/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // Portions of code courtesy of Clifford Click // Optimization - Graph Style class AbstractLockNode; class AddNode; class AddPNode; class AliasInfo; class AllocateArrayNode; class AllocateNode; class Block; class Block_Array; class BoolNode; class BoxLockNode; class CMoveNode; class CallDynamicJavaNode; class CallJavaNode; class CallLeafNode; class CallNode; class CallRuntimeNode; class CallStaticJavaNode; class CatchNode; class CatchProjNode; class CheckCastPPNode; class CmpNode; class CodeBuffer; class ConstraintCastNode; class ConNode; class CountedLoopNode; class CountedLoopEndNode; class FastLockNode; class FastUnlockNode; class IfNode; class InitializeNode; class JVMState; class JumpNode; class JumpProjNode; class LoadNode; class LoadStoreNode; class LockNode; class LoopNode; class MachCallDynamicJavaNode; class MachCallJavaNode; class MachCallLeafNode; class MachCallNode; class MachCallRuntimeNode; class MachCallStaticJavaNode; class MachIfNode; class MachNode; class MachNullCheckNode; class MachReturnNode; class MachSafePointNode; class MachSpillCopyNode; class MachTempNode; class Matcher; class MemBarNode; class MemNode; class MergeMemNode; class MulNode; class MultiNode; class MultiBranchNode; class NeverBranchNode; class Node; class Node_Array; class Node_List; class Node_Stack; class NullCheckNode; class OopMap; class ParmNode; class PCTableNode; class PhaseCCP; class PhaseGVN; class PhaseIterGVN; class PhaseRegAlloc; class PhaseTransform; class PhaseValues; class PhiNode; class Pipeline; class ProjNode; class RegMask; class RegionNode; class RootNode; class SafePointNode; class SafePointScalarObjectNode; class StartNode; class State; class StoreNode; class SubNode; class Type; class TypeNode; class UnlockNode; class VectorSet; class IfTrueNode; class IfFalseNode; typedef void (*NFunc)(Node&,void*); extern "C" { typedef int (*C_sort_func_t)(const void *, const void *); } // The type of all node counts and indexes. // It must hold at least 16 bits, but must also be fast to load and store. // This type, if less than 32 bits, could limit the number of possible nodes. // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) typedef unsigned int node_idx_t; #ifndef OPTO_DU_ITERATOR_ASSERT #ifdef ASSERT #define OPTO_DU_ITERATOR_ASSERT 1 #else #define OPTO_DU_ITERATOR_ASSERT 0 #endif #endif //OPTO_DU_ITERATOR_ASSERT #if OPTO_DU_ITERATOR_ASSERT class DUIterator; class DUIterator_Fast; class DUIterator_Last; #else typedef uint DUIterator; typedef Node** DUIterator_Fast; typedef Node** DUIterator_Last; #endif // Node Sentinel #define NodeSentinel (Node*)-1 // Unknown count frequency #define COUNT_UNKNOWN (-1.0f) //------------------------------Node------------------------------------------- // Nodes define actions in the program. They create values, which have types. // They are both vertices in a directed graph and program primitives. Nodes // are labeled; the label is the "opcode", the primitive function in the lambda // calculus sense that gives meaning to the Node. Node inputs are ordered (so // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to // the Node's function. These inputs also define a Type equation for the Node. // Solving these Type equations amounts to doing dataflow analysis. // Control and data are uniformly represented in the graph. Finally, Nodes // have a unique dense integer index which is used to index into side arrays // whenever I have phase-specific information. class Node { // Lots of restrictions on cloning Nodes Node(const Node&); // not defined; linker error to use these Node &operator=(const Node &rhs); public: friend class Compile; #if OPTO_DU_ITERATOR_ASSERT friend class DUIterator_Common; friend class DUIterator; friend class DUIterator_Fast; friend class DUIterator_Last; #endif // Because Nodes come and go, I define an Arena of Node structures to pull // from. This should allow fast access to node creation & deletion. This // field is a local cache of a value defined in some "program fragment" for // which these Nodes are just a part of. // New Operator that takes a Compile pointer, this will eventually // be the "new" New operator. inline void* operator new( size_t x, Compile* C) { Node* n = (Node*)C->node_arena()->Amalloc_D(x); #ifdef ASSERT n->_in = (Node**)n; // magic cookie for assertion check #endif n->_out = (Node**)C; return (void*)n; } // New Operator that takes a Compile pointer, this will eventually // be the "new" New operator. inline void* operator new( size_t x, Compile* C, int y) { Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*)); n->_in = (Node**)(((char*)n) + x); #ifdef ASSERT n->_in[y-1] = n; // magic cookie for assertion check #endif n->_out = (Node**)C; return (void*)n; } // Delete is a NOP void operator delete( void *ptr ) {} // Fancy destructor; eagerly attempt to reclaim Node numberings and storage void destruct(); // Create a new Node. Required is the number is of inputs required for // semantic correctness. Node( uint required ); // Create a new Node with given input edges. // This version requires use of the "edge-count" new. // E.g. new (C,3) FooNode( C, NULL, left, right ); Node( Node *n0 ); Node( Node *n0, Node *n1 ); Node( Node *n0, Node *n1, Node *n2 ); Node( Node *n0, Node *n1, Node *n2, Node *n3 ); Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5, Node *n6 ); // Clone an inherited Node given only the base Node type. Node* clone() const; // Clone a Node, immediately supplying one or two new edges. // The first and second arguments, if non-null, replace in(1) and in(2), // respectively. Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { Node* nn = clone(); if (in1 != NULL) nn->set_req(1, in1); if (in2 != NULL) nn->set_req(2, in2); return nn; } private: // Shared setup for the above constructors. // Handles all interactions with Compile::current. // Puts initial values in all Node fields except _idx. // Returns the initial value for _idx, which cannot // be initialized by assignment. inline int Init(int req, Compile* C); //----------------- input edge handling protected: friend class PhaseCFG; // Access to address of _in array elements Node **_in; // Array of use-def references to Nodes Node **_out; // Array of def-use references to Nodes // Input edges are split into two catagories. Required edges are required // for semantic correctness; order is important and NULLs are allowed. // Precedence edges are used to help determine execution order and are // added, e.g., for scheduling purposes. They are unordered and not // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 // are required, from _cnt to _max-1 are precedence edges. node_idx_t _cnt; // Total number of required Node inputs. node_idx_t _max; // Actual length of input array. // Output edges are an unordered list of def-use edges which exactly // correspond to required input edges which point from other nodes // to this one. Thus the count of the output edges is the number of // users of this node. node_idx_t _outcnt; // Total number of Node outputs. node_idx_t _outmax; // Actual length of output array. // Grow the actual input array to the next larger power-of-2 bigger than len. void grow( uint len ); // Grow the output array to the next larger power-of-2 bigger than len. void out_grow( uint len ); public: // Each Node is assigned a unique small/dense number. This number is used // to index into auxiliary arrays of data and bitvectors. // It is declared const to defend against inadvertant assignment, // since it is used by clients as a naked field. const node_idx_t _idx; // Get the (read-only) number of input edges uint req() const { return _cnt; } uint len() const { return _max; } // Get the (read-only) number of output edges uint outcnt() const { return _outcnt; } #if OPTO_DU_ITERATOR_ASSERT // Iterate over the out-edges of this node. Deletions are illegal. inline DUIterator outs() const; // Use this when the out array might have changed to suppress asserts. inline DUIterator& refresh_out_pos(DUIterator& i) const; // Does the node have an out at this position? (Used for iteration.) inline bool has_out(DUIterator& i) const; inline Node* out(DUIterator& i) const; // Iterate over the out-edges of this node. All changes are illegal. inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; inline Node* fast_out(DUIterator_Fast& i) const; // Iterate over the out-edges of this node, deleting one at a time. inline DUIterator_Last last_outs(DUIterator_Last& min) const; inline Node* last_out(DUIterator_Last& i) const; // The inline bodies of all these methods are after the iterator definitions. #else // Iterate over the out-edges of this node. Deletions are illegal. // This iteration uses integral indexes, to decouple from array reallocations. DUIterator outs() const { return 0; } // Use this when the out array might have changed to suppress asserts. DUIterator refresh_out_pos(DUIterator i) const { return i; } // Reference to the i'th output Node. Error if out of bounds. Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } // Does the node have an out at this position? (Used for iteration.) bool has_out(DUIterator i) const { return i < _outcnt; } // Iterate over the out-edges of this node. All changes are illegal. // This iteration uses a pointer internal to the out array. DUIterator_Fast fast_outs(DUIterator_Fast& max) const { Node** out = _out; // Assign a limit pointer to the reference argument: max = out + (ptrdiff_t)_outcnt; // Return the base pointer: return out; } Node* fast_out(DUIterator_Fast i) const { return *i; } // Iterate over the out-edges of this node, deleting one at a time. // This iteration uses a pointer internal to the out array. DUIterator_Last last_outs(DUIterator_Last& min) const { Node** out = _out; // Assign a limit pointer to the reference argument: min = out; // Return the pointer to the start of the iteration: return out + (ptrdiff_t)_outcnt - 1; } Node* last_out(DUIterator_Last i) const { return *i; } #endif // Reference to the i'th input Node. Error if out of bounds. Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; } // Reference to the i'th output Node. Error if out of bounds. // Use this accessor sparingly. We are going trying to use iterators instead. Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } // Return the unique out edge. Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } // Delete out edge at position 'i' by moving last out edge to position 'i' void raw_del_out(uint i) { assert(i < _outcnt,"oob"); assert(_outcnt > 0,"oob"); #if OPTO_DU_ITERATOR_ASSERT // Record that a change happened here. debug_only(_last_del = _out[i]; ++_del_tick); #endif _out[i] = _out[--_outcnt]; // Smash the old edge so it can't be used accidentally. debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); } #ifdef ASSERT bool is_dead() const; #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) #endif // Set a required input edge, also updates corresponding output edge void add_req( Node *n ); // Append a NEW required input void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). void del_req( uint idx ); // Delete required edge & compact void ins_req( uint i, Node *n ); // Insert a NEW required input void set_req( uint i, Node *n ) { assert( is_not_dead(n), "can not use dead node"); assert( i < _cnt, "oob"); assert( !VerifyHashTableKeys || _hash_lock == 0, "remove node from hash table before modifying it"); Node** p = &_in[i]; // cache this._in, across the del_out call if (*p != NULL) (*p)->del_out((Node *)this); (*p) = n; if (n != NULL) n->add_out((Node *)this); } // Light version of set_req() to init inputs after node creation. void init_req( uint i, Node *n ) { assert( i == 0 && this == n || is_not_dead(n), "can not use dead node"); assert( i < _cnt, "oob"); assert( !VerifyHashTableKeys || _hash_lock == 0, "remove node from hash table before modifying it"); assert( _in[i] == NULL, "sanity"); _in[i] = n; if (n != NULL) n->add_out((Node *)this); } // Find first occurrence of n among my edges: int find_edge(Node* n); int replace_edge(Node* old, Node* neww); // NULL out all inputs to eliminate incoming Def-Use edges. // Return the number of edges between 'n' and 'this' int disconnect_inputs(Node *n); // Quickly, return true if and only if I am Compile::current()->top(). bool is_top() const { assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); return (_out == NULL); } // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) void setup_is_top(); // Strip away casting. (It is depth-limited.) Node* uncast() const; private: static Node* uncast_helper(const Node* n); // Add an output edge to the end of the list void add_out( Node *n ) { if (is_top()) return; if( _outcnt == _outmax ) out_grow(_outcnt); _out[_outcnt++] = n; } // Delete an output edge void del_out( Node *n ) { if (is_top()) return; Node** outp = &_out[_outcnt]; // Find and remove n do { assert(outp > _out, "Missing Def-Use edge"); } while (*--outp != n); *outp = _out[--_outcnt]; // Smash the old edge so it can't be used accidentally. debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); // Record that a change happened here. #if OPTO_DU_ITERATOR_ASSERT debug_only(_last_del = n; ++_del_tick); #endif } public: // Globally replace this node by a given new node, updating all uses. void replace_by(Node* new_node); void set_req_X( uint i, Node *n, PhaseIterGVN *igvn ); // Find the one non-null required input. RegionNode only Node *nonnull_req() const; // Add or remove precedence edges void add_prec( Node *n ); void rm_prec( uint i ); void set_prec( uint i, Node *n ) { assert( is_not_dead(n), "can not use dead node"); assert( i >= _cnt, "not a precedence edge"); if (_in[i] != NULL) _in[i]->del_out((Node *)this); _in[i] = n; if (n != NULL) n->add_out((Node *)this); } // Set this node's index, used by cisc_version to replace current node void set_idx(uint new_idx) { const node_idx_t* ref = &_idx; *(node_idx_t*)ref = new_idx; } // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) void swap_edges(uint i1, uint i2) { debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); // Def-Use info is unchanged Node* n1 = in(i1); Node* n2 = in(i2); _in[i1] = n2; _in[i2] = n1; // If this node is in the hash table, make sure it doesn't need a rehash. assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); } // Iterators over input Nodes for a Node X are written as: // for( i = 0; i < X.req(); i++ ) ... X[i] ... // NOTE: Required edges can contain embedded NULL pointers. //----------------- Other Node Properties // Generate class id for some ideal nodes to avoid virtual query // methods is_<Node>(). // Class id is the set of bits corresponded to the node class and all its // super classes so that queries for super classes are also valid. // Subclasses of the same super class have different assigned bit // (the third parameter in the macro DEFINE_CLASS_ID). // Classes with deeper hierarchy are declared first. // Classes with the same hierarchy depth are sorted by usage frequency. // // The query method masks the bits to cut off bits of subclasses // and then compare the result with the class id // (see the macro DEFINE_CLASS_QUERY below). // // Class_MachCall=30, ClassMask_MachCall=31 // 12 8 4 0 // 0 0 0 0 0 0 0 0 1 1 1 1 0 // | | | | // | | | Bit_Mach=2 // | | Bit_MachReturn=4 // | Bit_MachSafePoint=8 // Bit_MachCall=16 // // Class_CountedLoop=56, ClassMask_CountedLoop=63 // 12 8 4 0 // 0 0 0 0 0 0 0 1 1 1 0 0 0 // | | | // | | Bit_Region=8 // | Bit_Loop=16 // Bit_CountedLoop=32 #define DEFINE_CLASS_ID(cl, supcl, subn) \ Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ Class_##cl = Class_##supcl + Bit_##cl , \ ClassMask_##cl = ((Bit_##cl << 1) - 1) , // This enum is used only for C2 ideal and mach nodes with is_<node>() methods // so that it's values fits into 16 bits. enum NodeClasses { Bit_Node = 0x0000, Class_Node = 0x0000, ClassMask_Node = 0xFFFF, DEFINE_CLASS_ID(Multi, Node, 0) DEFINE_CLASS_ID(SafePoint, Multi, 0) DEFINE_CLASS_ID(Call, SafePoint, 0) DEFINE_CLASS_ID(CallJava, Call, 0) DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) DEFINE_CLASS_ID(CallRuntime, Call, 1) DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) DEFINE_CLASS_ID(Allocate, Call, 2) DEFINE_CLASS_ID(AllocateArray, Allocate, 0) DEFINE_CLASS_ID(AbstractLock, Call, 3) DEFINE_CLASS_ID(Lock, AbstractLock, 0) DEFINE_CLASS_ID(Unlock, AbstractLock, 1) DEFINE_CLASS_ID(MultiBranch, Multi, 1) DEFINE_CLASS_ID(PCTable, MultiBranch, 0) DEFINE_CLASS_ID(Catch, PCTable, 0) DEFINE_CLASS_ID(Jump, PCTable, 1) DEFINE_CLASS_ID(If, MultiBranch, 1) DEFINE_CLASS_ID(CountedLoopEnd, If, 0) DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) DEFINE_CLASS_ID(Start, Multi, 2) DEFINE_CLASS_ID(MemBar, Multi, 3) DEFINE_CLASS_ID(Initialize, MemBar, 0) DEFINE_CLASS_ID(Mach, Node, 1) DEFINE_CLASS_ID(MachReturn, Mach, 0) DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) DEFINE_CLASS_ID(MachCallJava, MachCall, 0) DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) DEFINE_CLASS_ID(MachSpillCopy, Mach, 1) DEFINE_CLASS_ID(MachNullCheck, Mach, 2) DEFINE_CLASS_ID(MachIf, Mach, 3) DEFINE_CLASS_ID(MachTemp, Mach, 4) DEFINE_CLASS_ID(Proj, Node, 2) DEFINE_CLASS_ID(CatchProj, Proj, 0) DEFINE_CLASS_ID(JumpProj, Proj, 1) DEFINE_CLASS_ID(IfTrue, Proj, 2) DEFINE_CLASS_ID(IfFalse, Proj, 3) DEFINE_CLASS_ID(Parm, Proj, 4) DEFINE_CLASS_ID(Region, Node, 3) DEFINE_CLASS_ID(Loop, Region, 0) DEFINE_CLASS_ID(Root, Loop, 0) DEFINE_CLASS_ID(CountedLoop, Loop, 1) DEFINE_CLASS_ID(Sub, Node, 4) DEFINE_CLASS_ID(Cmp, Sub, 0) DEFINE_CLASS_ID(FastLock, Cmp, 0) DEFINE_CLASS_ID(FastUnlock, Cmp, 1) DEFINE_CLASS_ID(Type, Node, 5) DEFINE_CLASS_ID(Phi, Type, 