/* * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_postaloc.cpp.incl" // see if this register kind does not requires two registers static bool is_single_register(uint x) { #ifdef _LP64 return (x != Op_RegD && x != Op_RegL && x != Op_RegP); #else return (x != Op_RegD && x != Op_RegL); #endif } //------------------------------may_be_copy_of_callee----------------------------- // Check to see if we can possibly be a copy of a callee-save value. bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const { // Short circuit if there are no callee save registers if (_matcher.number_of_saved_registers() == 0) return false; // Expect only a spill-down and reload on exit for callee-save spills. // Chains of copies cannot be deep. // 5008997 - This is wishful thinking. Register allocator seems to // be splitting live ranges for callee save registers to such // an extent that in large methods the chains can be very long // (50+). The conservative answer is to return true if we don't // know as this prevents optimizations from occuring. const int limit = 60; int i; for( i=0; i < limit; i++ ) { if( def->is_Proj() && def->in(0)->is_Start() && _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) ) return true; // Direct use of callee-save proj if( def->is_Copy() ) // Copies carry value through def = def->in(def->is_Copy()); else if( def->is_Phi() ) // Phis can merge it from any direction def = def->in(1); else break; guarantee(def != NULL, "must not resurrect dead copy"); } // If we reached the end and didn't find a callee save proj // then this may be a callee save proj so we return true // as the conservative answer. If we didn't reach then end // we must have discovered that it was not a callee save // else we would have returned. return i == limit; } //------------------------------yank_if_dead----------------------------------- // Removed an edge from 'old'. Yank if dead. Return adjustment counts to // iterators in the current block. int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) { int blk_adjust=0; while (old->outcnt() == 0 && old != C->top()) { Block *oldb = _cfg._bbs[old->_idx]; oldb->find_remove(old); // Count 1 if deleting an instruction from the current block if( oldb == current_block ) blk_adjust++; _cfg._bbs.map(old->_idx,NULL); OptoReg::Name old_reg = lrgs(n2lidx(old)).reg(); if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available? value->map(old_reg,NULL); // Yank from value/regnd maps regnd->map(old_reg,NULL); // This register's value is now unknown } Node *tmp = old->req() > 1 ? old->in(1) : NULL; old->disconnect_inputs(NULL); if( !tmp ) break; old = tmp; } return blk_adjust; } //------------------------------use_prior_register----------------------------- // Use the prior value instead of the current value, in an effort to make // the current value go dead. Return block iterator adjustment, in case // we yank some instructions from this block. int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List ®nd ) { // No effect? if( def == n->in(idx) ) return 0; // Def is currently dead and can be removed? Do not resurrect if( def->outcnt() == 0 ) return 0; // Not every pair of physical registers are assignment compatible, // e.g. on sparc floating point registers are not assignable to integer // registers. const LRG &def_lrg = lrgs(n2lidx(def)); OptoReg::Name def_reg = def_lrg.reg(); const RegMask &use_mask = n->in_RegMask(idx); bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0) : (use_mask.is_AllStack() != 0)); // Check for a copy to or from a misaligned pair. can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair(); if (!can_use) return 0; // Capture the old def in case it goes dead... Node *old = n->in(idx); // Save-on-call copies can only be elided if the entire copy chain can go // away, lest we get the same callee-save value alive in 2 locations at // once. We check for the obvious trivial case here. Although it can // sometimes be elided with cooperation outside our scope, here we will just // miss the opportunity. :-( if( may_be_copy_of_callee(def) ) { if( old->outcnt() > 1 ) return 0; // We're the not last user int idx = old->is_Copy(); assert( idx, "chain of copies being removed" ); Node *old2 = old->in(idx); // Chain of copies if( old2->outcnt() > 1 ) return 0; // old is not the last user int idx2 = old2->is_Copy(); if( !idx2 ) return 0; // Not a chain of 2 copies if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies } // Use the new def n->set_req(idx,def); _post_alloc++; // Is old def now dead? We successfully yanked a copy? return yank_if_dead(old,current_block,&value,®nd); } //------------------------------skip_copies------------------------------------ // Skip through any number of copies (that don't mod oop-i-ness) Node *PhaseChaitin::skip_copies( Node *c ) { int idx = c->is_Copy(); uint is_oop = lrgs(n2lidx(c))._is_oop; while (idx != 0) { guarantee(c->in(idx) != NULL, "must not resurrect dead