/* * Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_doCall.cpp.incl" #ifndef PRODUCT void trace_type_profile(ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) { if (TraceTypeProfile || PrintInlining || PrintOptoInlining) { tty->print(" "); for( int i = 0; i < depth; i++ ) tty->print(" "); if (!PrintOpto) { method->print_short_name(); tty->print(" ->"); } tty->print(" @ %d ", bci); prof_method->print_short_name(); tty->print(" >>TypeProfile (%d/%d counts) = ", receiver_count, site_count); prof_klass->name()->print_symbol(); tty->print_cr(" (%d bytes)", prof_method->code_size()); } } #endif CallGenerator* Compile::call_generator(ciMethod* call_method, int vtable_index, bool call_is_virtual, JVMState* jvms, bool allow_inline, float prof_factor) { CallGenerator* cg; // Dtrace currently doesn't work unless all calls are vanilla if (env()->dtrace_method_probes()) { allow_inline = false; } // Note: When we get profiling during stage-1 compiles, we want to pull // from more specific profile data which pertains to this inlining. // Right now, ignore the information in jvms->caller(), and do method[bci]. ciCallProfile profile = jvms->method()->call_profile_at_bci(jvms->bci()); // See how many times this site has been invoked. int site_count = profile.count(); int receiver_count = -1; if (call_is_virtual && UseTypeProfile && profile.has_receiver(0)) { // Receivers in the profile structure are ordered by call counts // so that the most called (major) receiver is profile.receiver(0). receiver_count = profile.receiver_count(0); } CompileLog* log = this->log(); if (log != NULL) { int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1; int r2id = (profile.morphism() == 2)? log->identify(profile.receiver(1)):-1; log->begin_elem("call method='%d' count='%d' prof_factor='%g'", log->identify(call_method), site_count, prof_factor); if (call_is_virtual) log->print(" virtual='1'"); if (allow_inline) log->print(" inline='1'"); if (receiver_count >= 0) { log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count); if (profile.has_receiver(1)) { log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1)); } } log->end_elem(); } // Special case the handling of certain common, profitable library // methods. If these methods are replaced with specialized code, // then we return it as the inlined version of the call. // We do this before the strict f.p. check below because the // intrinsics handle strict f.p. correctly. if (allow_inline) { cg = find_intrinsic(call_method, call_is_virtual); if (cg != NULL) return cg; } // Do not inline strict fp into non-strict code, or the reverse bool caller_method_is_strict = jvms->method()->is_strict(); if( caller_method_is_strict ^ call_method->is_strict() ) { allow_inline = false; } // Attempt to inline... if (allow_inline) { // The profile data is only partly attributable to this caller, // scale back the call site information. float past_uses = jvms->method()->scale_count(site_count, prof_factor); // This is the number of times we expect the call code to be used. float expected_uses = past_uses; // Try inlining a bytecoded method: if (!call_is_virtual) { InlineTree* ilt; if (UseOldInlining) { ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method()); } else { // Make a disembodied, stateless ILT. // TO DO: When UseOldInlining is removed, copy the ILT code elsewhere. float site_invoke_ratio = prof_factor; // Note: ilt is for the root of this parse, not the present call site. ilt = new InlineTree(this, jvms->method(), jvms->caller(), site_invoke_ratio, 0); } WarmCallInfo scratch_ci; if (!UseOldInlining) scratch_ci.init(jvms, call_method, profile, prof_factor); WarmCallInfo* ci = ilt->ok_to_inline(call_method, jvms, profile, &scratch_ci); assert(ci != &scratch_ci, "do not let this pointer escape"); bool allow_inline = (ci != NULL && !ci->is_cold()); bool require_inline = (allow_inline && ci->is_hot()); if (allow_inline) { CallGenerator* cg = CallGenerator::for_inline(call_method, expected_uses); if (require_inline && cg != NULL && should_delay_inlining(call_method, jvms)) { // Delay the inlining of this method to give us the // opportunity to perform some high level optimizations // first. return CallGenerator::for_late_inline(call_method, cg); } if (cg == NULL) { // Fall through. } else if (require_inline || !InlineWarmCalls) { return cg; } else { CallGenerator* cold_cg = call_generator(call_method, vtable_index, call_is_virtual, jvms, false, prof_factor); return CallGenerator::for_warm_call(ci, cold_cg, cg); } } } // Try using the type profile. if (call_is_virtual && site_count > 0 && receiver_count > 0) { // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count. bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent); ciMethod* receiver_method = NULL; if (have_major_receiver || profile.morphism() == 1 || (profile.morphism() == 2 && UseBimorphicInlining)) { // receiver_method = profile.method(); // Profiles do not suggest methods now. Look it up in the major receiver. receiver_method = call_method->resolve_invoke(jvms->method()->holder(), profile.receiver(0)); } if (receiver_method != NULL) { // The single majority receiver sufficiently outweighs the minority. CallGenerator* hit_cg = this->call_generator(receiver_method, vtable_index, !call_is_virtual, jvms, allow_inline, prof_factor); if (hit_cg != NULL) { // Look up second receiver. CallGenerator* next_hit_cg = NULL; ciMethod* next_receiver_method = NULL; if (profile.morphism() == 2 && UseBimorphicInlining) { next_receiver_method = call_method->resolve_invoke(jvms->method()->holder(), profile.receiver(1)); if (next_receiver_method != NULL) { next_hit_cg = this->call_generator(next_receiver_method, vtable_index, !call_is_virtual, jvms, allow_inline, prof_factor); if (next_hit_cg != NULL && !next_hit_cg->is_inline() && have_major_receiver && UseOnlyInlinedBimorphic) { // Skip if we can't inline second receiver's method next_hit_cg = NULL; } } } CallGenerator* miss_cg; if (( profile.morphism() == 1 || (profile.morphism() == 2 && next_hit_cg != NULL) ) && !too_many_traps(Deoptimization::Reason_class_check) // Check only total number of traps per method to allow // the transition from monomorphic to bimorphic case between // compilations without falling into virtual call. // A monomorphic case may have the class_check trap flag is set // due to the time gap between the uncommon trap processing // when flags are set in MDO and the call site bytecode execution // in Interpreter when MDO counters are updated. // There was also class_check trap in monomorphic case due to // the bug 6225440. ) { // Generate uncommon trap for class check failure path // in case of monomorphic or bimorphic virtual call site. miss_cg = CallGenerator::for_uncommon_trap(call_method, Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); } else { // Generate virtual call for class check failure path // in case of polymorphic virtual call site. miss_cg = CallGenerator::for_virtual_call(call_method, vtable_index); } if (miss_cg != NULL) { if (next_hit_cg != NULL) { NOT_PRODUCT(trace_type_profile(jvms->method(), jvms->depth(), jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1))); // We don't need to record dependency on a receiver here and below. // Whenever we inline, the dependency is added by Parse::Parse(). miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX); } if (miss_cg != NULL) { NOT_PRODUCT(trace_type_profile(jvms->method(), jvms->depth(), jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count)); cg = CallGenerator::for_predicted_call(profile.receiver(0), miss_cg, hit_cg, profile.receiver_prob(0)); if (cg != NULL) return cg; } } } } } } // Do MethodHandle calls. if (call_method->is_method_handle_invoke()) { if (jvms->method()->java_code_at_bci(jvms->bci()) != Bytecodes::_invokedynamic) { GraphKit kit(jvms); Node* n = kit.argument(0); if (n->Opcode() == Op_ConP) { const TypeOopPtr* oop_ptr = n->bottom_type()->is_oopptr(); ciObject* const_oop = oop_ptr->const_oop(); ciMethodHandle* method_handle = const_oop->as_method_handle(); // Set the actually called method to have access to the class // and signature in the MethodHandleCompiler. method_handle->set_callee(call_method); // Get an adapter for the MethodHandle. ciMethod* target_method = method_handle->get_method_handle_adapter(); CallGenerator* hit_cg = this->call_generator(target_method, vtable_index, false, jvms, true, prof_factor); if (hit_cg != NULL && hit_cg->is_inline()) return hit_cg; } return CallGenerator::for_direct_call(call_method); } else { // Get the MethodHandle from the CallSite. ciMethod* caller_method = jvms->method(); ciBytecodeStream str(caller_method); str.force_bci(jvms->bci()); // Set the stream to the invokedynamic bci. ciCallSite* call_site = str.get_call_site(); ciMethodHandle* method_handle = call_site->get_target(); // Set the actually called method to have access to the class // and signature in the MethodHandleCompiler. method_handle->set_callee(call_method); // Get an adapter for the MethodHandle. ciMethod* target_method = method_handle->get_invokedynamic_adapter(); CallGenerator* hit_cg = this->call_generator(target_method, vtable_index, false, jvms, true, prof_factor); if (hit_cg != NULL && hit_cg->is_inline()) { CallGenerator* miss_cg = CallGenerator::for_dynamic_call(call_method); return CallGenerator::for_predicted_dynamic_call(method_handle, miss_cg, hit_cg, prof_factor); } // If something failed, generate a normal dynamic call. return CallGenerator::for_dynamic_call(call_method); } } // There was no special inlining tactic, or it bailed out. // Use a more generic tactic, like a simple call. if (call_is_virtual) { return CallGenerator::for_virtual_call(call_method, vtable_index); } else { // Class Hierarchy Analysis or Type Profile reveals a unique target, // or it is a static or special call. return CallGenerator::for_direct_call(call_method, should_delay_inlining(call_method, jvms)); } } // Return true for methods that shouldn't be inlined early so that // they are easier to analyze and optimize as intrinsics. bool Compile::should_delay_inlining(ciMethod* call_method, JVMState* jvms) { if (has_stringbuilder()) { if ((call_method->holder() == C->env()->StringBuilder_klass() || call_method->holder() == C->env()->StringBuffer_klass()) && (jvms->method()->holder() == C->env()->StringBuilder_klass() || jvms->method()->holder() == C->env()->StringBuffer_klass())) { // Delay SB calls only when called from non-SB code return false; } switch (call_method->intrinsic_id()) { case vmIntrinsics::_StringBuilder_void: case vmIntrinsics::_StringBuilder_int: case vmIntrinsics::_StringBuilder_String: case vmIntrinsics::_StringBuilder_append_char: case vmIntrinsics::_StringBuilder_append_int: case vmIntrinsics::_StringBuilder_append_String: case vmIntrinsics::_StringBuilder_toString: case vmIntrinsics::_StringBuffer_void: case vmIntrinsics::_StringBuffer_int: case vmIntrinsics::_StringBuffer_String: case vmIntrinsics::_StringBuffer_append_char: case vmIntrinsics::_StringBuffer_append_int: case vmIntrinsics::_StringBuffer_append_String: case vmIntrinsics::_StringBuffer_toString: case vmIntrinsics::_Integer_toString: return true; case vmIntrinsics::_String_String: { Node* receiver = jvms->map()->in(jvms->argoff() + 1); if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) { CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava(); ciMethod* m = csj->method(); if (m != NULL && (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString || m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString)) // Delay String.(new SB()) return true; } return false; } default: return false; } } return false; } // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) { // Additional inputs to consider... // bc = bc() // caller = method() // iter().get_method_holder_index() assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" ); // Interface classes can be loaded & linked and never get around to // being initialized. Uncommon-trap for not-initialized static or // v-calls. Let interface calls happen. ciInstanceKlass* holder_klass = dest_method->holder(); if (!holder_klass->is_initialized() && !holder_klass->is_interface()) { uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_reinterpret, holder_klass); return true; } assert(dest_method->will_link(method()->holder(), klass, bc()), "dest_method: typeflow responsibility"); return false; } //------------------------------do_call---------------------------------------- // Handle your basic call. Inline if we can & want to, else just setup call. void Parse::do_call() { // It's likely we are going to add debug info soon. // Also, if we inline a guy who eventually needs debug info for this JVMS, // our contribution to it is cleaned up right here. kill_dead_locals(); // Set frequently used booleans bool is_virtual = bc() == Bytecodes::_invokevirtual; bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface; bool has_receiver = is_virtual_or_interface || bc() == Bytecodes::_invokespecial; bool is_invokedynamic = bc() == Bytecodes::_invokedynamic; // Find target being called bool will_link; ciMethod* dest_method = iter().get_method(will_link); ciInstanceKlass* holder_klass = dest_method->holder(); ciKlass* holder = iter().get_declared_method_holder(); ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); int nargs = dest_method->arg_size(); if (is_invokedynamic) nargs -= 1; // uncommon-trap when callee is unloaded, uninitialized or will not link // bailout when too many arguments for register representation if (!will_link || can_not_compile_call_site(dest_method, klass)) { #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci()); dest_method->print_name(); tty->cr(); } #endif return; } assert(holder_klass->is_loaded(), ""); assert((dest_method->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // Note: this takes into account invokeinterface of methods declared in java/lang/Object, // which should be invokevirtuals but according to the VM spec may be invokeinterfaces assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc"); // Note: In the absence of miranda methods, an abstract class K can perform // an invokevirtual directly on an interface method I.m if K implements I. // --------------------- // Does Class Hierarchy Analysis reveal only a single target of a v-call? // Then we may inline or make a static call, but become dependent on there being only 1 target. // Does the call-site type profile reveal only one receiver? // Then we may introduce a run-time check and inline on the path where it succeeds. // The other path may uncommon_trap, check for another receiver, or do a v-call. // Choose call strategy. bool call_is_virtual = is_virtual_or_interface; int vtable_index = methodOopDesc::invalid_vtable_index; ciMethod* call_method = dest_method; // Try to get the most accurate receiver type if (is_virtual_or_interface) { Node* receiver_node = stack(sp() - nargs); const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr(); ciMethod* optimized_virtual_method = optimize_inlining(method(), bci(), klass, dest_method, receiver_type); // Have the call been sufficiently improved such that it is no longer a virtual? if (optimized_virtual_method != NULL) { call_method = optimized_virtual_method; call_is_virtual = false; } else if (!UseInlineCaches && is_virtual && call_method->is_loaded()) { // We can make a vtable call at this site vtable_index = call_method->resolve_vtable_index(method()->holder(), klass); } } // Note: It's OK to try to inline a virtual call. // The call generator will not attempt to inline a polymorphic call // unless it knows how to optimize the receiver dispatch. bool try_inline = (C->do_inlining() || InlineAccessors); // --------------------- inc_sp(- nargs); // Temporarily pop args for JVM state of call JVMState* jvms = sync_jvms(); // --------------------- // Decide call tactic. // This call checks with CHA, the interpreter profile, intrinsics table, etc. // It decides whether inlining is desirable or not. CallGenerator* cg = C->call_generator(call_method, vtable_index, call_is_virtual, jvms, try_inline, prof_factor()); // --------------------- // Round double arguments before call round_double_arguments(dest_method); #ifndef PRODUCT // bump global counters for calls count_compiled_calls(false/*at_method_entry*/, cg->is_inline()); // Record first part of parsing work for this call parse_histogram()->record_change(); #endif // not PRODUCT assert(jvms == this->jvms(), "still operating on the right JVMS"); assert(jvms_in_sync(), "jvms must carry full info into CG"); // save across call, for a subsequent cast_not_null. Node* receiver = has_receiver ? argument(0) : NULL; // Bump method data counters (We profile *before* the call is made // because exceptions don't return to the call site.) profile_call(receiver); JVMState* new_jvms; if ((new_jvms = cg->generate(jvms)) == NULL) { // When inlining attempt fails (e.g., too many arguments), // it may contaminate the current compile state, making it // impossible to pull back and try again. Once we call // cg->generate(), we are committed. If it fails, the whole // compilation task is compromised. if (failing()) return; #ifndef PRODUCT if (PrintOpto || PrintOptoInlining || PrintInlining) { // Only one fall-back, so if an intrinsic fails, ignore any bytecodes. if (cg->is_intrinsic() && call_method->code_size() > 0) { tty->print("Bailed out of intrinsic, will not inline: "); call_method->print_name(); tty->cr(); } } #endif // This can happen