/* * Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_sharedRuntime_sparc.cpp.incl" #define __ masm-> #ifdef COMPILER2 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; #endif // COMPILER2 DeoptimizationBlob* SharedRuntime::_deopt_blob; SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; RuntimeStub* SharedRuntime::_wrong_method_blob; RuntimeStub* SharedRuntime::_ic_miss_blob; RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; RuntimeStub* SharedRuntime::_resolve_static_call_blob; class RegisterSaver { // Used for saving volatile registers. This is Gregs, Fregs, I/L/O. // The Oregs are problematic. In the 32bit build the compiler can // have O registers live with 64 bit quantities. A window save will // cut the heads off of the registers. We have to do a very extensive // stack dance to save and restore these properly. // Note that the Oregs problem only exists if we block at either a polling // page exception a compiled code safepoint that was not originally a call // or deoptimize following one of these kinds of safepoints. // Lots of registers to save. For all builds, a window save will preserve // the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit // builds a window-save will preserve the %o registers. In the LION build // we need to save the 64-bit %o registers which requires we save them // before the window-save (as then they become %i registers and get their // heads chopped off on interrupt). We have to save some %g registers here // as well. enum { // This frame's save area. Includes extra space for the native call: // vararg's layout space and the like. Briefly holds the caller's // register save area. call_args_area = frame::register_save_words_sp_offset + frame::memory_parameter_word_sp_offset*wordSize, // Make sure save locations are always 8 byte aligned. // can't use round_to because it doesn't produce compile time constant start_of_extra_save_area = ((call_args_area + 7) & ~7), g1_offset = start_of_extra_save_area, // g-regs needing saving g3_offset = g1_offset+8, g4_offset = g3_offset+8, g5_offset = g4_offset+8, o0_offset = g5_offset+8, o1_offset = o0_offset+8, o2_offset = o1_offset+8, o3_offset = o2_offset+8, o4_offset = o3_offset+8, o5_offset = o4_offset+8, start_of_flags_save_area = o5_offset+8, ccr_offset = start_of_flags_save_area, fsr_offset = ccr_offset + 8, d00_offset = fsr_offset+8, // Start of float save area register_save_size = d00_offset+8*32 }; public: static int Oexception_offset() { return o0_offset; }; static int G3_offset() { return g3_offset; }; static int G5_offset() { return g5_offset; }; static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); static void restore_live_registers(MacroAssembler* masm); // During deoptimization only the result register need to be restored // all the other values have already been extracted. static void restore_result_registers(MacroAssembler* masm); }; OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { // Record volatile registers as callee-save values in an OopMap so their save locations will be // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame // (as the stub's I's) when the runtime routine called by the stub creates its frame. int i; // Always make the frame size 16 bytr aligned. int frame_size = round_to(additional_frame_words + register_save_size, 16); // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words int frame_size_in_slots = frame_size / sizeof(jint); // CodeBlob frame size is in words. *total_frame_words = frame_size / wordSize; // OopMap* map = new OopMap(*total_frame_words, 0); OopMap* map = new OopMap(frame_size_in_slots, 0); #if !defined(_LP64) // Save 64-bit O registers; they will get their heads chopped off on a 'save'. __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8); __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8); __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8); __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8); __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8); __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8); #endif /* _LP64 */ __ save(SP, -frame_size, SP); #ifndef _LP64 // Reload the 64 bit Oregs. Although they are now Iregs we load them // to Oregs here to avoid interrupts cutting off their heads __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5); __ stx(O0, SP, o0_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg()); __ stx(O1, SP, o1_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg()); __ stx(O2, SP, o2_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg()); __ stx(O3, SP, o3_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg()); __ stx(O4, SP, o4_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg()); __ stx(O5, SP, o5_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg()); #endif /* _LP64 */ #ifdef _LP64 int debug_offset = 0; #else int debug_offset = 4; #endif // Save the G's __ stx(G1, SP, g1_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg()); __ stx(G3, SP, g3_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg()); __ stx(G4, SP, g4_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg()); __ stx(G5, SP, g5_offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg()); // This is really a waste but we'll keep things as they were for now if (true) { #ifndef _LP64 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next()); map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next()); #endif /* _LP64 */ } // Save the flags __ rdccr( G5 ); __ stx(G5, SP, ccr_offset+STACK_BIAS); __ stxfsr(SP, fsr_offset+STACK_BIAS); // Save all the FP registers int offset = d00_offset; for( int i=0; i<64; i+=2 ) { FloatRegister f = as_FloatRegister(i); __ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS); map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg()); if (true) { map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next()); } offset += sizeof(double); } // And we're done. return map; } // Pop the current frame and restore all the registers that we // saved. void RegisterSaver::restore_live_registers(MacroAssembler* masm) { // Restore all the FP registers for( int i=0; i<64; i+=2 ) { __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i)); } __ ldx(SP, ccr_offset+STACK_BIAS, G1); __ wrccr (G1) ; // Restore the G's // Note that G2 (AKA GThread) must be saved and restored separately. // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr. __ ldx(SP, g1_offset+STACK_BIAS, G1); __ ldx(SP, g3_offset+STACK_BIAS, G3); __ ldx(SP, g4_offset+STACK_BIAS, G4); __ ldx(SP, g5_offset+STACK_BIAS, G5); #if !defined(_LP64) // Restore the 64-bit O's. __ ldx(SP, o0_offset+STACK_BIAS, O0); __ ldx(SP, o1_offset+STACK_BIAS, O1); __ ldx(SP, o2_offset+STACK_BIAS, O2); __ ldx(SP, o3_offset+STACK_BIAS, O3); __ ldx(SP, o4_offset+STACK_BIAS, O4); __ ldx(SP, o5_offset+STACK_BIAS, O5); // And temporarily place them in TLS __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8); __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8); __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8); __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8); __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8); __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8); #endif /* _LP64 */ // Restore flags __ ldxfsr(SP, fsr_offset+STACK_BIAS); __ restore(); #if !defined(_LP64) // Now reload the 64bit Oregs after we've restore the window. __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5); #endif /* _LP64 */ } // Pop the current frame and restore the registers that might be holding // a result. void RegisterSaver::restore_result_registers(MacroAssembler* masm) { #if !defined(_LP64) // 32bit build returns longs in G1 __ ldx(SP, g1_offset+STACK_BIAS, G1); // Retrieve the 64-bit O's. __ ldx(SP, o0_offset+STACK_BIAS, O0); __ ldx(SP, o1_offset+STACK_BIAS, O1); // and save to TLS __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8); __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8); #endif /* _LP64 */ __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0)); __ restore(); #if !defined(_LP64) // Now reload the 64bit Oregs after we've restore the window. __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0); __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1); #endif /* _LP64 */ } // The java_calling_convention describes stack locations as ideal slots on // a frame with no abi restrictions. Since we must observe abi restrictions // (like the placement of the register window) the slots must be biased by // the following value. static int reg2offset(VMReg r) { return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; } // --------------------------------------------------------------------------- // Read the array of BasicTypes from a signature, and compute where the // arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size) // quantities. Values less than VMRegImpl::stack0 are registers, those above // refer to 4-byte stack slots. All stack slots are based off of the window // top. VMRegImpl::stack0 refers to the first slot past the 16-word window, // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit // integer registers. Values 64-95 are the (32-bit only) float registers. // Each 32-bit quantity is given its own number, so the integer registers // (in either 32- or 64-bit builds) use 2 numbers. For example, there is // an O0-low and an O0-high. Essentially, all int register numbers are doubled. // Register results are passed in O0-O5, for outgoing call arguments. To // convert to incoming arguments, convert all O's to I's. The regs array // refer to the low and hi 32-bit words of 64-bit registers or stack slots. // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a // 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was // passed (used as a placeholder for the other half of longs and doubles in // the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention). // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first() // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the // same VMRegPair. // Note: the INPUTS in sig_bt are in units of Java argument words, which are // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit // units regardless of build. // --------------------------------------------------------------------------- // The compiled Java calling convention. The Java convention always passes // 64-bit values in adjacent aligned locations (either registers or stack), // floats in float registers and doubles in aligned float pairs. Values are // packed in the registers. There is no backing varargs store for values in // registers. In the 32-bit build, longs are passed in G1 and G4 (cannot be // passed in I's, because longs in I's get their heads chopped off at // interrupt). int SharedRuntime::java_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed, int