/* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/decoder.hpp" #include "services/memBaseline.hpp" #include "services/memPtr.hpp" #include "services/memPtrArray.hpp" #include "services/memSnapshot.hpp" #include "services/memTracker.hpp" #ifdef ASSERT void decode_pointer_record(MemPointerRecord* rec) { tty->print("Pointer: [" PTR_FORMAT " - " PTR_FORMAT "] size = %d bytes", rec->addr(), rec->addr() + rec->size(), (int)rec->size()); tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags()))); if (rec->is_vm_pointer()) { if (rec->is_allocation_record()) { tty->print_cr(" (reserve)"); } else if (rec->is_commit_record()) { tty->print_cr(" (commit)"); } else if (rec->is_uncommit_record()) { tty->print_cr(" (uncommit)"); } else if (rec->is_deallocation_record()) { tty->print_cr(" (release)"); } else { tty->print_cr(" (tag)"); } } else { if (rec->is_arena_memory_record()) { tty->print_cr(" (arena size)"); } else if (rec->is_allocation_record()) { tty->print_cr(" (malloc)"); } else { tty->print_cr(" (free)"); } } if (MemTracker::track_callsite()) { char buf[1024]; address pc = ((MemPointerRecordEx*)rec)->pc(); if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) { tty->print_cr("\tfrom %s", buf); } else { tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc); } } } void decode_vm_region_record(VMMemRegion* rec) { tty->print("VM Region [" PTR_FORMAT " - " PTR_FORMAT "]", rec->addr(), rec->addr() + rec->size()); tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags()))); if (rec->is_allocation_record()) { tty->print_cr(" (reserved)"); } else if (rec->is_commit_record()) { tty->print_cr(" (committed)"); } else { ShouldNotReachHere(); } if (MemTracker::track_callsite()) { char buf[1024]; address pc = ((VMMemRegionEx*)rec)->pc(); if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) { tty->print_cr("\tfrom %s", buf); } else { tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc); } } } #endif bool VMMemPointerIterator::insert_record(MemPointerRecord* rec) { VMMemRegionEx new_rec; assert(rec->is_allocation_record() || rec->is_commit_record(), "Sanity check"); if (MemTracker::track_callsite()) { new_rec.init((MemPointerRecordEx*)rec); } else { new_rec.init(rec); } return insert(&new_rec); } bool VMMemPointerIterator::insert_record_after(MemPointerRecord* rec) { VMMemRegionEx new_rec; assert(rec->is_allocation_record() || rec->is_commit_record(), "Sanity check"); if (MemTracker::track_callsite()) { new_rec.init((MemPointerRecordEx*)rec); } else { new_rec.init(rec); } return insert_after(&new_rec); } // we don't consolidate reserved regions, since they may be categorized // in different types. bool VMMemPointerIterator::add_reserved_region(MemPointerRecord* rec) { assert(rec->is_allocation_record(), "Sanity check"); VMMemRegion* reserved_region = (VMMemRegion*)current(); // we don't have anything yet if (reserved_region == NULL) { return insert_record(rec); } assert(reserved_region->is_reserved_region(), "Sanity check"); // duplicated records if (reserved_region->is_same_region(rec)) { return true; } // Overlapping stack regions indicate that a JNI thread failed to // detach from the VM before exiting. This leaks the JavaThread object. if (CheckJNICalls) { guarantee(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) != mtThreadStack || !reserved_region->overlaps_region(rec), "Attached JNI thread exited without being detached"); } // otherwise, we should not have overlapping reserved regions assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack || reserved_region->base() > rec->addr(), "Just check: locate()"); assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack || !reserved_region->overlaps_region(rec), "overlapping reserved regions"); return insert_record(rec); } // we do consolidate committed regions bool VMMemPointerIterator::add_committed_region(MemPointerRecord* rec) { assert(rec->is_commit_record(), "Sanity check"); VMMemRegion* reserved_rgn = (VMMemRegion*)current(); assert(reserved_rgn->is_reserved_region() && reserved_rgn->contains_region(rec), "Sanity check"); // thread's native stack is always marked as "committed", ignore // the "commit" operation for creating stack guard pages if (FLAGS_TO_MEMORY_TYPE(reserved_rgn->flags()) == mtThreadStack && FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) { return true; } // if the reserved region has any committed regions VMMemRegion* committed_rgn = (VMMemRegion*)next(); while (committed_rgn != NULL && committed_rgn->is_committed_region()) { // duplicated commit records if(committed_rgn->contains_region(rec)) { return true; } else if (committed_rgn->overlaps_region(rec)) { // overlaps front part if (rec->addr() < committed_rgn->addr()) { committed_rgn->expand_region(rec->addr(), committed_rgn->addr() - rec->addr()); } else { // overlaps tail part address committed_rgn_end = committed_rgn->addr() + committed_rgn->size(); assert(committed_rgn_end < rec->addr() + rec->size(), "overlap tail part"); committed_rgn->expand_region(committed_rgn_end, (rec->addr() + rec->size()) - committed_rgn_end); } } else if (committed_rgn->base() + committed_rgn->size() == rec->addr()) { // adjunct each other committed_rgn->expand_region(rec->addr(), rec->size()); VMMemRegion* next_reg = (VMMemRegion*)next(); // see if we can consolidate next committed region if (next_reg != NULL && next_reg->is_committed_region() && next_reg->base() == committed_rgn->base() + committed_rgn->size()) { committed_rgn->expand_region(next_reg->base(), next_reg->size()); // delete merged region remove(); } return true; } else if (committed_rgn->base() > rec->addr()) { // found the location, insert this committed region return insert_record(rec); } committed_rgn = (VMMemRegion*)next(); } return insert_record(rec); } bool VMMemPointerIterator::remove_uncommitted_region(MemPointerRecord* rec) { assert(rec->is_uncommit_record(), "sanity check"); VMMemRegion* cur; cur = (VMMemRegion*)current(); assert(cur->is_reserved_region() && cur->contains_region(rec), "Sanity check"); // thread's native stack is always marked as "committed", ignore // the "commit" operation for creating stack guard pages if (FLAGS_TO_MEMORY_TYPE(cur->flags()) == mtThreadStack && FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) { return true; } cur = (VMMemRegion*)next(); while (cur != NULL && cur->is_committed_region()) { // region already uncommitted, must be due to duplicated record if (cur->addr() >= rec->addr() + rec->size()) { break; } else if (cur->contains_region(rec)) { // uncommit whole region if (cur->is_same_region(rec)) { remove(); break; } else if (rec->addr() == cur->addr() || rec->addr() + rec->size() == cur->addr() + cur->size()) { // uncommitted from either end of current memory region. cur->exclude_region(rec->addr(), rec->size()); break; } else { // split the committed region and release the middle address high_addr = cur->addr() + cur->size(); size_t sz = high_addr - rec->addr(); cur->exclude_region(rec->addr(), sz); sz = high_addr - (rec->addr() + rec->size()); if (MemTracker::track_callsite()) { MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz, ((VMMemRegionEx*)cur)->pc()); return insert_record_after(&tmp); } else { MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz); return insert_record_after(&tmp); } } } cur = (VMMemRegion*)next(); } // we may not find committed record due to duplicated records return true; } bool VMMemPointerIterator::remove_released_region(MemPointerRecord* rec) { assert(rec->is_deallocation_record(), "Sanity check"); VMMemRegion* cur = (VMMemRegion*)current(); assert(cur->is_reserved_region() && cur->contains_region(rec), "Sanity check"); if (rec->is_same_region(cur)) { // release whole reserved region #ifdef ASSERT VMMemRegion* next_region = (VMMemRegion*)peek_next(); // should not have any committed memory in this reserved region assert(next_region == NULL || !next_region->is_committed_region(), "Sanity check"); #endif remove(); } else if (rec->addr() == cur->addr() || rec->addr() + rec->size() == cur->addr() + cur->size()) { // released region is at either end of this region cur->exclude_region(rec->addr(), rec->size()); assert(check_reserved_region(), "Integrity check"); } else { // split the reserved region and release the middle address high_addr = cur->addr() + cur->size(); size_t sz = high_addr - rec->addr(); cur->exclude_region(rec->addr(), sz); sz = high_addr - rec->addr() - rec->size(); if (MemTracker::track_callsite()) { MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz, ((VMMemRegionEx*)cur)->pc()); bool ret = insert_reserved_region(&tmp); assert(!ret || check_reserved_region(), "Integrity check"); return ret; } else { MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz); bool ret = insert_reserved_region(&tmp); assert(!ret || check_reserved_region(), "Integrity check"); return ret; } } return true; } bool VMMemPointerIterator::insert_reserved_region(MemPointerRecord* rec) { // skip all 'commit' records