/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_KLASS_HPP #define SHARE_VM_OOPS_KLASS_HPP #include "memory/genOopClosures.hpp" #include "memory/iterator.hpp" #include "memory/memRegion.hpp" #include "memory/specialized_oop_closures.hpp" #include "oops/klassPS.hpp" #include "oops/metadata.hpp" #include "oops/oop.hpp" #include "runtime/orderAccess.hpp" #include "trace/traceMacros.hpp" #include "utilities/accessFlags.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp" #include "gc_implementation/g1/g1OopClosures.hpp" #include "gc_implementation/parNew/parOopClosures.hpp" #endif // INCLUDE_ALL_GCS // // A Klass provides: // 1: language level class object (method dictionary etc.) // 2: provide vm dispatch behavior for the object // Both functions are combined into one C++ class. // One reason for the oop/klass dichotomy in the implementation is // that we don't want a C++ vtbl pointer in every object. Thus, // normal oops don't have any virtual functions. Instead, they // forward all "virtual" functions to their klass, which does have // a vtbl and does the C++ dispatch depending on the object's // actual type. (See oop.inline.hpp for some of the forwarding code.) // ALL FUNCTIONS IMPLEMENTING THIS DISPATCH ARE PREFIXED WITH "oop_"! // Klass layout: // [C++ vtbl ptr ] (contained in Metadata) // [layout_helper ] // [super_check_offset ] for fast subtype checks // [name ] // [secondary_super_cache] for fast subtype checks // [secondary_supers ] array of 2ndary supertypes // [primary_supers 0] // [primary_supers 1] // [primary_supers 2] // ... // [primary_supers 7] // [java_mirror ] // [super ] // [subklass ] first subclass // [next_sibling ] link to chain additional subklasses // [next_link ] // [class_loader_data] // [modifier_flags] // [access_flags ] // [last_biased_lock_bulk_revocation_time] (64 bits) // [prototype_header] // [biased_lock_revocation_count] // [alloc_count ] // [_modified_oops] // [_accumulated_modified_oops] // [trace_id] // Forward declarations. template class Array; template class GrowableArray; class ClassLoaderData; class klassVtable; class ParCompactionManager; class KlassSizeStats; class Klass : public Metadata { friend class VMStructs; protected: // note: put frequently-used fields together at start of klass structure // for better cache behavior (may not make much of a difference but sure won't hurt) enum { _primary_super_limit = 8 }; // The "layout helper" is a combined descriptor of object layout. // For klasses which are neither instance nor array, the value is zero. // // For instances, layout helper is a positive number, the instance size. // This size is already passed through align_object_size and scaled to bytes. // The low order bit is set if instances of this class cannot be // allocated using the fastpath. // // For arrays, layout helper is a negative number, containing four // distinct bytes, as follows: // MSB:[tag, hsz, ebt, log2(esz)]:LSB // where: // tag is 0x80 if the elements are oops, 0xC0 if non-oops // hsz is array header size in bytes (i.e., offset of first element) // ebt is the BasicType of the elements // esz is the element size in bytes // This packed word is arranged so as to be quickly unpacked by the // various fast paths that use the various subfields. // // The esz bits can be used directly by a SLL instruction, without masking. // // Note that the array-kind tag looks like 0x00 for instance klasses, // since their length in bytes is always less than 24Mb. // // Final note: This comes first, immediately after C++ vtable, // because it is frequently queried. jint _layout_helper; // The fields _super_check_offset, _secondary_super_cache, _secondary_supers // and _primary_supers all help make fast subtype checks. See big discussion // in doc/server_compiler/checktype.txt // // Where to look to observe a supertype (it is &_secondary_super_cache for // secondary supers, else is &_primary_supers[depth()]. juint _super_check_offset; // Class name. Instance classes: java/lang/String, etc. Array classes: [I, // [Ljava/lang/String;, etc. Set to zero for all other kinds of classes. Symbol* _name; // Cache of last observed secondary supertype Klass* _secondary_super_cache; // Array of all secondary supertypes Array* _secondary_supers; // Ordered list of all primary supertypes Klass* _primary_supers[_primary_super_limit]; // java/lang/Class instance