is_outgoing) { assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers"); // Convention is to pack the first 6 int/oop args into the first 6 registers // (I0-I5), extras spill to the stack. Then pack the first 8 float args // into F0-F7, extras spill to the stack. Then pad all register sets to // align. Then put longs and doubles into the same registers as they fit, // else spill to the stack. const int int_reg_max = SPARC_ARGS_IN_REGS_NUM; const int flt_reg_max = 8; // // Where 32-bit 1-reg longs start being passed // In tiered we must pass on stack because c1 can't use a "pair" in a single reg. // So make it look like we've filled all the G regs that c2 wants to use. Register g_reg = TieredCompilation ? noreg : G1; // Count int/oop and float args. See how many stack slots we'll need and // where the longs & doubles will go. int int_reg_cnt = 0; int flt_reg_cnt = 0; // int stk_reg_pairs = frame::register_save_words*(wordSize>>2); // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots(); int stk_reg_pairs = 0; for (int i = 0; i < total_args_passed; i++) { switch (sig_bt[i]) { case T_LONG: // LP64, longs compete with int args assert(sig_bt[i+1] == T_VOID, ""); #ifdef _LP64 if (int_reg_cnt < int_reg_max) int_reg_cnt++; #endif break; case T_OBJECT: case T_ARRAY: case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address if (int_reg_cnt < int_reg_max) int_reg_cnt++; #ifndef _LP64 else stk_reg_pairs++; #endif break; case T_INT: case T_SHORT: case T_CHAR: case T_BYTE: case T_BOOLEAN: if (int_reg_cnt < int_reg_max) int_reg_cnt++; else stk_reg_pairs++; break; case T_FLOAT: if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++; else stk_reg_pairs++; break; case T_DOUBLE: assert(sig_bt[i+1] == T_VOID, ""); break; case T_VOID: break; default: ShouldNotReachHere(); } } // This is where the longs/doubles start on the stack. stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only int flt_reg_pairs = (flt_reg_cnt+1) & ~1; // int stk_reg = frame::register_save_words*(wordSize>>2); // int stk_reg = SharedRuntime::out_preserve_stack_slots(); int stk_reg = 0; int int_reg = 0; int flt_reg = 0; // Now do the signature layout for (int i = 0; i < total_args_passed; i++) { switch (sig_bt[i]) { case T_INT: case T_SHORT: case T_CHAR: case T_BYTE: case T_BOOLEAN: #ifndef _LP64 case T_OBJECT: case T_ARRAY: case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address #endif // _LP64 if (int_reg < int_reg_max) { Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++); regs[i].set1(r->as_VMReg()); } else { regs[i].set1(VMRegImpl::stack2reg(stk_reg++)); } break; #ifdef _LP64 case T_OBJECT: case T_ARRAY: case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address if (int_reg < int_reg_max) { Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++); regs[i].set2(r->as_VMReg()); } else { regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); stk_reg_pairs += 2; } break; #endif // _LP64 case T_LONG: assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half"); #ifdef COMPILER2 #ifdef _LP64 // Can't be tiered (yet) if (int_reg < int_reg_max) { Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++); regs[i].set2(r->as_VMReg()); } else { regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); stk_reg_pairs += 2; } #else // For 32-bit build, can't pass longs in O-regs because they become // I-regs and get trashed. Use G-regs instead. G1 and G4 are almost // spare and available. This convention isn't used by the Sparc ABI or // anywhere else. If we're tiered then we don't use G-regs because c1 // can't deal with them as a "pair". // G0: zero // G1: 1st Long arg // G2: global allocated to TLS // G3: used in inline cache check // G4: 2nd Long arg // G5: used in inline cache check // G6: used by OS // G7: used by OS if (g_reg == G1) { regs[i].set2(G1->as_VMReg()); // This long arg in G1 g_reg = G4; // Where the next arg goes } else if (g_reg == G4) { regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4 g_reg = noreg; // No more longs in registers } else { regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); stk_reg_pairs += 2; } #endif // _LP64 #else // COMPILER2 if (int_reg_pairs + 1 < int_reg_max) { if (is_outgoing) { regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg()); } else { regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg()); } int_reg_pairs += 2; } else { regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); stk_reg_pairs += 2; } #endif // COMPILER2 break; case T_FLOAT: if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg()); else regs[i].set1( VMRegImpl::stack2reg(stk_reg++)); break; case T_DOUBLE: assert(sig_bt[i+1] == T_VOID, "expecting half"); if (flt_reg_pairs + 1 < flt_reg_max) { regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg()); flt_reg_pairs += 2; } else { regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); stk_reg_pairs += 2; } break; case T_VOID: regs[i].set_bad(); break; // Halves of longs & doubles default: ShouldNotReachHere(); } } // retun the amount of stack space these arguments will need. return stk_reg_pairs; } // Helper class mostly to avoid passing masm everywhere, and handle store // displacement overflow logic for LP64 class AdapterGenerator { MacroAssembler *masm; #ifdef _LP64 Register Rdisp; void set_Rdisp(Register r) { Rdisp = r; } #endif // _LP64 void patch_callers_callsite(); void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch); // base+st_off points to top of argument int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); } int next_arg_offset(const int st_off) { return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes(); } #ifdef _LP64 // On _LP64 argument slot values are loaded first into a register // because they might not fit into displacement. Register arg_slot(const int st_off); Register next_arg_slot(const int st_off); #else int arg_slot(const int st_off) { return arg_offset(st_off); } int next_arg_slot(const int st_off) { return next_arg_offset(st_off); } #endif // _LP64 // Stores long into offset pointed to by base void store_c2i_long(Register r, Register base, const int st_off, bool is_stack); void store_c2i_object(Register r, Register base, const int st_off); void store_c2i_int(Register r, Register base, const int st_off); void store_c2i_double(VMReg r_2, VMReg r_1, Register base, const int st_off); void store_c2i_float(FloatRegister f, Register base, const int st_off); public: void gen_c2i_adapter(int total_args_passed, // VMReg max_arg, int comp_args_on_stack, // VMRegStackSlots const BasicType *sig_bt, const VMRegPair *regs, Label& skip_fixup); void gen_i2c_adapter(int total_args_passed, // VMReg max_arg, int comp_args_on_stack, // VMRegStackSlots const BasicType *sig_bt, const VMRegPair *regs); AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {} }; // Patch the callers callsite with entry to compiled code if it exists. void AdapterGenerator::patch_callers_callsite() { Label L; __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch); __ br_null(G3_scratch, false, __ pt, L); // Schedule the branch target address early. __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch); // Call into the VM to patch the caller, then jump to compiled callee __ save_frame(4); // Args in compiled layout; do not blow them // Must save all the live Gregs the list is: // G1: 1st Long arg (32bit build) // G2: global allocated to TLS // G3: used in inline cache check (scratch) // G4: 2nd Long arg (32bit build); // G5: used in inline cache check (methodOop) // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops. #ifdef _LP64 // mov(s,d) __ mov(G1, L1); __ mov(G4, L4); __ mov(G5_method, L5); __ mov(G5_method, O0); // VM needs target method __ mov(I7, O1); // VM needs caller's callsite // Must be a leaf call... // can be very far once the blob has been relocated Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)); __ relocate(relocInfo::runtime_call_type); __ jumpl_to(dest, O7); __ delayed()->mov(G2_thread, L7_thread_cache); __ mov(L7_thread_cache, G2_thread); __ mov(L1, G1); __ mov(L4, G4); __ mov(L5, G5_method); #else __ stx(G1, FP, -8 + STACK_BIAS); __ stx(G4, FP, -16 + STACK_BIAS); __ mov(G5_method, L5); __ mov(G5_method, O0); // VM needs target method __ mov(I7, O1); // VM needs caller's callsite // Must be a leaf call... __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type); __ delayed()->mov(G2_thread, L7_thread_cache); __ mov(L7_thread_cache, G2_thread); __ ldx(FP, -8 + STACK_BIAS, G1); __ ldx(FP, -16 + STACK_BIAS, G4); __ mov(L5, G5_method); __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch); #endif /* _LP64 */ __ restore(); // Restore args __ bind(L); } void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch) { if (TaggedStackInterpreter) { int tag_off = st_off + Interpreter::tag_offset_in_bytes(); #ifdef _LP64 Register tag_slot = Rdisp; __ set(tag_off, tag_slot); #else int tag_slot = tag_off; #endif // _LP64 // have to store zero because local slots can be reused (rats!) if (t == frame::TagValue) { __ st_ptr(G0, base, tag_slot); } else if (t == frame::TagCategory2) { __ st_ptr(G0, base, tag_slot); int next_tag_off = st_off - Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes(); #ifdef _LP64 __ set(next_tag_off, tag_slot); #else tag_slot = next_tag_off; #endif // _LP64 __ st_ptr(G0, base, tag_slot); } else { __ mov(t, scratch); __ st_ptr(scratch, base, tag_slot); } } } #ifdef _LP64 Register AdapterGenerator::arg_slot(const int st_off) { __ set( arg_offset(st_off), Rdisp); return Rdisp; } Register AdapterGenerator::next_arg_slot(const int st_off){ __ set( next_arg_offset(st_off), Rdisp); return Rdisp; } #endif // _LP64 // Stores long into offset pointed to by base void AdapterGenerator::store_c2i_long(Register r, Register base, const int st_off, bool is_stack) { #ifdef COMPILER2 #ifdef _LP64 // In V9, longs are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. __ stx(r, base, next_arg_slot(st_off)); #else // Misaligned store of 64-bit data __ stw(r, base, arg_slot(st_off)); // lo bits __ srlx(r, 32, r); __ stw(r, base, next_arg_slot(st_off)); // hi bits #endif // _LP64 #else if (is_stack) { // Misaligned store of 64-bit data __ stw(r, base, arg_slot(st_off)); // lo bits __ srlx(r, 32, r); __ stw(r, base, next_arg_slot(st_off)); // hi bits } else { __ stw(r->successor(), base, arg_slot(st_off) ); // lo bits __ stw(r , base, next_arg_slot(st_off)); // hi bits } #endif // COMPILER2 tag_c2i_arg(frame::TagCategory2, base, st_off, r); } void AdapterGenerator::store_c2i_object(Register r, Register base, const int st_off) { __ st_ptr (r, base, arg_slot(st_off)); tag_c2i_arg(frame::TagReference, base, st_off, r); } void AdapterGenerator::store_c2i_int(Register r, Register base, const int st_off) { __ st (r, base, arg_slot(st_off)); tag_c2i_arg(frame::TagValue, base, st_off, r); } // Stores into