ifndef PRODUCT void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) { assert(list_head == inc_cset_head() || list_head == collection_set(), "must be"); st->print_cr("\nCollection_set:"); HeapRegion* csr = list_head; while (csr != NULL) { HeapRegion* next = csr->next_in_collection_set(); assert(csr->in_collection_set(), "bad CS"); st->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, " "age: %4d, y: %d, surv: %d", csr->bottom(), csr->end(), csr->top(), csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(), csr->top_at_conc_mark_count(), csr->age_in_surv_rate_group_cond(), csr->is_young(), csr->is_survivor()); csr = next; } } #endif // !PRODUCT bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str, const char* false_action_str) { CollectionSetChooser* cset_chooser = _collectionSetChooser; if (cset_chooser->isEmpty()) { ergo_verbose0(ErgoMixedGCs, false_action_str, ergo_format_reason("candidate old regions not available")); return false; } size_t reclaimable_bytes = cset_chooser->remainingReclaimableBytes(); size_t capacity_bytes = _g1->capacity(); double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes; double threshold = (double) G1HeapWastePercent; if (perc < threshold) { ergo_verbose4(ErgoMixedGCs, false_action_str, ergo_format_reason("reclaimable percentage lower than threshold") ergo_format_region("candidate old regions") ergo_format_byte_perc("reclaimable") ergo_format_perc("threshold"), cset_chooser->remainingRegions(), reclaimable_bytes, perc, threshold); return false; } ergo_verbose4(ErgoMixedGCs, true_action_str, ergo_format_reason("candidate old regions available") ergo_format_region("candidate old regions") ergo_format_byte_perc("reclaimable") ergo_format_perc("threshold"), cset_chooser->remainingRegions(), reclaimable_bytes, perc, threshold); return true; } void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) { // Set this here - in case we're not doing young collections. double non_young_start_time_sec = os::elapsedTime(); YoungList* young_list = _g1->young_list(); finalize_incremental_cset_building(); guarantee(target_pause_time_ms > 0.0, err_msg("target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms)); guarantee(_collection_set == NULL, "Precondition"); double base_time_ms = predict_base_elapsed_time_ms(_pending_cards); double predicted_pause_time_ms = base_time_ms; double time_remaining_ms = target_pause_time_ms - base_time_ms; ergo_verbose3(ErgoCSetConstruction | ErgoHigh, "start choosing CSet", ergo_format_ms("predicted base time") ergo_format_ms("remaining time") ergo_format_ms("target pause time"), base_time_ms, time_remaining_ms, target_pause_time_ms); HeapRegion* hr; double young_start_time_sec = os::elapsedTime(); _collection_set_bytes_used_before = 0; _last_gc_was_young = gcs_are_young() ? true : false; if (_last_gc_was_young) { ++_young_pause_num; } else { ++_mixed_pause_num; } // The young list is laid with the survivor regions from the previous // pause are appended to the RHS of the young list, i.e. // [Newly Young Regions ++ Survivors from last pause]. size_t survivor_region_length = young_list->survivor_length(); size_t eden_region_length = young_list->length() - survivor_region_length; init_cset_region_lengths(eden_region_length, survivor_region_length); hr = young_list->first_survivor_region(); while (hr != NULL) { assert(hr->is_survivor(), "badly formed young list"); hr->set_young(); hr = hr->get_next_young_region(); } // Clear the fields that point to the survivor list - they are all young now. young_list->clear_survivors(); _collection_set = _inc_cset_head; _collection_set_bytes_used_before = _inc_cset_bytes_used_before; time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms; predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms; ergo_verbose3(ErgoCSetConstruction | ErgoHigh, "add young regions to CSet", ergo_format_region("eden") ergo_format_region("survivors") ergo_format_ms("predicted young region time"), eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms); // The number of recorded young regions is the incremental // collection set's current size set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths); double young_end_time_sec = os::elapsedTime(); _recorded_young_cset_choice_time_ms = (young_end_time_sec - young_start_time_sec) * 1000.0; // We are doing young collections so reset this. non_young_start_time_sec = young_end_time_sec; if (!gcs_are_young()) { CollectionSetChooser* cset_chooser = _collectionSetChooser; assert(cset_chooser->verify(), "CSet Chooser verification - pre"); const size_t min_old_cset_length = cset_chooser->calcMinOldCSetLength(); const size_t max_old_cset_length = cset_chooser->calcMaxOldCSetLength(); size_t expensive_region_num = 0; bool check_time_remaining = adaptive_young_list_length(); HeapRegion* hr = cset_chooser->peek(); while (hr != NULL) { if (old_cset_region_length() >= max_old_cset_length) { // Added maximum number of old regions to the CSet. ergo_verbose2(ErgoCSetConstruction, "finish adding old regions to CSet", ergo_format_reason("old CSet region num reached max") ergo_format_region("old") ergo_format_region("max"), old_cset_region_length(), max_old_cset_length); break; } double predicted_time_ms = predict_region_elapsed_time_ms(hr, false); if (check_time_remaining) { if (predicted_time_ms > time_remaining_ms) { // Too expensive for the current CSet. if (old_cset_region_length() >= min_old_cset_length) { // We have added the minimum number of old regions to the CSet, // we are done with this CSet. ergo_verbose4(ErgoCSetConstruction, "finish adding old regions to CSet", ergo_format_reason("predicted time is too high") ergo_format_ms("predicted time") ergo_format_ms("remaining time") ergo_format_region("old") ergo_format_region("min"), predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length); break; } // We'll add it anyway given that we haven't reached the // minimum number of old regions. expensive_region_num += 1; } } else { if (old_cset_region_length() >= min_old_cset_length) { // In the non-auto-tuning case, we'll finish adding regions // to the CSet if we reach the minimum. ergo_verbose2(ErgoCSetConstruction, "finish adding old regions to CSet", ergo_format_reason("old CSet region num reached min") ergo_format_region("old") ergo_format_region("min"), old_cset_region_length(), min_old_cset_length); break; } } // We will add this region to the CSet. time_remaining_ms -= predicted_time_ms; predicted_pause_time_ms += predicted_time_ms; cset_chooser->remove_and_move_to_next(hr); _g1->old_set_remove(hr); add_old_region_to_cset(hr); hr = cset_chooser->peek(); } if (hr == NULL) { ergo_verbose0(ErgoCSetConstruction, "finish adding old regions to CSet", ergo_format_reason("candidate old regions not available")); } if (expensive_region_num > 0) { // We print the information once here at the end, predicated on // whether we added any apparently expensive regions or not, to // avoid generating output per region. ergo_verbose4(ErgoCSetConstruction, "added expensive regions to CSet", ergo_format_reason("old CSet region num not reached min") ergo_format_region("old") ergo_format_region("expensive") ergo_format_region("min") ergo_format_ms("remaining time"), old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms); } assert(cset_chooser->verify(), "CSet Chooser verification - post"); } stop_incremental_cset_building(); count_CS_bytes_used(); ergo_verbose5(ErgoCSetConstruction, "finish choosing CSet", ergo_format_region("eden") ergo_format_region("survivors") ergo_format_region("old") ergo_format_ms("predicted pause time") ergo_format_ms("target pause time"), eden_region_length, survivor_region_length, old_cset_region_length(), predicted_pause_time_ms, target_pause_time_ms); double non_young_end_time_sec = os::elapsedTime(); _recorded_non_young_cset_choice_time_ms = (non_young_end_time_sec - non_young_start_time_sec) * 1000.0; }