mirroring this class oop _java_mirror; // Superclass Klass* _super; // First subclass (NULL if none); _subklass->next_sibling() is next one Klass* _subklass; // Sibling link (or NULL); links all subklasses of a klass Klass* _next_sibling; // All klasses loaded by a class loader are chained through these links Klass* _next_link; // The VM's representation of the ClassLoader used to load this class. // Provide access the corresponding instance java.lang.ClassLoader. ClassLoaderData* _class_loader_data; jint _modifier_flags; // Processed access flags, for use by Class.getModifiers. AccessFlags _access_flags; // Access flags. The class/interface distinction is stored here. // Biased locking implementation and statistics // (the 64-bit chunk goes first, to avoid some fragmentation) jlong _last_biased_lock_bulk_revocation_time; markOop _prototype_header; // Used when biased locking is both enabled and disabled for this type jint _biased_lock_revocation_count; juint _alloc_count; // allocation profiling support TRACE_DEFINE_KLASS_TRACE_ID; // Remembered sets support for the oops in the klasses. jbyte _modified_oops; // Card Table Equivalent (YC/CMS support) jbyte _accumulated_modified_oops; // Mod Union Equivalent (CMS support) // Constructor Klass(); void* operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS); public: bool is_klass() const volatile { return true; } // super Klass* super() const { return _super; } void set_super(Klass* k) { _super = k; } // initializes _super link, _primary_supers & _secondary_supers arrays void initialize_supers(Klass* k, TRAPS); void initialize_supers_impl1(Klass* k); void initialize_supers_impl2(Klass* k); // klass-specific helper for initializing _secondary_supers virtual GrowableArray* compute_secondary_supers(int num_extra_slots); // java_super is the Java-level super type as specified by Class.getSuperClass. virtual Klass* java_super() const { return NULL; } juint super_check_offset() const { return _super_check_offset; } void set_super_check_offset(juint o) { _super_check_offset = o; } Klass* secondary_super_cache() const { return _secondary_super_cache; } void set_secondary_super_cache(Klass* k) { _secondary_super_cache = k; } Array* secondary_supers() const { return _secondary_supers; } void set_secondary_supers(Array* k) { _secondary_supers = k; } // Return the element of the _super chain of the given depth. // If there is no such element, return either NULL or this. Klass* primary_super_of_depth(juint i) const { assert(i < primary_super_limit(), "oob"); Klass* super = _primary_supers[i]; assert(super == NULL || super->super_depth() == i, "correct display"); return super; } // Can this klass be a primary super? False for interfaces and arrays of // interfaces. False also for arrays or classes with long super chains. bool can_be_primary_super() const { const juint secondary_offset = in_bytes(secondary_super_cache_offset()); return super_check_offset() != secondary_offset; } virtual bool can_be_primary_super_slow() const; // Returns number of primary supers; may be a number in the inclusive range [0, primary_super_limit]. juint super_depth() const { if (!can_be_primary_super()) { return primary_super_limit(); } else { juint d = (super_check_offset() - in_bytes(primary_supers_offset())) / sizeof(Klass*); assert(d < primary_super_limit(), "oob"); assert(_primary_supers[d] == this, "proper init"); return d; } } // store an oop into a field of a Klass void klass_oop_store(oop* p, oop v); void klass_oop_store(volatile oop* p, oop v); // java mirror oop java_mirror() const { return _java_mirror; } void set_java_mirror(oop m) { klass_oop_store(&_java_mirror, m); } // modifier flags jint modifier_flags() const { return _modifier_flags; } void set_modifier_flags(jint flags) { _modifier_flags = flags; } // size helper int layout_helper() const { return _layout_helper; } void set_layout_helper(int lh) { _layout_helper = lh; } // Note: for instances layout_helper() may include padding. // Use InstanceKlass::contains_field_offset to classify field offsets. // sub/superklass links InstanceKlass* superklass() const; Klass* subklass() const; Klass* next_sibling() const; void append_to_sibling_list(); // add newly created receiver to superklass' subklass list void set_next_link(Klass* k) { _next_link = k; } Klass* next_link() const { return _next_link; } // The next klass defined by