if a library intrinsic is available, but refuses // the call site, perhaps because it did not match a pattern the // intrinsic was expecting to optimize. The fallback position is // to call out-of-line. try_inline = false; // Inline tactic bailed out. cg = C->call_generator(call_method, vtable_index, call_is_virtual, jvms, try_inline, prof_factor()); if ((new_jvms = cg->generate(jvms)) == NULL) { guarantee(failing(), "call failed to generate: calls should work"); return; } } if (cg->is_inline()) { // Accumulate has_loops estimate C->set_has_loops(C->has_loops() || call_method->has_loops()); C->env()->notice_inlined_method(call_method); } // Reset parser state from [new_]jvms, which now carries results of the call. // Return value (if any) is already pushed on the stack by the cg. add_exception_states_from(new_jvms); if (new_jvms->map()->control() == top()) { stop_and_kill_map(); } else { assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged"); set_jvms(new_jvms); } if (!stopped()) { // This was some sort of virtual call, which did a null check for us. // Now we can assert receiver-not-null, on the normal return path. if (receiver != NULL && cg->is_virtual()) { Node* cast = cast_not_null(receiver); // %%% assert(receiver == cast, "should already have cast the receiver"); } // Round double result after a call from strict to non-strict code round_double_result(dest_method); // If the return type of the method is not loaded, assert that the // value we got is a null. Otherwise, we need to recompile. if (!dest_method->return_type()->is_loaded()) { #ifndef PRODUCT if (PrintOpto && (Verbose || WizardMode)) { method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci()); dest_method->print_name(); tty->cr(); } #endif if (C->log() != NULL) { C->log()->elem("assert_null reason='return' klass='%d'", C->log()->identify(dest_method->return_type())); } // If there is going to be a trap, put it at the next bytecode: set_bci(iter().next_bci()); do_null_assert(peek(), T_OBJECT); set_bci(iter().cur_bci()); // put it back } } // Restart record of parsing work after possible inlining of call #ifndef PRODUCT parse_histogram()->set_initial_state(bc()); #endif } //---------------------------catch_call_exceptions----------------------------- // Put a Catch and CatchProj nodes behind a just-created call. // Send their caught exceptions to the proper handler. // This may be used after a call to the rethrow VM stub, // when it is needed to process unloaded exception classes. void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) { // Exceptions are delivered through this channel: Node* i_o = this->i_o(); // Add a CatchNode. GrowableArray* bcis = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, -1); GrowableArray* extypes = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, NULL); GrowableArray* saw_unloaded = new (C->node_arena()) GrowableArray(C->node_arena(), 8, 0, 0); for (; !handlers.is_done(); handlers.next()) { ciExceptionHandler* h = handlers.handler(); int h_bci = h->handler_bci(); ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass(); // Do not introduce unloaded exception types into the graph: if (!h_klass->is_loaded()) { if (saw_unloaded->contains(h_bci)) { /* We've already seen an unloaded exception with h_bci, so don't duplicate. Duplication will cause the CatchNode to be unnecessarily large. See 4713716. */ continue; } else { saw_unloaded->append(h_bci); } } const Type* h_extype = TypeOopPtr::make_from_klass(h_klass); // (We use make_from_klass because it respects UseUniqueSubclasses.) h_extype = h_extype->join(TypeInstPtr::NOTNULL); assert(!h_extype->empty(), "sanity"); // Note: It's OK if the BCIs repeat themselves. bcis->append(h_bci); extypes->append(h_extype); } int len = bcis->length(); CatchNode *cn = new (C, 2) CatchNode(control(), i_o, len+1); Node *catch_ = _gvn.transform(cn); // now branch with the exception state to each of the (potential) // handlers for(int i=0; i < len; i++) { // Setup JVM state to enter the handler. PreserveJVMState pjvms(this); // Locals are just copied from before the call. // Get control from the CatchNode. int handler_bci = bcis->at(i); Node* ctrl = _gvn.transform( new (C, 1) CatchProjNode(catch_, i+1,handler_bci)); // This handler cannot happen? if (ctrl == top()) continue; set_control(ctrl); // Create exception oop const TypeInstPtr* extype = extypes->at(i)->is_instptr(); Node *ex_oop = _gvn.transform(new (C, 2) CreateExNode(extypes->at(i), ctrl, i_o)); // Handle unloaded exception classes. if (saw_unloaded->contains(handler_bci)) { // An unloaded exception type is coming here. Do an uncommon trap. #ifndef PRODUCT // We do not expect the same handler bci to take both cold unloaded // and hot loaded exceptions. But, watch for it. if (extype->is_loaded()) { tty->print_cr("Warning: Handler @%d takes mixed loaded/unloaded exceptions in "); method()->print_name(); tty->cr(); } else if (PrintOpto && (Verbose || WizardMode)) { tty->print("Bailing out on unloaded exception type "); extype->klass()->print_name(); tty->print(" at bci:%d in ", bci()); method()->print_name(); tty->cr(); } #endif // Emit an uncommon trap instead of processing the block. set_bci(handler_bci); push_ex_oop(ex_oop); uncommon_trap(Deoptimization::Reason_unloaded, Deoptimization::Action_reinterpret, extype->klass(), "!loaded exception"); set_bci(iter().cur_bci()); // put it back continue; } // go to the exception handler if (handler_bci < 0) { // merge with corresponding rethrow node throw_to_exit(make_exception_state(ex_oop)); } else { // Else jump to corresponding handle push_ex_oop(ex_oop); // Clear stack and push just the oop. merge_exception(handler_bci); } } // The first CatchProj is for the normal return. // (Note: If this is a call to rethrow_Java, this node goes dead.) set_control(_gvn.transform( new (C, 1) CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci))); } //----------------------------catch_inline_exceptions-------------------------- // Handle all exceptions thrown by an inlined method or individual bytecode. // Common case 1: we have no handler, so all exceptions merge right into // the rethrow case. // Case 2: we have some handlers, with loaded exception klasses that have // no subklasses. We do a Deutsch-Shiffman style type-check on the incoming // exception oop and branch to the handler directly. // Case 3: We have some handlers with subklasses or are not loaded at // compile-time. We have to call the runtime to resolve the exception. // So we insert a RethrowCall and all the logic that goes with it. void Parse::catch_inline_exceptions(SafePointNode* ex_map) { // Caller is responsible for saving away the map for normal control flow! assert(stopped(), "call set_map(NULL) first"); assert(method()->has_exception_handlers(), "don't come here w/o work to do"); Node* ex_node = saved_ex_oop(ex_map); if (ex_node == top()) { // No action needed. return; } const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr(); NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr")); if (ex_type == NULL) ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr(); // determine potential exception handlers ciExceptionHandlerStream handlers(method(), bci(), ex_type->klass()->as_instance_klass(), ex_type->klass_is_exact()); // Start executing from the given throw state. (Keep its stack, for now.) // Get the exception oop as known at compile time. ex_node = use_exception_state(ex_map); // Get the exception oop klass from its header Node* ex_klass_node = NULL; if (has_ex_handler() && !ex_type->klass_is_exact()) { Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes()); ex_klass_node = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) ); // Compute the exception klass a little more cleverly. // Obvious solution is to simple do a LoadKlass from the 'ex_node'. // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for // each arm of the Phi. If I know something clever about the exceptions // I'm loading the class from, I can replace the LoadKlass with the // klass constant for the exception oop. if( ex_node->is_Phi() ) { ex_klass_node = new (C, ex_node->req()) PhiNode( ex_node->in(0), TypeKlassPtr::OBJECT ); for( uint i = 1; i < ex_node->req(); i++ ) { Node* p = basic_plus_adr( ex_node->in(i), ex_node->in(i), oopDesc::klass_offset_in_bytes() ); Node* k = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT) ); ex_klass_node->init_req( i, k ); } _gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT); } } // Scan the exception table for applicable handlers. // If none, we can call rethrow() and be done! // If precise (loaded with no subklasses), insert a D.S. style // pointer compare to the correct handler and loop back. // If imprecise, switch to the Rethrow VM-call style handling. int