copy"); if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop) break; // casting copy, not the same value c = c->in(idx); idx = c->is_Copy(); } return c; } //------------------------------elide_copy------------------------------------- // Remove (bypass) copies along Node n, edge k. int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List ®nd, bool can_change_regs ) { int blk_adjust = 0; uint nk_idx = n2lidx(n->in(k)); OptoReg::Name nk_reg = lrgs(nk_idx ).reg(); // Remove obvious same-register copies Node *x = n->in(k); int idx; while( (idx=x->is_Copy()) != 0 ) { Node *copy = x->in(idx); guarantee(copy != NULL, "must not resurrect dead copy"); if( lrgs(n2lidx(copy)).reg() != nk_reg ) break; blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd); if( n->in(k) != copy ) break; // Failed for some cutout? x = copy; // Progress, try again } // Phis and 2-address instructions cannot change registers so easily - their // outputs must match their input. if( !can_change_regs ) return blk_adjust; // Only check stupid copies! // Loop backedges won't have a value-mapping yet if( &value == NULL ) return blk_adjust; // Skip through all copies to the _value_ being used. Do not change from // int to pointer. This attempts to jump through a chain of copies, where // intermediate copies might be illegal, i.e., value is stored down to stack // then reloaded BUT survives in a register the whole way. Node *val = skip_copies(n->in(k)); if( val == x ) return blk_adjust; // No progress? bool single = is_single_register(val->ideal_reg()); uint val_idx = n2lidx(val); OptoReg::Name val_reg = lrgs(val_idx).reg(); // See if it happens to already be in the correct register! // (either Phi's direct register, or the common case of the name // never-clobbered original-def register) if( value[val_reg] == val && // Doubles check both halves ( single || value[val_reg-1] == val ) ) { blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd); if( n->in(k) == regnd[val_reg] ) // Success! Quit trying return blk_adjust; } // See if we can skip the copy by changing registers. Don't change from // using a register to using the stack unless we know we can remove a // copy-load. Otherwise we might end up making a pile of Intel cisc-spill // ops reading from memory instead of just loading once and using the // register. // Also handle duplicate copies here. const Type *t = val->is_Con() ? val->bottom_type() : NULL; // Scan all registers to see if this value is around already for( uint reg = 0; reg < (uint)_max_reg; reg++ ) { Node *vv = value[reg]; if( !single ) { // Doubles check for aligned-adjacent pair if( (reg&1)==0 ) continue; // Wrong half of a pair if( vv != value[reg-1] ) continue; // Not a complete pair } if( vv == val || // Got a direct hit? (t && vv && vv->bottom_type() == t && vv->is_Mach() && vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant? assert( !n->is_Phi(), "cannot change registers at a Phi so easily" ); if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR OptoReg::is_reg(reg) || // turning into a register use OR regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd); if( n->in(k) == regnd[reg] ) // Success! Quit trying return blk_adjust; } // End of if not degrading to a stack } // End of if found value in another register } // End of scan all machine registers return blk_adjust; } // // Check if nreg already contains the constant value val. Normal copy // elimination doesn't doesn't work on constants because multiple // nodes can represent the same constant so the type and rule of the // MachNode must be checked to ensure equivalence. // bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n, Block *current_block, Node_List& value, Node_List& regnd, OptoReg::Name nreg, OptoReg::Name nreg2) { if (value[nreg] != val && val->is_Con() && value[nreg] != NULL && value[nreg]->is_Con() && (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) && value[nreg]->bottom_type() == val->bottom_type() && value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) { // This code assumes that two MachNodes representing constants // which have the same rule and the same bottom type will produce // identical effects into a register. This seems like it must be // objectively true unless there are hidden inputs to the nodes // but if that were to change this code would need to updated. // Since they are equivalent the second one if redundant and can // be removed. // // n will be replaced with the old value but n might have // kills projections associated with it so remove them now so that // yank_if_dead will be able to elminate the copy once the uses // have been transferred to the old[value]. for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* use = n->fast_out(i); if (use->is_Proj() && use->outcnt() == 0) { // Kill projections have no users and one input use->set_req(0, C->top()); yank_if_dead(use, current_block, &value, ®nd); --i; --imax; } } _post_alloc++; return true; } return