0) DEFINE_CLASS_ID(ConstraintCast, Type, 1) DEFINE_CLASS_ID(CheckCastPP, Type, 2) DEFINE_CLASS_ID(CMove, Type, 3) DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) DEFINE_CLASS_ID(Mem, Node, 6) DEFINE_CLASS_ID(Load, Mem, 0) DEFINE_CLASS_ID(Store, Mem, 1) DEFINE_CLASS_ID(LoadStore, Mem, 2) DEFINE_CLASS_ID(MergeMem, Node, 7) DEFINE_CLASS_ID(Bool, Node, 8) DEFINE_CLASS_ID(AddP, Node, 9) DEFINE_CLASS_ID(BoxLock, Node, 10) DEFINE_CLASS_ID(Add, Node, 11) DEFINE_CLASS_ID(Mul, Node, 12) _max_classes = ClassMask_Mul }; #undef DEFINE_CLASS_ID // Flags are sorted by usage frequency. enum NodeFlags { Flag_is_Copy = 0x01, // should be first bit to avoid shift Flag_is_Call = Flag_is_Copy << 1, Flag_rematerialize = Flag_is_Call << 1, Flag_needs_anti_dependence_check = Flag_rematerialize << 1, Flag_is_macro = Flag_needs_anti_dependence_check << 1, Flag_is_Con = Flag_is_macro << 1, Flag_is_cisc_alternate = Flag_is_Con << 1, Flag_is_Branch = Flag_is_cisc_alternate << 1, Flag_is_block_start = Flag_is_Branch << 1, Flag_is_Goto = Flag_is_block_start << 1, Flag_is_dead_loop_safe = Flag_is_Goto << 1, Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1, Flag_is_safepoint_node = Flag_may_be_short_branch << 1, Flag_is_pc_relative = Flag_is_safepoint_node << 1, Flag_is_Vector = Flag_is_pc_relative << 1, _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination }; private: jushort _class_id; jushort _flags; protected: // These methods should be called from constructors only. void init_class_id(jushort c) { assert(c <= _max_classes, "invalid node class"); _class_id = c; // cast out const } void init_flags(jushort fl) { assert(fl <= _max_flags, "invalid node flag"); _flags |= fl; } void clear_flag(jushort fl) { assert(fl <= _max_flags, "invalid node flag"); _flags &= ~fl; } public: const jushort class_id() const { return _class_id; } const jushort flags() const { return _flags; } // Return a dense integer opcode number virtual int Opcode() const; // Virtual inherited Node size virtual uint size_of() const; // Other interesting Node properties // Special case: is_Call() returns true for both CallNode and MachCallNode. bool is_Call() const { return (_flags & Flag_is_Call) != 0; } CallNode *as_Call() const { // Only for CallNode (not for MachCallNode) assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class"); return (CallNode*)this; } #define DEFINE_CLASS_QUERY(type) \ bool is_##type() const { \ return ((_class_id & ClassMask_##type) == Class_##type); \ } \ type##Node *as_##type() const { \ assert(is_##type(), "invalid node class"); \ return (type##Node*)this; \ } DEFINE_CLASS_QUERY(AbstractLock) DEFINE_CLASS_QUERY(Add) DEFINE_CLASS_QUERY(AddP) DEFINE_CLASS_QUERY(Allocate) DEFINE_CLASS_QUERY(AllocateArray) DEFINE_CLASS_QUERY(Bool) DEFINE_CLASS_QUERY(BoxLock) DEFINE_CLASS_QUERY(CallDynamicJava) DEFINE_CLASS_QUERY(CallJava) DEFINE_CLASS_QUERY(CallLeaf) DEFINE_CLASS_QUERY(CallRuntime) DEFINE_CLASS_QUERY(CallStaticJava) DEFINE_CLASS_QUERY(Catch) DEFINE_CLASS_QUERY(CatchProj) DEFINE_CLASS_QUERY(CheckCastPP) DEFINE_CLASS_QUERY(ConstraintCast) DEFINE_CLASS_QUERY(CMove) DEFINE_CLASS_QUERY(Cmp) DEFINE_CLASS_QUERY(CountedLoop) DEFINE_CLASS_QUERY(CountedLoopEnd) DEFINE_CLASS_QUERY(FastLock) DEFINE_CLASS_QUERY(FastUnlock) DEFINE_CLASS_QUERY(If) DEFINE_CLASS_QUERY(IfFalse) DEFINE_CLASS_QUERY(IfTrue) DEFINE_CLASS_QUERY(Initialize) DEFINE_CLASS_QUERY(Jump) DEFINE_CLASS_QUERY(JumpProj) DEFINE_CLASS_QUERY(Load) DEFINE_CLASS_QUERY(LoadStore) DEFINE_CLASS_QUERY(Lock) DEFINE_CLASS_QUERY(Loop) DEFINE_CLASS_QUERY(Mach) DEFINE_CLASS_QUERY(MachCall) DEFINE_CLASS_QUERY(MachCallDynamicJava) DEFINE_CLASS_QUERY(MachCallJava) DEFINE_CLASS_QUERY(MachCallLeaf) DEFINE_CLASS_QUERY(MachCallRuntime) DEFINE_CLASS_QUERY(MachCallStaticJava) DEFINE_CLASS_QUERY(MachIf) DEFINE_CLASS_QUERY(MachNullCheck) DEFINE_CLASS_QUERY(MachReturn) DEFINE_CLASS_QUERY(MachSafePoint) DEFINE_CLASS_QUERY(MachSpillCopy) DEFINE_CLASS_QUERY(MachTemp) DEFINE_CLASS_QUERY(Mem) DEFINE_CLASS_QUERY(MemBar) DEFINE_CLASS_QUERY(MergeMem) DEFINE_CLASS_QUERY(Mul) DEFINE_CLASS_QUERY(Multi) DEFINE_CLASS_QUERY(MultiBranch) DEFINE_CLASS_QUERY(Parm) DEFINE_CLASS_QUERY(PCTable) DEFINE_CLASS_QUERY(Phi) DEFINE_CLASS_QUERY(Proj) DEFINE_CLASS_QUERY(Region) DEFINE_CLASS_QUERY(Root) DEFINE_CLASS_QUERY(SafePoint) DEFINE_CLASS_QUERY(SafePointScalarObject) DEFINE_CLASS_QUERY(Start) DEFINE_CLASS_QUERY(Store) DEFINE_CLASS_QUERY(Sub) DEFINE_CLASS_QUERY(Type) DEFINE_CLASS_QUERY(Unlock) #undef DEFINE_CLASS_QUERY // duplicate of is_MachSpillCopy() bool is_SpillCopy () const { return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); } bool is_Con () const { return (_flags & Flag_is_Con) != 0; } bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; } // The data node which is safe to leave in dead loop during IGVN optimization. bool is_dead_loop_safe() const { return is_Phi() || is_Proj() || (_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0; } // is_Copy() returns copied edge index (0 or 1) uint is_Copy() const { return (_flags & Flag_is_Copy); } virtual bool is_CFG() const { return false; } // If this node is control-dependent on a test, can it be // rerouted to a dominating equivalent test? This is usually // true of non-CFG nodes, but can be false for operations which // depend for their correct sequencing on more than one test. // (In that case, hoisting to a dominating test may silently // skip some other important test.) virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd' bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; } // When building basic blocks, I need to have a notion of block beginning // Nodes, next block selector Nodes (block enders), and next block // projections. These calls need to work on their machine equivalents. The // Ideal beginning Nodes are RootNode, RegionNode and StartNode. bool is_block_start() const { if ( is_Region() ) return this == (const Node*)in(0); else return (_flags & Flag_is_block_start) != 0; } // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, // Goto and Return. This call also returns the block ending Node. virtual const Node *is_block_proj() const; // The node is a "macro" node which needs to be expanded before matching bool is_macro() const { return (_flags & Flag_is_macro) != 0; } // Value is a vector of primitive values bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; } //----------------- Optimization // Get the worst-case Type output for this Node. virtual const class Type *bottom_type() const; // If we find a better type for a node, try to record it permanently. // Return true if this node actually changed. // Be sure to do the hash_delete game in the "rehash" variant. void raise_bottom_type(const Type* new_type); // Get the address type with which this node uses and/or defs memory, // or NULL if none. The address type is conservatively wide. // Returns non-null for calls, membars, loads, stores, etc. // Returns TypePtr::BOTTOM if the node touches memory "broadly". virtual const class TypePtr *adr_type() const { return NULL; } // Return an existing node which computes the same function as this node. // The optimistic combined algorithm requires this to return a Node which // is a small number of steps away (e.g., one of my inputs). virtual Node *Identity( PhaseTransform *phase ); // Return the set of values this Node can take on at runtime. virtual const Type *Value( PhaseTransform *phase ) const; // Return a node which is more "ideal" than the current node. // The invariants on this call are subtle. If in doubt, read the // treatise in node.cpp above the default implemention AND TEST WITH // +VerifyIterativeGVN! virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); // Some nodes have specific Ideal subgraph transformations only if they are // unique users of specific nodes. Such nodes should be put on IGVN worklist // for the transformations to happen. bool has_special_unique_user() const; protected: bool remove_dead_region(PhaseGVN *phase, bool can_reshape); public: // Idealize graph, using DU info. Done after constant propagation virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); // See if there is valid pipeline info static const Pipeline *pipeline_class(); virtual const Pipeline *pipeline() const; // Compute the latency from the def to this instruction of the ith input node uint latency(uint i); // Hash & compare functions, for pessimistic value numbering // If the hash function returns the special sentinel value NO_HASH, // the node is guaranteed never to compare equal to any other node. // If we accidently generate a hash with value NO_HASH the node // won't go into the table and we'll lose a little optimization. enum { NO_HASH = 0 }; virtual uint hash() const; virtual uint cmp( const Node &n ) const; // Operation appears to be iteratively computed (such as an induction variable) // It is possible for this operation to return false for a loop-varying // value, if it appears (by local graph inspection) to be computed by a simple conditional. bool is_iteratively_computed(); // Determine if a node is Counted loop induction variable. // The method is defined in loopnode.cpp. const Node* is_loop_iv() const; // Return a node with opcode "opc" and same inputs as "this" if one can // be found; Otherwise return NULL; Node* find_similar(int opc); // Return the unique control out if only one. Null if none or more than one. Node* unique_ctrl_out(); //----------------- Code Generation // Ideal register class for Matching. Zero means unmatched instruction // (these are cloned instead of converted to machine nodes). virtual uint ideal_reg() const; static const uint NotAMachineReg; // must be > max. machine register // Do we Match on this edge index or not? Generally false for Control // and true for everything else. Weird for calls & returns. virtual uint match_edge(uint idx) const; // Register class output is returned in virtual const RegMask &out_RegMask() const; // Register class input is expected in virtual const RegMask &in_RegMask(uint) const; // Should we clone rather than spill this instruction? bool rematerialize() const; // Return JVM State Object if this Node carries debug info, or NULL otherwise virtual JVMState* jvms() const; // Print as assembly virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; // Emit bytes starting at parameter 'ptr' // Bump 'ptr' by the number of output bytes virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; // Size of instruction in bytes virtual uint size(PhaseRegAlloc *ra_) const; // Convenience function to extract an integer constant from a node. // If it is not an integer constant (either Con, CastII, or Mach), // return value_if_unknown. jint find_int_con(jint value_if_unknown) const { const TypeInt* t = find_int_type(); return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; } // Return the constant, knowing it is an integer constant already jint get_int() const { const TypeInt* t = find_int_type(); guarantee(t != NULL, "must be con"); return t->get_con(); } // Here's where the work is done. Can produce non-constant int types too. const TypeInt* find_int_type() const; // Same thing for long (and intptr_t, via type.hpp): jlong get_long() const { const TypeLong* t = find_long_type(); guarantee(t != NULL, "must be con"); return t->get_con(); } jlong find_long_con(jint value_if_unknown) const { const TypeLong* t = find_long_type(); return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; } const TypeLong* find_long_type() const; // These guys are called by code generated by ADLC: intptr_t get_ptr() const; jdouble getd() const; jfloat getf() const; // Nodes which are pinned into basic blocks virtual bool pinned() const { return false; } // Nodes which use memory without consuming it, hence need antidependences // More specifically, needs_anti_dependence_check returns