associated with previous reserved region VMMemRegion* p = (VMMemRegion*)next(); while (p != NULL && p->is_committed_region() && p->base() + p->size() < rec->addr()) { p = (VMMemRegion*)next(); } return insert_record(rec); } bool VMMemPointerIterator::split_reserved_region(VMMemRegion* rgn, address new_rgn_addr, size_t new_rgn_size) { assert(rgn->contains_region(new_rgn_addr, new_rgn_size), "Not fully contained"); address pc = (MemTracker::track_callsite() ? ((VMMemRegionEx*)rgn)->pc() : NULL); if (rgn->base() == new_rgn_addr) { // new region is at the beginning of the region size_t sz = rgn->size() - new_rgn_size; // the original region becomes 'new' region rgn->exclude_region(new_rgn_addr + new_rgn_size, sz); // remaining becomes next region MemPointerRecordEx next_rgn(new_rgn_addr + new_rgn_size, rgn->flags(), sz, pc); return insert_reserved_region(&next_rgn); } else if (rgn->base() + rgn->size() == new_rgn_addr + new_rgn_size) { rgn->exclude_region(new_rgn_addr, new_rgn_size); MemPointerRecordEx next_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc); return insert_reserved_region(&next_rgn); } else { // the orginal region will be split into three address rgn_high_addr = rgn->base() + rgn->size(); // first region rgn->exclude_region(new_rgn_addr, (rgn_high_addr - new_rgn_addr)); // the second region is the new region MemPointerRecordEx new_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc); if (!insert_reserved_region(&new_rgn)) return false; // the remaining region MemPointerRecordEx rem_rgn(new_rgn_addr + new_rgn_size, rgn->flags(), rgn_high_addr - (new_rgn_addr + new_rgn_size), pc); return insert_reserved_region(&rem_rgn); } } static int sort_in_seq_order(const void* p1, const void* p2) { assert(p1 != NULL && p2 != NULL, "Sanity check"); const MemPointerRecord* mp1 = (MemPointerRecord*)p1; const MemPointerRecord* mp2 = (MemPointerRecord*)p2; return (mp1->seq() - mp2->seq()); } bool StagingArea::init() { if (MemTracker::track_callsite()) { _malloc_data = new (std::nothrow)MemPointerArrayImpl(); _vm_data = new (std::nothrow)MemPointerArrayImpl(); } else { _malloc_data = new (std::nothrow)MemPointerArrayImpl(); _vm_data = new (std::nothrow)MemPointerArrayImpl(); } if (_malloc_data != NULL && _vm_data != NULL && !_malloc_data->out_of_memory() && !_vm_data->out_of_memory()) { return true; } else { if (_malloc_data != NULL) delete _malloc_data; if (_vm_data != NULL) delete _vm_data; _malloc_data = NULL; _vm_data = NULL; return false; } } VMRecordIterator StagingArea::virtual_memory_record_walker() { MemPointerArray* arr = vm_data(); // sort into seq number order arr->sort((FN_SORT)sort_in_seq_order); return VMRecordIterator(arr); } MemSnapshot::MemSnapshot() { if (MemTracker::track_callsite()) { _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl(); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl(64, true); } else { _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl(); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl(64, true); } _staging_area.init(); _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock"); NOT_PRODUCT(_untracked_count = 0;) } MemSnapshot::~MemSnapshot() { assert(MemTracker::shutdown_in_progress(), "native memory tracking still on"); { MutexLockerEx locker(_lock); if (_alloc_ptrs != NULL) { delete _alloc_ptrs; _alloc_ptrs = NULL; } if (_vm_ptrs != NULL) { delete _vm_ptrs; _vm_ptrs = NULL; } } if (_lock != NULL) { delete _lock; _lock = NULL; } } void MemSnapshot::copy_seq_pointer(MemPointerRecord* dest, const MemPointerRecord* src) { assert(dest != NULL && src != NULL, "Just check"); assert(dest->addr() == src->addr(), "Just check"); assert(dest->seq() > 0 && src->seq() > 0, "not sequenced"); if (MemTracker::track_callsite()) { *(SeqMemPointerRecordEx*)dest = *(SeqMemPointerRecordEx*)src; } else { *(SeqMemPointerRecord*)dest = *(SeqMemPointerRecord*)src; } } void MemSnapshot::assign_pointer(MemPointerRecord*dest, const MemPointerRecord* src) { assert(src != NULL && dest != NULL, "Just check"); assert(dest->seq() == 0 && src->seq() >0, "cast away sequence"); if (MemTracker::track_callsite()) { *(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src; } else { *(MemPointerRecord*)dest = *(MemPointerRecord*)src; } } // merge a recorder to the staging area bool MemSnapshot::merge(MemRecorder* rec) { assert(rec != NULL && !rec->out_of_memory(), "Just check"); SequencedRecordIterator itr(rec->pointer_itr()); MutexLockerEx lock(_lock, true); MemPointerIterator malloc_staging_itr(_staging_area.malloc_data()); MemPointerRecord* incoming_rec = (MemPointerRecord*) itr.current(); MemPointerRecord* matched_rec; while (incoming_rec != NULL) { if (incoming_rec->is_vm_pointer()) { // we don't do anything with virtual memory records during merge if (!