the class loader. // class loader data ClassLoaderData* class_loader_data() const { return _class_loader_data; } void set_class_loader_data(ClassLoaderData* loader_data) { _class_loader_data = loader_data; } // The Klasses are not placed in the Heap, so the Card Table or // the Mod Union Table can't be used to mark when klasses have modified oops. // The CT and MUT bits saves this information for the individual Klasses. void record_modified_oops() { _modified_oops = 1; } void clear_modified_oops() { _modified_oops = 0; } bool has_modified_oops() { return _modified_oops == 1; } void accumulate_modified_oops() { if (has_modified_oops()) _accumulated_modified_oops = 1; } void clear_accumulated_modified_oops() { _accumulated_modified_oops = 0; } bool has_accumulated_modified_oops() { return _accumulated_modified_oops == 1; } protected: // internal accessors Klass* subklass_oop() const { return _subklass; } Klass* next_sibling_oop() const { return _next_sibling; } void set_subklass(Klass* s); void set_next_sibling(Klass* s); public: // Allocation profiling support juint alloc_count() const { return _alloc_count; } void set_alloc_count(juint n) { _alloc_count = n; } virtual juint alloc_size() const = 0; virtual void set_alloc_size(juint n) = 0; // Compiler support static ByteSize super_offset() { return in_ByteSize(offset_of(Klass, _super)); } static ByteSize super_check_offset_offset() { return in_ByteSize(offset_of(Klass, _super_check_offset)); } static ByteSize primary_supers_offset() { return in_ByteSize(offset_of(Klass, _primary_supers)); } static ByteSize secondary_super_cache_offset() { return in_ByteSize(offset_of(Klass, _secondary_super_cache)); } static ByteSize secondary_supers_offset() { return in_ByteSize(offset_of(Klass, _secondary_supers)); } static ByteSize java_mirror_offset() { return in_ByteSize(offset_of(Klass, _java_mirror)); } static ByteSize modifier_flags_offset() { return in_ByteSize(offset_of(Klass, _modifier_flags)); } static ByteSize layout_helper_offset() { return in_ByteSize(offset_of(Klass, _layout_helper)); } static ByteSize access_flags_offset() { return in_ByteSize(offset_of(Klass, _access_flags)); } // Unpacking layout_helper: enum { _lh_neutral_value = 0, // neutral non-array non-instance value _lh_instance_slow_path_bit = 0x01, _lh_log2_element_size_shift = BitsPerByte*0, _lh_log2_element_size_mask = BitsPerLong-1, _lh_element_type_shift = BitsPerByte*1, _lh_element_type_mask = right_n_bits(BitsPerByte), // shifted mask _lh_header_size_shift = BitsPerByte*2, _lh_header_size_mask = right_n_bits(BitsPerByte), // shifted mask _lh_array_tag_bits = 2, _lh_array_tag_shift = BitsPerInt - _lh_array_tag_bits, _lh_array_tag_type_value = ~0x00, // 0xC0000000 >> 30 _lh_array_tag_obj_value = ~0x01 // 0x80000000 >> 30 }; static int layout_helper_size_in_bytes(jint lh) { assert(lh > (jint)_lh_neutral_value, "must be instance"); return (int) lh & ~_lh_instance_slow_path_bit; } static bool layout_helper_needs_slow_path(jint lh) { assert(lh > (jint)_lh_neutral_value, "must be instance"); return (lh & _lh_instance_slow_path_bit) != 0; } static bool layout_helper_is_instance(jint lh) { return (jint)lh > (jint)_lh_neutral_value; } static bool layout_helper_is_array(jint lh) { return (jint)lh < (jint)_lh_neutral_value; } static bool layout_helper_is_typeArray(jint lh) { // _lh_array_tag_type_value == (lh >> _lh_array_tag_shift); return (juint)lh >= (juint)(_lh_array_tag_type_value << _lh_array_tag_shift); } static bool layout_helper_is_objArray(jint lh) { // _lh_array_tag_obj_value == (lh >> _lh_array_tag_shift); return (jint)lh < (jint)(_lh_array_tag_type_value << _lh_array_tag_shift); } static int layout_helper_header_size(jint lh) { assert(lh < (jint)_lh_neutral_value, "must be array"); int hsize = (lh >> _lh_header_size_shift) & _lh_header_size_mask; assert(hsize > 0 && hsize < (int)sizeof(oopDesc)*3, "sanity"); return hsize; } static BasicType layout_helper_element_type(jint lh) { assert(lh < (jint)_lh_neutral_value, "must be array"); int btvalue = (lh >> _lh_element_type_shift) & _lh_element_type_mask; assert(btvalue >= T_BOOLEAN && btvalue <= T_OBJECT, "sanity"); return (BasicType) btvalue; } static int layout_helper_log2_element_size(jint lh) { assert(lh < (jint)_lh_neutral_value, "must be array"); int l2esz = (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask; assert(l2esz <= LogBitsPerLong, "sanity"); return l2esz; } static jint array_layout_helper(jint tag, int hsize, BasicType etype, int log2_esize) { return (tag << _lh_array_tag_shift) | (hsize << _lh_header_size_shift) | ((int)etype << _lh_element_type_shift) | (log2_esize << _lh_log2_element_size_shift); } static jint instance_layout_helper(jint size, bool slow_path_flag) { return (size << LogHeapWordSize) | (slow_path_flag ? _lh_instance_slow_path_bit : 0); } static int layout_helper_to_size_helper(jint lh) { assert(lh > (jint)_lh_neutral_value, "must be instance"); // Note that the following expression discards _lh_instance_slow_path_bit. return lh >> LogHeapWordSize; } // Out-of-line version computes everything based on the etype: static jint array_layout_helper(BasicType etype); // What is the maximum number of primary superclasses any klass can have? #ifdef PRODUCT static juint primary_super_limit() { return _primary_super_limit; } #else static juint primary_super_limit() { assert(FastSuperclassLimit <= _primary_super_limit, "parameter oob"); return FastSuperclassLimit; } #endif // vtables virtual klassVtable* vtable() const { return NULL; } virtual int vtable_length() const { return 0; } // subclass check bool is_subclass_of(const Klass* k) const; // subtype check: true if is_subclass_of, or if k is interface and receiver implements it bool is_subtype_of(Klass* k) const { juint off = k->super_check_offset(); Klass* sup = *(Klass**)( (address)this + off ); const juint secondary_offset = in_bytes(secondary_super_cache_offset()); if (sup == k) { return true; } else if (off != secondary_offset) { return false; } else { return search_secondary_supers(k); } } bool search_secondary_supers(Klass* k) const; // Find LCA in class hierarchy Klass *LCA( Klass *k ); // Check whether reflection/jni/jvm code is allowed to instantiate this class; // if not, throw either an Error or an Exception. virtual void check_valid_for_instantiation(bool throwError, TRAPS); // array copying virtual void copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS); // tells if the class should be initialized virtual bool should_be_initialized() const { return false; } // initializes the klass virtual void initialize(TRAPS); // lookup operation for MethodLookupCache friend class MethodLookupCache; virtual Method* uncached_lookup_method(Symbol* name, Symbol* signature) const; public: Method* lookup_method(Symbol* name, Symbol* signature) const { return uncached_lookup_method(name, signature); } // array class with specific rank Klass* array_klass(int rank, TRAPS) { return array_klass_impl(false, rank, THREAD); } // array class with this klass as element type Klass* array_klass(TRAPS) { return array_klass_impl(false, THREAD); } // These will return NULL instead of allocating on the heap: // NB: these can block for a mutex, like other functions with TRAPS arg. Klass* array_klass_or_null(int rank); Klass* array_klass_or_null(); virtual oop protection_domain() { return NULL; } oop class_loader() const; virtual oop klass_holder() const { return class_loader(); } protected: virtual Klass* array_klass_impl(bool or_null, int rank, TRAPS); virtual Klass* array_klass_impl(bool or_null, TRAPS); public: // CDS support - remove and restore oops from metadata. Oops are not shared. virtual void remove_unshareable_info(); virtual void restore_unshareable_info(TRAPS); protected: // computes the subtype relationship virtual bool compute_is_subtype_of(Klass* k); public: // subclass accessor (here for convenience; undefined for non-klass objects) virtual bool is_leaf_class() const { fatal("not a class"); return false; } public: // ALL FUNCTIONS BELOW THIS POINT ARE DISPATCHED FROM AN OOP // These functions describe behavior for the oop not the KLASS. // actual oop size of obj in memory virtual int oop_size(oop obj) const = 0; // Size of klass in word size. virtual int size() const = 0; #if INCLUDE_SERVICES virtual void collect_statistics(KlassSizeStats *sz) const; #endif // Returns the Java name for a class (Resource allocated) // For arrays, this returns the name of the element with a leading '['. // For classes, this returns the name with the package separators // turned into '.'s. const char* external_name() const; // Returns the name for a class (Resource allocated) as the class // would appear in a signature. // For arrays, this returns the name of the element with a