true iff the node // (a) does a load, and (b) does not perform a store (except perhaps to a // stack slot or some other unaliased location). bool needs_anti_dependence_check() const; // Return which operand this instruction may cisc-spill. In other words, // return operand position that can convert from reg to memory access virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } //----------------- Graph walking public: // Walk and apply member functions recursively. // Supplied (this) pointer is root. void walk(NFunc pre, NFunc post, void *env); static void nop(Node &, void*); // Dummy empty function static void packregion( Node &n, void* ); private: void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited); //----------------- Printing, etc public: #ifndef PRODUCT Node* find(int idx) const; // Search the graph for the given idx. Node* find_ctrl(int idx) const; // Search control ancestors for the given idx. void dump() const; // Print this node, void dump(int depth) const; // Print this node, recursively to depth d void dump_ctrl(int depth) const; // Print control nodes, to depth d virtual void dump_req() const; // Print required-edge info virtual void dump_prec() const; // Print precedence-edge info virtual void dump_out() const; // Print the output edge info virtual void dump_spec(outputStream *st) const {}; // Print per-node info void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges void verify() const; // Check Def-Use info for my subgraph static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space); // This call defines a class-unique string used to identify class instances virtual const char *Name() const; void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) // RegMask Print Functions void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } void dump_out_regmask() { out_RegMask().dump(); } static int _in_dump_cnt; static bool in_dump() { return _in_dump_cnt > 0; } void fast_dump() const { tty->print("%4d: %-17s", _idx, Name()); for (uint i = 0; i < len(); i++) if (in(i)) tty->print(" %4d", in(i)->_idx); else tty->print(" NULL"); tty->print("\n"); } #endif #ifdef ASSERT void verify_construction(); bool verify_jvms(const JVMState* jvms) const; int _debug_idx; // Unique value assigned to every node. int debug_idx() const { return _debug_idx; } void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } Node* _debug_orig; // Original version of this, if any. Node* debug_orig() const { return _debug_orig; } void set_debug_orig(Node* orig); // _debug_orig = orig int _hash_lock; // Barrier to modifications of nodes in the hash table void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } static void init_NodeProperty(); #if OPTO_DU_ITERATOR_ASSERT const Node* _last_del; // The last deleted node. uint _del_tick; // Bumped when a deletion happens.. #endif #endif }; //----------------------------------------------------------------------------- // Iterators over DU info, and associated Node functions. #if OPTO_DU_ITERATOR_ASSERT // Common code for assertion checking on DU iterators. class DUIterator_Common VALUE_OBJ_CLASS_SPEC { #ifdef ASSERT protected: bool _vdui; // cached value of VerifyDUIterators const Node* _node; // the node containing the _out array uint _outcnt; // cached node->_outcnt uint _del_tick; // cached node->_del_tick Node* _last; // last value produced by the iterator void sample(const Node* node); // used by c'tor to set up for verifies void verify(const Node* node, bool at_end_ok = false); void verify_resync(); void reset(const DUIterator_Common& that); // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } #else #define I_VDUI_ONLY(i,x) { } #endif //ASSERT }; #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) // Default DU iterator. Allows appends onto the out array. // Allows deletion from the out array only at the current point. // Usage: // for (DUIterator i = x->outs(); x->has_out(i); i++) { // Node* y = x->out(i); // ... // } // Compiles in product mode to a unsigned integer index, which indexes // onto a repeatedly reloaded base pointer of x->_out. The loop predicate // also reloads x->_outcnt. If you delete, you must perform "--i" just // before continuing the loop. You must delete only the last-produced // edge. You must delete only a single copy of the last-produced edge, // or else you must delete all copies at once (the first time the edge // is produced by the iterator). class DUIterator : public DUIterator_Common { friend class Node; // This is the index which provides the product-mode behavior. // Whatever the product-mode version of the system does to the // DUI index is done to this index. All other fields in // this class are used only for assertion checking. uint _idx; #ifdef ASSERT uint _refresh_tick; // Records the refresh activity. void sample(const Node* node); // Initialize _refresh_tick etc. void verify(const Node* node, bool at_end_ok = false); void verify_increment(); // Verify an increment operation. void verify_resync(); // Verify that we can back up over a deletion. void verify_finish(); // Verify that the loop terminated properly. void refresh(); // Resample verification info. void reset(const DUIterator& that); // Resample after assignment. #endif DUIterator(const Node* node, int dummy_to_avoid_conversion) { _idx = 0; debug_only(sample(node)); } public: // initialize to garbage; clear _vdui to disable asserts DUIterator() { /*initialize to garbage*/ debug_only(_vdui = false); } void operator++(int dummy_to_specify_postfix_op) { _idx++; VDUI_ONLY(verify_increment()); } void operator--() { VDUI_ONLY(verify_resync()); --_idx; } ~DUIterator() { VDUI_ONLY(verify_finish()); } void operator=(const DUIterator& that) { _idx = that._idx; debug_only(reset(that)); } }; DUIterator Node::outs() const { return DUIterator(this, 0); } DUIterator& Node::refresh_out_pos(DUIterator& i) const { I_VDUI_ONLY(i, i.refresh()); return i; } bool