false; } //------------------------------post_allocate_copy_removal--------------------- // Post-Allocation peephole copy removal. We do this in 1 pass over the // basic blocks. We maintain a mapping of registers to Nodes (an array of // Nodes indexed by machine register or stack slot number). NULL means that a // register is not mapped to any Node. We can (want to have!) have several // registers map to the same Node. We walk forward over the instructions // updating the mapping as we go. At merge points we force a NULL if we have // to merge 2 different Nodes into the same register. Phi functions will give // us a new Node if there is a proper value merging. Since the blocks are // arranged in some RPO, we will visit all parent blocks before visiting any // successor blocks (except at loops). // // If we find a Copy we look to see if the Copy's source register is a stack // slot and that value has already been loaded into some machine register; if // so we use machine register directly. This turns a Load into a reg-reg // Move. We also look for reloads of identical constants. // // When we see a use from a reg-reg Copy, we will attempt to use the copy's // source directly and make the copy go dead. void PhaseChaitin::post_allocate_copy_removal() { NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); ) ResourceMark rm; // Need a mapping from basic block Node_Lists. We need a Node_List to // map from register number to value-producing Node. Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); // Need a mapping from basic block Node_Lists. We need a Node_List to // map from register number to register-defining Node. Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); // We keep unused Node_Lists on a free_list to avoid wasting // memory. GrowableArray free_list = GrowableArray(16); // For all blocks for( uint i = 0; i < _cfg._num_blocks; i++ ) { uint j; Block *b = _cfg._blocks[i]; // Count of Phis in block uint phi_dex; for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) { Node *phi = b->_nodes[phi_dex]; if( !phi->is_Phi() ) break; } // If any predecessor has not been visited, we do not know the state // of registers at the start. Check for this, while updating copies // along Phi input edges bool missing_some_inputs = false; Block *freed = NULL; for( j = 1; j < b->num_preds(); j++ ) { Block *pb = _cfg._bbs[b->pred(j)->_idx]; // Remove copies along phi edges for( uint k=1; k_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false ); if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge? // See if this predecessor's mappings have been used by everybody // who wants them. If so, free 'em. uint k; for( k=0; k_num_succs; k++ ) { Block *pbsucc = pb->_succs[k]; if( !blk2value[pbsucc->_pre_order] && pbsucc != b ) break; // Found a future user } if( k >= pb->_num_succs ) { // No more uses, free! freed = pb; // Record last block freed free_list.push(blk2value[pb->_pre_order]); free_list.push(blk2regnd[pb->_pre_order]); } } else { // This block has unvisited (loopback) inputs missing_some_inputs = true; } } // Extract Node_List mappings. If 'freed' is non-zero, we just popped // 'freed's blocks off the list Node_List ®nd = *(free_list.is_empty() ? new Node_List() : free_list.pop()); Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop()); assert( !freed || blk2value[freed->_pre_order] == &value, "" ); value.map(_max_reg,NULL); regnd.map(_max_reg,NULL); // Set mappings as OUR mappings blk2value[b->_pre_order] = &value; blk2regnd[b->_pre_order] = ®nd; // Initialize value & regnd for this block if( missing_some_inputs ) { // Some predecessor has not yet been visited; zap map to empty for( uint k = 0; k < (uint)_max_reg; k++ ) { value.map(k,NULL); regnd.map(k,NULL); } } else { if( !freed ) { // Didn't get a freebie prior block // Must clone some data freed = _cfg._bbs[b->pred(1)->_idx]; Node_List &f_value = *blk2value[freed->_pre_order]; Node_List &f_regnd = *blk2regnd[freed->_pre_order]; for( uint k = 0; k < (uint)_max_reg; k++ ) { value.map(k,f_value[k]); regnd.map(k,f_regnd[k]); } } // Merge all inputs together, setting to NULL any conflicts. for( j = 1; j < b->num_preds(); j++ ) { Block *pb = _cfg._bbs[b->pred(j)->_idx]; if( pb == freed ) continue; // Did self already via freelist Node_List &p_regnd = *blk2regnd[pb->_pre_order]; for( uint k = 0; k < (uint)_max_reg; k++ ) { if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs? value.map(k,NULL); // Then no value handy regnd.map(k,NULL); } } } } // For all Phi's for( j = 1; j < phi_dex; j++ ) { uint k; Node *phi = b->_nodes[j]; uint pidx = n2lidx(phi); OptoReg::Name preg = lrgs(n2lidx(phi)).reg(); // Remove copies remaining on edges. Check for junk phi. Node *u = NULL; for( k=1; kreq(); k++ ) { Node *x = phi->in(k); if( phi != x && u != x ) // Found a different input u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input } if( u != NodeSentinel ) { // Junk Phi. Remove b->_nodes.remove(j--); phi_dex--; _cfg._bbs.map(phi->_idx,NULL); phi->replace_by(u); phi->disconnect_inputs(NULL); continue; } // Note