leading '['. // For classes, this returns the name with a leading 'L' and a trailing ';' // and the package separators as '/'. virtual const char* signature_name() const; // garbage collection support virtual void oop_follow_contents(oop obj) = 0; virtual int oop_adjust_pointers(oop obj) = 0; // Parallel Scavenge and Parallel Old PARALLEL_GC_DECLS_PV // type testing operations protected: virtual bool oop_is_instance_slow() const { return false; } virtual bool oop_is_array_slow() const { return false; } virtual bool oop_is_objArray_slow() const { return false; } virtual bool oop_is_typeArray_slow() const { return false; } public: virtual bool oop_is_instanceMirror() const { return false; } virtual bool oop_is_instanceRef() const { return false; } // Fast non-virtual versions #ifndef ASSERT #define assert_same_query(xval, xcheck) xval #else private: static bool assert_same_query(bool xval, bool xslow) { assert(xval == xslow, "slow and fast queries agree"); return xval; } public: #endif inline bool oop_is_instance() const { return assert_same_query( layout_helper_is_instance(layout_helper()), oop_is_instance_slow()); } inline bool oop_is_array() const { return assert_same_query( layout_helper_is_array(layout_helper()), oop_is_array_slow()); } inline bool oop_is_objArray() const { return assert_same_query( layout_helper_is_objArray(layout_helper()), oop_is_objArray_slow()); } inline bool oop_is_typeArray() const { return assert_same_query( layout_helper_is_typeArray(layout_helper()), oop_is_typeArray_slow()); } #undef assert_same_query // Access flags AccessFlags access_flags() const { return _access_flags; } void set_access_flags(AccessFlags flags) { _access_flags = flags; } bool is_public() const { return _access_flags.is_public(); } bool is_final() const { return _access_flags.is_final(); } bool is_interface() const { return _access_flags.is_interface(); } bool is_abstract() const { return _access_flags.is_abstract(); } bool is_super() const { return _access_flags.is_super(); } bool is_synthetic() const { return _access_flags.is_synthetic(); } void set_is_synthetic() { _access_flags.set_is_synthetic(); } bool has_finalizer() const { return _access_flags.has_finalizer(); } bool has_final_method() const { return _access_flags.has_final_method(); } void set_has_finalizer() { _access_flags.set_has_finalizer(); } void set_has_final_method() { _access_flags.set_has_final_method(); } bool is_cloneable() const { return _access_flags.is_cloneable(); } void set_is_cloneable() { _access_flags.set_is_cloneable(); } bool has_vanilla_constructor() const { return _access_flags.has_vanilla_constructor(); } void set_has_vanilla_constructor() { _access_flags.set_has_vanilla_constructor(); } bool has_miranda_methods () const { return access_flags().has_miranda_methods(); } void set_has_miranda_methods() { _access_flags.set_has_miranda_methods(); } // Biased locking support // Note: the prototype header is always set up to be at least the // prototype markOop. If biased locking is enabled it may further be // biasable and have an epoch. markOop prototype_header() const { return _prototype_header; } // NOTE: once instances of this klass are floating around in the // system, this header must only be updated at a safepoint. // NOTE 2: currently we only ever set the prototype header to the // biasable prototype for instanceKlasses. There is no technical // reason why it could not be done for arrayKlasses aside from // wanting to reduce the initial scope of this optimization. There // are potential problems in setting the bias pattern for // JVM-internal oops. inline void set_prototype_header(markOop header); static ByteSize prototype_header_offset() { return in_ByteSize(offset_of(Klass, _prototype_header)); } int biased_lock_revocation_count() const { return (int) _biased_lock_revocation_count; } // Atomically increments biased_lock_revocation_count and returns updated value int atomic_incr_biased_lock_revocation_count(); void set_biased_lock_revocation_count(int val) { _biased_lock_revocation_count = (jint) val; } jlong last_biased_lock_bulk_revocation_time() { return _last_biased_lock_bulk_revocation_time; } void set_last_biased_lock_bulk_revocation_time(jlong cur_time) { _last_biased_lock_bulk_revocation_time = cur_time; } TRACE_DEFINE_KLASS_METHODS; // garbage collection support virtual void oops_do(OopClosure* cl); // Iff the