Node::has_out(DUIterator& i) const { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } Node* Node::out(DUIterator& i) const { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } // Faster DU iterator. Disallows insertions into the out array. // Allows deletion from the out array only at the current point. // Usage: // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { // Node* y = x->fast_out(i); // ... // } // Compiles in product mode to raw Node** pointer arithmetic, with // no reloading of pointers from the original node x. If you delete, // you must perform "--i; --imax" just before continuing the loop. // If you delete multiple copies of the same edge, you must decrement // imax, but not i, multiple times: "--i, imax -= num_edges". class DUIterator_Fast : public DUIterator_Common { friend class Node; friend class DUIterator_Last; // This is the pointer which provides the product-mode behavior. // Whatever the product-mode version of the system does to the // DUI pointer is done to this pointer. All other fields in // this class are used only for assertion checking. Node** _outp; #ifdef ASSERT void verify(const Node* node, bool at_end_ok = false); void verify_limit(); void verify_resync(); void verify_relimit(uint n); void reset(const DUIterator_Fast& that); #endif // Note: offset must be signed, since -1 is sometimes passed DUIterator_Fast(const Node* node, ptrdiff_t offset) { _outp = node->_out + offset; debug_only(sample(node)); } public: // initialize to garbage; clear _vdui to disable asserts DUIterator_Fast() { /*initialize to garbage*/ debug_only(_vdui = false); } void operator++(int dummy_to_specify_postfix_op) { _outp++; VDUI_ONLY(verify(_node, true)); } void operator--() { VDUI_ONLY(verify_resync()); --_outp; } void operator-=(uint n) // applied to the limit only { _outp -= n; VDUI_ONLY(verify_relimit(n)); } bool operator<(DUIterator_Fast& limit) { I_VDUI_ONLY(*this, this->verify(_node, true)); I_VDUI_ONLY(limit, limit.verify_limit()); return _outp < limit._outp; } void operator=(const DUIterator_Fast& that) { _outp = that._outp; debug_only(reset(that)); } }; DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { // Assign a limit pointer to the reference argument: imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); // Return the base pointer: return DUIterator_Fast(this, 0); } Node* Node::fast_out(DUIterator_Fast& i) const { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) *i._outp; } // Faster DU iterator. Requires each successive edge to be removed. // Does not allow insertion of any edges. // Usage: // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { // Node* y = x->last_out(i); // ... // } // Compiles in product mode to raw Node** pointer arithmetic, with // no reloading of pointers from the original node x. class DUIterator_Last : private DUIterator_Fast { friend class Node; #ifdef ASSERT void verify(const Node* node, bool at_end_ok = false); void verify_limit(); void verify_step(uint num_edges); #endif // Note: offset must be signed, since -1 is sometimes passed DUIterator_Last(const Node* node, ptrdiff_t offset) : DUIterator_Fast(node, offset) { } void operator++(int dummy_to_specify_postfix_op) {} // do not use void operator<(int) {} // do not use public: DUIterator_Last() { } // initialize to garbage void operator--() { _outp--; VDUI_ONLY(verify_step(1)); } void operator-=(uint n) { _outp -= n; VDUI_ONLY(verify_step(n)); } bool operator>=(DUIterator_Last& limit) { I_VDUI_ONLY(*this, this->verify(_node, true)); I_VDUI_ONLY(limit, limit.verify_limit()); return _outp >= limit._outp; } void operator=(const DUIterator_Last& that) { DUIterator_Fast::operator=(that); } }; DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { // Assign a limit pointer to the reference argument: imin = DUIterator_Last(this, 0); // Return the initial pointer: return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); } Node* Node::last_out(DUIterator_Last& i) const { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) *i._outp; } #endif //OPTO_DU_ITERATOR_ASSERT #undef I_VDUI_ONLY #undef VDUI_ONLY //----------------------------------------------------------------------------- // Map dense integer indices to Nodes. Uses classic doubling-array trick. // Abstractly provides an infinite array of Node*'s, initialized to NULL. // Note that the constructor just zeros things, and since I use Arena // allocation I do not need a destructor to reclaim storage. class Node_Array : public ResourceObj { protected: Arena *_a; // Arena to allocate in uint _max; Node **_nodes; void grow( uint i ); // Grow array node to fit public: Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) { _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize ); for( int i = 0; i < OptoNodeListSize; i++ ) { _nodes[i] = NULL; } } Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped { return (i<_max) ? _nodes[i] : (Node*)NULL; } Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; } Node **adr() { return _nodes; } // Extend the mapping: index i maps to Node *n. void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } void insert( uint i, Node *n ); void remove( uint i ); // Remove, preserving order void sort( C_sort_func_t func); void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage void clear(); // Set all entries to NULL, keep storage uint Size() const { return _max; } void dump() const; }; class Node_List : public Node_Array { uint _cnt; public: Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {} Node_List(Arena *a) : Node_Array(a), _cnt(0) {} void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } void remove( uint i ) { Node_Array::remove(i); _cnt--; } void push( Node *b ) { map(_cnt++,b); } void yank( Node *n ); // Find and remove Node *pop() { return _nodes[--_cnt]; } Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;} void clear() { _cnt = 0; Node_Array::clear(); } // retain storage uint size() const { return _cnt; } void dump() const; }; //------------------------------Unique_Node_List------------------------------- class Unique_Node_List : public Node_List { VectorSet _in_worklist; uint _clock_index; // Index in list where to pop from next public: Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {} Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} void remove( Node *n ); bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } VectorSet &member_set(){ return _in_worklist; } void push( Node *b ) { if( !