offset pointed to by base void AdapterGenerator::store_c2i_double(VMReg r_2, VMReg r_1, Register base, const int st_off) { #ifdef _LP64 // In V9, doubles are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off)); #else // Need to marshal 64-bit value from misaligned Lesp loads __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off)); __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) ); #endif tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch); } void AdapterGenerator::store_c2i_float(FloatRegister f, Register base, const int st_off) { __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off)); tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch); } void AdapterGenerator::gen_c2i_adapter( int total_args_passed, // VMReg max_arg, int comp_args_on_stack, // VMRegStackSlots const BasicType *sig_bt, const VMRegPair *regs, Label& skip_fixup) { // Before we get into the guts of the C2I adapter, see if we should be here // at all. We've come from compiled code and are attempting to jump to the // interpreter, which means the caller made a static call to get here // (vcalls always get a compiled target if there is one). Check for a // compiled target. If there is one, we need to patch the caller's call. // However we will run interpreted if we come thru here. The next pass // thru the call site will run compiled. If we ran compiled here then // we can (theorectically) do endless i2c->c2i->i2c transitions during // deopt/uncommon trap cycles. If we always go interpreted here then // we can have at most one and don't need to play any tricks to keep // from endlessly growing the stack. // // Actually if we detected that we had an i2c->c2i transition here we // ought to be able to reset the world back to the state of the interpreted // call and not bother building another interpreter arg area. We don't // do that at this point. patch_callers_callsite(); __ bind(skip_fixup); // Since all args are passed on the stack, total_args_passed*wordSize is the // space we need. Add in varargs area needed by the interpreter. Round up // to stack alignment. const int arg_size = total_args_passed * Interpreter::stackElementSize(); const int varargs_area = (frame::varargs_offset - frame::register_save_words)*wordSize; const int extraspace = round_to(arg_size + varargs_area, 2*wordSize); int bias = STACK_BIAS; const int interp_arg_offset = frame::varargs_offset*wordSize + (total_args_passed-1)*Interpreter::stackElementSize(); Register base = SP; #ifdef _LP64 // In the 64bit build because of wider slots and STACKBIAS we can run // out of bits in the displacement to do loads and stores. Use g3 as // temporary displacement. if (! __ is_simm13(extraspace)) { __ set(extraspace, G3_scratch); __ sub(SP, G3_scratch, SP); } else { __ sub(SP, extraspace, SP); } set_Rdisp(G3_scratch); #else __ sub(SP, extraspace, SP); #endif // _LP64 // First write G1 (if used) to where ever it must go for (int i=0; ias_VMReg()) { if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) { store_c2i_object(G1_scratch, base, st_off); } else if (sig_bt[i] == T_LONG) { assert(!TieredCompilation, "should not use register args for longs"); store_c2i_long(G1_scratch, base, st_off, false); } else { store_c2i_int(G1_scratch, base, st_off); } } } // Now write the args into the outgoing interpreter space for (int i=0; iis_valid()) { assert(!r_2->is_valid(), ""); continue; } // Skip G1 if found as we did it first in order to free it up if (r_1 == G1_scratch->as_VMReg()) { continue; } #ifdef ASSERT bool G1_forced = false; #endif // ASSERT if (r_1->is_stack()) { // Pretend stack targets are loaded into G1 #ifdef _LP64 Register ld_off = Rdisp; __ set(reg2offset(r_1) + extraspace + bias, ld_off); #else int ld_off = reg2offset(r_1) + extraspace + bias; #ifdef ASSERT G1_forced = true; #endif // ASSERT #endif // _LP64 r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch); else __ ldx(base, ld_off, G1_scratch); } if (r_1->is_Register()) { Register r = r_1->as_Register()->after_restore(); if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) { store_c2i_object(r, base, st_off); } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { if (TieredCompilation) { assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs"); } store_c2i_long(r, base, st_off, r_2->is_stack()); } else { store_c2i_int(r, base, st_off); } } else { assert(r_1->is_FloatRegister(), ""); if (sig_bt[i] == T_FLOAT) { store_c2i_float(r_1->as_FloatRegister(), base, st_off); } else { assert(sig_bt[i] == T_DOUBLE, "wrong type"); store_c2i_double(r_2, r_1, base, st_off); } } } #ifdef _LP64 // Need to reload G3_scratch, used for temporary displacements. __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch); // Pass O5_savedSP as an argument to the interpreter. // The interpreter will restore SP to this value before returning. __ set(extraspace, G1); __ add(SP, G1, O5_savedSP); #else // Pass O5_savedSP as an argument to the interpreter. // The interpreter will restore SP to this value before returning. __ add(SP, extraspace, O5_savedSP); #endif // _LP64 __ mov((frame::varargs_offset)*wordSize - 1*Interpreter::stackElementSize()+bias+BytesPerWord, G1); // Jump to the interpreter just as if interpreter was doing it. __ jmpl(G3_scratch, 0, G0); // Setup Lesp for the call. Cannot actually set Lesp as the current Lesp // (really L0) is in use by the compiled frame as a generic temp. However, // the interpreter does not know where its args are without some kind of // arg pointer being passed in. Pass it in Gargs. __ delayed()->add(SP, G1, Gargs); } void AdapterGenerator::gen_i2c_adapter( int total_args_passed, // VMReg max_arg, int comp_args_on_stack, // VMRegStackSlots const BasicType *sig_bt, const VMRegPair *regs) { // Generate an I2C adapter: adjust the I-frame to make space for the C-frame // layout. Lesp was saved by the calling I-frame and will be restored on // return. Meanwhile, outgoing arg space is all owned by the callee // C-frame, so we can mangle it at will. After adjusting the frame size, // hoist register arguments and repack other args according to the compiled // code convention. Finally, end in a jump to the compiled code. The entry // point address is the start of the buffer. // We will only enter here from an interpreted frame and never from after // passing thru a c2i. Azul allowed this but we do not. If we lose the // race and use a c2i we will remain interpreted for the race loser(s). // This removes all sorts of headaches on the x86 side and also eliminates // the possibility of having c2i -> i2c -> c2i -> ... endless transitions. // As you can see from the list of inputs & outputs there are not a lot // of temp registers to work with: mostly G1, G3 & G4. // Inputs: // G2_thread - TLS // G5_method - Method oop // O0 - Flag telling us to restore SP from O5 // O4_args - Pointer to interpreter's args // O5 - Caller's saved SP, to be restored if needed // O6 - Current SP! // O7 - Valid return address // L0-L7, I0-I7 - Caller's temps (no frame pushed yet) // Outputs: // G2_thread - TLS // G1, G4 - Outgoing long args in 32-bit build // O0-O5 - Outgoing args in compiled layout // O6 - Adjusted or restored SP // O7 - Valid return address // L0-L7, I0-I7 - Caller's temps (no frame pushed yet) // F0-F7 - more outgoing args // O4 is about to get loaded up with compiled callee's args __ sub(Gargs, BytesPerWord, Gargs); #ifdef ASSERT { // on entry OsavedSP and SP should be equal Label ok; __ cmp(O5_savedSP, SP); __ br(Assembler::equal, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("I5_savedSP not set"); __ should_not_reach_here(); __ bind(ok); } #endif // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME // WITH O7 HOLDING A VALID RETURN PC // // | | // : java stack : // | | // +--------------+ <--- start of outgoing args // | receiver | | // : rest of args : |---size is java-arg-words // | | | // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I // | | | // : unused : |---Space for max Java stack, plus stack alignment // | | | // +--------------+ <--- SP + 16*wordsize // | | // : window : // | | // +--------------+ <--- SP // WE REPACK THE STACK. We use the common calling convention layout as // discovered by calling SharedRuntime::calling_convention. We assume it // causes an arbitrary shuffle of memory, which may require some register // temps to do the shuffle. We hope for (and optimize for) the case where // temps are not needed. We may have to resize the stack slightly, in case // we need alignment padding (32-bit interpreter can pass longs & doubles // misaligned, but the compilers expect them aligned). // // | | // : java stack : // | | // +--------------+ <--- start of outgoing args // | pad, align | | // +--------------+ | // | ints, floats | |---Outgoing stack args, packed low. // +--------------+ | First few args in registers. // : doubles : | // | longs | | // +--------------+ <--- SP' + 16*wordsize // | | // : window : // | | // +--------------+ <--- SP' // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN. // Cut-out for having no stack args. Since up to 6 args are passed // in registers, we will commonly have no stack args. if (comp_args_on_stack > 0) { // Convert VMReg stack slots to words. int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; // Round up to miminum stack alignment, in wordSize comp_words_on_stack = round_to(comp_words_on_stack, 2); // Now compute the distance from Lesp to SP. This calculation does not // include the space for total_args_passed because Lesp has not yet popped // the arguments. __ sub(SP, (comp_words_on_stack)*wordSize, SP); } // Will jump to the compiled code just as if compiled code was doing it. // Pre-load the register-jump target early, to schedule it better. __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3); // Now generate the shuffle code. Pick up all register args and move the // rest through G1_scratch. for (int i=0; i 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the // 32-bit build and aligned in the 64-bit build. Look for the obvious // ldx/lddf optimizations. // Load in argument order going down. const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize(); #ifdef _LP64 set_Rdisp(G1_scratch); #endif // _LP64 VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9 r_1 = F8->as_VMReg(); // as part of the load/store shuffle if (r_2->is_valid()) r_2 = r_1->next(); } if (r_1->is_Register()) { // Register argument Register r = r_1->as_Register()->after_restore(); if (!r_2->is_valid()) { __ ld(Gargs, arg_slot(ld_off), r); } else { #ifdef _LP64 // In V9, longs are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. Register slot = (sig_bt[i]==T_LONG) ? next_arg_slot(ld_off) : arg_slot(ld_off); __ ldx(Gargs, slot, r); #else // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the // stack shuffle. Load the first 2 longs into G1/G4 later. #endif } } else { assert(r_1->is_FloatRegister(), ""); if (!r_2->is_valid()) { __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister()); } else { #ifdef _LP64 // In V9, doubles are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. This code also handles longs that // are passed on the stack, but need a stack-to-stack move through a // spare float register. Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ? next_arg_slot(ld_off) : arg_slot(ld_off); __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister()); #else // Need to marshal 64-bit value from misaligned Lesp loads __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister()); __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister()); #endif } } // Was the argument really intended to be on the stack, but was loaded // into F8/F9? if (regs[i].first()->is_stack()) { assert(r_1->as_FloatRegister() == F8, "fix this code"); // Convert stack slot to an SP offset int st_off = reg2offset(regs[i].first()) + STACK_BIAS; // Store down the shuffled stack word. Target address _is_ aligned. if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off); else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off); } } bool made_space = false; #ifndef _LP64 // May need to pick up a few long args in G1/G4 bool g4_crushed = false; bool g3_crushed = false; for (int i=0; iis_Register() && regs[i].second()->is_valid()) { // Load in argument order going down int ld_off = (total_args_passed-i)*Interpreter::stackElementSize(); // Need to marshal 64-bit value from misaligned Lesp loads Register r = regs[i].first()->as_Register()->after_restore(); if (r == G1 || r == G4) { assert(!g4_crushed, "ordering problem"); if (r == G4){ g4_crushed = true; __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits } else { // better schedule this way __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits __ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits } g3_crushed = true; __ sllx(r, 32, r); __ or3(G3_scratch, r, r); } else { assert(r->is_out(), "longs passed in two O registers"); __ ld (Gargs, arg_slot(ld_off) , r->successor()); // Load lo bits __ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits } } } #endif // Jump to the compiled code just as if compiled code was doing it. // #ifndef _LP64 if (g3_crushed) { // Rats load was wasted, at least it is in cache... __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3); } #endif /* _LP64 */ // 6243940 We might end up in handle_wrong_method if // the callee is deoptimized as we race thru here. If that // happens we don't want to take a safepoint because the // caller frame will look interpreted and arguments are now // "compiled" so it is much better to make this transition // invisible to the stack walking code. Unfortunately if // we try and find the callee by normal means a safepoint // is possible. So we stash the desired callee in the thread // and the vm will find there should this case occur. Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset())); __ st_ptr(G5_method, callee_target_addr); if (StressNonEntrant) { // Open a big window for deopt failure __ save_frame(0); __ mov(G0, L0); Label loop; __ bind(loop); __ sub(L0, 1, L0); __ br_null(L0, false, Assembler::pt, loop); __ delayed()->nop(); __ restore(); } __ jmpl(G3, 0, G0); __ delayed()->nop(); } // --------------------------------------------------------------- AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, int total_args_passed, // VMReg max_arg, int comp_args_on_stack, // VMRegStackSlots const BasicType *sig_bt, const VMRegPair *regs) { address i2c_entry = __ pc(); AdapterGenerator agen(masm); agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs); // ------------------------------------------------------------------------- // Generate a C2I adapter. On entry we know G5 holds the methodOop. The // args start out packed in the compiled layout. They need to be unpacked // into the interpreter layout. This will almost always require some stack // space. We grow the current (compiled) stack, then repack the args. We // finally end in a jump to the generic interpreter entry point. On exit // from the interpreter, the interpreter will restore our SP (lest the // compiled code, which relys solely on SP and not FP, get sick). address c2i_unverified_entry = __ pc(); Label skip_fixup; { #if !defined(_LP64) && defined(COMPILER2) Register R_temp = L0; // another scratch register #else Register R_temp = G1; // another scratch register #endif Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub()); __ verify_oop(O0); __ verify_oop(G5_method); __ load_klass(O0, G3_scratch); __ verify_oop(G3_scratch); #if !defined(_LP64) && defined(COMPILER2) __ save(SP, -frame::register_save_words*wordSize, SP); __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp); __ verify_oop(R_temp); __ cmp(G3_scratch, R_temp); __ restore(); #else __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp); __ verify_oop(R_temp); __ cmp(G3_scratch, R_temp); #endif Label ok, ok2; __ brx(Assembler::equal, false, Assembler::pt, ok); __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method); __ jump_to(ic_miss); __ delayed()->nop(); __ bind(ok); // Method might have been compiled since the call site was patched to // interpreted if that is the case treat it as a miss so we can get // the call site corrected. __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch); __ bind(ok2); __ br_null(G3_scratch, false, __ pt, skip_fixup); __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch); __ jump_to(ic_miss); __ delayed()->nop(); } address c2i_entry = __ pc(); agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); __ flush(); return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry); } // Helper function for native calling conventions static VMReg int_stk_helper( int i ) { // Bias any stack based VMReg we get by ignoring the window area // but not the register parameter save area. // // This is strange for the following reasons. We'd normally expect // the calling convention to return an VMReg for a stack slot // completely ignoring any abi reserved area. C2 thinks of that // abi area as only out_preserve_stack_slots. This does not include // the area allocated by the C abi to store down integer arguments // because the java calling convention does not use it. So // since c2 assumes that there are only out_preserve_stack_slots // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack // location the c calling convention must add in this bias amount // to make up for the fact that the out_preserve_stack_slots is // insufficient for C calls. What a mess. I sure hope those 6 // stack words were worth it on every java call! // Another way of cleaning this up would be for out_preserve_stack_slots // to take a parameter to say whether it was C or java calling conventions. // Then things might look a little better (but not much). int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM; if( mem_parm_offset < 0 ) { return as_oRegister(i)->as_VMReg(); } else { int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word; // Now return a biased offset that will be correct when out_preserve_slots is added back in return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots()); } } int SharedRuntime::c_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { // Return the number of VMReg stack_slots needed for the args. // This value does not include an abi space (like register window // save area). // The native convention is V8 if !LP64 // The LP64 convention is the V9 convention which is slightly more sane. // We return the amount of VMReg stack slots we need to reserve for all // the arguments NOT counting out_preserve_stack_slots. Since we always // have space for storing at least 6 registers to memory we start with that. // See int_stk_helper for a further discussion. int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots(); #ifdef _LP64 // V9 convention: All things "as-if" on double-wide stack slots. // Hoist any int/ptr/long's in the first 6 to int regs. // Hoist any flt/dbl's in the first 16 dbl regs. int j = 0; // Count of actual args, not HALVES for( int i=0; ias_VMReg()); } else { // V9ism: floats go in ODD stack slot regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1))); } break; case T_DOUBLE: assert( sig_bt[i+1] == T_VOID, "expecting half" ); if ( j < 16 ) { // V9ism: doubles go in EVEN/ODD regs regs[i].set2(as_FloatRegister(j<<1)->as_VMReg()); } else { // V9ism: doubles go in EVEN/ODD stack slots regs[i].set2(VMRegImpl::stack2reg(j<<1)); } break; case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES default: ShouldNotReachHere(); } if (regs[i].first()->is_stack()) { int off = regs[i].first()->reg2stack(); if (off > max_stack_slots) max_stack_slots = off; } if (regs[i].second()->is_stack()) { int off = regs[i].second()->reg2stack(); if (off > max_stack_slots) max_stack_slots = off; } } #else // _LP64 // V8 convention: first 6 things in O-regs, rest on stack. // Alignment is willy-nilly. for( int i=0; iis_stack()) { int off = regs[i].first()->reg2stack(); if (off > max_stack_slots) max_stack_slots = off; } if (regs[i].second()->is_stack()) { int off = regs[i].second()->reg2stack(); if (off > max_stack_slots) max_stack_slots = off; } } #endif // _LP64 return round_to(max_stack_slots + 1, 2); } // --------------------------------------------------------------------------- void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { switch (ret_type) { case T_FLOAT: __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS); break; case T_DOUBLE: __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS); break; } } void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { switch (ret_type) { case T_FLOAT: __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0); break; case T_DOUBLE: __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0); break; } } // Check and forward and pending exception. Thread is stored in // L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there // is no exception handler. We merely pop this frame off and throw the // exception in the caller's frame. static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) { Label L; __ br_null(Rex_oop, false, Assembler::pt, L); __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception // Since this is a native call, we *know* the proper exception handler // without calling into the VM: it's the empty function. Just pop this // frame and then jump to forward_exception_entry; O7 will contain the // native caller's return PC. Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry()); __ jump_to(exception_entry); __ delayed()->restore(); // Pop this frame off. __ bind(L); } // A simple move of integer like type static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS); } else { // stack to reg __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); } } else if (dst.first()->is_stack()) { // reg to stack __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS); } else { __ mov(src.first()->as_Register(), dst.first()->as_Register()); } } // On 64 bit we will store integer like items to the stack as // 64 bits items (sparc abi) even though java would only store // 32bits for a parameter. On 32bit it will simply be 32 bits // So this routine will do 32->32 on 32bit and 32->64 on 64bit static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS); } else { // stack to reg __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); } } else if (dst.first()->is_stack()) { // reg to stack __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS); } else { __ mov(src.first()->as_Register(), dst.first()->as_Register()); } } // An oop arg. Must pass a handle not the oop itself static void object_move(MacroAssembler* masm, OopMap* map, int oop_handle_offset, int framesize_in_slots, VMRegPair src, VMRegPair dst, bool is_receiver, int* receiver_offset) { // must pass a handle. First figure out the location we use as a handle if (src.first()->is_stack()) { // Oop is already on the stack Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register(); __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle); __ ld_ptr(rHandle, 0, L4); #ifdef _LP64 __ movr( Assembler::rc_z, L4, G0, rHandle ); #else __ tst( L4 ); __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle ); #endif if (dst.first()->is_stack()) { __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS); } int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); if (is_receiver) { *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; } map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); } else { // Oop is in an input register pass we must flush it to the stack const Register rOop = src.first()->as_Register(); const Register rHandle = L5; int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset; int offset = oop_slot*VMRegImpl::stack_slot_size; Label skip; __ st_ptr(rOop, SP, offset + STACK_BIAS); if (is_receiver) { *receiver_offset = oop_slot * VMRegImpl::stack_slot_size; } map->set_oop(VMRegImpl::stack2reg(oop_slot)); __ add(SP, offset + STACK_BIAS, rHandle); #ifdef _LP64 __ movr( Assembler::rc_z, rOop, G0, rHandle ); #else __ tst( rOop ); __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle ); #endif if (dst.first()->is_stack()) { __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS); } else { __ mov(rHandle, dst.first()->as_Register()); } } } // A float arg may have to do float reg int reg conversion static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack the easiest of the bunch __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS); } else { // stack to reg if (dst.first()->is_Register()) { __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); } else { __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister()); } } } else if (dst.first()->is_stack()) { // reg to stack if (src.first()->is_Register()) { __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS); } else { __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS); } } else { // reg to reg if (src.first()->is_Register()) { if (dst.first()->is_Register()) { // gpr -> gpr __ mov(src.first()->as_Register(), dst.first()->as_Register()); } else { // gpr -> fpr __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS); __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister()); } } else if (dst.first()->is_Register()) { // fpr -> gpr __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS); __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register()); } else { // fpr -> fpr // In theory these overlap but the ordering is such that this is likely a nop if ( src.first() != dst.first()) { __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister()); } } } } static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { VMRegPair src_lo(src.first()); VMRegPair src_hi(src.second()); VMRegPair dst_lo(dst.first()); VMRegPair dst_hi(dst.second()); simple_move32(masm, src_lo, dst_lo); simple_move32(masm, src_hi, dst_hi); } // A long move static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // Do the simple ones here else do two int moves if (src.is_single_phys_reg() ) { if (dst.is_single_phys_reg()) { __ mov(src.first()->as_Register(), dst.first()->as_Register()); } else { // split src into two separate registers // Remember hi means hi address or lsw on sparc // Move msw to lsw if (dst.second()->is_reg()) { // MSW -> MSW __ srax(src.first()->as_Register(), 32, dst.first()->as_Register()); // Now LSW -> LSW // this will only move lo -> lo and ignore hi VMRegPair split(dst.second()); simple_move32(masm, src, split); } else { VMRegPair split(src.first(), L4->as_VMReg()); // MSW -> MSW (lo ie. first word) __ srax(src.first()->as_Register(), 32, L4); split_long_move(masm, split, dst); } } } else if (dst.is_single_phys_reg()) { if (src.is_adjacent_aligned_on_stack(2)) { __ ld_long(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); } else { // dst is a single reg. // Remember lo is low address not msb for stack slots // and lo is the "real" register for registers // src is VMRegPair split; if (src.first()->is_reg()) { // src.lo (msw) is a reg, src.hi is stk/reg // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg] split.set_pair(dst.first(), src.first()); } else { // msw is stack move to L5 // lsw is stack move to dst.lo (real reg) // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5 split.set_pair(dst.first(), L5->as_VMReg()); } // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg) // msw -> src.lo/L5, lsw -> dst.lo split_long_move(masm, src, split); // So dst now has the low order correct position the // msw half __ sllx(split.first()->as_Register(), 32, L5); const Register d = dst.first()->as_Register(); __ or3(L5, d, d); } } else { // For LP64 we can probably do better. split_long_move(masm, src, dst); } } // A double move static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // The painful thing here is that like long_move a VMRegPair might be // 1: a single physical register // 2: two physical registers (v8) // 3: a physical reg [lo] and a stack slot [hi] (v8) // 4: two stack slots // Since src is always a java calling convention we know that the src pair // is always either all registers or all stack (and aligned?) // in a register [lo] and a stack slot [hi] if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack the easiest of the bunch // ought to be a way to do this where if alignment is ok we use ldd/std when possible __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4); __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS); __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS); } else { // stack to reg if (dst.second()->is_stack()) { // stack -> reg, stack -> stack __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4); if (dst.first()->is_Register()) { __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); } else { __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister()); } // This was missing. (very rare case) __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS); } else { // stack -> reg // Eventually optimize for alignment QQQ if (dst.first()->is_Register()) { __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register()); __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register()); } else { __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister()); __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister()); } } } } else if (dst.first()->is_stack()) { // reg to stack if (src.first()->is_Register()) { // Eventually optimize for alignment QQQ __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS); if (src.second()->is_stack()) { __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4); __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS); } else { __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS); } } else { // fpr to stack if (src.second()->is_stack()) { ShouldNotReachHere(); } else { // Is the stack aligned? if (reg2offset(dst.first()) & 0x7) { // No do as pairs __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS); __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS); } else { __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS); } } } } else { // reg to reg if (src.first()->is_Register()) { if (dst.first()->is_Register()) { // gpr -> gpr __ mov(src.first()->as_Register(), dst.first()->as_Register()); __ mov(src.second()->as_Register(), dst.second()->as_Register()); } else { // gpr -> fpr // ought to be able to do a single store __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS); __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS); // ought to be able to do a single load __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister()); __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister()); } } else if (dst.first()->is_Register()) { // fpr -> gpr // ought to be able to do a single store __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS); // ought to be able to do a single load // REMEMBER first() is low address not LSB __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register()); if (dst.second()->is_Register()) { __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register()); } else { __ ld(FP, -4 + STACK_BIAS, L4); __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS); } } else { // fpr -> fpr // In theory these overlap but the ordering is such that this is likely a nop if ( src.first() != dst.first()) { __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister()); } } } } // Creates an inner frame if one hasn't already been created, and // saves a copy of the thread in L7_thread_cache static void create_inner_frame(MacroAssembler* masm, bool* already_created) { if (!