class loader (or mirror for anonymous classes) is alive the // Klass is considered alive. // The is_alive closure passed in depends on the Garbage Collector used. bool is_loader_alive(BoolObjectClosure* is_alive); static void clean_weak_klass_links(BoolObjectClosure* is_alive); // Prefetch within oop iterators. This is a macro because we // can't guarantee that the compiler will inline it. In 64-bit // it generally doesn't. Signature is // // static void prefetch_beyond(oop* const start, // oop* const end, // const intx foffset, // const Prefetch::style pstyle); #define prefetch_beyond(start, end, foffset, pstyle) { \ const intx foffset_ = (foffset); \ const Prefetch::style pstyle_ = (pstyle); \ assert(foffset_ > 0, "prefetch beyond, not behind"); \ if (pstyle_ != Prefetch::do_none) { \ oop* ref = (start); \ if (ref < (end)) { \ switch (pstyle_) { \ case Prefetch::do_read: \ Prefetch::read(*ref, foffset_); \ break; \ case Prefetch::do_write: \ Prefetch::write(*ref, foffset_); \ break; \ default: \ ShouldNotReachHere(); \ break; \ } \ } \ } \ } // iterators virtual int oop_oop_iterate(oop obj, ExtendedOopClosure* blk) = 0; virtual int oop_oop_iterate_v(oop obj, ExtendedOopClosure* blk) { return oop_oop_iterate(obj, blk); } #if INCLUDE_ALL_GCS // In case we don't have a specialized backward scanner use forward // iteration. virtual int oop_oop_iterate_backwards_v(oop obj, ExtendedOopClosure* blk) { return oop_oop_iterate_v(obj, blk); } #endif // INCLUDE_ALL_GCS // Iterates "blk" over all the oops in "obj" (of type "this") within "mr". // (I don't see why the _m should be required, but without it the Solaris // C++ gives warning messages about overridings of the "oop_oop_iterate" // defined above "hiding" this virtual function. (DLD, 6/20/00)) */ virtual int oop_oop_iterate_m(oop obj, ExtendedOopClosure* blk, MemRegion mr) = 0; virtual int oop_oop_iterate_v_m(oop obj, ExtendedOopClosure* blk, MemRegion mr) { return oop_oop_iterate_m(obj, blk, mr); } // Versions of the above iterators specialized to particular subtypes // of OopClosure, to avoid closure virtual calls. #define Klass_OOP_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \ virtual int oop_oop_iterate##nv_suffix(oop obj, OopClosureType* blk) { \ /* Default implementation reverts to general version. */ \ return oop_oop_iterate(obj, blk); \ } \ \ /* Iterates "blk" over all the oops in "obj" (of type "this") within "mr". \ (I don't see why the _m should be required, but without it the Solaris \ C++ gives warning messages about overridings of the "oop_oop_iterate" \ defined above "hiding" this virtual function. (DLD, 6/20/00)) */ \ virtual int oop_oop_iterate##nv_suffix##_m(oop obj, \ OopClosureType* blk, \ MemRegion mr) { \ return oop_oop_iterate_m(obj, blk, mr); \ } SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_DECL) SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_DECL) #if INCLUDE_ALL_GCS #define Klass_OOP_OOP_ITERATE_BACKWARDS_DECL(OopClosureType, nv_suffix) \ virtual int oop_oop_iterate_backwards##nv_suffix(oop obj, \ OopClosureType* blk) { \ /* Default implementation reverts to general version. */ \ return oop_oop_iterate_backwards_v(obj, blk); \ } SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL) SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL) #endif // INCLUDE_ALL_GCS virtual void array_klasses_do(void f(Klass* k)) {} virtual void with_array_klasses_do(void f(Klass* k)); // Return self, except for abstract classes with exactly 1 // implementor. Then return the 1 concrete implementation. Klass *up_cast_abstract(); // klass name Symbol* name() const { return _name; } void set_name(Symbol* n); public: // jvm support virtual jint compute_modifier_flags(TRAPS) const; // JVMTI support virtual jint jvmti_class_status() const; // Printing virtual void print_on(outputStream* st) const; virtual void oop_print_value_on(oop obj, outputStream* st); virtual void oop_print_on (oop obj, outputStream* st); virtual const char* internal_name() const = 0; // Verification virtual void verify_on(outputStream* st); void verify() { verify_on(tty); } #ifndef PRODUCT void verify_vtable_index(int index); #endif virtual void oop_verify_on(oop obj, outputStream* st); private: // barriers used by klass_oop_store void klass_update_barrier_set(oop v); void klass_update_barrier_set_pre(void* p, oop v); }; #endif // SHARE_VM_OOPS_KLASS_HPP