remaining = handlers.count_remaining(); // iterate through all entries sequentially for (;!handlers.is_done(); handlers.next()) { // Do nothing if turned off if( !DeutschShiffmanExceptions ) break; ciExceptionHandler* handler = handlers.handler(); if (handler->is_rethrow()) { // If we fell off the end of the table without finding an imprecise // exception klass (and without finding a generic handler) then we // know this exception is not handled in this method. We just rethrow // the exception into the caller. throw_to_exit(make_exception_state(ex_node)); return; } // exception handler bci range covers throw_bci => investigate further int handler_bci = handler->handler_bci(); if (remaining == 1) { push_ex_oop(ex_node); // Push exception oop for handler #ifndef PRODUCT if (PrintOpto && WizardMode) { tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci); } #endif merge_exception(handler_bci); // jump to handler return; // No more handling to be done here! } // %%% The following logic replicates make_from_klass_unique. // TO DO: Replace by a subroutine call. Then generalize // the type check, as noted in the next "%%%" comment. ciInstanceKlass* klass = handler->catch_klass(); if (UseUniqueSubclasses) { // (We use make_from_klass because it respects UseUniqueSubclasses.) const TypeOopPtr* tp = TypeOopPtr::make_from_klass(klass); klass = tp->klass()->as_instance_klass(); } // Get the handler's klass if (!klass->is_loaded()) // klass is not loaded? break; // Must call Rethrow! if (klass->is_interface()) // should not happen, but... break; // bail out // See if the loaded exception klass has no subtypes if (klass->has_subklass()) break; // Cannot easily do precise test ==> Rethrow // %%% Now that subclass checking is very fast, we need to rewrite // this section and remove the option "DeutschShiffmanExceptions". // The exception processing chain should be a normal typecase pattern, // with a bailout to the interpreter only in the case of unloaded // classes. (The bailout should mark the method non-entrant.) // This rewrite should be placed in GraphKit::, not Parse::. // Add a dependence; if any subclass added we need to recompile // %%% should use stronger assert_unique_concrete_subtype instead if (!klass->is_final()) { C->dependencies()->assert_leaf_type(klass); } // Implement precise test const TypeKlassPtr *tk = TypeKlassPtr::make(klass); Node* con = _gvn.makecon(tk); Node* cmp = _gvn.transform( new (C, 3) CmpPNode(ex_klass_node, con) ); Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) ); { BuildCutout unless(this, bol, PROB_LIKELY(0.7f)); const TypeInstPtr* tinst = TypeInstPtr::make_exact(TypePtr::NotNull, klass); Node* ex_oop = _gvn.transform(new (C, 2) CheckCastPPNode(control(), ex_node, tinst)); push_ex_oop(ex_oop); // Push exception oop for handler #ifndef PRODUCT if (PrintOpto && WizardMode) { tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci); klass->print_name(); tty->cr(); } #endif merge_exception(handler_bci); } // Come here if exception does not match handler. // Carry on with more handler checks. --remaining; } assert(!stopped(), "you should return if you finish the chain"); if (remaining == 1) { // Further checks do not matter. } if (can_rerun_bytecode()) { // Do not push_ex_oop here! // Re-executing the bytecode will reproduce the throwing condition. bool must_throw = true; uncommon_trap(Deoptimization::Reason_unhandled, Deoptimization::Action_none, (ciKlass*)NULL, (const char*)NULL, // default args must_throw); return; } // Oops, need to call into the VM to resolve the klasses at runtime. // Note: This call must not deoptimize, since it is not a real at this bci! kill_dead_locals(); make_runtime_call(RC_NO_LEAF | RC_MUST_THROW, OptoRuntime::rethrow_Type(), OptoRuntime::rethrow_stub(), NULL, NULL, ex_node); // Rethrow is a pure call, no side effects, only a result. // The result cannot be allocated, so we use I_O // Catch exceptions from the rethrow catch_call_exceptions(handlers); } // (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.) #ifndef PRODUCT void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) { if( CountCompiledCalls ) { if( at_method_entry ) { // bump invocation counter if top method (for statistics) if (CountCompiledCalls && depth() == 1) { const TypeInstPtr* addr_type = TypeInstPtr::make(method()); Node* adr1 = makecon(addr_type); Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(methodOopDesc::compiled_invocation_counter_offset())); increment_counter(adr2); } } else if (is_inline) { switch (bc()) { case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break; case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break; default: fatal("unexpected call bytecode"); } } else { switch (bc()) { case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break; case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break; case Bytecodes::_invokestatic: case Bytecodes::_invokedynamic: case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break; default: fatal("unexpected call bytecode"); } } } } #endif //PRODUCT // Identify possible target method and inlining style ciMethod* Parse::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass, ciMethod *dest_method, const TypeOopPtr* receiver_type) { // only use for virtual or interface calls // If it is obviously final, do not bother to call find_monomorphic_target, // because the class hierarchy checks are not needed, and may fail due to // incompletely loaded classes. Since we do our own class loading checks // in this module, we may confidently bind to any method. if (dest_method->can_be_statically_bound()) { return dest_method; } // Attempt to improve the receiver bool actual_receiver_is_exact = false; ciInstanceKlass* actual_receiver = klass; if (receiver_type != NULL) { // Array methods are all inherited from Object, and are monomorphic. if (receiver_type->isa_aryptr() && dest_method->holder() == env()->Object_klass()) { return dest_method; } // All other interesting cases are instance klasses. if (!receiver_type->isa_instptr()) { return NULL; } ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass(); if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() && (ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) { // ikl is a same or better type than the original actual_receiver, // e.g. static receiver from bytecodes. actual_receiver = ikl; // Is the actual_receiver exact? actual_receiver_is_exact = receiver_type->klass_is_exact(); } } ciInstanceKlass* calling_klass = caller->holder(); ciMethod* cha_monomorphic_target = dest_method->find_monomorphic_target(calling_klass, klass, actual_receiver); if (cha_monomorphic_target != NULL) { assert(!cha_monomorphic_target->is_abstract(), ""); // Look at the method-receiver type. Does it add "too much information"? ciKlass* mr_klass = cha_monomorphic_target->holder(); const Type* mr_type = TypeInstPtr::make(TypePtr::BotPTR, mr_klass); if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) { // Calling this method would include an implicit cast to its holder. // %%% Not yet implemented. Would throw minor asserts at present. // %%% The most common wins are already gained by +UseUniqueSubclasses. // To fix, put the higher_equal check at the call of this routine, // and add a CheckCastPP to the receiver. if (TraceDependencies) { tty->print_cr("found unique CHA method, but could not cast up"); tty->print(" method = "); cha_monomorphic_target->print(); tty->cr(); } if (C->log() != NULL) { C->log()->elem("missed_CHA_opportunity klass='%d' method='%d'", C->log()->identify(klass), C->log()->identify(cha_monomorphic_target)); } cha_monomorphic_target = NULL; } } if (cha_monomorphic_target != NULL) { // Hardwiring a virtual. // If we inlined because CHA revealed only a single target method, // then we are dependent on that target method not getting overridden // by dynamic class loading. Be sure to test the "static" receiver // dest_method here, as opposed to the actual receiver, which may // falsely lead us to believe that the receiver is final or private. C->dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target); return cha_monomorphic_target; } // If the type is exact, we can still bind the method w/o a vcall. // (This case comes after CHA so we can see how much extra work it does.) if (actual_receiver_is_exact) { // In case of evolution, there is a dependence on every inlined method, since each // such method can be changed when its class is redefined. ciMethod* exact_method = dest_method->resolve_invoke(calling_klass, actual_receiver); if (exact_method != NULL) { #ifndef PRODUCT if (PrintOpto) { tty->print(" Calling method via exact type @%d --- ", bci); exact_method->print_name(); tty->cr(); } #endif return exact_method; } } return NULL; }