/* * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_library_call.cpp.incl" class LibraryIntrinsic : public InlineCallGenerator { // Extend the set of intrinsics known to the runtime: public: private: bool _is_virtual; vmIntrinsics::ID _intrinsic_id; public: LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id) : InlineCallGenerator(m), _is_virtual(is_virtual), _intrinsic_id(id) { } virtual bool is_intrinsic() const { return true; } virtual bool is_virtual() const { return _is_virtual; } virtual JVMState* generate(JVMState* jvms); vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } }; // Local helper class for LibraryIntrinsic: class LibraryCallKit : public GraphKit { private: LibraryIntrinsic* _intrinsic; // the library intrinsic being called public: LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic) : GraphKit(caller), _intrinsic(intrinsic) { } ciMethod* caller() const { return jvms()->method(); } int bci() const { return jvms()->bci(); } LibraryIntrinsic* intrinsic() const { return _intrinsic; } vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } ciMethod* callee() const { return _intrinsic->method(); } ciSignature* signature() const { return callee()->signature(); } int arg_size() const { return callee()->arg_size(); } bool try_to_inline(); // Helper functions to inline natives void push_result(RegionNode* region, PhiNode* value); Node* generate_guard(Node* test, RegionNode* region, float true_prob); Node* generate_slow_guard(Node* test, RegionNode* region); Node* generate_fair_guard(Node* test, RegionNode* region); Node* generate_negative_guard(Node* index, RegionNode* region, // resulting CastII of index: Node* *pos_index = NULL); Node* generate_nonpositive_guard(Node* index, bool never_negative, // resulting CastII of index: Node* *pos_index = NULL); Node* generate_limit_guard(Node* offset, Node* subseq_length, Node* array_length, RegionNode* region); Node* generate_current_thread(Node* &tls_output); address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset, bool disjoint_bases, const char* &name); Node* load_mirror_from_klass(Node* klass); Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, int nargs, RegionNode* region, int null_path, int offset); Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs, RegionNode* region, int null_path) { int offset = java_lang_Class::klass_offset_in_bytes(); return load_klass_from_mirror_common(mirror, never_see_null, nargs, region, null_path, offset); } Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, int nargs, RegionNode* region, int null_path) { int offset = java_lang_Class::array_klass_offset_in_bytes(); return load_klass_from_mirror_common(mirror, never_see_null, nargs, region, null_path, offset); } Node* generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region); Node* generate_interface_guard(Node* kls, RegionNode* region); Node* generate_array_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, false, false); } Node* generate_non_array_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, false, true); } Node* generate_objArray_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, true, false); } Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { return generate_array_guard_common(kls, region, true, true); } Node* generate_array_guard_common(Node* kls, RegionNode* region, bool obj_array, bool not_array); Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, bool is_virtual = false, bool is_static = false); CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { return generate_method_call(method_id, false, true); } CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { return generate_method_call(method_id, true, false); } bool inline_string_compareTo(); bool inline_string_indexOf(); Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i); bool inline_string_equals(); Node* pop_math_arg(); bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); bool inline_math_native(vmIntrinsics::ID id); bool inline_trig(vmIntrinsics::ID id); bool inline_trans(vmIntrinsics::ID id); bool inline_abs(vmIntrinsics::ID id); bool inline_sqrt(vmIntrinsics::ID id); bool inline_pow(vmIntrinsics::ID id); bool inline_exp(vmIntrinsics::ID id); bool inline_min_max(vmIntrinsics::ID id); Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); // This returns Type::AnyPtr, RawPtr, or OopPtr. int classify_unsafe_addr(Node* &base, Node* &offset); Node* make_unsafe_address(Node* base, Node* offset); bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile); bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static); bool inline_unsafe_allocate(); bool inline_unsafe_copyMemory(); bool inline_native_currentThread(); bool inline_native_time_funcs(bool isNano); bool inline_native_isInterrupted(); bool inline_native_Class_query(vmIntrinsics::ID id); bool inline_native_subtype_check(); bool inline_native_newArray(); bool inline_native_getLength(); bool inline_array_copyOf(bool is_copyOfRange); bool inline_array_equals(); bool inline_native_clone(bool is_virtual); bool inline_native_Reflection_getCallerClass(); bool inline_native_AtomicLong_get(); bool inline_native_AtomicLong_attemptUpdate(); bool is_method_invoke_or_aux_frame(JVMState* jvms); // Helper function for inlining native object hash method bool inline_native_hashcode(bool is_virtual, bool is_static); bool inline_native_getClass(); // Helper functions for inlining arraycopy bool inline_arraycopy(); void generate_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs, // arguments on stack for debug info bool disjoint_bases = false, bool length_never_negative = false, RegionNode* slow_region = NULL); AllocateArrayNode* tightly_coupled_allocation(Node* ptr, RegionNode* slow_region); void generate_clear_array(const TypePtr* adr_type, Node* dest, BasicType basic_elem_type, Node* slice_off, Node* slice_len, Node* slice_end); bool generate_block_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, AllocateNode* alloc, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* dest_size); void generate_slow_arraycopy(const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs); Node* generate_checkcast_arraycopy(const TypePtr* adr_type, Node* dest_elem_klass, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs); Node* generate_generic_arraycopy(const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs); void generate_unchecked_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, bool disjoint_bases, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length); bool inline_unsafe_CAS(BasicType type); bool inline_unsafe_ordered_store(BasicType type); bool inline_fp_conversions(vmIntrinsics::ID id); bool inline_numberOfLeadingZeros(vmIntrinsics::ID id); bool inline_numberOfTrailingZeros(vmIntrinsics::ID id); bool inline_bitCount(vmIntrinsics::ID id); bool inline_reverseBytes(vmIntrinsics::ID id); }; //---------------------------make_vm_intrinsic---------------------------- CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { vmIntrinsics::ID id = m->intrinsic_id(); assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); if (DisableIntrinsic[0] != '\0' && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) { // disabled by a user request on the command line: // example: -XX:DisableIntrinsic=_hashCode,_getClass return NULL; } if (!m->is_loaded()) { // do not attempt to inline unloaded methods return NULL; } // Only a few intrinsics implement a virtual dispatch. // They are expensive calls which are also frequently overridden. if (is_virtual) { switch (id) { case vmIntrinsics::_hashCode: case vmIntrinsics::_clone: // OK, Object.hashCode and Object.clone intrinsics come in both flavors break; default: return NULL; } } // -XX:-InlineNatives disables nearly all intrinsics: if (!InlineNatives) { switch (id) { case vmIntrinsics::_indexOf: case vmIntrinsics::_compareTo: case vmIntrinsics::_equals: case vmIntrinsics::_equalsC: break; // InlineNatives does not control String.compareTo default: return NULL; } } switch (id) { case vmIntrinsics::_compareTo: if (!SpecialStringCompareTo) return NULL; break; case vmIntrinsics::_indexOf: if (!SpecialStringIndexOf) return NULL; break; case vmIntrinsics::_equals: if (!SpecialStringEquals) return NULL; break; case vmIntrinsics::_equalsC: if (!SpecialArraysEquals) return NULL; break; case vmIntrinsics::_arraycopy: if (!InlineArrayCopy) return NULL; break; case vmIntrinsics::_copyMemory: if (StubRoutines::unsafe_arraycopy() == NULL) return NULL; if (!InlineArrayCopy) return NULL; break; case vmIntrinsics::_hashCode: if (!InlineObjectHash) return NULL; break; case vmIntrinsics::_clone: case vmIntrinsics::_copyOf: case vmIntrinsics::_copyOfRange: if (!InlineObjectCopy) return NULL; // These also use the arraycopy intrinsic mechanism: if (!InlineArrayCopy) return NULL; break; case vmIntrinsics::_checkIndex: // We do not intrinsify this. The optimizer does fine with it. return NULL; case vmIntrinsics::_get_AtomicLong: case vmIntrinsics::_attemptUpdate: if (!InlineAtomicLong) return NULL; break; case vmIntrinsics::_Object_init: case vmIntrinsics::_invoke: // We do not intrinsify these; they are marked for other purposes. return NULL; case vmIntrinsics::_getCallerClass: if (!UseNewReflection) return NULL; if (!InlineReflectionGetCallerClass) return NULL; if (!JDK_Version::is_gte_jdk14x_version()) return NULL; break; case vmIntrinsics::_bitCount_i: case vmIntrinsics::_bitCount_l: if (!UsePopCountInstruction) return NULL; break; default: break; } // -XX:-InlineClassNatives disables natives from the Class class. // The flag applies to all reflective calls, notably Array.newArray // (visible to Java programmers as Array.newInstance). if (m->holder()->name() == ciSymbol::java_lang_Class() || m->holder()->name() == ciSymbol::java_lang_reflect_Array()) { if (!InlineClassNatives) return NULL; } // -XX:-InlineThreadNatives disables natives from the Thread class. if (m->holder()->name() == ciSymbol::java_lang_Thread()) { if (!InlineThreadNatives) return NULL; } // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes. if (m->holder()->name() == ciSymbol::java_lang_Math() || m->holder()->name() == ciSymbol::java_lang_Float() || m->holder()->name() == ciSymbol::java_lang_Double()) { if (!InlineMathNatives) return NULL; } // -XX:-InlineUnsafeOps disables natives from the Unsafe class. if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) { if (!InlineUnsafeOps) return NULL; } return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id); } //----------------------register_library_intrinsics----------------------- // Initialize this file's data structures, for each Compile instance. void Compile::register_library_intrinsics() { // Nothing to do here. } JVMState* LibraryIntrinsic::generate(JVMState* jvms) { LibraryCallKit kit(jvms, this); Compile* C = kit.C; int nodes = C->unique(); #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) { char buf[1000]; const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); tty->print_cr("Intrinsic %s", str); } #endif if (kit.try_to_inline()) { if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) { tty->print("Inlining intrinsic %s%s at bci:%d in", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " (virtual)" : ""), kit.bci()); kit.caller()->print_short_name(tty); tty->print_cr(" (%d bytes)", kit.caller()->code_size()); } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); if (C->log()) { C->log()->elem("intrinsic id='%s'%s nodes='%d'", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " virtual='1'" : ""), C->unique() - nodes); } return kit.transfer_exceptions_into_jvms(); } if (PrintIntrinsics) { switch (intrinsic_id()) { case vmIntrinsics::_invoke: case vmIntrinsics::_Object_init: // We do not expect to inline these, so do not produce any noise about them. break; default: tty->print("Did not inline intrinsic %s%s at bci:%d in", vmIntrinsics::name_at(intrinsic_id()), (is_virtual() ? " (virtual)" : ""), kit.bci()); kit.caller()->print_short_name(tty); tty->print_cr(" (%d bytes)", kit.caller()->code_size()); } } C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); return NULL; } bool LibraryCallKit::try_to_inline() { // Handle symbolic names for otherwise undistinguished boolean switches: const bool is_store = true; const bool is_native_ptr = true; const bool is_static = true; switch (intrinsic_id()) { case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); case vmIntrinsics::_getClass: return inline_native_getClass(); case vmIntrinsics::_dsin: case vmIntrinsics::_dcos: case vmIntrinsics::_dtan: case vmIntrinsics::_dabs: case vmIntrinsics::_datan2: case vmIntrinsics::_dsqrt: case vmIntrinsics::_dexp: case vmIntrinsics::_dlog: case vmIntrinsics::_dlog10: case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); case vmIntrinsics::_min: case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); case vmIntrinsics::_arraycopy: return inline_arraycopy(); case vmIntrinsics::_compareTo: return inline_string_compareTo(); case vmIntrinsics::_indexOf: return inline_string_indexOf(); case vmIntrinsics::_equals: return inline_string_equals(); case vmIntrinsics::_getObject: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false); case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false); case vmIntrinsics::_getByte: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false); case vmIntrinsics::_getShort: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false); case vmIntrinsics::_getChar: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false); case vmIntrinsics::_getInt: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false); case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false); case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false); case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false); case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false); case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false); case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false); case vmIntrinsics::_putShort: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false); case vmIntrinsics::_putChar: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false); case vmIntrinsics::_putInt: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false); case vmIntrinsics::_putLong: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false); case vmIntrinsics::_putFloat: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false); case vmIntrinsics::_putDouble: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false); case vmIntrinsics::_getByte_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false); case vmIntrinsics::_getShort_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false); case vmIntrinsics::_getChar_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false); case vmIntrinsics::_getInt_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false); case vmIntrinsics::_getLong_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false); case vmIntrinsics::_getFloat_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false); case vmIntrinsics::_getDouble_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false); case vmIntrinsics::_getAddress_raw: return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false); case vmIntrinsics::_putByte_raw: return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false); case vmIntrinsics::_putShort_raw: return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false); case vmIntrinsics::_putChar_raw: return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false); case vmIntrinsics::_putInt_raw: return inline_unsafe_access(is_native_ptr, is_store, T_INT, false); case vmIntrinsics::_putLong_raw: return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false); case vmIntrinsics::_putFloat_raw: return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false); case vmIntrinsics::_putDouble_raw: return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false); case vmIntrinsics::_putAddress_raw: return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false); case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true); case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true); case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true); case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true); case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true); case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true); case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true); case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true); case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true); case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true); case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true); case vmIntrinsics::_putByteVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true); case vmIntrinsics::_putShortVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true); case vmIntrinsics::_putCharVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true); case vmIntrinsics::_putIntVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true); case vmIntrinsics::_putLongVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true); case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true); case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true); case vmIntrinsics::_prefetchRead: return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static); case vmIntrinsics::_prefetchWrite: return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static); case vmIntrinsics::_prefetchReadStatic: return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static); case vmIntrinsics::_prefetchWriteStatic: return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static); case vmIntrinsics::_compareAndSwapObject: return inline_unsafe_CAS(T_OBJECT); case vmIntrinsics::_compareAndSwapInt: return inline_unsafe_CAS(T_INT); case vmIntrinsics::_compareAndSwapLong: return inline_unsafe_CAS(T_LONG); case vmIntrinsics::_putOrderedObject: return inline_unsafe_ordered_store(T_OBJECT); case vmIntrinsics::_putOrderedInt: return inline_unsafe_ordered_store(T_INT); case vmIntrinsics::_putOrderedLong: return inline_unsafe_ordered_store(T_LONG); case vmIntrinsics::_currentThread: return inline_native_currentThread(); case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted(); case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(false); case vmIntrinsics::_nanoTime: return inline_native_time_funcs(true); case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); case vmIntrinsics::_newArray: return inline_native_newArray(); case vmIntrinsics::_getLength: return inline_native_getLength(); case vmIntrinsics::_copyOf: return inline_array_copyOf(false); case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); case vmIntrinsics::_equalsC: return inline_array_equals(); case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); case vmIntrinsics::_isInstance: case vmIntrinsics::_getModifiers: case vmIntrinsics::_isInterface: case vmIntrinsics::_isArray: case vmIntrinsics::_isPrimitive: case vmIntrinsics::_getSuperclass: case vmIntrinsics::_getComponentType: case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); case vmIntrinsics::_floatToRawIntBits: case vmIntrinsics::_floatToIntBits: case vmIntrinsics::_intBitsToFloat: case vmIntrinsics::_doubleToRawLongBits: case vmIntrinsics::_doubleToLongBits: case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); case vmIntrinsics::_numberOfLeadingZeros_i: case vmIntrinsics::_numberOfLeadingZeros_l: return inline_numberOfLeadingZeros(intrinsic_id()); case vmIntrinsics::_numberOfTrailingZeros_i: case vmIntrinsics::_numberOfTrailingZeros_l: return inline_numberOfTrailingZeros(intrinsic_id()); case vmIntrinsics::_bitCount_i: case vmIntrinsics::_bitCount_l: return inline_bitCount(intrinsic_id()); case vmIntrinsics::_reverseBytes_i: case vmIntrinsics::_reverseBytes_l: return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id()); case vmIntrinsics::_get_AtomicLong: return inline_native_AtomicLong_get(); case vmIntrinsics::_attemptUpdate: return inline_native_AtomicLong_attemptUpdate(); case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); default: // If you get here, it may be that someone has added a new intrinsic // to the list in vmSymbols.hpp without implementing it here. #ifndef PRODUCT if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); } #endif return false; } } //------------------------------push_result------------------------------ // Helper function for finishing intrinsics. void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) { record_for_igvn(region); set_control(_gvn.transform(region)); BasicType value_type = value->type()->basic_type(); push_node(value_type, _gvn.transform(value)); } //------------------------------generate_guard--------------------------- // Helper function for generating guarded fast-slow graph structures. // The given 'test', if true, guards a slow path. If the test fails // then a fast path can be taken. (We generally hope it fails.) // In all cases, GraphKit::control() is updated to the fast path. // The returned value represents the control for the slow path. // The return value is never 'top'; it is either a valid control // or NULL if it is obvious that the slow path can never be taken. // Also, if region and the slow control are not NULL, the slow edge // is appended to the region. Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { if (stopped()) { // Already short circuited. return NULL; } // Build an if node and its projections. // If test is true we take the slow path, which we assume is uncommon. if (_gvn.type(test) == TypeInt::ZERO) { // The slow branch is never taken. No need to build this guard. return NULL; } IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) ); if (if_slow == top()) { // The slow branch is never taken. No need to build this guard. return NULL; } if (region != NULL) region->add_req(if_slow); Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) ); set_control(if_fast); return if_slow; } inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); } inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { return generate_guard(test, region, PROB_FAIR); } inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, Node* *pos_index) { if (stopped()) return NULL; // already stopped if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] return NULL; // index is already adequately typed Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) ); Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) ); Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); if (is_neg != NULL && pos_index != NULL) { // Emulate effect of Parse::adjust_map_after_if. Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS); ccast->set_req(0, control()); (*pos_index) = _gvn.transform(ccast); } return is_neg; } inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative, Node* *pos_index) { if (stopped()) return NULL; // already stopped if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint] return NULL; // index is already adequately typed Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) ); BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le); Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) ); Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN); if (is_notp != NULL && pos_index != NULL) { // Emulate effect of Parse::adjust_map_after_if. Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1); ccast->set_req(0, control()); (*pos_index) = _gvn.transform(ccast); } return is_notp; } // Make sure that 'position' is a valid limit index, in [0..length]. // There are two equivalent plans for checking this: // A. (offset + copyLength) unsigned<= arrayLength // B. offset <= (arrayLength - copyLength) // We require that all of the values above, except for the sum and // difference, are already known to be non-negative. // Plan A is robust in the face of overflow, if offset and copyLength // are both hugely positive. // // Plan B is less direct and intuitive, but it does not overflow at // all, since the difference of two non-negatives is always // representable. Whenever Java methods must perform the equivalent // check they generally use Plan B instead of Plan A. // For the moment we use Plan A. inline Node* LibraryCallKit::generate_limit_guard(Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) { if (stopped()) return NULL; // already stopped bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length)) return NULL; // common case of whole-array copy Node* last = subseq_length; if (!zero_offset) // last += offset last = _gvn.transform( new (C, 3) AddINode(last, offset)); Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) ); Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) ); Node* is_over = generate_guard(bol_lt, region, PROB_MIN); return is_over; } //--------------------------generate_current_thread-------------------- Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { ciKlass* thread_klass = env()->Thread_klass(); const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode()); Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT); tls_output = thread; return threadObj; } //------------------------------inline_string_compareTo------------------------ bool LibraryCallKit::inline_string_compareTo() { if (!Matcher::has_match_rule(Op_StrComp)) return false; const int value_offset = java_lang_String::value_offset_in_bytes(); const int count_offset = java_lang_String::count_offset_in_bytes(); const int offset_offset = java_lang_String::offset_offset_in_bytes(); _sp += 2; Node *argument = pop(); // pop non-receiver first: it was pushed second Node *receiver = pop(); // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when string compare is inlined into a method // which handles NullPointerExceptions. _sp += 2; receiver = do_null_check(receiver, T_OBJECT); argument = do_null_check(argument, T_OBJECT); _sp -= 2; if (stopped()) { return true; } ciInstanceKlass* klass = env()->String_klass(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0); Node* compare = _gvn.transform(new (C, 7) StrCompNode( control(), memory(TypeAryPtr::CHARS), memory(string_type->add_offset(value_offset)), memory(string_type->add_offset(count_offset)), memory(string_type->add_offset(offset_offset)), receiver, argument)); push(compare); return true; } //------------------------------inline_string_equals------------------------ bool LibraryCallKit::inline_string_equals() { if (!Matcher::has_match_rule(Op_StrEquals)) return false; const int value_offset = java_lang_String::value_offset_in_bytes(); const int count_offset = java_lang_String::count_offset_in_bytes(); const int offset_offset = java_lang_String::offset_offset_in_bytes(); _sp += 2; Node* argument = pop(); // pop non-receiver first: it was pushed second Node* receiver = pop(); // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when string compare is inlined into a method // which handles NullPointerExceptions. _sp += 2; receiver = do_null_check(receiver, T_OBJECT); //should not do null check for argument for String.equals(), because spec //allows to specify NULL as argument. _sp -= 2; if (stopped()) { return true; } // get String klass for instanceOf ciInstanceKlass* klass = env()->String_klass(); // two paths (plus control) merge RegionNode* region = new (C, 3) RegionNode(3); Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL); Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass))); Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1))); Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq)); IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); Node* if_true = _gvn.transform(new (C, 1) IfTrueNode(iff)); set_control(if_true); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0); // instanceOf == true Node* equals = _gvn.transform(new (C, 7) StrEqualsNode( control(), memory(TypeAryPtr::CHARS), memory(string_type->add_offset(value_offset)), memory(string_type->add_offset(count_offset)), memory(string_type->add_offset(offset_offset)), receiver, argument)); phi->init_req(1, _gvn.transform(equals)); region->init_req(1, if_true); //instanceOf == false, fallthrough Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff)); set_control(if_false); phi->init_req(2, _gvn.transform(intcon(0))); region->init_req(2, if_false); // post merge set_control(_gvn.transform(region)); record_for_igvn(region); push(_gvn.transform(phi)); return true; } //------------------------------inline_array_equals---------------------------- bool LibraryCallKit::inline_array_equals() { if (!Matcher::has_match_rule(Op_AryEq)) return false; _sp += 2; Node *argument2 = pop(); Node *argument1 = pop(); Node* equals = _gvn.transform(new (C, 3) AryEqNode(control(), argument1, argument2) ); push(equals); return true; } // Java version of String.indexOf(constant string) // class StringDecl { // StringDecl(char[] ca) { // offset = 0; // count = ca.length; // value = ca; // } // int offset; // int count; // char[] value; // } // // static int string_indexOf_J(StringDecl string_object, char[] target_object, // int targetOffset, int cache_i, int md2) { // int cache = cache_i; // int sourceOffset = string_object.offset; // int sourceCount = string_object.count; // int targetCount = target_object.length; // // int targetCountLess1 = targetCount - 1; // int sourceEnd = sourceOffset + sourceCount - targetCountLess1; // // char[] source = string_object.value; // char[] target = target_object; // int lastChar = target[targetCountLess1]; // // outer_loop: // for (int i = sourceOffset; i < sourceEnd; ) { // int src = source[i + targetCountLess1]; // if (src == lastChar) { // // With random strings and a 4-character alphabet, // // reverse matching at this point sets up 0.8% fewer // // frames, but (paradoxically) makes 0.3% more probes. // // Since those probes are nearer the lastChar probe, // // there is may be a net D$ win with reverse matching. // // But, reversing loop inhibits unroll of inner loop // // for unknown reason. So, does running outer loop from // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount) // for (int j = 0; j < targetCountLess1; j++) { // if (target[targetOffset + j] != source[i+j]) { // if ((cache & (1 << source[i+j])) == 0) { // if (md2 < j+1) { // i += j+1; // continue outer_loop; // } // } // i += md2; // continue outer_loop; // } // } // return i - sourceOffset; // } // if ((cache & (1 << src)) == 0) { // i += targetCountLess1; // } // using "i += targetCount;" and an "else i++;" causes a jump to jump. // i++; // } // return -1; // } //------------------------------string_indexOf------------------------ Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i, jint cache_i, jint md2_i) { Node* no_ctrl = NULL; float likely = PROB_LIKELY(0.9); float unlikely = PROB_UNLIKELY(0.9); const int value_offset = java_lang_String::value_offset_in_bytes(); const int count_offset = java_lang_String::count_offset_in_bytes(); const int offset_offset = java_lang_String::offset_offset_in_bytes(); ciInstanceKlass* klass = env()->String_klass(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0); const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0); Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset); Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset)); Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset); Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset)); Node* sourcea = basic_plus_adr(string_object, string_object, value_offset); Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset)); Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) ); jint target_length = target_array->length(); const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin)); const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot); IdealKit kit(gvn(), control(), merged_memory()); #define __ kit. Node* zero = __ ConI(0); Node* one = __ ConI(1); Node* cache = __ ConI(cache_i); Node* md2 = __ ConI(md2_i); Node* lastChar = __ ConI(target_array->char_at(target_length - 1)); Node* targetCount = __ ConI(target_length); Node* targetCountLess1 = __ ConI(target_length - 1); Node* targetOffset = __ ConI(targetOffset_i); Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1); IdealVariable rtn(kit), i(kit), j(kit); __ declares_done(); Node* outer_loop = __ make_label(2 /* goto */); Node* return_ = __ make_label(1); __ set(rtn,__ ConI(-1)); __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); { Node* i2 = __ AddI(__ value(i), targetCountLess1); // pin to prohibit loading of "next iteration" value which may SEGV (rare) Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS); __ if_then(src, BoolTest::eq, lastChar, unlikely); { __ loop(j, zero, BoolTest::lt, targetCountLess1); { Node* tpj = __ AddI(targetOffset, __ value(j)); Node* targ = load_array_element(no_ctrl, target, tpj, target_type); Node* ipj = __ AddI(__ value(i), __ value(j)); Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS); __ if_then(targ, BoolTest::ne, src2); { __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); { __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); { __ increment(i, __ AddI(__ value(j), one)); __ goto_(outer_loop); } __ end_if(); __ dead(j); }__ end_if(); __ dead(j); __ increment(i, md2); __ goto_(outer_loop); }__ end_if(); __ increment(j, one); }__ end_loop(); __ dead(j); __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i); __ goto_(return_); }__ end_if(); __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); { __ increment(i, targetCountLess1); }__ end_if(); __ increment(i, one); __ bind(outer_loop); }__ end_loop(); __ dead(i); __ bind(return_); __ drain_delay_transform(); set_control(__ ctrl()); Node* result = __ value(rtn); #undef __ C->set_has_loops(true); return result; } //------------------------------inline_string_indexOf------------------------ bool LibraryCallKit::inline_string_indexOf() { const int value_offset = java_lang_String::value_offset_in_bytes(); const int count_offset = java_lang_String::count_offset_in_bytes(); const int offset_offset = java_lang_String::offset_offset_in_bytes(); _sp += 2; Node *argument = pop(); // pop non-receiver first: it was pushed second Node *receiver = pop(); Node* result; if (Matcher::has_match_rule(Op_StrIndexOf) && UseSSE42Intrinsics) { // Generate SSE4.2 version of indexOf // We currently only have match rules that use SSE4.2 // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when string compare is inlined into a method // which handles NullPointerExceptions. _sp += 2; receiver = do_null_check(receiver, T_OBJECT); argument = do_null_check(argument, T_OBJECT); _sp -= 2; if (stopped()) { return true; } ciInstanceKlass* klass = env()->String_klass(); const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0); result = _gvn.transform(new (C, 7) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS), memory(string_type->add_offset(value_offset)), memory(string_type->add_offset(count_offset)), memory(string_type->add_offset(offset_offset)), receiver, argument)); } else { //Use LibraryCallKit::string_indexOf // don't intrinsify is argument isn't a constant string. if (!argument->is_Con()) { return false; } const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr(); if (str_type == NULL) { return false; } ciInstanceKlass* klass = env()->String_klass(); ciObject* str_const = str_type->const_oop(); if (str_const == NULL || str_const->klass() != klass) { return false; } ciInstance* str = str_const->as_instance(); assert(str != NULL, "must be instance"); ciObject* v = str->field_value_by_offset(value_offset).as_object(); int o = str->field_value_by_offset(offset_offset).as_int(); int c = str->field_value_by_offset(count_offset).as_int(); ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array // constant strings have no offset and count == length which // simplifies the resulting code somewhat so lets optimize for that. if (o != 0 || c != pat->length()) { return false; } // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when string compare is inlined into a method // which handles NullPointerExceptions. _sp += 2; receiver = do_null_check(receiver, T_OBJECT); // No null check on the argument is needed since it's a constant String oop. _sp -= 2; if (stopped()) { return true; } // The null string as a pattern always returns 0 (match at beginning of string) if (c == 0) { push(intcon(0)); return true; } // Generate default indexOf jchar lastChar = pat->char_at(o + (c - 1)); int cache = 0; int i; for (i = 0; i < c - 1; i++) { assert(i < pat->length(), "out of range"); cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1))); } int md2 = c; for (i = 0; i < c - 1; i++) { assert(i < pat->length(), "out of range"); if (pat->char_at(o + i) == lastChar) { md2 = (c - 1) - i; } } result = string_indexOf(receiver, pat, o, cache, md2); } push(result); return true; } //--------------------------pop_math_arg-------------------------------- // Pop a double argument to a math function from the stack // rounding it if necessary. Node * LibraryCallKit::pop_math_arg() { Node *arg = pop_pair(); if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 ) arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) ); return arg; } //------------------------------inline_trig---------------------------------- // Inline sin/cos/tan instructions, if possible. If rounding is required, do // argument reduction which will turn into a fast/slow diamond. bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) { _sp += arg_size(); // restore stack pointer Node* arg = pop_math_arg(); Node* trig = NULL; switch (id) { case vmIntrinsics::_dsin: trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg)); break; case vmIntrinsics::_dcos: trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg)); break; case vmIntrinsics::_dtan: trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg)); break; default: assert(false, "bad intrinsic was passed in"); return false; } // Rounding required? Check for argument reduction! if( Matcher::strict_fp_requires_explicit_rounding ) { static const double pi_4 = 0.7853981633974483; static const double neg_pi_4 = -0.7853981633974483; // pi/2 in 80-bit extended precision // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00}; // -pi/2 in 80-bit extended precision // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00}; // Cutoff value for using this argument reduction technique //static const double pi_2_minus_epsilon = 1.564660403643354; //static const double neg_pi_2_plus_epsilon = -1.564660403643354; // Pseudocode for sin: // if (x <= Math.PI / 4.0) { // if (x >= -Math.PI / 4.0) return fsin(x); // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0); // } else { // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0); // } // return StrictMath.sin(x); // Pseudocode for cos: // if (x <= Math.PI / 4.0) { // if (x >= -Math.PI / 4.0) return fcos(x); // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0); // } else { // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0); // } // return StrictMath.cos(x); // Actually, sticking in an 80-bit Intel value into C2 will be tough; it // requires a special machine instruction to load it. Instead we'll try // the 'easy' case. If we really need the extra range +/- PI/2 we'll // probably do the math inside the SIN encoding. // Make the merge point RegionNode *r = new (C, 3) RegionNode(3); Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE); // Flatten arg so we need only 1 test Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg)); // Node for PI/4 constant Node *pi4 = makecon(TypeD::make(pi_4)); // Check PI/4 : abs(arg) Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs)); // Check: If PI/4 < abs(arg) then go slow Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) ); // Branch either way IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); set_control(opt_iff(r,iff)); // Set fast path result phi->init_req(2,trig); // Slow path - non-blocking leaf call Node* call = NULL; switch (id) { case vmIntrinsics::_dsin: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "Sin", NULL, arg, top()); break; case vmIntrinsics::_dcos: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "Cos", NULL, arg, top()); break; case vmIntrinsics::_dtan: call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "Tan", NULL, arg, top()); break; } assert(control()->in(0) == call, ""); Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms)); r->init_req(1,control()); phi->init_req(1,slow_result); // Post-merge set_control(_gvn.transform(r)); record_for_igvn(r); trig = _gvn.transform(phi); C->set_has_split_ifs(true); // Has chance for split-if optimization } // Push result back on JVM stack push_pair(trig); return true; } //------------------------------inline_sqrt------------------------------------- // Inline square root instruction, if possible. bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_dsqrt, "Not square root"); _sp += arg_size(); // restore stack pointer push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg()))); return true; } //------------------------------inline_abs------------------------------------- // Inline absolute value instruction, if possible. bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_dabs, "Not absolute value"); _sp += arg_size(); // restore stack pointer push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg()))); return true; } //------------------------------inline_exp------------------------------------- // Inline exp instructions, if possible. The Intel hardware only misses // really odd corner cases (+/- Infinity). Just uncommon-trap them. bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_dexp, "Not exp"); // If this inlining ever returned NaN in the past, we do not intrinsify it // every again. NaN results requires StrictMath.exp handling. if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; // Do not intrinsify on older platforms which lack cmove. if (ConditionalMoveLimit == 0) return false; _sp += arg_size(); // restore stack pointer Node *x = pop_math_arg(); Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x)); //------------------- //result=(result.isNaN())? StrictMath::exp():result; // Check: If isNaN() by checking result!