_staging_area.vm_data()->append(incoming_rec)) { return false; } } else { // locate matched record and/or also position the iterator to proper // location for this incoming record. matched_rec = (MemPointerRecord*)malloc_staging_itr.locate(incoming_rec->addr()); // we have not seen this memory block in this generation, // so just add to staging area if (matched_rec == NULL) { if (!malloc_staging_itr.insert(incoming_rec)) { return false; } } else if (incoming_rec->addr() == matched_rec->addr()) { // whoever has higher sequence number wins if (incoming_rec->seq() > matched_rec->seq()) { copy_seq_pointer(matched_rec, incoming_rec); } } else if (incoming_rec->addr() < matched_rec->addr()) { if (!malloc_staging_itr.insert(incoming_rec)) { return false; } } else { ShouldNotReachHere(); } } incoming_rec = (MemPointerRecord*)itr.next(); } NOT_PRODUCT(void check_staging_data();) return true; } // promote data to next generation bool MemSnapshot::promote() { assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check"); assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL, "Just check"); MutexLockerEx lock(_lock, true); MallocRecordIterator malloc_itr = _staging_area.malloc_record_walker(); bool promoted = false; if (promote_malloc_records(&malloc_itr)) { VMRecordIterator vm_itr = _staging_area.virtual_memory_record_walker(); if (promote_virtual_memory_records(&vm_itr)) { promoted = true; } } NOT_PRODUCT(check_malloc_pointers();) _staging_area.clear(); return promoted; } bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) { MemPointerIterator malloc_snapshot_itr(_alloc_ptrs); MemPointerRecord* new_rec = (MemPointerRecord*)itr->current(); MemPointerRecord* matched_rec; while (new_rec != NULL) { matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr()); // found matched memory block if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) { // snapshot already contains 'live' records assert(matched_rec->is_allocation_record() || matched_rec->is_arena_memory_record(), "Sanity check"); // update block states if (new_rec->is_allocation_record()) { assign_pointer(matched_rec, new_rec); } else if (new_rec->is_arena_memory_record()) { if (new_rec->size() == 0) { // remove size record once size drops to 0 malloc_snapshot_itr.remove(); } else { assign_pointer(matched_rec, new_rec); } } else { // a deallocation record assert(new_rec->is_deallocation_record(), "Sanity check"); // an arena record can be followed by a size record, we need to remove both if (matched_rec->is_arena_record()) { MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next(); if (next->is_arena_memory_record() && next->is_memory_record_of_arena(matched_rec)) { malloc_snapshot_itr.remove(); } } // the memory is deallocated, remove related record(s) malloc_snapshot_itr.remove(); } } else { // don't insert size 0 record if (new_rec->is_arena_memory_record() && new_rec->size() == 0) { new_rec = NULL; } if (new_rec != NULL) { if (new_rec->is_allocation_record() || new_rec->is_arena_memory_record()) { if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) { if (!malloc_snapshot_itr.insert_after(new_rec)) { return false; } } else { if (!malloc_snapshot_itr.insert(new_rec)) { return false; } } } #ifndef PRODUCT else if (!has_allocation_record(new_rec->addr())) { // NMT can not track some startup memory, which is allocated before NMT is on _untracked_count ++; } #endif } } new_rec = (MemPointerRecord*)itr->next(); } return true; } bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) { VMMemPointerIterator vm_snapshot_itr(_vm_ptrs); MemPointerRecord* new_rec = (MemPointerRecord*)itr->current(); VMMemRegion* reserved_rec; while (new_rec != NULL) { assert(new_rec->is_vm_pointer(), "Sanity check"); // locate a reserved region that contains the specified address, or // the nearest reserved region has base address just above the specified // address reserved_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr()); if (reserved_rec != NULL && reserved_rec->contains_region(new_rec)) { // snapshot can only have 'live' records assert(reserved_rec->is_reserved_region(), "Sanity check"); if (new_rec->is_allocation_record()) { if (!reserved_rec->is_same_region(new_rec)) { // only