_in_worklist.test_set(b->_idx) ) Node_List::push(b); } Node *pop() { if( _clock_index >= size() ) _clock_index = 0; Node *b = at(_clock_index); map( _clock_index++, Node_List::pop()); _in_worklist >>= b->_idx; return b; } Node *remove( uint i ) { Node *b = Node_List::at(i); _in_worklist >>= b->_idx; map(i,Node_List::pop()); return b; } void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); } void clear() { _in_worklist.Clear(); // Discards storage but grows automatically Node_List::clear(); _clock_index = 0; } // Used after parsing to remove useless nodes before Iterative GVN void remove_useless_nodes(VectorSet &useful); #ifndef PRODUCT void print_set() const { _in_worklist.print(); } #endif }; // Inline definition of Compile::record_for_igvn must be deferred to this point. inline void Compile::record_for_igvn(Node* n) { _for_igvn->push(n); record_for_escape_analysis(n); } //------------------------------Node_Stack------------------------------------- class Node_Stack { protected: struct INode { Node *node; // Processed node uint indx; // Index of next node's child }; INode *_inode_top; // tos, stack grows up INode *_inode_max; // End of _inodes == _inodes + _max INode *_inodes; // Array storage for the stack Arena *_a; // Arena to allocate in void grow(); public: Node_Stack(int size) { size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; _a = Thread::current()->resource_area(); _inodes = NEW_ARENA_ARRAY( _a, INode, max ); _inode_max = _inodes + max; _inode_top = _inodes - 1; // stack is empty } Node_Stack(Arena *a, int size) : _a(a) { size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; _inodes = NEW_ARENA_ARRAY( _a, INode, max ); _inode_max = _inodes + max; _inode_top = _inodes - 1; // stack is empty } void pop() { assert(_inode_top >= _inodes, "node stack underflow"); --_inode_top; } void push(Node *n, uint i) { ++_inode_top; if (_inode_top >= _inode_max) grow(); INode *top = _inode_top; // optimization top->node = n; top->indx = i; } Node *node() const { return _inode_top->node; } Node* node_at(uint i) const { assert(_inodes + i <= _inode_top, "in range"); return _inodes[i].node; } uint index() const { return _inode_top->indx; } void set_node(Node *n) { _inode_top->node = n; } void set_index(uint i) { _inode_top->indx = i; } uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size bool is_nonempty() const { return (_inode_top >= _inodes); } bool is_empty() const { return (_inode_top < _inodes); } void clear() { _inode_top = _inodes - 1; } // retain storage }; //-----------------------------Node_Notes-------------------------------------- // Debugging or profiling annotations loosely and sparsely associated // with some nodes. See Compile::node_notes_at for the accessor. class Node_Notes VALUE_OBJ_CLASS_SPEC { JVMState* _jvms; public: Node_Notes(JVMState* jvms = NULL) { _jvms = jvms; } JVMState* jvms() { return _jvms; } void set_jvms(JVMState* x) { _jvms = x; } // True if there is nothing here. bool is_clear() { return (_jvms == NULL); } // Make there be nothing here. void clear() { _jvms = NULL; } // Make a new, clean node notes. static Node_Notes* make(Compile* C) { Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); nn->clear(); return nn; } Node_Notes* clone(Compile* C) { Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); (*nn) = (*this); return nn; } // Absorb any information from source. bool update_from(Node_Notes* source) { bool changed = false; if (source != NULL) { if (source->jvms() != NULL) { set_jvms(source->jvms()); changed = true; } } return changed; } }; // Inlined accessors for Compile::node_nodes that require the preceding class: inline Node_Notes* Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, int idx, bool can_grow) { assert(idx >= 0, "oob"); int block_idx = (idx >> _log2_node_notes_block_size); int grow_by = (block_idx - (arr == NULL? 0: arr->length())); if (grow_by >= 0) { if (!can_grow) return NULL; grow_node_notes(arr, grow_by + 1); } // (Every element of arr is a sub-array of length _node_notes_block_size.) return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); } inline bool Compile::set_node_notes_at(int idx, Node_Notes* value) { if (value == NULL || value->is_clear()) return false; // nothing to write => write nothing Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); assert(loc != NULL, ""); return loc->update_from(value); } //------------------------------TypeNode--------------------------------------- // Node with a Type constant. class TypeNode : public Node { protected: virtual uint hash() const; // Check the type virtual uint cmp( const Node &n ) const; virtual uint size_of() const; // Size is bigger const Type* const _type; public: void set_type(const Type* t) { assert(t != NULL, "sanity"); debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); *(const Type**)&_type = t; // cast away const-ness // If this node is in the hash table, make sure it doesn't need a rehash. assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); } const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; TypeNode( const Type *t, uint required ) : Node(required), _type(t) { init_class_id(Class_Type); } virtual const Type *Value( PhaseTransform *phase ) const; virtual const Type *bottom_type() const; virtual uint ideal_reg() const; #ifndef PRODUCT virtual void dump_spec(outputStream *st) const; #endif };