=result? then go to Strict Math Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result)); // Build the boolean node Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) ); { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT); // End the current control-flow path push_pair(x); // Math.exp intrinsic returned a NaN, which requires StrictMath.exp // to handle. Recompile without intrinsifying Math.exp uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_make_not_entrant); } C->set_has_split_ifs(true); // Has chance for split-if optimization push_pair(result); return true; } //------------------------------inline_pow------------------------------------- // Inline power instructions, if possible. bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_dpow, "Not pow"); // If this inlining ever returned NaN in the past, we do not intrinsify it // every again. NaN results requires StrictMath.pow handling. if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; // Do not intrinsify on older platforms which lack cmove. if (ConditionalMoveLimit == 0) return false; // Pseudocode for pow // if (x <= 0.0) { // if ((double)((int)y)==y) { // if y is int // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y) // } else { // result = NaN; // } // } else { // result = DPow(x,y); // } // if (result != result)? { // uncommon_trap(); // } // return result; _sp += arg_size(); // restore stack pointer Node* y = pop_math_arg(); Node* x = pop_math_arg(); Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) ); // Short form: if not top-level (i.e., Math.pow but inlining Math.pow // inside of something) then skip the fancy tests and just check for // NaN result. Node *result = NULL; if( jvms()->depth() >= 1 ) { result = fast_result; } else { // Set the merge point for If node with condition of (x <= 0.0) // There are four possible paths to region node and phi node RegionNode *r = new (C, 4) RegionNode(4); Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE); // Build the first if node: if (x <= 0.0) // Node for 0 constant Node *zeronode = makecon(TypeD::ZERO); // Check x:0 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode)); // Check: If (x<=0) then go complex path Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) ); // Branch either way IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN); Node *opt_test = _gvn.transform(if1); //assert( opt_test->is_If(), "Expect an IfNode"); IfNode *opt_if1 = (IfNode*)opt_test; // Fast path taken; set region slot 3 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) ); r->init_req(3,fast_taken); // Capture fast-control // Fast path not-taken, i.e. slow path Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) ); // Set fast path result Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) ); phi->init_req(3, fast_result); // Complex path // Build the second if node (if y is int) // Node for (int)y Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y)); // Node for (double)((int) y) Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty)); // Check (double)((int) y) : y Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y)); // Check if (y isn't int) then go to slow path Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) ); // Branch either way IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN); Node *slow_path = opt_iff(r,if2); // Set region path 2 // Calculate DPow(abs(x), y)*(1 & (int)y) // Node for constant 1 Node *conone = intcon(1); // 1& (int)y Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) ); // zero node Node *conzero = intcon(0); // Check (1&(int)y)==0? Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero)); // Check if (1&(int)y)!=0?, if so the result is negative Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) ); // abs(x) Node *absx=_gvn.transform( new (C, 2) AbsDNode(x)); // abs(x)^y Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) ); // -abs(x)^y Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy)); // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y) Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE)); // Set complex path fast result phi->init_req(2, signresult); static const jlong nan_bits = CONST64(0x7ff8000000000000); Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN r->init_req(1,slow_path); phi->init_req(1,slow_result); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); result=_gvn.transform(phi); } //------------------- //result=(result.isNaN())? uncommon_trap():result; // Check: If isNaN() by checking result!=result? then go to Strict Math Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result)); // Build the boolean node Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) ); { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT); // End the current control-flow path push_pair(x); push_pair(y); // Math.pow intrinsic returned a NaN, which requires StrictMath.pow // to handle. Recompile without intrinsifying Math.pow. uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_make_not_entrant); } C->set_has_split_ifs(true); // Has chance for split-if optimization push_pair(result); return true; } //------------------------------inline_trans------------------------------------- // Inline transcendental instructions, if possible. The Intel hardware gets // these right, no funny corner cases missed. bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) { _sp += arg_size(); // restore stack pointer Node* arg = pop_math_arg(); Node* trans = NULL; switch (id) { case vmIntrinsics::_dlog: trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg)); break; case vmIntrinsics::_dlog10: trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg)); break; default: assert(false, "bad intrinsic was passed in"); return false; } // Push result back on JVM stack push_pair(trans); return true; } //------------------------------runtime_math----------------------------- bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { Node* a = NULL; Node* b = NULL; assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), "must be (DD)D or (D)D type"); // Inputs _sp += arg_size(); // restore stack pointer if (call_type == OptoRuntime::Math_DD_D_Type()) { b = pop_math_arg(); } a = pop_math_arg(); const TypePtr* no_memory_effects = NULL; Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, no_memory_effects, a, top(), b, b ? top() : NULL); Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0)); #ifdef ASSERT Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1)); assert(value_top == top(), "second value must be top"); #endif push_pair(value); return true; } //------------------------------inline_math_native----------------------------- bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { switch (id) { // These intrinsics are not properly supported on all hardware case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) : runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) : runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) : runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); // These intrinsics are supported on all hardware case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false; case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false; // These intrinsics don't work on X86. The ad implementation doesn't // handle NaN's properly. Instead of returning infinity, the ad // implementation returns a NaN on overflow. See bug: 6304089 // Once the ad implementations are fixed, change the code below // to match the intrinsics above case vmIntrinsics::_dexp: return runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); case vmIntrinsics::_dpow: return runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); // These intrinsics are not yet correctly implemented case vmIntrinsics::_datan2: return false; default: ShouldNotReachHere(); return false; } } static bool is_simple_name(Node* n) { return (n->req() == 1 // constant || (n->is_Type() && n->as_Type()->type()->singleton()) || n->is_Proj() // parameter or return value || n->is_Phi() // local of some sort ); } //----------------------------inline_min_max----------------------------------- bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { push(generate_min_max(id, argument(0), argument(1))); return true; } Node* LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { // These are the candidate return value: Node* xvalue = x0; Node* yvalue = y0; if (xvalue == yvalue) { return xvalue; } bool want_max = (id == vmIntrinsics::_max); const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); if (txvalue == NULL || tyvalue == NULL) return top(); // This is not really necessary, but it is consistent with a // hypothetical MaxINode::Value method: int widen = MAX2(txvalue->_widen, tyvalue->_widen); // %%% This folding logic should (ideally) be in a different place. // Some should be inside IfNode, and there to be a more reliable // transformation of ?: style patterns into cmoves. We also want // more powerful optimizations around cmove and min/max. // Try to find a dominating comparison of these guys. // It can simplify the index computation for Arrays.copyOf // and similar uses of System.arraycopy. // First, compute the normalized version of CmpI(x, y). int cmp_op = Op_CmpI; Node* xkey = xvalue; Node* ykey = yvalue; Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) ); if (ideal_cmpxy->is_Cmp()) { // E.g., if we have CmpI(length - offset, count), // it might idealize to CmpI(length, count + offset) cmp_op = ideal_cmpxy->Opcode(); xkey = ideal_cmpxy->in(1); ykey = ideal_cmpxy->in(2); } // Start by locating any relevant comparisons. Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; Node* cmpxy = NULL; Node* cmpyx = NULL; for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { Node* cmp = start_from->fast_out(k); if (cmp->outcnt() > 0 && // must have prior uses cmp->in(0) == NULL && // must be context-independent cmp->Opcode() == cmp_op) { // right kind of compare if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; } } const int NCMPS = 2; Node* cmps[NCMPS] = { cmpxy, cmpyx }; int cmpn; for (cmpn = 0; cmpn < NCMPS; cmpn++) { if (cmps[cmpn] != NULL) break; // find a result } if (cmpn < NCMPS) { // Look for a dominating test that tells us the min and max. int depth = 0; // Limit search depth for speed Node* dom = control(); for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { if (++depth >= 100) break; Node* ifproj = dom; if (!ifproj->is_Proj()) continue; Node* iff = ifproj->in(0); if (!iff->is_If()) continue; Node* bol = iff->in(1); if (!bol->is_Bool()) continue; Node* cmp = bol->in(1); if (cmp == NULL) continue; for (cmpn = 0; cmpn < NCMPS; cmpn++) if (cmps[cmpn] == cmp) break; if (cmpn == NCMPS) continue; BoolTest::mask btest = bol->as_Bool()->_test._test; if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); // At this point, we know that 'x btest y' is true. switch (btest) { case BoolTest::eq: // They are proven equal, so we can collapse the min/max. // Either value is the answer. Choose the simpler. if (is_simple_name(yvalue) && !is_simple_name(xvalue)) return yvalue; return xvalue; case BoolTest::lt: // x < y case BoolTest::le: // x <= y return (want_max ? yvalue : xvalue); case BoolTest::gt: // x > y case BoolTest::ge: // x >= y return (want_max ? xvalue : yvalue); } } } // We failed to find a dominating test. // Let's pick a test that might GVN with prior tests. Node* best_bol = NULL; BoolTest::mask best_btest = BoolTest::illegal; for (cmpn = 0; cmpn < NCMPS; cmpn++) { Node* cmp = cmps[cmpn]; if (cmp == NULL) continue; for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { Node* bol = cmp->fast_out(j); if (!bol->is_Bool()) continue; BoolTest::mask btest = bol->as_Bool()->_test._test; if (btest == BoolTest::eq || btest == BoolTest::ne) continue; if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { best_bol = bol->as_Bool(); best_btest = btest; } } } Node* answer_if_true = NULL; Node* answer_if_false = NULL; switch (best_btest) { default: if (cmpxy == NULL) cmpxy = ideal_cmpxy; best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) ); // and fall through: case BoolTest::lt: // x < y case BoolTest::le: // x <= y answer_if_true = (want_max ? yvalue : xvalue); answer_if_false = (want_max ? xvalue : yvalue); break; case BoolTest::gt: // x > y case BoolTest::ge: // x >= y answer_if_true = (want_max ? xvalue : yvalue); answer_if_false = (want_max ? yvalue : xvalue); break; } jint hi, lo; if (want_max) { // We can sharpen the minimum. hi = MAX2(txvalue->_hi, tyvalue->_hi); lo = MAX2(txvalue->_lo, tyvalue->_lo); } else { // We can sharpen the maximum. hi = MIN2(txvalue->_hi, tyvalue->_hi); lo = MIN2(txvalue->_lo, tyvalue->_lo); } // Use a flow-free graph structure, to avoid creating excess control edges // which could hinder other optimizations. // Since Math.min/max is often used with arraycopy, we want // tightly_coupled_allocation to be able to see beyond min/max expressions. Node* cmov = CMoveNode::make(C, NULL, best_bol, answer_if_false, answer_if_true, TypeInt::make(lo, hi, widen)); return _gvn.transform(cmov); /* // This is not as desirable as it may seem, since Min and Max // nodes do not have a full set of optimizations. // And they would interfere, anyway, with 'if' optimizations // and with CMoveI canonical forms. switch (id) { case vmIntrinsics::_min: result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; case vmIntrinsics::_max: result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; default: ShouldNotReachHere(); } */ } inline int LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) { const TypePtr* base_type = TypePtr::NULL_PTR; if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); if (base_type == NULL) { // Unknown type. return Type::AnyPtr; } else if (base_type == TypePtr::NULL_PTR) { // Since this is a NULL+long form, we have to switch to a rawptr. base = _gvn.transform( new (C, 2) CastX2PNode(offset) ); offset = MakeConX(0); return Type::RawPtr; } else if (base_type->base() == Type::RawPtr) { return Type::RawPtr; } else if (base_type->isa_oopptr()) { // Base is never null => always a heap address. if (base_type->ptr() == TypePtr::NotNull) { return Type::OopPtr; } // Offset is small => always a heap address. const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); if (offset_type != NULL && base_type->offset() == 0 && // (should always be?) offset_type->_lo >= 0 && !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { return Type::OopPtr; } // Otherwise, it might either be oop+off or NULL+addr. return Type::AnyPtr; } else { // No information: return Type::AnyPtr; } } inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) { int kind = classify_unsafe_addr(base, offset); if (kind == Type::RawPtr) { return basic_plus_adr(top(), base, offset); } else { return basic_plus_adr(base, offset); } } //-------------------inline_numberOfLeadingZeros_int/long----------------------- // inline int Integer.numberOfLeadingZeros(int) // inline int Long.numberOfLeadingZeros(long) bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros"); if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false; if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false; _sp += arg_size(); // restore stack pointer switch (id) { case vmIntrinsics::_numberOfLeadingZeros_i: push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop()))); break; case vmIntrinsics::_numberOfLeadingZeros_l: push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair()))); break; default: ShouldNotReachHere(); } return true; } //-------------------inline_numberOfTrailingZeros_int/long---------------------- // inline int Integer.numberOfTrailingZeros(int) // inline int Long.numberOfTrailingZeros(long) bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros"); if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false; if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false; _sp += arg_size(); // restore stack pointer switch (id) { case vmIntrinsics::_numberOfTrailingZeros_i: push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop()))); break; case vmIntrinsics::_numberOfTrailingZeros_l: push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair()))); break; default: ShouldNotReachHere(); } return true; } //----------------------------inline_bitCount_int/long----------------------- // inline int Integer.bitCount(int) // inline int Long.bitCount(long) bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount"); if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false; if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false; _sp += arg_size(); // restore stack pointer switch (id) { case vmIntrinsics::_bitCount_i: push(_gvn.transform(new (C, 2) PopCountINode(pop()))); break; case vmIntrinsics::_bitCount_l: push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair()))); break; default: ShouldNotReachHere(); } return true; } //----------------------------inline_reverseBytes_int/long------------------- // inline Integer.reverseBytes(int) // inline Long.reverseBytes(long) bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) { assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes"); if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false; if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false; _sp += arg_size(); // restore stack pointer switch (id) { case vmIntrinsics::_reverseBytes_i: push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop()))); break; case vmIntrinsics::_reverseBytes_l: push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair()))); break; default: ; } return true; } //----------------------------inline_unsafe_access---------------------------- const static BasicType T_ADDRESS_HOLDER = T_LONG; // Interpret Unsafe.fieldOffset cookies correctly: extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset); bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) { if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = signature(); #ifdef ASSERT if (!is_store) { // Object getObject(Object base, int/long offset), etc. BasicType rtype = sig->return_type()->basic_type(); if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name()) rtype = T_ADDRESS; // it is really a C void* assert(rtype == type, "getter must return the expected value"); if (!is_native_ptr) { assert(sig->count() == 2, "oop getter has 2 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); } else { assert(sig->count() == 1, "native getter has 1 argument"); assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long"); } } else { // void putObject(Object base, int/long offset, Object x), etc. assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); if (!is_native_ptr) { assert(sig->count() == 3, "oop putter has 3 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); } else { assert(sig->count() == 2, "native putter has 2 arguments"); assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long"); } BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name()) vtype = T_ADDRESS; // it is really a C void* assert(vtype == type, "putter must accept the expected value"); } #endif // ASSERT } #endif //PRODUCT C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ]; // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0); debug_only(int saved_sp = _sp); _sp += nargs; Node* val; debug_only(val = (Node*)(uintptr_t)-1); if (is_store) { // Get the value being stored. (Pop it first; it was pushed last.) switch (type) { case T_DOUBLE: case T_LONG: case T_ADDRESS: val = pop_pair(); break; default: val = pop(); } } // Build address expression. See the code in inline_unsafe_prefetch. Node *adr; Node *heap_base_oop = top(); if (!is_native_ptr) { // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset Node* offset = pop_pair(); // The base is either a Java object or a value produced by Unsafe.staticFieldBase Node* base = pop(); // We currently rely on the cookies produced by Unsafe.xxxFieldOffset // to be plain byte offsets, which are also the same as those accepted // by oopDesc::field_base. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half! offset = ConvL2X(offset); adr = make_unsafe_address(base, offset); heap_base_oop = base; } else { Node* ptr = pop_pair(); // Adjust Java long to machine word: ptr = ConvL2X(ptr); adr = make_unsafe_address(NULL, ptr); } // Pop receiver last: it was pushed first. Node *receiver = pop(); assert(saved_sp == _sp, "must have correct argument count"); const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); // First guess at the value type. const Type *value_type = Type::get_const_basic_type(type); // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM, // there was not enough information to nail it down. Compile::AliasType* alias_type = C->alias_type(adr_type); assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); // We will need memory barriers unless we can determine a unique // alias category for this reference. (Note: If for some reason // the barriers get omitted and the unsafe reference begins to "pollute" // the alias analysis of the rest of the graph, either Compile::can_alias // or Compile::must_alias will throw a diagnostic assert.) bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM); if (!is_store && type == T_OBJECT) { // Attempt to infer a sharper value type from the offset and base type. ciKlass* sharpened_klass = NULL; // See if it is an instance field, with an object type. if (alias_type->field() != NULL) { assert(!is_native_ptr, "native pointer op cannot use a java address"); if (alias_type->field()->type()->is_klass()) { sharpened_klass = alias_type->field()->type()->as_klass(); } } // See if it is a narrow oop array. if (adr_type->isa_aryptr()) { if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) { const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); if (elem_type != NULL) { sharpened_klass = elem_type->klass(); } } } if (sharpened_klass != NULL) { const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); // Sharpen the value type. value_type = tjp; #ifndef PRODUCT if (PrintIntrinsics || PrintInlining || PrintOptoInlining) { tty->print(" from base type: "); adr_type->dump(); tty->print(" sharpened value: "); value_type->dump(); } #endif } } // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when the primitive is inlined into a method // which handles NullPointerExceptions. _sp += nargs; do_null_check(receiver, T_OBJECT); _sp -= nargs; if (stopped()) { return true; } // Heap pointers get a null-check from the interpreter, // as a courtesy. However, this is not guaranteed by Unsafe, // and it is not possible to fully distinguish unintended nulls // from intended ones in this API. if (is_volatile) { // We need to emit leading and trailing CPU membars (see below) in // addition to memory membars when is_volatile. This is a little // too strong, but avoids the need to insert per-alias-type // volatile membars (for stores; compare Parse::do_put_xxx), which // we cannot do effectively here because we probably only have a // rough approximation of type. need_mem_bar = true; // For Stores, place a memory ordering barrier now. if (is_store) insert_mem_bar(Op_MemBarRelease); } // Memory barrier to prevent normal and 'unsafe' accesses from // bypassing each other. Happens after null checks, so the // exception paths do not take memory state from the memory barrier, // so there's no problems making a strong assert about mixing users // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl. if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder); if (!is_store) { Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile); // load value and push onto stack switch (type) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: case T_FLOAT: case T_OBJECT: push( p ); break; case T_ADDRESS: // Cast to an int type. p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) ); p = ConvX2L(p); push_pair(p); break; case T_DOUBLE: case T_LONG: push_pair( p ); break; default: ShouldNotReachHere(); } } else { // place effect of store into memory switch (type) { case T_DOUBLE: val = dstore_rounding(val); break; case T_ADDRESS: // Repackage the long as a pointer. val = ConvL2X(val); val = _gvn.transform( new (C, 2) CastX2PNode(val) ); break; } if (type != T_OBJECT ) { (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile); } else { // Possibly an oop being stored to Java heap or native memory if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) { // oop to Java heap. (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type); } else { // We can't tell at compile time if we are storing in the Java heap or outside // of it. So we need to emit code to conditionally do the proper type of // store. IdealKit kit(gvn(), control(), merged_memory()); kit.declares_done(); // QQQ who knows what probability is here?? kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); { (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type); } kit.else_(); { (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile); } kit.end_if(); } } } if (is_volatile) { if (!is_store) insert_mem_bar(Op_MemBarAcquire); else insert_mem_bar(Op_MemBarVolatile); } if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder); return true; } //----------------------------inline_unsafe_prefetch---------------------------- bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) { #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = signature(); #ifdef ASSERT // Object getObject(Object base, int/long offset), etc. BasicType rtype = sig->return_type()->basic_type(); if (!is_native_ptr) { assert(sig->count() == 2, "oop prefetch has 2 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct"); } else { assert(sig->count() == 1, "native prefetch has 1 argument"); assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long"); } #endif // ASSERT } #endif // !PRODUCT C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3); debug_only(int saved_sp = _sp); _sp += nargs; // Build address expression. See the code in inline_unsafe_access. Node *adr; if (!is_native_ptr) { // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset Node* offset = pop_pair(); // The base is either a Java object or a value produced by Unsafe.staticFieldBase Node* base = pop(); // We currently rely on the cookies produced by Unsafe.xxxFieldOffset // to be plain byte offsets, which are also the same as those accepted // by oopDesc::field_base. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half! offset = ConvL2X(offset); adr = make_unsafe_address(base, offset); } else { Node* ptr = pop_pair(); // Adjust Java long to machine word: ptr = ConvL2X(ptr); adr = make_unsafe_address(NULL, ptr); } if (is_static) { assert(saved_sp == _sp, "must have correct argument count"); } else { // Pop receiver last: it was pushed first. Node *receiver = pop(); assert(saved_sp == _sp, "must have correct argument count"); // Null check on self without removing any arguments. The argument // null check technically happens in the wrong place, which can lead to // invalid stack traces when the primitive is inlined into a method // which handles NullPointerExceptions. _sp += nargs; do_null_check(receiver, T_OBJECT); _sp -= nargs; if (stopped()) { return true; } } // Generate the read or write prefetch Node *prefetch; if (is_store) { prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr); } else { prefetch = new (C, 3) PrefetchReadNode(i_o(), adr); } prefetch->init_req(0, control()); set_i_o(_gvn.transform(prefetch)); return true; } //----------------------------inline_unsafe_CAS---------------------------- bool LibraryCallKit::inline_unsafe_CAS(BasicType type) { // This basic scheme here is the same as inline_unsafe_access, but // differs in enough details that combining them would make the code // overly confusing. (This is a true fact! I originally combined // them, but even I was confused by it!) As much code/comments as // possible are retained from inline_unsafe_access though to make // the correspondences clearer. - dl if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = signature(); #ifdef ASSERT BasicType rtype = sig->return_type()->basic_type(); assert(rtype == T_BOOLEAN, "CAS must return boolean"); assert(sig->count() == 4, "CAS has 4 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); #endif // ASSERT } #endif //PRODUCT // number of stack slots per value argument (1 or 2) int type_words = type2size[type]; // Cannot inline wide CAS on machines that don't support it natively if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8()) return false; C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue; int nargs = 1 + 1 + 2 + type_words + type_words; // pop arguments: newval, oldval, offset, base, and receiver debug_only(int saved_sp = _sp); _sp += nargs; Node* newval = (type_words == 1) ? pop() : pop_pair(); Node* oldval = (type_words == 1) ? pop() : pop_pair(); Node *offset = pop_pair(); Node *base = pop(); Node *receiver = pop(); assert(saved_sp == _sp, "must have correct argument count"); // Null check receiver. _sp += nargs; do_null_check(receiver, T_OBJECT); _sp -= nargs; if (stopped()) { return true; } // Build field offset expression. // We currently rely on the cookies produced by Unsafe.xxxFieldOffset // to be plain byte offsets, which are also the same as those accepted // by oopDesc::field_base. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half of long offsets offset = ConvL2X(offset); Node* adr = make_unsafe_address(base, offset); const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); // (Unlike inline_unsafe_access, there seems no point in trying // to refine types. Just use the coarse types here. const Type *value_type = Type::get_const_basic_type(type); Compile::AliasType* alias_type = C->alias_type(adr_type); assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); int alias_idx = C->get_alias_index(adr_type); // Memory-model-wise, a CAS acts like a little synchronized block, // so needs barriers on each side. These don't translate into // actual barriers on most machines, but we still need rest of // compiler to respect ordering. insert_mem_bar(Op_MemBarRelease); insert_mem_bar(Op_MemBarCPUOrder); // 4984716: MemBars must be inserted before this // memory node in order to avoid a false // dependency which will confuse the scheduler. Node *mem = memory(alias_idx); // For now, we handle only those cases that actually exist: ints, // longs, and Object. Adding others should be straightforward. Node* cas; switch(type) { case T_INT: cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval)); break; case T_LONG: cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval)); break; case T_OBJECT: // reference stores need a store barrier. // (They don't if CAS fails, but it isn't worth checking.) pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT); #ifdef _LP64 if (adr->bottom_type()->is_ptr_to_narrowoop()) { Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop())); Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop())); cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc)); } else #endif { cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval)); } post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true); break; default: ShouldNotReachHere(); break; } // SCMemProjNodes represent the memory state of CAS. Their main // role is to prevent CAS nodes from being optimized away when their // results aren't used. Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas)); set_memory(proj, alias_idx); // Add the trailing membar surrounding the access insert_mem_bar(Op_MemBarCPUOrder); insert_mem_bar(Op_MemBarAcquire); push(cas); return true; } bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) { // This is another variant of inline_unsafe_access, differing in // that it always issues store-store ("release") barrier and ensures // store-atomicity (which only matters for "long"). if (callee()->is_static()) return false; // caller must have the capability! #ifndef PRODUCT { ResourceMark rm; // Check the signatures. ciSignature* sig = signature(); #ifdef ASSERT BasicType rtype = sig->return_type()->basic_type(); assert(rtype == T_VOID, "must return void"); assert(sig->count() == 3, "has 3 arguments"); assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object"); assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long"); #endif // ASSERT } #endif //PRODUCT // number of stack slots per value argument (1 or 2) int type_words = type2size[type]; C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". // Argument words: "this" plus oop plus offset plus value; int nargs = 1 + 1 + 2 + type_words; // pop arguments: val, offset, base, and receiver debug_only(int saved_sp = _sp); _sp += nargs; Node* val = (type_words == 1) ? pop() : pop_pair(); Node *offset = pop_pair(); Node *base = pop(); Node *receiver = pop(); assert(saved_sp == _sp, "must have correct argument count"); // Null check receiver. _sp += nargs; do_null_check(receiver, T_OBJECT); _sp -= nargs; if (stopped()) { return true; } // Build field offset expression. assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); // 32-bit machines ignore the high half of long offsets offset = ConvL2X(offset); Node* adr = make_unsafe_address(base, offset); const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); const Type *value_type = Type::get_const_basic_type(type); Compile::AliasType* alias_type = C->alias_type(adr_type); insert_mem_bar(Op_MemBarRelease); insert_mem_bar(Op_MemBarCPUOrder); // Ensure that the store is atomic for longs: bool require_atomic_access = true; Node* store; if (type == T_OBJECT) // reference stores need a store barrier. store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type); else { store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access); } insert_mem_bar(Op_MemBarCPUOrder); return true; } bool LibraryCallKit::inline_unsafe_allocate() { if (callee()->is_static()) return false; // caller must have the capability! int nargs = 1 + 1; assert(signature()->size() == nargs-1, "alloc has 1 argument"); null_check_receiver(callee()); // check then ignore argument(0) _sp += nargs; // set original stack for use by uncommon_trap Node* cls = do_null_check(argument(1), T_OBJECT); _sp -= nargs; if (stopped()) return true; Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0); _sp += nargs; // set original stack for use by uncommon_trap kls = do_null_check(kls, T_OBJECT); _sp -= nargs; if (stopped()) return true; // argument was like int.class // Note: The argument might still be an illegal value like // Serializable.class or Object[].class. The runtime will handle it. // But we must make an explicit check for initialization. Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)); Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT); Node* bits = intcon(instanceKlass::fully_initialized); Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) ); // The 'test' is non-zero if we need to take a slow path. Node* obj = new_instance(kls, test); push(obj); return true; } //------------------------inline_native_time_funcs-------------- // inline code for System.currentTimeMillis() and System.nanoTime() // these have the same type and signature bool LibraryCallKit::inline_native_time_funcs(bool isNano) { address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) : CAST_FROM_FN_PTR(address, os::javaTimeMillis); const char * funcName = isNano ? "nanoTime" : "currentTimeMillis"; const TypeFunc *tf = OptoRuntime::current_time_millis_Type(); const TypePtr* no_memory_effects = NULL; Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0)); #ifdef ASSERT Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1)); assert(value_top == top(), "second value must be top"); #endif push_pair(value); return true; } //------------------------inline_native_currentThread------------------ bool LibraryCallKit::inline_native_currentThread() { Node* junk = NULL; push(generate_current_thread(junk)); return true; } //------------------------inline_native_isInterrupted------------------ bool LibraryCallKit::inline_native_isInterrupted() { const int nargs = 1+1; // receiver + boolean assert(nargs == arg_size(), "sanity"); // Add a fast path to t.isInterrupted(clear_int): // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int)) // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int) // So, in the common case that the interrupt bit is false, // we avoid making a call into the VM. Even if the interrupt bit // is true, if the clear_int argument is false, we avoid the VM call. // However, if the receiver is not currentThread, we must call the VM, // because there must be some locking done around the operation. // We only go to the fast case code if we pass two guards. // Paths which do not pass are accumulated in the slow_region. RegionNode* slow_region = new (C, 1) RegionNode(1); record_for_igvn(slow_region); RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL); enum { no_int_result_path = 1, no_clear_result_path = 2, slow_result_path = 3 }; // (a) Receiving thread must be the current thread. Node* rec_thr = argument(0); Node* tls_ptr = NULL; Node* cur_thr = generate_current_thread(tls_ptr); Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) ); Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) ); bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO); if (!known_current_thread) generate_slow_guard(bol_thr, slow_region); // (b) Interrupt bit on TLS must be false. Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset())); Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS); p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset())); // Set the control input on the field _interrupted read to prevent it floating up. Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT); Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) ); Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) ); IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); // First fast path: if (!TLS._interrupted) return false; Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) ); result_rgn->init_req(no_int_result_path, false_bit); result_val->init_req(no_int_result_path, intcon(0)); // drop through to next case set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) ); // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path. Node* clr_arg = argument(1); Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) ); Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) ); IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN); // Second fast path: ... else if (!clear_int) return true; Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) ); result_rgn->init_req(no_clear_result_path, false_arg); result_val->init_req(no_clear_result_path, intcon(1)); // drop through to next case set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) ); // (d) Otherwise, go to the slow path. slow_region->add_req(control()); set_control( _gvn.transform(slow_region) ); if (stopped()) { // There is no slow path. result_rgn->init_req(slow_result_path, top()); result_val->init_req(slow_result_path, top()); } else { // non-virtual because it is a private non-static CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted); Node* slow_val = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call // If we know that the result of the slow call will be true, tell the optimizer! if (known_current_thread) slow_val = intcon(1); Node* fast_io = slow_call->in(TypeFunc::I_O); Node* fast_mem = slow_call->in(TypeFunc::Memory); // These two phis are pre-filled with copies of of the fast IO and Memory Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); result_rgn->init_req(slow_result_path, control()); io_phi ->init_req(slow_result_path, i_o()); mem_phi ->init_req(slow_result_path, reset_memory()); result_val->init_req(slow_result_path, slow_val); set_all_memory( _gvn.transform(mem_phi) ); set_i_o( _gvn.transform(io_phi) ); } push_result(result_rgn, result_val); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //---------------------------load_mirror_from_klass---------------------------- // Given a klass oop, load its java mirror (a java.lang.Class oop). Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc)); return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT); } //-----------------------load_klass_from_mirror_common------------------------- // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), // and branch to the given path on the region. // If never_see_null, take an uncommon trap on null, so we can optimistically // compile for the non-null case. // If the region is NULL, force never_see_null = true. Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, bool never_see_null, int nargs, RegionNode* region, int null_path, int offset) { if (region == NULL) never_see_null = true; Node* p = basic_plus_adr(mirror, offset); const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) ); _sp += nargs; // any deopt will start just before call to enclosing method Node* null_ctl = top(); kls = null_check_oop(kls, &null_ctl, never_see_null); if (region != NULL) { // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). region->init_req(null_path, null_ctl); } else { assert(null_ctl == top(), "no loose ends"); } _sp -= nargs; return kls; } //--------------------(inline_native_Class_query helpers)--------------------- // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER. // Fall through if (mods & mask) == bits, take the guard otherwise. Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { // Branch around if the given klass has the given modifier bit set. // Like generate_guard, adds a new path onto the region. Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)); Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT); Node* mask = intcon(modifier_mask); Node* bits = intcon(modifier_bits); Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) ); Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) ); Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) ); return generate_fair_guard(bol, region); } Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); } //-------------------------inline_native_Class_query------------------- bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { int nargs = 1+0; // just the Class mirror, in most cases const Type* return_type = TypeInt::BOOL; Node* prim_return_value = top(); // what happens if it's a primitive class? bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); bool expect_prim = false; // most of these guys expect to work on refs enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; switch (id) { case vmIntrinsics::_isInstance: nargs = 1+1; // the Class mirror, plus the object getting queried about // nothing is an instance of a primitive type prim_return_value = intcon(0); break; case vmIntrinsics::_getModifiers: prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); break; case vmIntrinsics::_isInterface: prim_return_value = intcon(0); break; case vmIntrinsics::_isArray: prim_return_value = intcon(0); expect_prim = true; // cf. ObjectStreamClass.getClassSignature break; case vmIntrinsics::_isPrimitive: prim_return_value = intcon(1); expect_prim = true; // obviously break; case vmIntrinsics::_getSuperclass: prim_return_value = null(); return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); break; case vmIntrinsics::_getComponentType: prim_return_value = null(); return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); break; case vmIntrinsics::_getClassAccessFlags: prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); return_type = TypeInt::INT; // not bool! 6297094 break; default: ShouldNotReachHere(); } Node* mirror = argument(0); Node* obj = (nargs <= 1)? top(): argument(1); const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); if (mirror_con == NULL) return false; // cannot happen? #ifndef PRODUCT if (PrintIntrinsics || PrintInlining || PrintOptoInlining) { ciType* k = mirror_con->java_mirror_type(); if (k) { tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); k->print_name(); tty->cr(); } } #endif // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT); record_for_igvn(region); PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type); // The mirror will never be null of Reflection.getClassAccessFlags, however // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE // if it is. See bug 4774291. // For Reflection.getClassAccessFlags(), the null check occurs in // the wrong place; see inline_unsafe_access(), above, for a similar // situation. _sp += nargs; // set original stack for use by uncommon_trap mirror = do_null_check(mirror, T_OBJECT); _sp -= nargs; // If mirror or obj is dead, only null-path is taken. if (stopped()) return true; if (expect_prim) never_see_null = false; // expect nulls (meaning prims) // Now load the mirror's klass metaobject, and null-check it. // Side-effects region with the control path if the klass is null. Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs, region, _prim_path); // If kls is null, we have a primitive mirror. phi->init_req(_prim_path, prim_return_value); if (stopped()) { push_result(region, phi); return true; } Node* p; // handy temp Node* null_ctl; // Now that we have the non-null klass, we can perform the real query. // For constant classes, the query will constant-fold in LoadNode::Value. Node* query_value = top(); switch (id) { case vmIntrinsics::_isInstance: // nothing is an instance of a primitive type query_value = gen_instanceof(obj, kls); break; case vmIntrinsics::_getModifiers: p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc)); query_value = make_load(NULL, p, TypeInt::INT, T_INT); break; case vmIntrinsics::_isInterface: // (To verify this code sequence, check the asserts in JVM_IsInterface.) if (generate_interface_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an interface. phi->add_req(intcon(1)); // If we fall through, it's a plain class. query_value = intcon(0); break; case vmIntrinsics::_isArray: // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) if (generate_array_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an array. phi->add_req(intcon(1)); // If we fall through, it's a plain class. query_value = intcon(0); break; case vmIntrinsics::_isPrimitive: query_value = intcon(0); // "normal" path produces false break; case vmIntrinsics::_getSuperclass: // The rules here are somewhat unfortunate, but we can still do better // with random logic than with a JNI call. // Interfaces store null or Object as _super, but must report null. // Arrays store an intermediate super as _super, but must report Object. // Other types can report the actual _super. // (To verify this code sequence, check the asserts in JVM_IsInterface.) if (generate_interface_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an interface. phi->add_req(null()); if (generate_array_guard(kls, region) != NULL) // A guard was added. If the guard is taken, it was an array. phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); // If we fall through, it's a plain class. Get its _super. p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc)); kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) ); null_ctl = top(); kls = null_check_oop(kls, &null_ctl); if (null_ctl != top()) { // If the guard is taken, Object.superClass is null (both klass and mirror). region->add_req(null_ctl); phi ->add_req(null()); } if (!stopped()) { query_value = load_mirror_from_klass(kls); } break; case vmIntrinsics::_getComponentType: if (generate_array_guard(kls, region) != NULL) { // Be sure to pin the oop load to the guard edge just created: Node* is_array_ctrl = region->in(region->req()-1); Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc)); Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT); phi->add_req(cmo); } query_value = null(); // non-array case is null break; case vmIntrinsics::_getClassAccessFlags: p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)); query_value = make_load(NULL, p, TypeInt::INT, T_INT); break; default: ShouldNotReachHere(); } // Fall-through is the normal case of a query to a real class. phi->init_req(1, query_value); region->init_req(1, control()); push_result(region, phi); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //--------------------------inline_native_subtype_check------------------------ // This intrinsic takes the JNI calls out of the heart of // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. bool LibraryCallKit::inline_native_subtype_check() { int nargs = 1+1; // the Class mirror, plus the other class getting examined // Pull both arguments off the stack. Node* args[2]; // two java.lang.Class mirrors: superc, subc args[0] = argument(0); args[1] = argument(1); Node* klasses[2]; // corresponding Klasses: superk, subk klasses[0] = klasses[1] = top(); enum { // A full decision tree on {superc is prim, subc is prim}: _prim_0_path = 1, // {P,N} => false // {P,P} & superc!=subc => false _prim_same_path, // {P,P} & superc==subc => true _prim_1_path, // {N,P} => false _ref_subtype_path, // {N,N} & subtype check wins => true _both_ref_path, // {N,N} & subtype check loses => false PATH_LIMIT }; RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT); Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL); record_for_igvn(region); const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; int class_klass_offset = java_lang_Class::klass_offset_in_bytes(); // First null-check both mirrors and load each mirror's klass metaobject. int which_arg; for (which_arg = 0; which_arg <= 1; which_arg++) { Node* arg = args[which_arg]; _sp += nargs; // set original stack for use by uncommon_trap arg = do_null_check(arg, T_OBJECT); _sp -= nargs; if (stopped()) break; args[which_arg] = _gvn.transform(arg); Node* p = basic_plus_adr(arg, class_klass_offset); Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); klasses[which_arg] = _gvn.transform(kls); } // Having loaded both klasses, test each for null. bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); for (which_arg = 0; which_arg <= 1; which_arg++) { Node* kls = klasses[which_arg]; Node* null_ctl = top(); _sp += nargs; // set original stack for use by uncommon_trap kls = null_check_oop(kls, &null_ctl, never_see_null); _sp -= nargs; int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); region->init_req(prim_path, null_ctl); if (stopped()) break; klasses[which_arg] = kls; } if (!stopped()) { // now we have two reference types, in klasses[0..1] Node* subk = klasses[1]; // the argument to isAssignableFrom Node* superk = klasses[0]; // the receiver region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); // now we have a successful reference subtype check region->set_req(_ref_subtype_path, control()); } // If both operands are primitive (both klasses null), then // we must return true when they are identical primitives. // It is convenient to test this after the first null klass check. set_control(region->in(_prim_0_path)); // go back to first null check if (!stopped()) { // Since superc is primitive, make a guard for the superc==subc case. Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) ); Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) ); generate_guard(bol_eq, region, PROB_FAIR); if (region->req() == PATH_LIMIT+1) { // A guard was added. If the added guard is taken, superc==subc. region->swap_edges(PATH_LIMIT, _prim_same_path); region->del_req(PATH_LIMIT); } region->set_req(_prim_0_path, control()); // Not equal after all. } // these are the only paths that produce 'true': phi->set_req(_prim_same_path, intcon(1)); phi->set_req(_ref_subtype_path, intcon(1)); // pull together the cases: assert(region->req() == PATH_LIMIT, "sane region"); for (uint i = 1; i < region->req(); i++) { Node* ctl = region->in(i); if (ctl == NULL || ctl == top()) { region->set_req(i, top()); phi ->set_req(i, top()); } else if (phi->in(i) == NULL) { phi->set_req(i, intcon(0)); // all other paths produce 'false' } } set_control(_gvn.transform(region)); push(_gvn.transform(phi)); return true; } //---------------------generate_array_guard_common------------------------ Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, bool obj_array, bool not_array) { // If obj_array/non_array==false/false: // Branch around if the given klass is in fact an array (either obj or prim). // If obj_array/non_array==false/true: // Branch around if the given klass is not an array klass of any kind. // If obj_array/non_array==true/true: // Branch around if the kls is not an oop array (kls is int[], String, etc.) // If obj_array/non_array==true/false: // Branch around if the kls is an oop array (Object[] or subtype) // // Like generate_guard, adds a new path onto the region. jint layout_con = 0; Node* layout_val = get_layout_helper(kls, layout_con); if (layout_val == NULL) { bool query = (obj_array ? Klass::layout_helper_is_objArray(layout_con) : Klass::layout_helper_is_javaArray(layout_con)); if (query == not_array) { return NULL; // never a branch } else { // always a branch Node* always_branch = control(); if (region != NULL) region->add_req(always_branch); set_control(top()); return always_branch; } } // Now test the correct condition. jint nval = (obj_array ? ((jint)Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift) : Klass::_lh_neutral_value); Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) ); BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array // invert the test if we are looking for a non-array if (not_array) btest = BoolTest(btest).negate(); Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) ); return generate_fair_guard(bol, region); } //-----------------------inline_native_newArray-------------------------- bool LibraryCallKit::inline_native_newArray() { int nargs = 2; Node* mirror = argument(0); Node* count_val = argument(1); _sp += nargs; // set original stack for use by uncommon_trap mirror = do_null_check(mirror, T_OBJECT); _sp -= nargs; // If mirror or obj is dead, only null-path is taken. if (stopped()) return true; enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT); PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg, TypeInstPtr::NOTNULL); PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, nargs, result_reg, _slow_path); Node* normal_ctl = control(); Node* no_array_ctl = result_reg->in(_slow_path); // Generate code for the slow case. We make a call to newArray(). set_control(no_array_ctl); if (!stopped()) { // Either the input type is void.class, or else the // array klass has not yet been cached. Either the // ensuing call will throw an exception, or else it // will cache the array klass for next time. PreserveJVMState pjvms(this); CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->set_req(_slow_path, control()); result_val->set_req(_slow_path, slow_result); result_io ->set_req(_slow_path, i_o()); result_mem->set_req(_slow_path, reset_memory()); } set_control(normal_ctl); if (!stopped()) { // Normal case: The array type has been cached in the java.lang.Class. // The following call works fine even if the array type is polymorphic. // It could be a dynamic mix of int[], boolean[], Object[], etc. Node* obj = new_array(klass_node, count_val, nargs); result_reg->init_req(_normal_path, control()); result_val->init_req(_normal_path, obj); result_io ->init_req(_normal_path, i_o()); result_mem->init_req(_normal_path, reset_memory()); } // Return the combined state. set_i_o( _gvn.transform(result_io) ); set_all_memory( _gvn.transform(result_mem) ); push_result(result_reg, result_val); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //----------------------inline_native_getLength-------------------------- bool LibraryCallKit::inline_native_getLength() { if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; int nargs = 1; Node* array = argument(0); _sp += nargs; // set original stack for use by uncommon_trap array = do_null_check(array, T_OBJECT); _sp -= nargs; // If array is dead, only null-path is taken. if (stopped()) return true; // Deoptimize if it is a non-array. Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); if (non_array != NULL) { PreserveJVMState pjvms(this); set_control(non_array); _sp += nargs; // push the arguments back on the stack uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_maybe_recompile); } // If control is dead, only non-array-path is taken. if (stopped()) return true; // The works fine even if the array type is polymorphic. // It could be a dynamic mix of int[], boolean[], Object[], etc. push( load_array_length(array) ); C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //------------------------inline_array_copyOf---------------------------- bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; // Restore the stack and pop off the arguments. int nargs = 3 + (is_copyOfRange? 1: 0); Node* original = argument(0); Node* start = is_copyOfRange? argument(1): intcon(0); Node* end = is_copyOfRange? argument(2): argument(1); Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); _sp += nargs; // set original stack for use by uncommon_trap array_type_mirror = do_null_check(array_type_mirror, T_OBJECT); original = do_null_check(original, T_OBJECT); _sp -= nargs; // Check if a null path was taken unconditionally. if (stopped()) return true; Node* orig_length = load_array_length(original); Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs, NULL, 0); _sp += nargs; // set original stack for use by uncommon_trap klass_node = do_null_check(klass_node, T_OBJECT); _sp -= nargs; RegionNode* bailout = new (C, 1) RegionNode(1); record_for_igvn(bailout); // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. // Bail out if that is so. Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); if (not_objArray != NULL) { // Improve the klass node's type from the new optimistic assumption: ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); Node* cast = new (C, 2) CastPPNode(klass_node, akls); cast->init_req(0, control()); klass_node = _gvn.transform(cast); } // Bail out if either start or end is negative. generate_negative_guard(start, bailout, &start); generate_negative_guard(end, bailout, &end); Node* length = end; if (_gvn.type(start) != TypeInt::ZERO) { length = _gvn.transform( new (C, 3) SubINode(end, start) ); } // Bail out if length is negative. // ...Not needed, since the new_array will throw the right exception. //generate_negative_guard(length, bailout, &length); if (bailout->req() > 1) { PreserveJVMState pjvms(this); set_control( _gvn.transform(bailout) ); _sp += nargs; // push the arguments back on the stack uncommon_trap(Deoptimization::Reason_intrinsic, Deoptimization::Action_maybe_recompile); } if (!stopped()) { // How many elements will we copy from the original? // The answer is MinI(orig_length - start, length). Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) ); Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); Node* newcopy = new_array(klass_node, length, nargs); // Generate a direct call to the right arraycopy function(s). // We know the copy is disjoint but we might not know if the // oop stores need checking. // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). // This will fail a store-check if x contains any non-nulls. bool disjoint_bases = true; bool length_never_negative = true; generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT, original, start, newcopy, intcon(0), moved, nargs, disjoint_bases, length_never_negative); push(newcopy); } C->set_has_split_ifs(true); // Has chance for split-if optimization return true; } //----------------------generate_virtual_guard--------------------------- // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, RegionNode* slow_region) { ciMethod* method = callee(); int vtable_index = method->vtable_index(); // Get the methodOop out of the appropriate vtable entry. int entry_offset = (instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size()) * wordSize + vtableEntry::method_offset_in_bytes(); Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT); // Compare the target method with the expected method (e.g., Object.hashCode). const TypeInstPtr* native_call_addr = TypeInstPtr::make(method); Node* native_call = makecon(native_call_addr); Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) ); Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) ); return generate_slow_guard(test_native, slow_region); } //-----------------------generate_method_call---------------------------- // Use generate_method_call to make a slow-call to the real // method if the fast path fails. An alternative would be to // use a stub like OptoRuntime::slow_arraycopy_Java. // This only works for expanding the current library call, // not another intrinsic. (E.g., don't use this for making an // arraycopy call inside of the copyOf intrinsic.) CallJavaNode* LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { // When compiling the intrinsic method itself, do not use this technique. guarantee(callee() != C->method(), "cannot make slow-call to self"); ciMethod* method = callee(); // ensure the JVMS we have will be correct for this call guarantee(method_id == method->intrinsic_id(), "must match"); const TypeFunc* tf = TypeFunc::make(method); int tfdc = tf->domain()->cnt(); CallJavaNode* slow_call; if (is_static) { assert(!is_virtual, ""); slow_call = new(C, tfdc) CallStaticJavaNode(tf, SharedRuntime::get_resolve_static_call_stub(), method, bci()); } else if (is_virtual) { null_check_receiver(method); int vtable_index = methodOopDesc::invalid_vtable_index; if (UseInlineCaches) { // Suppress the vtable call } else { // hashCode and clone are not a miranda methods, // so the vtable index is fixed. // No need to use the linkResolver to get it. vtable_index = method->vtable_index(); } slow_call = new(C, tfdc) CallDynamicJavaNode(tf, SharedRuntime::get_resolve_virtual_call_stub(), method, vtable_index, bci()); } else { // neither virtual nor static: opt_virtual null_check_receiver(method); slow_call = new(C, tfdc) CallStaticJavaNode(tf, SharedRuntime::get_resolve_opt_virtual_call_stub(), method, bci()); slow_call->set_optimized_virtual(true); } set_arguments_for_java_call(slow_call); set_edges_for_java_call(slow_call); return slow_call; } //------------------------------inline_native_hashcode-------------------- // Build special case code for calls to hashCode on an object. bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { assert(is_static == callee()->is_static(), "correct intrinsic selection"); assert(!