deal with split a bigger reserved region into smaller regions. // So far, CDS is the only use case. if (!vm_snapshot_itr.split_reserved_region(reserved_rec, new_rec->addr(), new_rec->size())) { return false; } } } else if (new_rec->is_uncommit_record()) { if (!vm_snapshot_itr.remove_uncommitted_region(new_rec)) { return false; } } else if (new_rec->is_commit_record()) { // insert or expand existing committed region to cover this // newly committed region if (!vm_snapshot_itr.add_committed_region(new_rec)) { return false; } } else if (new_rec->is_deallocation_record()) { // release part or all memory region if (!vm_snapshot_itr.remove_released_region(new_rec)) { return false; } } else if (new_rec->is_type_tagging_record()) { // tag this reserved virtual memory range to a memory type. Can not re-tag a memory range // to different type. assert(FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == mtNone || FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_rec->flags()), "Sanity check"); reserved_rec->tag(new_rec->flags()); } else { ShouldNotReachHere(); } } else { /* * The assertion failure indicates mis-matched virtual memory records. The likely * scenario is, that some virtual memory operations are not going through os::xxxx_memory() * api, which have to be tracked manually. (perfMemory is an example). */ assert(new_rec->is_allocation_record(), "Sanity check"); if (!vm_snapshot_itr.add_reserved_region(new_rec)) { return false; } } new_rec = (MemPointerRecord*)itr->next(); } return true; } #ifndef PRODUCT void MemSnapshot::print_snapshot_stats(outputStream* st) { st->print_cr("Snapshot:"); st->print_cr("\tMalloced: %d/%d [%5.2f%%] %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(), (100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K); st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(), (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K); st->print_cr("\tMalloc staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(), _staging_area.malloc_data()->capacity(), (100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(), _staging_area.malloc_data()->instance_size()/K); st->print_cr("\tVirtual memory staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(), _staging_area.vm_data()->capacity(), (100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(), _staging_area.vm_data()->instance_size()/K); st->print_cr("\tUntracked allocation: %d", _untracked_count); } void MemSnapshot::check_malloc_pointers() { MemPointerArrayIteratorImpl mItr(_alloc_ptrs); MemPointerRecord* p = (MemPointerRecord*)mItr.current(); MemPointerRecord* prev = NULL; while (p != NULL) { if (prev != NULL) { assert(p->addr() >= prev->addr(), "sorting order"); } prev = p; p = (MemPointerRecord*)mItr.next(); } } bool MemSnapshot::has_allocation_record(address addr) { MemPointerArrayIteratorImpl itr(_staging_area.malloc_data()); MemPointerRecord* cur = (MemPointerRecord*)itr.current(); while (cur != NULL) { if (cur->addr() == addr && cur->is_allocation_record()) { return true; } cur = (MemPointerRecord*)itr.next(); } return false; } #endif // PRODUCT #ifdef ASSERT void MemSnapshot::check_staging_data() { MemPointerArrayIteratorImpl itr(_staging_area.malloc_data()); MemPointerRecord* cur = (MemPointerRecord*)itr.current(); MemPointerRecord* next = (MemPointerRecord*)itr.next(); while (next != NULL) { assert((next->addr() > cur->addr()) || ((next->flags() & MemPointerRecord::tag_masks) > (cur->flags() & MemPointerRecord::tag_masks)), "sorting order"); cur = next; next = (MemPointerRecord*)itr.next(); } MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data()); cur = (MemPointerRecord*)vm_itr.current(); while (cur != NULL) { assert(cur->is_vm_pointer(), "virtual memory pointer only"); cur = (MemPointerRecord*)vm_itr.next(); } } void MemSnapshot::dump_all_vm_pointers() { MemPointerArrayIteratorImpl itr(_vm_ptrs); VMMemRegion* ptr = (VMMemRegion*)itr.current(); tty->print_cr("dump virtual memory pointers:"); while (ptr != NULL) { if (ptr->is_committed_region()) { tty->print("\t"); } tty->print("[" PTR_FORMAT " - " PTR_FORMAT "] [%x]", ptr->addr(), (ptr->addr() + ptr->size()), ptr->flags()); if (MemTracker::track_callsite()) { VMMemRegionEx* ex = (VMMemRegionEx*)ptr; if (ex->pc() != NULL) { char buf[1024]; if (os::dll_address_to_function_name(ex->pc(), buf, sizeof(buf), NULL)) { tty->print_cr("\t%s", buf); } else { tty->print_cr(""); } } } ptr = (VMMemRegion*)itr.next(); } tty->flush(); } #endif // ASSERT