that if value[pidx] exists, then we merged no new values here // and the phi is useless. This can happen even with the above phi // removal for complex flows. I cannot keep the better known value here // because locally the phi appears to define a new merged value. If I // keep the better value then a copy of the phi, being unable to use the // global flow analysis, can't "peek through" the phi to the original // reaching value and so will act like it's defining a new value. This // can lead to situations where some uses are from the old and some from // the new values. Not illegal by itself but throws the over-strong // assert in scheduling. if( pidx ) { value.map(preg,phi); regnd.map(preg,phi); OptoReg::Name preg_lo = OptoReg::add(preg,-1); if( !is_single_register(phi->ideal_reg()) ) { value.map(preg_lo,phi); regnd.map(preg_lo,phi); } } } // For all remaining instructions for( j = phi_dex; j < b->_nodes.size(); j++ ) { Node *n = b->_nodes[j]; if( n->outcnt() == 0 && // Dead? n != C->top() && // (ignore TOP, it has no du info) !n->is_Proj() ) { // fat-proj kills j -= yank_if_dead(n,b,&value,®nd); continue; } // Improve reaching-def info. Occasionally post-alloc's liveness gives // up (at loop backedges, because we aren't doing a full flow pass). // The presence of a live use essentially asserts that the use's def is // alive and well at the use (or else the allocator fubar'd). Take // advantage of this info to set a reaching def for the use-reg. uint k; for( k = 1; k < n->req(); k++ ) { Node *def = n->in(k); // n->in(k) is a USE; def is the DEF for this USE guarantee(def != NULL, "no disconnected nodes at this point"); uint useidx = n2lidx(def); // useidx is the live range index for this USE if( useidx ) { OptoReg::Name ureg = lrgs(useidx).reg(); if( !value[ureg] ) { int idx; // Skip occasional useless copy while( (idx=def->is_Copy()) != 0 && def->in(idx) != NULL && // NULL should not happen ureg == lrgs(n2lidx(def->in(idx))).reg() ) def = def->in(idx); Node *valdef = skip_copies(def); // tighten up val through non-useless copies value.map(ureg,valdef); // record improved reaching-def info regnd.map(ureg, def); // Record other half of doubles OptoReg::Name ureg_lo = OptoReg::add(ureg,-1); if( !is_single_register(def->ideal_reg()) && ( !RegMask::can_represent(ureg_lo) || lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent !value[ureg_lo] ) { value.map(ureg_lo,valdef); // record improved reaching-def info regnd.map(ureg_lo, def); } } } } const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0; // Remove copies along input edges for( k = 1; k < n->req(); k++ ) j -= elide_copy( n, k, b, value, regnd, two_adr!=k ); // Unallocated Nodes define no registers uint lidx = n2lidx(n); if( !lidx ) continue; // Update the register defined by this instruction OptoReg::Name nreg = lrgs(lidx).reg(); // Skip through all copies to the _value_ being defined. // Do not change from int to pointer Node *val = skip_copies(n); uint n_ideal_reg = n->ideal_reg(); if( is_single_register(n_ideal_reg) ) { // If Node 'n' does not change the value mapped by the register, // then 'n' is a useless copy. Do not update the register->node // mapping so 'n' will go dead. if( value[nreg] != val ) { if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) { n->replace_by(regnd[nreg]); j -= yank_if_dead(n,b,&value,®nd); } else { // Update the mapping: record new Node defined by the register regnd.map(nreg,n); // Update mapping for defined *value*, which is the defined // Node after skipping all copies. value.map(nreg,val); } } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) { assert( n->is_Copy(), "" ); n->replace_by(regnd[nreg]); j -= yank_if_dead(n,b,&value,®nd); } } else { // If the value occupies a register pair, record same info // in both registers. OptoReg::Name nreg_lo = OptoReg::add(nreg,-1); if( RegMask::can_represent(nreg_lo) && // Either a spill slot, or !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent // Sparc occasionally has non-adjacent pairs. // Find the actual other value RegMask tmp = lrgs(lidx).mask(); tmp.Remove(nreg); nreg_lo = tmp.find_first_elem(); } if( value[nreg] != val || value[nreg_lo] != val ) { if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) { n->replace_by(regnd[nreg]); j -= yank_if_dead(n,b,&value,®nd); } else { regnd.map(nreg , n ); regnd.map(nreg_lo, n ); value.map(nreg ,val); value.map(nreg_lo,val); } } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) { assert( n->is_Copy(), "" ); n->replace_by(regnd[nreg]); j -= yank_if_dead(n,b,&value,®nd); } } // Fat projections kill many registers if( n_ideal_reg == MachProjNode::fat_proj ) { RegMask rm = n->out_RegMask(); // wow, what an expensive iterator... nreg = rm.find_first_elem(); while( OptoReg::is_valid(nreg)) { rm.Remove(nreg); value.map(nreg,n); regnd.map(nreg,n); nreg = rm.find_first_elem(); } } } // End of for all instructions in the block } // End for all blocks }