(is_virtual && is_static), "either virtual, special, or static"); enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT); PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg, TypeInt::INT); PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); Node* obj = NULL; if (!is_static) { // Check for hashing null object obj = null_check_receiver(callee()); if (stopped()) return true; // unconditionally null result_reg->init_req(_null_path, top()); result_val->init_req(_null_path, top()); } else { // Do a null check, and return zero if null. // System.identityHashCode(null) == 0 obj = argument(0); Node* null_ctl = top(); obj = null_check_oop(obj, &null_ctl); result_reg->init_req(_null_path, null_ctl); result_val->init_req(_null_path, _gvn.intcon(0)); } // Unconditionally null? Then return right away. if (stopped()) { set_control( result_reg->in(_null_path) ); if (!stopped()) push( result_val ->in(_null_path) ); return true; } // After null check, get the object's klass. Node* obj_klass = load_object_klass(obj); // This call may be virtual (invokevirtual) or bound (invokespecial). // For each case we generate slightly different code. // We only go to the fast case code if we pass a number of guards. The // paths which do not pass are accumulated in the slow_region. RegionNode* slow_region = new (C, 1) RegionNode(1); record_for_igvn(slow_region); // If this is a virtual call, we generate a funny guard. We pull out // the vtable entry corresponding to hashCode() from the target object. // If the target method which we are calling happens to be the native // Object hashCode() method, we pass the guard. We do not need this // guard for non-virtual calls -- the caller is known to be the native // Object hashCode(). if (is_virtual) { generate_virtual_guard(obj_klass, slow_region); } // Get the header out of the object, use LoadMarkNode when available Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS); header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) ); // Test the header to see if it is unlocked. Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place); Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) ); Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value); Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val)); Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) ); generate_slow_guard(test_unlocked, slow_region); // Get the hash value and check to see that it has been properly assigned. // We depend on hash_mask being at most 32 bits and avoid the use of // hash_mask_in_place because it could be larger than 32 bits in a 64-bit // vm: see markOop.hpp. Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask); Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift); Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) ); // This hack lets the hash bits live anywhere in the mark object now, as long // as the shift drops the relevant bits into the low 32 bits. Note that // Java spec says that HashCode is an int so there's no point in capturing // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). hshifted_header = ConvX2I(hshifted_header); Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) ); Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash); Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val)); Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) ); generate_slow_guard(test_assigned, slow_region); Node* init_mem = reset_memory(); // fill in the rest of the null path: result_io ->init_req(_null_path, i_o()); result_mem->init_req(_null_path, init_mem); result_val->init_req(_fast_path, hash_val); result_reg->init_req(_fast_path, control()); result_io ->init_req(_fast_path, i_o()); result_mem->init_req(_fast_path, init_mem); // Generate code for the slow case. We make a call to hashCode(). set_control(_gvn.transform(slow_region)); if (!stopped()) { // No need for PreserveJVMState, because we're using up the present state. set_all_memory(init_mem); vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode; if (is_static) hashCode_id = vmIntrinsics::_identityHashCode; CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->init_req(_slow_path, control()); result_val->init_req(_slow_path, slow_result); result_io ->set_req(_slow_path, i_o()); result_mem ->set_req(_slow_path, reset_memory()); } // Return the combined state. set_i_o( _gvn.transform(result_io) ); set_all_memory( _gvn.transform(result_mem) ); push_result(result_reg, result_val); return true; } //---------------------------inline_native_getClass---------------------------- // Build special case code for calls to getClass on an object. bool LibraryCallKit::inline_native_getClass() { Node* obj = null_check_receiver(callee()); if (stopped()) return true; push( load_mirror_from_klass(load_object_klass(obj)) ); return true; } //-----------------inline_native_Reflection_getCallerClass--------------------- // In the presence of deep enough inlining, getCallerClass() becomes a no-op. // // NOTE that this code must perform the same logic as // vframeStream::security_get_caller_frame in that it must skip // Method.invoke() and auxiliary frames. bool LibraryCallKit::inline_native_Reflection_getCallerClass() { ciMethod* method = callee(); #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); } #endif debug_only(int saved_sp = _sp); // Argument words: (int depth) int nargs = 1; _sp += nargs; Node* caller_depth_node = pop(); assert(saved_sp == _sp, "must have correct argument count"); // The depth value must be a constant in order for the runtime call // to be eliminated. const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int(); if (caller_depth_type == NULL || !caller_depth_type->is_con()) { #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr(" Bailing out because caller depth was not a constant"); } #endif return false; } // Note that the JVM state at this point does not include the // getCallerClass() frame which we are trying to inline. The // semantics of getCallerClass(), however, are that the "first" // frame is the getCallerClass() frame, so we subtract one from the // requested depth before continuing. We don't inline requests of // getCallerClass(0). int caller_depth = caller_depth_type->get_con() - 1; if (caller_depth < 0) { #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr(" Bailing out because caller depth was %d", caller_depth); } #endif return false; } if (!jvms()->has_method()) { #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr(" Bailing out because intrinsic was inlined at top level"); } #endif return false; } int _depth = jvms()->depth(); // cache call chain depth // Walk back up the JVM state to find the caller at the required // depth. NOTE that this code must perform the same logic as // vframeStream::security_get_caller_frame in that it must skip // Method.invoke() and auxiliary frames. Note also that depth is // 1-based (1 is the bottom of the inlining). int inlining_depth = _depth; JVMState* caller_jvms = NULL; if (inlining_depth > 0) { caller_jvms = jvms(); assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth"); do { // The following if-tests should be performed in this order if (is_method_invoke_or_aux_frame(caller_jvms)) { // Skip a Method.invoke() or auxiliary frame } else if (caller_depth > 0) { // Skip real frame --caller_depth; } else { // We're done: reached desired caller after skipping. break; } caller_jvms = caller_jvms->caller(); --inlining_depth; } while (inlining_depth > 0); } if (inlining_depth == 0) { #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth); tty->print_cr(" JVM state at this point:"); for (int i = _depth; i >= 1; i--) { tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8()); } } #endif return false; // Reached end of inlining } // Acquire method holder as java.lang.Class ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); ciInstance* caller_mirror = caller_klass->java_mirror(); // Push this as a constant push(makecon(TypeInstPtr::make(caller_mirror))); #ifndef PRODUCT if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) { tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth); tty->print_cr(" JVM state at this point:"); for (int i = _depth; i >= 1; i--) { tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8()); } } #endif return true; } // Helper routine for above bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) { // Is this the Method.invoke method itself? if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke) return true; // Is this a helper, defined somewhere underneath MethodAccessorImpl. ciKlass* k = jvms->method()->holder(); if (k->is_instance_klass()) { ciInstanceKlass* ik = k->as_instance_klass(); for (; ik != NULL; ik = ik->super()) { if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() && ik == env()->find_system_klass(ik->name())) { return true; } } } return false; } static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by // inline_native_AtomicLong_attemptUpdate() but it has no way of // computing it since there is no lookup field by name function in the // CI interface. This is computed and set by inline_native_AtomicLong_get(). // Using a static variable here is safe even if we have multiple compilation // threads because the offset is constant. At worst the same offset will be // computed and stored multiple bool LibraryCallKit::inline_native_AtomicLong_get() { // Restore the stack and pop off the argument _sp+=1; Node *obj = pop(); // get the offset of the "value" field. Since the CI interfaces // does not provide a way to look up a field by name, we scan the bytecodes // to get the field index. We expect the first 2 instructions of the method // to be: // 0 aload_0 // 1 getfield "value" ciMethod* method = callee(); if (value_field_offset == -1) { ciField* value_field; ciBytecodeStream iter(method); Bytecodes::Code bc = iter.next(); if ((bc != Bytecodes::_aload_0) && ((bc != Bytecodes::_aload) || (iter.get_index() != 0))) return false; bc = iter.next(); if (bc != Bytecodes::_getfield) return false; bool ignore; value_field = iter.get_field(ignore); value_field_offset = value_field->offset_in_bytes(); } // Null check without removing any arguments. _sp++; obj = do_null_check(obj, T_OBJECT); _sp--; // Check for locking null object if (stopped()) return true; Node *adr = basic_plus_adr(obj, obj, value_field_offset); const TypePtr *adr_type = _gvn.type(adr)->is_ptr(); int alias_idx = C->get_alias_index(adr_type); Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr)); push_pair(result); return true; } bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() { // Restore the stack and pop off the arguments _sp+=5; Node *newVal = pop_pair(); Node *oldVal = pop_pair(); Node *obj = pop(); // we need the offset of the "value" field which was computed when // inlining the get() method. Give up if we don't have it. if (value_field_offset == -1) return false; // Null check without removing any arguments. _sp+=5; obj = do_null_check(obj, T_OBJECT); _sp-=5; // Check for locking null object if (stopped()) return true; Node *adr = basic_plus_adr(obj, obj, value_field_offset); const TypePtr *adr_type = _gvn.type(adr)->is_ptr(); int alias_idx = C->get_alias_index(adr_type); Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal)); Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas)); set_memory(store_proj, alias_idx); Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) ); Node *result; // CMove node is not used to be able fold a possible check code // after attemptUpdate() call. This code could be transformed // into CMove node by loop optimizations. { RegionNode *r = new (C, 3) RegionNode(3); result = new (C, 3) PhiNode(r, TypeInt::BOOL); Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); Node *iftrue = opt_iff(r, iff); r->init_req(1, iftrue); result->init_req(1, intcon(1)); result->init_req(2, intcon(0)); set_control(_gvn.transform(r)); record_for_igvn(r); C->set_has_split_ifs(true); // Has chance for split-if optimization } push(_gvn.transform(result)); return true; } bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { // restore the arguments _sp += arg_size(); switch (id) { case vmIntrinsics::_floatToRawIntBits: push(_gvn.transform( new (C, 2) MoveF2INode(pop()))); break; case vmIntrinsics::_intBitsToFloat: push(_gvn.transform( new (C, 2) MoveI2FNode(pop()))); break; case vmIntrinsics::_doubleToRawLongBits: push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair()))); break; case vmIntrinsics::_longBitsToDouble: push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair()))); break; case vmIntrinsics::_doubleToLongBits: { Node* value = pop_pair(); // two paths (plus control) merge in a wood RegionNode *r = new (C, 3) RegionNode(3); Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG); Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value)); // Build the boolean node Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) ); // Branch either way. // NaN case is less traveled, which makes all the difference. IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); Node *opt_isnan = _gvn.transform(ifisnan); assert( opt_isnan->is_If(), "Expect an IfNode"); IfNode *opt_ifisnan = (IfNode*)opt_isnan; Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) ); set_control(iftrue); static const jlong nan_bits = CONST64(0x7ff8000000000000); Node *slow_result = longcon(nan_bits); // return NaN phi->init_req(1, _gvn.transform( slow_result )); r->init_req(1, iftrue); // Else fall through Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) ); set_control(iffalse); phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value))); r->init_req(2, iffalse); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); Node* result = _gvn.transform(phi); assert(result->bottom_type()->isa_long(), "must be"); push_pair(result); C->set_has_split_ifs(true); // Has chance for split-if optimization break; } case vmIntrinsics::_floatToIntBits: { Node* value = pop(); // two paths (plus control) merge in a wood RegionNode *r = new (C, 3) RegionNode(3); Node *phi = new (C, 3) PhiNode(r, TypeInt::INT); Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value)); // Build the boolean node Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) ); // Branch either way. // NaN case is less traveled, which makes all the difference. IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); Node *opt_isnan = _gvn.transform(ifisnan); assert( opt_isnan->is_If(), "Expect an IfNode"); IfNode *opt_ifisnan = (IfNode*)opt_isnan; Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) ); set_control(iftrue); static const jint nan_bits = 0x7fc00000; Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN phi->init_req(1, _gvn.transform( slow_result )); r->init_req(1, iftrue); // Else fall through Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) ); set_control(iffalse); phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value))); r->init_req(2, iffalse); // Post merge set_control(_gvn.transform(r)); record_for_igvn(r); Node* result = _gvn.transform(phi); assert(result->bottom_type()->isa_int(), "must be"); push(result); C->set_has_split_ifs(true); // Has chance for split-if optimization break; } default: ShouldNotReachHere(); } return true; } #ifdef _LP64 #define XTOP ,top() /*additional argument*/ #else //_LP64 #define XTOP /*no additional argument*/ #endif //_LP64 //----------------------inline_unsafe_copyMemory------------------------- bool LibraryCallKit::inline_unsafe_copyMemory() { if (callee()->is_static()) return false; // caller must have the capability! int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size) assert(signature()->size() == nargs-1, "copy has 5 arguments"); null_check_receiver(callee()); // check then ignore argument(0) if (stopped()) return true; C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". Node* src_ptr = argument(1); Node* src_off = ConvL2X(argument(2)); assert(argument(3)->is_top(), "2nd half of long"); Node* dst_ptr = argument(4); Node* dst_off = ConvL2X(argument(5)); assert(argument(6)->is_top(), "2nd half of long"); Node* size = ConvL2X(argument(7)); assert(argument(8)->is_top(), "2nd half of long"); assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); Node* src = make_unsafe_address(src_ptr, src_off); Node* dst = make_unsafe_address(dst_ptr, dst_off); // Conservatively insert a memory barrier on all memory slices. // Do not let writes of the copy source or destination float below the copy. insert_mem_bar(Op_MemBarCPUOrder); // Call it. Note that the length argument is not scaled. make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::fast_arraycopy_Type(), StubRoutines::unsafe_arraycopy(), "unsafe_arraycopy", TypeRawPtr::BOTTOM, src, dst, size XTOP); // Do not let reads of the copy destination float above the copy. insert_mem_bar(Op_MemBarCPUOrder); return true; } //------------------------inline_native_clone---------------------------- // Here are the simple edge cases: // null receiver => normal trap // virtual and clone was overridden => slow path to out-of-line clone // not cloneable or finalizer => slow path to out-of-line Object.clone // // The general case has two steps, allocation and copying. // Allocation has two cases, and uses GraphKit::new_instance or new_array. // // Copying also has two cases, oop arrays and everything else. // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). // Everything else uses the tight inline loop supplied by CopyArrayNode. // // These steps fold up nicely if and when the cloned object's klass // can be sharply typed as an object array, a type array, or an instance. // bool LibraryCallKit::inline_native_clone(bool is_virtual) { int nargs = 1; Node* obj = null_check_receiver(callee()); if (stopped()) return true; Node* obj_klass = load_object_klass(obj); const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr(); const TypeOopPtr* toop = ((tklass != NULL) ? tklass->as_instance_type() : TypeInstPtr::NOTNULL); // Conservatively insert a memory barrier on all memory slices. // Do not let writes into the original float below the clone. insert_mem_bar(Op_MemBarCPUOrder); // paths into result_reg: enum { _slow_path = 1, // out-of-line call to clone method (virtual or not) _objArray_path, // plain allocation, plus arrayof_oop_arraycopy _fast_path, // plain allocation, plus a CopyArray operation PATH_LIMIT }; RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT); PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg, TypeInstPtr::NOTNULL); PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO); PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); record_for_igvn(result_reg); const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM; int raw_adr_idx = Compile::AliasIdxRaw; const bool raw_mem_only = true; // paths into alloc_reg (on the fast path, just before the CopyArray): enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT }; RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT); PhiNode* alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type); PhiNode* alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X); PhiNode* alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO); PhiNode* alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY, raw_adr_type); record_for_igvn(alloc_reg); bool card_mark = false; // (see below) Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); if (array_ctl != NULL) { // It's an array. PreserveJVMState pjvms(this); set_control(array_ctl); Node* obj_length = load_array_length(obj); Node* obj_size = NULL; Node* alloc_obj = new_array(obj_klass, obj_length, nargs, raw_mem_only, &obj_size); assert(obj_size != NULL, ""); Node* raw_obj = alloc_obj->in(1); assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); if (ReduceBulkZeroing) { AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); if (alloc != NULL) { // We will be completely responsible for initializing this object. alloc->maybe_set_complete(&_gvn); } } if (!use_ReduceInitialCardMarks()) { // If it is an oop array, it requires very special treatment, // because card marking is required on each card of the array. Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); if (is_obja != NULL) { PreserveJVMState pjvms2(this); set_control(is_obja); // Generate a direct call to the right arraycopy function(s). bool disjoint_bases = true; bool length_never_negative = true; generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT, obj, intcon(0), alloc_obj, intcon(0), obj_length, nargs, disjoint_bases, length_never_negative); result_reg->init_req(_objArray_path, control()); result_val->init_req(_objArray_path, alloc_obj); result_i_o ->set_req(_objArray_path, i_o()); result_mem ->set_req(_objArray_path, reset_memory()); } } // We can dispense with card marks if we know the allocation // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks // causes the non-eden paths to simulate a fresh allocation, // insofar that no further card marks are required to initialize // the object. // Otherwise, there are no card marks to worry about. alloc_val->init_req(_typeArray_alloc, raw_obj); alloc_siz->init_req(_typeArray_alloc, obj_size); alloc_reg->init_req(_typeArray_alloc, control()); alloc_i_o->init_req(_typeArray_alloc, i_o()); alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type)); } // We only go to the fast case code if we pass a number of guards. // The paths which do not pass are accumulated in the slow_region. RegionNode* slow_region = new (C, 1) RegionNode(1); record_for_igvn(slow_region); if (!stopped()) { // It's an instance. Make the slow-path tests. // If this is a virtual call, we generate a funny guard. We grab // the vtable entry corresponding to clone() from the target object. // If the target method which we are calling happens to be the // Object clone() method, we pass the guard. We do not need this // guard for non-virtual calls; the caller is known to be the native // Object clone(). if (is_virtual) { generate_virtual_guard(obj_klass, slow_region); } // The object must be cloneable and must not have a finalizer. // Both of these conditions may be checked in a single test. // We could optimize the cloneable test further, but we don't care. generate_access_flags_guard(obj_klass, // Test both conditions: JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER, // Must be cloneable but not finalizer: JVM_ACC_IS_CLONEABLE, slow_region); } if (!stopped()) { // It's an instance, and it passed the slow-path tests. PreserveJVMState pjvms(this); Node* obj_size = NULL; Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size); assert(obj_size != NULL, ""); Node* raw_obj = alloc_obj->in(1); assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); if (ReduceBulkZeroing) { AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); if (alloc != NULL && !alloc->maybe_set_complete(&_gvn)) alloc = NULL; } if (!use_ReduceInitialCardMarks()) { // Put in store barrier for any and all oops we are sticking // into this object. (We could avoid this if we could prove // that the object type contains no oop fields at all.) card_mark = true; } alloc_val->init_req(_instance_alloc, raw_obj); alloc_siz->init_req(_instance_alloc, obj_size); alloc_reg->init_req(_instance_alloc, control()); alloc_i_o->init_req(_instance_alloc, i_o()); alloc_mem->init_req(_instance_alloc, memory(raw_adr_type)); } // Generate code for the slow case. We make a call to clone(). set_control(_gvn.transform(slow_region)); if (!stopped()) { PreserveJVMState pjvms(this); CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); Node* slow_result = set_results_for_java_call(slow_call); // this->control() comes from set_results_for_java_call result_reg->init_req(_slow_path, control()); result_val->init_req(_slow_path, slow_result); result_i_o ->set_req(_slow_path, i_o()); result_mem ->set_req(_slow_path, reset_memory()); } // The object is allocated, as an array and/or an instance. Now copy it. set_control( _gvn.transform(alloc_reg) ); set_i_o( _gvn.transform(alloc_i_o) ); set_memory( _gvn.transform(alloc_mem), raw_adr_type ); Node* raw_obj = _gvn.transform(alloc_val); if (!stopped()) { // Copy the fastest available way. // (No need for PreserveJVMState, since we're using it all up now.) // TODO: generate fields/elements copies for small objects instead. Node* src = obj; Node* dest = raw_obj; Node* size = _gvn.transform(alloc_siz); // Exclude the header. int base_off = instanceOopDesc::base_offset_in_bytes(); if (UseCompressedOops) { assert(base_off % BytesPerLong != 0, "base with compressed oops"); // With compressed oops base_offset_in_bytes is 12 which creates // the gap since countx is rounded by 8 bytes below. // Copy klass and the gap. base_off = instanceOopDesc::klass_offset_in_bytes(); } src = basic_plus_adr(src, base_off); dest = basic_plus_adr(dest, base_off); // Compute the length also, if needed: Node* countx = size; countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) ); countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) )); // Select an appropriate instruction to initialize the range. // The CopyArray instruction (if supported) can be optimized // into a discrete set of scalar loads and stores. bool disjoint_bases = true; generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases, src, NULL, dest, NULL, countx); // Now that the object is properly initialized, type it as an oop. // Use a secondary InitializeNode memory barrier. InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx, raw_obj)->as_Initialize(); init->set_complete(&_gvn); // (there is no corresponding AllocateNode) Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj, TypeInstPtr::NOTNULL); new_obj = _gvn.transform(new_obj); // If necessary, emit some card marks afterwards. (Non-arrays only.) if (card_mark) { Node* no_particular_value = NULL; Node* no_particular_field = NULL; post_barrier(control(), memory(raw_adr_type), new_obj, no_particular_field, raw_adr_idx, no_particular_value, T_OBJECT, false); } // Present the results of the slow call. result_reg->init_req(_fast_path, control()); result_val->init_req(_fast_path, new_obj); result_i_o ->set_req(_fast_path, i_o()); result_mem ->set_req(_fast_path, reset_memory()); } // Return the combined state. set_control( _gvn.transform(result_reg) ); set_i_o( _gvn.transform(result_i_o) ); set_all_memory( _gvn.transform(result_mem) ); // Cast the result to a sharper type, since we know what clone does. Node* new_obj = _gvn.transform(result_val); Node* cast = new (C, 2) CheckCastPPNode(control(), new_obj, toop); push(_gvn.transform(cast)); return true; } // constants for computing the copy function enum { COPYFUNC_UNALIGNED = 0, COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize COPYFUNC_CONJOINT = 0, COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend }; // Note: The condition "disjoint" applies also for overlapping copies // where an descending copy is permitted (i.e., dest_offset <= src_offset). static address select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) { int selector = (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) + (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT); #define RETURN_STUB(xxx_arraycopy) { \ name = #xxx_arraycopy; \ return StubRoutines::xxx_arraycopy(); } switch (t) { case T_BYTE: case T_BOOLEAN: switch (selector) { case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy); case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy); } case T_CHAR: case T_SHORT: switch (selector) { case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy); case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy); } case T_INT: case T_FLOAT: switch (selector) { case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy); case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy); } case T_DOUBLE: case T_LONG: switch (selector) { case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy); case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy); } case T_ARRAY: case T_OBJECT: switch (selector) { case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy); case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy); case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy); } default: ShouldNotReachHere(); return NULL; } #undef RETURN_STUB } //------------------------------basictype2arraycopy---------------------------- address LibraryCallKit::basictype2arraycopy(BasicType t, Node* src_offset, Node* dest_offset, bool disjoint_bases, const char* &name) { const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);; const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);; bool aligned = false; bool disjoint = disjoint_bases; // if the offsets are the same, we can treat the memory regions as // disjoint, because either the memory regions are in different arrays, // or they are identical (which we can treat as disjoint.) We can also // treat a copy with a destination index less that the source index // as disjoint since a low->high copy will work correctly in this case. if (src_offset_inttype != NULL && src_offset_inttype->is_con() && dest_offset_inttype != NULL && dest_offset_inttype->is_con()) { // both indices are constants int s_offs = src_offset_inttype->get_con(); int d_offs = dest_offset_inttype->get_con(); int element_size = type2aelembytes(t); aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0); if (s_offs >= d_offs) disjoint = true; } else if (src_offset == dest_offset && src_offset != NULL) { // This can occur if the offsets are identical non-constants. disjoint = true; } return select_arraycopy_function(t, aligned, disjoint, name); } //------------------------------inline_arraycopy----------------------- bool LibraryCallKit::inline_arraycopy() { // Restore the stack and pop off the arguments. int nargs = 5; // 2 oops, 3 ints, no size_t or long assert(callee()->signature()->size() == nargs, "copy has 5 arguments"); Node *src = argument(0); Node *src_offset = argument(1); Node *dest = argument(2); Node *dest_offset = argument(3); Node *length = argument(4); // Compile time checks. If any of these checks cannot be verified at compile time, // we do not make a fast path for this call. Instead, we let the call remain as it // is. The checks we choose to mandate at compile time are: // // (1) src and dest are arrays. const Type* src_type = src->Value(&_gvn); const Type* dest_type = dest->Value(&_gvn); const TypeAryPtr* top_src = src_type->isa_aryptr(); const TypeAryPtr* top_dest = dest_type->isa_aryptr(); if (top_src == NULL || top_src->klass() == NULL || top_dest == NULL || top_dest->klass() == NULL) { // Conservatively insert a memory barrier on all memory slices. // Do not let writes into the source float below the arraycopy. insert_mem_bar(Op_MemBarCPUOrder); // Call StubRoutines::generic_arraycopy stub. generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT, src, src_offset, dest, dest_offset, length, nargs); // Do not let reads from the destination float above the arraycopy. // Since we cannot type the arrays, we don't know which slices // might be affected. We could restrict this barrier only to those // memory slices which pertain to array elements--but don't bother. if (!InsertMemBarAfterArraycopy) // (If InsertMemBarAfterArraycopy, there is already one in place.) insert_mem_bar(Op_MemBarCPUOrder); return true; } // (2) src and dest arrays must have elements of the same BasicType // Figure out the size and type of the elements we will be copying. BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); if (src_elem == T_ARRAY) src_elem = T_OBJECT; if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; if (src_elem != dest_elem || dest_elem == T_VOID) { // The component types are not the same or are not recognized. Punt. // (But, avoid the native method wrapper to JVM_ArrayCopy.) generate_slow_arraycopy(TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, nargs); return true; } //--------------------------------------------------------------------------- // We will make a fast path for this call to arraycopy. // We have the following tests left to perform: // // (3) src and dest must not be null. // (4) src_offset must not be negative. // (5) dest_offset must not be negative. // (6) length must not be negative. // (7) src_offset + length must not exceed length of src. // (8) dest_offset + length must not exceed length of dest. // (9) each element of an oop array must be assignable RegionNode* slow_region = new (C, 1) RegionNode(1); record_for_igvn(slow_region); // (3) operands must not be null // We currently perform our null checks with the do_null_check routine. // This means that the null exceptions will be reported in the caller // rather than (correctly) reported inside of the native arraycopy call. // This should be corrected, given time. We do our null check with the // stack pointer restored. _sp += nargs; src = do_null_check(src, T_ARRAY); dest = do_null_check(dest, T_ARRAY); _sp -= nargs; // (4) src_offset must not be negative. generate_negative_guard(src_offset, slow_region); // (5) dest_offset must not be negative. generate_negative_guard(dest_offset, slow_region); // (6) length must not be negative (moved to generate_arraycopy()). // generate_negative_guard(length, slow_region); // (7) src_offset + length must not exceed length of src. generate_limit_guard(src_offset, length, load_array_length(src), slow_region); // (8) dest_offset + length must not exceed length of dest. generate_limit_guard(dest_offset, length, load_array_length(dest), slow_region); // (9) each element of an oop array must be assignable // The generate_arraycopy subroutine checks this. // This is where the memory effects are placed: const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem); generate_arraycopy(adr_type, dest_elem, src, src_offset, dest, dest_offset, length, nargs, false, false, slow_region); return true; } //-----------------------------generate_arraycopy---------------------- // Generate an optimized call to arraycopy. // Caller must guard against non-arrays. // Caller must determine a common array basic-type for both arrays. // Caller must validate offsets against array bounds. // The slow_region has already collected guard failure paths // (such as out of bounds length or non-conformable array types). // The generated code has this shape, in general: // // if (length == 0) return // via zero_path // slowval = -1 // if (types unknown) { // slowval = call generic copy loop // if (slowval == 0) return // via checked_path // } else if (indexes in bounds) { // if ((is object array) && !(array type check)) { // slowval = call checked copy loop // if (slowval == 0) return // via checked_path // } else { // call bulk copy loop // return // via fast_path // } // } // // adjust params for remaining work: // if (slowval != -1) { // n = -1^slowval; src_offset += n; dest_offset += n; length -= n // } // slow_region: // call slow arraycopy(src, src_offset, dest, dest_offset, length) // return // via slow_call_path // // This routine is used from several intrinsics: System.arraycopy, // Object.clone (the array subcase), and Arrays.copyOf[Range]. // void LibraryCallKit::generate_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs, bool disjoint_bases, bool length_never_negative, RegionNode* slow_region) { if (slow_region == NULL) { slow_region = new(C,1) RegionNode(1); record_for_igvn(slow_region); } Node* original_dest = dest; AllocateArrayNode* alloc = NULL; // used for zeroing, if needed Node* raw_dest = NULL; // used before zeroing, if needed bool must_clear_dest = false; // See if this is the initialization of a newly-allocated array. // If so, we will take responsibility here for initializing it to zero. // (Note: Because tightly_coupled_allocation performs checks on the // out-edges of the dest, we need to avoid making derived pointers // from it until we have checked its uses.) if (ReduceBulkZeroing && !ZeroTLAB // pointless if already zeroed && basic_elem_type != T_CONFLICT // avoid corner case && !_gvn.eqv_uncast(src, dest) && ((alloc = tightly_coupled_allocation(dest, slow_region)) != NULL) && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0 && alloc->maybe_set_complete(&_gvn)) { // "You break it, you buy it." InitializeNode* init = alloc->initialization(); assert(init->is_complete(), "we just did this"); assert(dest->Opcode() == Op_CheckCastPP, "sanity"); assert(dest->in(0)->in(0) == init, "dest pinned"); raw_dest = dest->in(1); // grab the raw pointer! original_dest = dest; dest = raw_dest; adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory // Decouple the original InitializeNode, turning it into a simple membar. // We will build a new one at the end of this routine. init->set_req(InitializeNode::RawAddress, top()); // From this point on, every exit path is responsible for // initializing any non-copied parts of the object to zero. must_clear_dest = true; } else { // No zeroing elimination here. alloc = NULL; //original_dest = dest; //must_clear_dest = false; } // Results are placed here: enum { fast_path = 1, // normal void-returning assembly stub checked_path = 2, // special assembly stub with cleanup slow_call_path = 3, // something went wrong; call the VM zero_path = 4, // bypass when length of copy is zero bcopy_path = 5, // copy primitive array by 64-bit blocks PATH_LIMIT = 6 }; RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT); PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO); PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type); record_for_igvn(result_region); _gvn.set_type_bottom(result_i_o); _gvn.set_type_bottom(result_memory); assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice"); // The slow_control path: Node* slow_control; Node* slow_i_o = i_o(); Node* slow_mem = memory(adr_type); debug_only(slow_control = (Node*) badAddress); // Checked control path: Node* checked_control = top(); Node* checked_mem = NULL; Node* checked_i_o = NULL; Node* checked_value = NULL; if (basic_elem_type == T_CONFLICT) { assert(!must_clear_dest, ""); Node* cv = generate_generic_arraycopy(adr_type, src, src_offset, dest, dest_offset, copy_length, nargs); if (cv == NULL) cv = intcon(-1); // failure (no stub available) checked_control = control(); checked_i_o = i_o(); checked_mem = memory(adr_type); checked_value = cv; set_control(top()); // no fast path } Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative); if (not_pos != NULL) { PreserveJVMState pjvms(this); set_control(not_pos); // (6) length must not be negative. if (!length_never_negative) { generate_negative_guard(copy_length, slow_region); } if (!stopped() && must_clear_dest) { Node* dest_length = alloc->in(AllocateNode::ALength); if (_gvn.eqv_uncast(copy_length, dest_length) || _gvn.find_int_con(dest_length, 1) <= 0) { // There is no zeroing to do. } else { // Clear the whole thing since there are no source elements to copy. generate_clear_array(adr_type, dest, basic_elem_type, intcon(0), NULL, alloc->in(AllocateNode::AllocSize)); } } // Present the results of the fast call. result_region->init_req(zero_path, control()); result_i_o ->init_req(zero_path, i_o()); result_memory->init_req(zero_path, memory(adr_type)); } if (!stopped() && must_clear_dest) { // We have to initialize the *uncopied* part of the array to zero. // The copy destination is the slice dest[off..off+len]. The other slices // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length]. Node* dest_size = alloc->in(AllocateNode::AllocSize); Node* dest_length = alloc->in(AllocateNode::ALength); Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset, copy_length) ); // If there is a head section that needs zeroing, do it now. if (find_int_con(dest_offset, -1) != 0) { generate_clear_array(adr_type, dest, basic_elem_type, intcon(0), dest_offset, NULL); } // Next, perform a dynamic check on the tail length. // It is often zero, and we can win big if we prove this. // There are two wins: Avoid generating the ClearArray // with its attendant messy index arithmetic, and upgrade // the copy to a more hardware-friendly word size of 64 bits. Node* tail_ctl = NULL; if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) { Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) ); Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) ); tail_ctl = generate_slow_guard(bol_lt, NULL); assert(tail_ctl != NULL || !stopped(), "must be an outcome"); } // At this point, let's assume there is no tail. if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) { // There is no tail. Try an upgrade to a 64-bit copy. bool didit = false; { PreserveJVMState pjvms(this); didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc, src, src_offset, dest, dest_offset, dest_size); if (didit) { // Present the results of the block-copying fast call. result_region->init_req(bcopy_path, control()); result_i_o ->init_req(bcopy_path, i_o()); result_memory->init_req(bcopy_path, memory(adr_type)); } } if (didit) set_control(top()); // no regular fast path } // Clear the tail, if any. if (tail_ctl != NULL) { Node* notail_ctl = stopped() ? NULL : control(); set_control(tail_ctl); if (notail_ctl == NULL) { generate_clear_array(adr_type, dest, basic_elem_type, dest_tail, NULL, dest_size); } else { // Make a local merge. Node* done_ctl = new(C,3) RegionNode(3); Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type); done_ctl->init_req(1, notail_ctl); done_mem->init_req(1, memory(adr_type)); generate_clear_array(adr_type, dest, basic_elem_type, dest_tail, NULL, dest_size); done_ctl->init_req(2, control()); done_mem->init_req(2, memory(adr_type)); set_control( _gvn.transform(done_ctl) ); set_memory( _gvn.transform(done_mem), adr_type ); } } } BasicType copy_type = basic_elem_type; assert(basic_elem_type != T_ARRAY, "caller must fix this"); if (!stopped() && copy_type == T_OBJECT) { // If src and dest have compatible element types, we can copy bits. // Types S[] and D[] are compatible if D is a supertype of S. // // If they are not, we will use checked_oop_disjoint_arraycopy, // which performs a fast optimistic per-oop check, and backs off // further to JVM_ArrayCopy on the first per-oop check that fails. // (Actually, we don't move raw bits only; the GC requires card marks.) // Get the klassOop for both src and dest Node* src_klass = load_object_klass(src); Node* dest_klass = load_object_klass(dest); // Generate the subtype check. // This might fold up statically, or then again it might not. // // Non-static example: Copying List.elements to a new String[]. // The backing store for a List is always an Object[], // but its elements are always type String, if the generic types // are correct at the source level. // // Test S[] against D[], not S against D, because (probably) // the secondary supertype cache is less busy for S[] than S. // This usually only matters when D is an interface. Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass); // Plug failing path into checked_oop_disjoint_arraycopy if (not_subtype_ctrl != top()) { PreserveJVMState pjvms(this); set_control(not_subtype_ctrl); // (At this point we can assume disjoint_bases, since types differ.) int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc); Node* p1 = basic_plus_adr(dest_klass, ek_offset); Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM); Node* dest_elem_klass = _gvn.transform(n1); Node* cv = generate_checkcast_arraycopy(adr_type, dest_elem_klass, src, src_offset, dest, dest_offset, copy_length, nargs); if (cv == NULL) cv = intcon(-1); // failure (no stub available) checked_control = control(); checked_i_o = i_o(); checked_mem = memory(adr_type); checked_value = cv; } // At this point we know we do not need type checks on oop stores. // Let's see if we need card marks: if (alloc != NULL && use_ReduceInitialCardMarks()) { // If we do not need card marks, copy using the jint or jlong stub. copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT); assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type), "sizes agree"); } } if (!stopped()) { // Generate the fast path, if possible. PreserveJVMState pjvms(this); generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases, src, src_offset, dest, dest_offset, ConvI2X(copy_length)); // Present the results of the fast call. result_region->init_req(fast_path, control()); result_i_o ->init_req(fast_path, i_o()); result_memory->init_req(fast_path, memory(adr_type)); } // Here are all the slow paths up to this point, in one bundle: slow_control = top(); if (slow_region != NULL) slow_control = _gvn.transform(slow_region); debug_only(slow_region = (RegionNode*)badAddress); set_control(checked_control); if (!stopped()) { // Clean up after the checked call. // The returned value is either 0 or -1^K, // where K = number of partially transferred array elements. Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) ); Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) ); IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN); // If it is 0, we are done, so transfer to the end. Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) ); result_region->init_req(checked_path, checks_done); result_i_o ->init_req(checked_path, checked_i_o); result_memory->init_req(checked_path, checked_mem); // If it is not zero, merge into the slow call. set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) )); RegionNode* slow_reg2 = new(C, 3) RegionNode(3); PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO); PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type); record_for_igvn(slow_reg2); slow_reg2 ->init_req(1, slow_control); slow_i_o2 ->init_req(1, slow_i_o); slow_mem2 ->init_req(1, slow_mem); slow_reg2 ->init_req(2, control()); slow_i_o2 ->init_req(2, i_o()); slow_mem2 ->init_req(2, memory(adr_type)); slow_control = _gvn.transform(slow_reg2); slow_i_o = _gvn.transform(slow_i_o2); slow_mem = _gvn.transform(slow_mem2); if (alloc != NULL) { // We'll restart from the very beginning, after zeroing the whole thing. // This can cause double writes, but that's OK since dest is brand new. // So we ignore the low 31 bits of the value returned from the stub. } else { // We must continue the copy exactly where it failed, or else // another thread might see the wrong number of writes to dest. Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) ); Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT); slow_offset->init_req(1, intcon(0)); slow_offset->init_req(2, checked_offset); slow_offset = _gvn.transform(slow_offset); // Adjust the arguments by the conditionally incoming offset. Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) ); Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) ); Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) ); // Tweak the node variables to adjust the code produced below: src_offset = src_off_plus; dest_offset = dest_off_plus; copy_length = length_minus; } } set_control(slow_control); if (!stopped()) { // Generate the slow path, if needed. PreserveJVMState pjvms(this); // replace_in_map may trash the map set_memory(slow_mem, adr_type); set_i_o(slow_i_o); if (must_clear_dest) { generate_clear_array(adr_type, dest, basic_elem_type, intcon(0), NULL, alloc->in(AllocateNode::AllocSize)); } if (dest != original_dest) { // Promote from rawptr to oop, so it looks right in the call's GC map. dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest, TypeInstPtr::NOTNULL) ); // Edit the call's debug-info to avoid referring to original_dest. // (The problem with original_dest is that it isn't ready until // after the InitializeNode completes, but this stuff is before.) // Substitute in the locally valid dest_oop. replace_in_map(original_dest, dest); } generate_slow_arraycopy(adr_type, src, src_offset, dest, dest_offset, copy_length, nargs); result_region->init_req(slow_call_path, control()); result_i_o ->init_req(slow_call_path, i_o()); result_memory->init_req(slow_call_path, memory(adr_type)); } // Remove unused edges. for (uint i = 1; i < result_region->req(); i++) { if (result_region->in(i) == NULL) result_region->init_req(i, top()); } // Finished; return the combined state. set_control( _gvn.transform(result_region) ); set_i_o( _gvn.transform(result_i_o) ); set_memory( _gvn.transform(result_memory), adr_type ); if (dest != original_dest) { // Pin the "finished" array node after the arraycopy/zeroing operations. // Use a secondary InitializeNode memory barrier. InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, Compile::AliasIdxRaw, raw_dest)->as_Initialize(); init->set_complete(&_gvn); // (there is no corresponding AllocateNode) _gvn.hash_delete(original_dest); original_dest->set_req(0, control()); _gvn.hash_find_insert(original_dest); // put back into GVN table } // The memory edges above are precise in order to model effects around // array copies accurately to allow value numbering of field loads around // arraycopy. Such field loads, both before and after, are common in Java // collections and similar classes involving header/array data structures. // // But with low number of register or when some registers are used or killed // by arraycopy calls it causes registers spilling on stack. See 6544710. // The next memory barrier is added to avoid it. If the arraycopy can be // optimized away (which it can, sometimes) then we can manually remove // the membar also. if (InsertMemBarAfterArraycopy) insert_mem_bar(Op_MemBarCPUOrder); } // Helper function which determines if an arraycopy immediately follows // an allocation, with no intervening tests or other escapes for the object. AllocateArrayNode* LibraryCallKit::tightly_coupled_allocation(Node* ptr, RegionNode* slow_region) { if (stopped()) return NULL; // no fast path if (C->AliasLevel() == 0) return NULL; // no MergeMems around AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); if (alloc == NULL) return NULL; Node* rawmem = memory(Compile::AliasIdxRaw); // Is the allocation's memory state untouched? if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { // Bail out if there have been raw-memory effects since the allocation. // (Example: There might have been a call or safepoint.) return NULL; } rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { return NULL; } // There must be no unexpected observers of this allocation. for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { Node* obs = ptr->fast_out(i); if (obs != this->map()) { return NULL; } } // This arraycopy must unconditionally follow the allocation of the ptr. Node* alloc_ctl = ptr->in(0); assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo"); Node* ctl = control(); while (ctl != alloc_ctl) { // There may be guards which feed into the slow_region. // Any other control flow means that we might not get a chance // to finish initializing the allocated object. if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { IfNode* iff = ctl->in(0)->as_If(); Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con); assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { ctl = iff->in(0); // This test feeds the known slow_region. continue; } // One more try: Various low-level checks bottom out in // uncommon traps. If the debug-info of the trap omits // any reference to the allocation, as we've already // observed, then there can be no objection to the trap. bool found_trap = false; for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { Node* obs = not_ctl->fast_out(j); if (obs->in(0) == not_ctl && obs->is_Call() && (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->instructions_begin())) { found_trap = true; break; } } if (found_trap) { ctl = iff->in(0); // This test feeds a harmless uncommon trap. continue; } } return NULL; } // If we get this far, we have an allocation which immediately // precedes the arraycopy, and we can take over zeroing the new object. // The arraycopy will finish the initialization, and provide // a new control state to which we will anchor the destination pointer. return alloc; } // Helper for initialization of arrays, creating a ClearArray. // It writes zero bits in [start..end), within the body of an array object. // The memory effects are all chained onto the 'adr_type' alias category. // // Since the object is otherwise uninitialized, we are free // to put a little "slop" around the edges of the cleared area, // as long as it does not go back into the array's header, // or beyond the array end within the heap. // // The lower edge can be rounded down to the nearest jint and the // upper edge can be rounded up to the nearest MinObjAlignmentInBytes. // // Arguments: // adr_type memory slice where writes are generated // dest oop of the destination array // basic_elem_type element type of the destination // slice_idx array index of first element to store // slice_len number of elements to store (or NULL) // dest_size total size in bytes of the array object // // Exactly one of slice_len or dest_size must be non-NULL. // If dest_size is non-NULL, zeroing extends to the end of the object. // If slice_len is non-NULL, the slice_idx value must be a constant. void LibraryCallKit::generate_clear_array(const TypePtr* adr_type, Node* dest, BasicType basic_elem_type, Node* slice_idx, Node* slice_len, Node* dest_size) { // one or the other but not both of slice_len and dest_size: assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, ""); if (slice_len == NULL) slice_len = top(); if (dest_size == NULL) dest_size = top(); // operate on this memory slice: Node* mem = memory(adr_type); // memory slice to operate on // scaling and rounding of indexes: int scale = exact_log2(type2aelembytes(basic_elem_type)); int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); int clear_low = (-1 << scale) & (BytesPerInt - 1); int bump_bit = (-1 << scale) & BytesPerInt; // determine constant starts and ends const intptr_t BIG_NEG = -128; assert(BIG_NEG + 2*abase < 0, "neg enough"); intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG); intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG); if (slice_len_con == 0) { return; // nothing to do here } intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low; intptr_t end_con = find_intptr_t_con(dest_size, -1); if (slice_idx_con >= 0 && slice_len_con >= 0) { assert(end_con < 0, "not two cons"); end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale), BytesPerLong); } if (start_con >= 0 && end_con >= 0) { // Constant start and end. Simple. mem = ClearArrayNode::clear_memory(control(), mem, dest, start_con, end_con, &_gvn); } else if (start_con >= 0 && dest_size != top()) { // Constant start, pre-rounded end after the tail of the array. Node* end = dest_size; mem = ClearArrayNode::clear_memory(control(), mem, dest, start_con, end, &_gvn); } else if (start_con >= 0 && slice_len != top()) { // Constant start, non-constant end. End needs rounding up. // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8) intptr_t end_base = abase + (slice_idx_con << scale); int end_round = (-1 << scale) & (BytesPerLong - 1); Node* end = ConvI2X(slice_len); if (scale != 0) end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) )); end_base += end_round; end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) ); end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) ); mem = ClearArrayNode::clear_memory(control(), mem, dest, start_con, end, &_gvn); } else if (start_con < 0 && dest_size != top()) { // Non-constant start, pre-rounded end after the tail of the array. // This is almost certainly a "round-to-end" operation. Node* start = slice_idx; start = ConvI2X(start); if (scale != 0) start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) )); start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) ); if ((bump_bit | clear_low) != 0) { int to_clear = (bump_bit | clear_low); // Align up mod 8, then store a jint zero unconditionally // just before the mod-8 boundary. if (((abase + bump_bit) & ~to_clear) - bump_bit < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) { bump_bit = 0; assert((abase & to_clear) == 0, "array base must be long-aligned"); } else { // Bump 'start' up to (or past) the next jint boundary: start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) ); assert((abase & clear_low) == 0, "array base must be int-aligned"); } // Round bumped 'start' down to jlong boundary in body of array. start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) ); if (bump_bit != 0) { // Store a zero to the immediately preceding jint: Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) ); Node* p1 = basic_plus_adr(dest, x1); mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT); mem = _gvn.transform(mem); } } Node* end = dest_size; // pre-rounded mem = ClearArrayNode::clear_memory(control(), mem, dest, start, end, &_gvn); } else { // Non-constant start, unrounded non-constant end. // (Nobody zeroes a random midsection of an array using this routine.) ShouldNotReachHere(); // fix caller } // Done. set_memory(mem, adr_type); } bool LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, AllocateNode* alloc, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* dest_size) { // See if there is an advantage from block transfer. int scale = exact_log2(type2aelembytes(basic_elem_type)); if (scale >= LogBytesPerLong) return false; // it is already a block transfer // Look at the alignment of the starting offsets. int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type); const intptr_t BIG_NEG = -128; assert(BIG_NEG + 2*abase < 0, "neg enough"); intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale); intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale); if (src_off < 0 || dest_off < 0) // At present, we can only understand constants. return false; if (((src_off | dest_off) & (BytesPerLong-1)) != 0) { // Non-aligned; too bad. // One more chance: Pick off an initial 32-bit word. // This is a common case, since abase can be odd mod 8. if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt && ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) { Node* sptr = basic_plus_adr(src, src_off); Node* dptr = basic_plus_adr(dest, dest_off); Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type); store_to_memory(control(), dptr, sval, T_INT, adr_type); src_off += BytesPerInt; dest_off += BytesPerInt; } else { return false; } } assert(src_off % BytesPerLong == 0, ""); assert(dest_off % BytesPerLong == 0, ""); // Do this copy by giant steps. Node* sptr = basic_plus_adr(src, src_off); Node* dptr = basic_plus_adr(dest, dest_off); Node* countx = dest_size; countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) ); countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) ); bool disjoint_bases = true; // since alloc != NULL generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases, sptr, NULL, dptr, NULL, countx); return true; } // Helper function; generates code for the slow case. // We make a call to a runtime method which emulates the native method, // but without the native wrapper overhead. void LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs) { _sp += nargs; // any deopt will start just before call to enclosing method Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON, OptoRuntime::slow_arraycopy_Type(), OptoRuntime::slow_arraycopy_Java(), "slow_arraycopy", adr_type, src, src_offset, dest, dest_offset, copy_length); _sp -= nargs; // Handle exceptions thrown by this fellow: make_slow_call_ex(call, env()->Throwable_klass(), false); } // Helper function; generates code for cases requiring runtime checks. Node* LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type, Node* dest_elem_klass, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs) { if (stopped()) return NULL; address copyfunc_addr = StubRoutines::checkcast_arraycopy(); if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. return NULL; } // Pick out the parameters required to perform a store-check // for the target array. This is an optimistic check. It will // look in each non-null element's class, at the desired klass's // super_check_offset, for the desired klass. int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc); Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset); Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM); Node* check_offset = _gvn.transform(n3); Node* check_value = dest_elem_klass; Node* src_start = array_element_address(src, src_offset, T_OBJECT); Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT); // (We know the arrays are never conjoint, because their types differ.) Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::checkcast_arraycopy_Type(), copyfunc_addr, "checkcast_arraycopy", adr_type, // five arguments, of which two are // intptr_t (jlong in LP64) src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value); return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms)); } // Helper function; generates code for cases requiring runtime checks. Node* LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length, int nargs) { if (stopped()) return NULL; address copyfunc_addr = StubRoutines::generic_arraycopy(); if (copyfunc_addr == NULL) { // Stub was not generated, go slow path. return NULL; } Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::generic_arraycopy_Type(), copyfunc_addr, "generic_arraycopy", adr_type, src, src_offset, dest, dest_offset, copy_length); return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms)); } // Helper function; generates the fast out-of-line call to an arraycopy stub. void LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type, BasicType basic_elem_type, bool disjoint_bases, Node* src, Node* src_offset, Node* dest, Node* dest_offset, Node* copy_length) { if (stopped()) return; // nothing to do Node* src_start = src; Node* dest_start = dest; if (src_offset != NULL || dest_offset != NULL) { assert(src_offset != NULL && dest_offset != NULL, ""); src_start = array_element_address(src, src_offset, basic_elem_type); dest_start = array_element_address(dest, dest_offset, basic_elem_type); } // Figure out which arraycopy runtime method to call. const char* copyfunc_name = "arraycopy"; address copyfunc_addr = basictype2arraycopy(basic_elem_type, src_offset, dest_offset, disjoint_bases, copyfunc_name); // Call it. Note that the count_ix value is not scaled to a byte-size. make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::fast_arraycopy_Type(), copyfunc_addr, copyfunc_name, adr_type, src_start, dest_start, copy_length XTOP); }