*already_created) { __ save_frame(0); // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below // Don't use save_thread because it smashes G2 and we merely want to save a // copy __ mov(G2_thread, L7_thread_cache); *already_created = true; } } // --------------------------------------------------------------------------- // Generate a native wrapper for a given method. The method takes arguments // in the Java compiled code convention, marshals them to the native // convention (handlizes oops, etc), transitions to native, makes the call, // returns to java state (possibly blocking), unhandlizes any result and // returns. nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm, methodHandle method, int total_in_args, int comp_args_on_stack, // in VMRegStackSlots BasicType *in_sig_bt, VMRegPair *in_regs, BasicType ret_type) { // Native nmethod wrappers never take possesion of the oop arguments. // So the caller will gc the arguments. The only thing we need an // oopMap for is if the call is static // // An OopMap for lock (and class if static), and one for the VM call itself OopMapSet *oop_maps = new OopMapSet(); intptr_t start = (intptr_t)__ pc(); // First thing make an ic check to see if we should even be here { Label L; const Register temp_reg = G3_scratch; Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub()); __ verify_oop(O0); __ load_klass(O0, temp_reg); __ cmp(temp_reg, G5_inline_cache_reg); __ brx(Assembler::equal, true, Assembler::pt, L); __ delayed()->nop(); __ jump_to(ic_miss, 0); __ delayed()->nop(); __ align(CodeEntryAlignment); __ bind(L); } int vep_offset = ((intptr_t)__ pc()) - start; #ifdef COMPILER1 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) { // Object.hashCode can pull the hashCode from the header word // instead of doing a full VM transition once it's been computed. // Since hashCode is usually polymorphic at call sites we can't do // this optimization at the call site without a lot of work. Label slowCase; Register receiver = O0; Register result = O0; Register header = G3_scratch; Register hash = G3_scratch; // overwrite header value with hash value Register mask = G1; // to get hash field from header // Read the header and build a mask to get its hash field. Give up if the object is not unlocked. // We depend on hash_mask being at most 32 bits and avoid the use of // hash_mask_in_place because it could be larger than 32 bits in a 64-bit // vm: see markOop.hpp. __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header); __ sethi(markOopDesc::hash_mask, mask); __ btst(markOopDesc::unlocked_value, header); __ br(Assembler::zero, false, Assembler::pn, slowCase); if (UseBiasedLocking) { // Check if biased and fall through to runtime if so __ delayed()->nop(); __ btst(markOopDesc::biased_lock_bit_in_place, header); __ br(Assembler::notZero, false, Assembler::pn, slowCase); } __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask); // Check for a valid (non-zero) hash code and get its value. #ifdef _LP64 __ srlx(header, markOopDesc::hash_shift, hash); #else __ srl(header, markOopDesc::hash_shift, hash); #endif __ andcc(hash, mask, hash); __ br(Assembler::equal, false, Assembler::pn, slowCase); __ delayed()->nop(); // leaf return. __ retl(); __ delayed()->mov(hash, result); __ bind(slowCase); } #endif // COMPILER1 // We have received a description of where all the java arg are located // on entry to the wrapper. We need to convert these args to where // the jni function will expect them. To figure out where they go // we convert the java signature to a C signature by inserting // the hidden arguments as arg[0] and possibly arg[1] (static method) int total_c_args = total_in_args + 1; if (method->is_static()) { total_c_args++; } BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); VMRegPair * out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); int argc = 0; out_sig_bt[argc++] = T_ADDRESS; if (method->is_static()) { out_sig_bt[argc++] = T_OBJECT; } for (int i = 0; i < total_in_args ; i++ ) { out_sig_bt[argc++] = in_sig_bt[i]; } // Now figure out where the args must be stored and how much stack space // they require (neglecting out_preserve_stack_slots but space for storing // the 1st six register arguments). It's weird see int_stk_helper. // int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); // Compute framesize for the wrapper. We need to handlize all oops in // registers. We must create space for them here that is disjoint from // the windowed save area because we have no control over when we might // flush the window again and overwrite values that gc has since modified. // (The live window race) // // We always just allocate 6 word for storing down these object. This allow // us to simply record the base and use the Ireg number to decide which // slot to use. (Note that the reg number is the inbound number not the // outbound number). // We must shuffle args to match the native convention, and include var-args space. // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Now the space for the inbound oop handle area int oop_handle_offset = stack_slots; stack_slots += 6*VMRegImpl::slots_per_word; // Now any space we need for handlizing a klass if static method int oop_temp_slot_offset = 0; int klass_slot_offset = 0; int klass_offset = -1; int lock_slot_offset = 0; bool is_static = false; if (method->is_static()) { klass_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; is_static = true; } // Plus a lock if needed if (method->is_synchronized()) { lock_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; } // Now a place to save return value or as a temporary for any gpr -> fpr moves stack_slots += 2; // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | 2 slots for moves | // |---------------------| // | lock box (if sync) | // |---------------------| <- lock_slot_offset // | klass (if static) | // |---------------------| <- klass_slot_offset // | oopHandle area | // |---------------------| <- oop_handle_offset // | outbound memory | // | based arguments | // | | // |---------------------| // | vararg area | // |---------------------| // | | // SP-> | out_preserved_slots | // // // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word); int stack_size = stack_slots * VMRegImpl::stack_slot_size; // Generate stack overflow check before creating frame __ generate_stack_overflow_check(stack_size); // Generate a new frame for the wrapper. __ save(SP, -stack_size, SP); int frame_complete = ((intptr_t)__ pc()) - start; __ verify_thread(); // // We immediately shuffle the arguments so that any vm call we have to // make from here on out (sync slow path, jvmti, etc.) we will have // captured the oops from our caller and have a valid oopMap for // them. // ----------------- // The Grand Shuffle // // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* // (derived from JavaThread* which is in L7_thread_cache) and, if static, // the class mirror instead of a receiver. This pretty much guarantees that // register layout will not match. We ignore these extra arguments during // the shuffle. The shuffle is described by the two calling convention // vectors we have in our possession. We simply walk the java vector to // get the source locations and the c vector to get the destinations. // Because we have a new window and the argument registers are completely // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about // here. // This is a trick. We double the stack slots so we can claim // the oops in the caller's frame. Since we are sure to have // more args than the caller doubling is enough to make // sure we can capture all the incoming oop args from the // caller. // OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); int c_arg = total_c_args - 1; // Record sp-based slot for receiver on stack for non-static methods int receiver_offset = -1; // We move the arguments backward because the floating point registers // destination will always be to a register with a greater or equal register // number or the stack. #ifdef ASSERT bool reg_destroyed[RegisterImpl::number_of_registers]; bool freg_destroyed[FloatRegisterImpl::number_of_registers]; for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { reg_destroyed[r] = false; } for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) { freg_destroyed[f] = false; } #endif /* ASSERT */ for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) { #ifdef ASSERT if (in_regs[i].first()->is_Register()) { assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!"); } else if (in_regs[i].first()->is_FloatRegister()) { assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!"); } if (out_regs[c_arg].first()->is_Register()) { reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; } else if (out_regs[c_arg].first()->is_FloatRegister()) { freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true; } #endif /* ASSERT */ switch (in_sig_bt[i]) { case T_ARRAY: case T_OBJECT: object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], ((i == 0) && (!is_static)), &receiver_offset); break; case T_VOID: break; case T_FLOAT: float_move(masm, in_regs[i], out_regs[c_arg]); break; case T_DOUBLE: assert( i + 1 < total_in_args && in_sig_bt[i + 1] == T_VOID && out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); double_move(masm, in_regs[i], out_regs[c_arg]); break; case T_LONG : long_move(masm, in_regs[i], out_regs[c_arg]); break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: move32_64(masm, in_regs[i], out_regs[c_arg]); } } // Pre-load a static method's oop into O1. Used both by locking code and // the normal JNI call code. if (method->is_static()) { __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1); // Now handlize the static class mirror in O1. It's known not-null. __ st_ptr(O1, SP, klass_offset + STACK_BIAS); map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); __ add(SP, klass_offset + STACK_BIAS, O1); } const Register L6_handle = L6; if (method->is_synchronized()) { __ mov(O1, L6_handle); } // We have all of the arguments setup at this point. We MUST NOT touch any Oregs // except O6/O7. So if we must call out we must push a new frame. We immediately // push a new frame and flush the windows. #ifdef _LP64 intptr_t thepc = (intptr_t) __ pc(); { address here = __ pc(); // Call the next instruction __ call(here + 8, relocInfo::none); __ delayed()->nop(); } #else intptr_t thepc = __ load_pc_address(O7, 0); #endif /* _LP64 */ // We use the same pc/oopMap repeatedly when we call out oop_maps->add_gc_map(thepc - start, map); // O7 now has the pc loaded that we will use when we finally call to native. // Save thread in L7; it crosses a bunch of VM calls below // Don't use save_thread because it smashes G2 and we merely // want to save a copy __ mov(G2_thread, L7_thread_cache); // If we create an inner frame once is plenty // when we create it we must also save G2_thread bool inner_frame_created = false; // dtrace method entry support { SkipIfEqual skip_if( masm, G3_scratch, &DTraceMethodProbes, Assembler::zero); // create inner frame __ save_frame(0); __ mov(G2_thread, L7_thread_cache); __ set_oop_constant(JNIHandles::make_local(method()), O1); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), G2_thread, O1); __ restore(); } // We are in the jni frame unless saved_frame is true in which case // we are in one frame deeper (the "inner" frame). If we are in the // "inner" frames the args are in the Iregs and if the jni frame then // they are in the Oregs. // If we ever need to go to the VM (for locking, jvmti) then // we will always be in the "inner" frame. // Lock a synchronized method int lock_offset = -1; // Set if locked if (method->is_synchronized()) { Register Roop = O1; const Register L3_box = L3; create_inner_frame(masm, &inner_frame_created); __ ld_ptr(I1, 0, O1); Label done; lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size); __ add(FP, lock_offset+STACK_BIAS, L3_box); #ifdef ASSERT if (UseBiasedLocking) { // making the box point to itself will make it clear it went unused // but also be obviously invalid __ st_ptr(L3_box, L3_box, 0); } #endif // ASSERT // // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch // __ compiler_lock_object(Roop, L1, L3_box, L2); __ br(Assembler::equal, false, Assembler::pt, done); __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box); // None of the above fast optimizations worked so we have to get into the // slow case of monitor enter. Inline a special case of call_VM that // disallows any pending_exception. __ mov(Roop, O0); // Need oop in O0 __ mov(L3_box, O1); // Record last_Java_sp, in case the VM code releases the JVM lock. __ set_last_Java_frame(FP, I7); // do the call __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type); __ delayed()->mov(L7_thread_cache, O2); __ restore_thread(L7_thread_cache); // restore G2_thread __ reset_last_Java_frame(); #ifdef ASSERT { Label L; __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0); __ br_null(O0, false, Assembler::pt, L); __ delayed()->nop(); __ stop("no pending exception allowed on exit from IR::monitorenter"); __ bind(L); } #endif __ bind(done); } // Finally just about ready to make the JNI call __ flush_windows(); if (inner_frame_created) { __ restore(); } else { // Store only what we need from this frame // QQQ I think that non-v9 (like we care) we don't need these saves // either as the flush traps and the current window goes too. __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS); __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS); } // get JNIEnv* which is first argument to native __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0); // Use that pc we placed in O7 a while back as the current frame anchor __ set_last_Java_frame(SP, O7); // Transition from _thread_in_Java to _thread_in_native. __ set(_thread_in_native, G3_scratch); __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset())); // We flushed the windows ages ago now mark them as flushed // mark windows as flushed __ set(JavaFrameAnchor::flushed, G3_scratch); Address flags(G2_thread, 0, in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset())); #ifdef _LP64 Address dest(O7, method->native_function()); __ relocate(relocInfo::runtime_call_type); __ jumpl_to(dest, O7); #else __ call(method->native_function(), relocInfo::runtime_call_type); #endif __ delayed()->st(G3_scratch, flags); __ restore_thread(L7_thread_cache); // restore G2_thread // Unpack native results. For int-types, we do any needed sign-extension // and move things into I0. The return value there will survive any VM // calls for blocking or unlocking. An FP or OOP result (handle) is done // specially in the slow-path code. switch (ret_type) { case T_VOID: break; // Nothing to do! case T_FLOAT: break; // Got it where we want it (unless slow-path) case T_DOUBLE: break; // Got it where we want it (unless slow-path) // In 64 bits build result is in O0, in O0, O1 in 32bit build case T_LONG: #ifndef _LP64 __ mov(O1, I1); #endif // Fall thru case T_OBJECT: // Really a handle case T_ARRAY: case T_INT: __ mov(O0, I0); break; case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break; case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value! case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break; break; // Cannot de-handlize until after reclaiming jvm_lock default: ShouldNotReachHere(); } // must we block? // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after blocking. { Label no_block; Address sync_state(G3_scratch, SafepointSynchronize::address_of_state()); // Switch thread to "native transition" state before reading the synchronization state. // This additional state is necessary because reading and testing the synchronization // state is not atomic w.r.t. GC, as this scenario demonstrates: // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. // VM thread changes sync state to synchronizing and suspends threads for GC. // Thread A is resumed to finish this native method, but doesn't block here since it // didn't see any synchronization is progress, and escapes. __ set(_thread_in_native_trans, G3_scratch); __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset())); if(os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ membar(Assembler::StoreLoad); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(G2_thread, G1_scratch, G3_scratch); } } __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); Label L; Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset())); __ br(Assembler::notEqual, false, Assembler::pn, L); __ delayed()-> ld(suspend_state, G3_scratch); __ cmp(G3_scratch, 0); __ br(Assembler::equal, false, Assembler::pt, no_block); __ delayed()->nop(); __ bind(L); // Block. Save any potential method result value before the operation and // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this // lets us share the oopMap we used when we went native rather the create // a distinct one for this pc // save_native_result(masm, ret_type, stack_slots); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), G2_thread); // Restore any method result value restore_native_result(masm, ret_type, stack_slots); __ bind(no_block); } // thread state is thread_in_native_trans. Any safepoint blocking has already // happened so we can now change state to _thread_in_Java. __ set(_thread_in_Java, G3_scratch); __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset())); Label no_reguard; __ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch); __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled); __ br(Assembler::notEqual, false, Assembler::pt, no_reguard); __ delayed()->nop(); save_native_result(masm, ret_type, stack_slots); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); __ delayed()->nop(); __ restore_thread(L7_thread_cache); // restore G2_thread restore_native_result(masm, ret_type, stack_slots); __ bind(no_reguard); // Handle possible exception (will unlock if necessary) // native result if any is live in freg or I0 (and I1 if long and 32bit vm) // Unlock if (method->is_synchronized()) { Label done; Register I2_ex_oop = I2; const Register L3_box = L3; // Get locked oop from the handle we passed to jni __ ld_ptr(L6_handle, 0, L4); __ add(SP, lock_offset+STACK_BIAS, L3_box); // Must save pending exception around the slow-path VM call. Since it's a // leaf call, the pending exception (if any) can be kept in a register. __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop); // Now unlock // (Roop, Rmark, Rbox, Rscratch) __ compiler_unlock_object(L4, L1, L3_box, L2); __ br(Assembler::equal, false, Assembler::pt, done); __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box); // save and restore any potential method result value around the unlocking // operation. Will save in I0 (or stack for FP returns). save_native_result(masm, ret_type, stack_slots); // Must clear pending-exception before re-entering the VM. Since this is // a leaf call, pending-exception-oop can be safely kept in a register. __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset())); // slow case of monitor enter. Inline a special case of call_VM that // disallows any pending_exception. __ mov(L3_box, O1); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type); __ delayed()->mov(L4, O0); // Need oop in O0 __ restore_thread(L7_thread_cache); // restore G2_thread #ifdef ASSERT { Label L; __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0); __ br_null(O0, false, Assembler::pt, L); __ delayed()->nop(); __ stop("no pending exception allowed on exit from IR::monitorexit"); __ bind(L); } #endif restore_native_result(masm, ret_type, stack_slots); // check_forward_pending_exception jump to forward_exception if any pending // exception is set. The forward_exception routine expects to see the // exception in pending_exception and not in a register. Kind of clumsy, // since all folks who branch to forward_exception must have tested // pending_exception first and hence have it in a register already. __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset())); __ bind(done); } // Tell dtrace about this method exit { SkipIfEqual skip_if( masm, G3_scratch, &DTraceMethodProbes, Assembler::zero); save_native_result(masm, ret_type, stack_slots); __ set_oop_constant(JNIHandles::make_local(method()), O1); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), G2_thread, O1); restore_native_result(masm, ret_type, stack_slots); } // Clear "last Java frame" SP and PC. __ verify_thread(); // G2_thread must be correct __ reset_last_Java_frame(); // Unpack oop result if (ret_type == T_OBJECT || ret_type == T_ARRAY) { Label L; __ addcc(G0, I0, G0); __ brx(Assembler::notZero, true, Assembler::pt, L); __ delayed()->ld_ptr(I0, 0, I0); __ mov(G0, I0); __ bind(L); __ verify_oop(I0); } // reset handle block __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5); __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes()); __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch); check_forward_pending_exception(masm, G3_scratch); // Return #ifndef _LP64 if (ret_type == T_LONG) { // Must leave proper result in O0,O1 and G1 (c2/tiered only) __ sllx(I0, 32, G1); // Shift bits into high G1 __ srl (I1, 0, I1); // Zero extend O1 (harmless?) __ or3 (I1, G1, G1); // OR 64 bits into G1 } #endif __ ret(); __ delayed()->restore(); __ flush(); nmethod *nm = nmethod::new_native_nmethod(method, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), in_ByteSize(lock_offset), oop_maps); return nm; } #ifdef HAVE_DTRACE_H // --------------------------------------------------------------------------- // Generate a dtrace nmethod for a given signature. The method takes arguments // in the Java compiled code convention, marshals them to the native // abi and then leaves nops at the position you would expect to call a native // function. When the probe is enabled the nops are replaced with a trap // instruction that dtrace inserts and the trace will cause a notification // to dtrace. // // The probes are only able to take primitive types and java/lang/String as // arguments. No other java types are allowed. Strings are converted to utf8 // strings so that from dtrace point of view java strings are converted to C // strings. There is an arbitrary fixed limit on the total space that a method // can use for converting the strings. (256 chars per string in the signature). // So any java string larger then this is truncated. static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 }; static bool offsets_initialized = false; static VMRegPair reg64_to_VMRegPair(Register r) { VMRegPair ret; if (wordSize == 8) { ret.set2(r->as_VMReg()); } else { ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg()); } return ret; } nmethod *SharedRuntime::generate_dtrace_nmethod( MacroAssembler *masm, methodHandle method) { // generate_dtrace_nmethod is guarded by a mutex so we are sure to // be single threaded in this method. assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be"); // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); // The signature we are going to use for the trap that dtrace will see // java/lang/String is converted. We drop "this" and any other object // is converted to NULL. (A one-slot java/lang/Long object reference // is converted to a two-slot long, which is why we double the allocation). BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2); VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2); int i=0; int total_strings = 0; int first_arg_to_pass = 0; int total_c_args = 0; // Skip the receiver as dtrace doesn't want to see it if( !method->is_static() ) { in_sig_bt[i++] = T_OBJECT; first_arg_to_pass = 1; } SignatureStream ss(method->signature()); for ( ; !ss.at_return_type(); ss.next()) { BasicType bt = ss.type(); in_sig_bt[i++] = bt; // Collect remaining bits of signature out_sig_bt[total_c_args++] = bt; if( bt == T_OBJECT) { symbolOop s = ss.as_symbol_or_null(); if (s == vmSymbols::java_lang_String()) { total_strings++; out_sig_bt[total_c_args-1] = T_ADDRESS; } else if (s == vmSymbols::java_lang_Boolean() || s == vmSymbols::java_lang_Byte()) { out_sig_bt[total_c_args-1] = T_BYTE; } else if (s == vmSymbols::java_lang_Character() || s == vmSymbols::java_lang_Short()) { out_sig_bt[total_c_args-1] = T_SHORT; } else if (s == vmSymbols::java_lang_Integer() || s == vmSymbols::java_lang_Float()) { out_sig_bt[total_c_args-1] = T_INT; } else if (s == vmSymbols::java_lang_Long() || s == vmSymbols::java_lang_Double()) { out_sig_bt[total_c_args-1] = T_LONG; out_sig_bt[total_c_args++] = T_VOID; } } else if ( bt == T_LONG || bt == T_DOUBLE ) { in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots // We convert double to long out_sig_bt[total_c_args-1] = T_LONG; out_sig_bt[total_c_args++] = T_VOID; } else if ( bt == T_FLOAT) { // We convert float to int out_sig_bt[total_c_args-1] = T_INT; } } assert(i==total_args_passed, "validly parsed signature"); // Now get the compiled-Java layout as input arguments int comp_args_on_stack; comp_args_on_stack = SharedRuntime::java_calling_convention( in_sig_bt, in_regs, total_args_passed, false); // We have received a description of where all the java arg are located // on entry to the wrapper. We need to convert these args to where // the a native (non-jni) function would expect them. To figure out // where they go we convert the java signature to a C signature and remove // T_VOID for any long/double we might have received. // Now figure out where the args must be stored and how much stack space // they require (neglecting out_preserve_stack_slots but space for storing // the 1st six register arguments). It's weird see int_stk_helper. // int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Plus a temp for possible converion of float/double/long register args int conversion_temp = stack_slots; stack_slots += 2; // Now space for the string(s) we must convert int string_locs = stack_slots; stack_slots += total_strings * (max_dtrace_string_size / VMRegImpl::stack_slot_size); // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | string[n] | // |---------------------| <- string_locs[n] // | string[n-1] | // |---------------------| <- string_locs[n-1] // | ... | // | ... | // |---------------------| <- string_locs[1] // | string[0] | // |---------------------| <- string_locs[0] // | temp | // |---------------------| <- conversion_temp // | outbound memory | // | based arguments | // | | // |---------------------| // | | // SP-> | out_preserved_slots | // // // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word); int stack_size = stack_slots * VMRegImpl::stack_slot_size; intptr_t start = (intptr_t)__ pc(); // First thing make an ic check to see if we should even be here { Label L; const Register temp_reg = G3_scratch; Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub()); __ verify_oop(O0); __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg); __ cmp(temp_reg, G5_inline_cache_reg); __ brx(Assembler::equal, true, Assembler::pt, L); __ delayed()->nop(); __ jump_to(ic_miss, 0); __ delayed()->nop(); __ align(CodeEntryAlignment); __ bind(L); } int vep_offset = ((intptr_t)__ pc()) - start; // The instruction at the verified entry point must be 5 bytes or longer // because it can be patched on the fly by make_non_entrant. The stack bang // instruction fits that requirement. // Generate stack overflow check before creating frame __ generate_stack_overflow_check(stack_size); assert(((intptr_t)__ pc() - start - vep_offset) >= 5, "valid size for make_non_entrant"); // Generate a new frame for the wrapper. __ save(SP, -stack_size, SP); // Frame is now completed as far a size and linkage. int frame_complete = ((intptr_t)__ pc()) - start; #ifdef ASSERT bool reg_destroyed[RegisterImpl::number_of_registers]; bool freg_destroyed[FloatRegisterImpl::number_of_registers]; for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { reg_destroyed[r] = false; } for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) { freg_destroyed[f] = false; } #endif /* ASSERT */ VMRegPair zero; const Register g0 = G0; // without this we get a compiler warning (why??) zero.set2(g0->as_VMReg()); int c_arg, j_arg; Register conversion_off = noreg; for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { VMRegPair src = in_regs[j_arg]; VMRegPair dst = out_regs[c_arg]; #ifdef ASSERT if (src.first()->is_Register()) { assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!"); } else if (src.first()->is_FloatRegister()) { assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding( FloatRegisterImpl::S)], "ack!"); } if (dst.first()->is_Register()) { reg_destroyed[dst.first()->as_Register()->encoding()] = true; } else if (dst.first()->is_FloatRegister()) { freg_destroyed[dst.first()->as_FloatRegister()->encoding( FloatRegisterImpl::S)] = true; } #endif /* ASSERT */ switch (in_sig_bt[j_arg]) { case T_ARRAY: case T_OBJECT: { if (out_sig_bt[c_arg] == T_BYTE || out_sig_bt[c_arg] == T_SHORT || out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) { // need to unbox a one-slot value Register in_reg = L0; Register tmp = L2; if ( src.first()->is_reg() ) { in_reg = src.first()->as_Register(); } else { assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS), "must be"); __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg); } // If the final destination is an acceptable register if ( dst.first()->is_reg() ) { if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) { tmp = dst.first()->as_Register(); } } Label skipUnbox; if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) { __ mov(G0, tmp->successor()); } __ br_null(in_reg, true, Assembler::pn, skipUnbox); __ delayed()->mov(G0, tmp); BasicType bt = out_sig_bt[c_arg]; int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt); switch (bt) { case T_BYTE: __ ldub(in_reg, box_offset, tmp); break; case T_SHORT: __ lduh(in_reg, box_offset, tmp); break; case T_INT: __ ld(in_reg, box_offset, tmp); break; case T_LONG: __ ld_long(in_reg, box_offset, tmp); break; default: ShouldNotReachHere(); } __ bind(skipUnbox); // If tmp wasn't final destination copy to final destination if (tmp == L2) { VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2); if (out_sig_bt[c_arg] == T_LONG) { long_move(masm, tmp_as_VM, dst); } else { move32_64(masm, tmp_as_VM, out_regs[c_arg]); } } if (out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // move over the T_VOID to keep the loop indices in sync } } else if (out_sig_bt[c_arg] == T_ADDRESS) { Register s = src.first()->is_reg() ? src.first()->as_Register() : L2; Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2; // We store the oop now so that the conversion pass can reach // while in the inner frame. This will be the only store if // the oop is NULL. if (s != L2) { // src is register if (d != L2) { // dst is register __ mov(s, d); } else { assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS), "must be"); __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS); } } else { // src not a register assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS), "must be"); __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d); if (d == L2) { assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS), "must be"); __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS); } } } else if (out_sig_bt[c_arg] != T_VOID) { // Convert the arg to NULL if (dst.first()->is_reg()) { __ mov(G0, dst.first()->as_Register()); } else { assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS), "must be"); __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS); } } } break; case T_VOID: break; case T_FLOAT: if (src.first()->is_stack()) { // Stack to stack/reg is simple move32_64(masm, src, dst); } else { if (dst.first()->is_reg()) { // freg -> reg int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size; Register d = dst.first()->as_Register(); if (Assembler::is_simm13(off)) { __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, off); __ ld(SP, off, d); } else { if (conversion_off == noreg) { __ set(off, L6); conversion_off = L6; } __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, conversion_off); __ ld(SP, conversion_off , d); } } else { // freg -> mem int off = STACK_BIAS + reg2offset(dst.first()); if (Assembler::is_simm13(off)) { __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, off); } else { if (conversion_off == noreg) { __ set(off, L6); conversion_off = L6; } __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, conversion_off); } } } break; case T_DOUBLE: assert( j_arg + 1 < total_args_passed && in_sig_bt[j_arg + 1] == T_VOID && out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); if (src.first()->is_stack()) { // Stack to stack/reg is simple long_move(masm, src, dst); } else { Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2; // Destination could be an odd reg on 32bit in which case // we can't load direct to the destination. if (!d->is_even() && wordSize == 4) { d = L2; } int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size; if (Assembler::is_simm13(off)) { __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, off); __ ld_long(SP, off, d); } else { if (conversion_off == noreg) { __ set(off, L6); conversion_off = L6; } __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, conversion_off); __ ld_long(SP, conversion_off, d); } if (d == L2) { long_move(masm, reg64_to_VMRegPair(L2), dst); } } break; case T_LONG : // 32bit can't do a split move of something like g1 -> O0, O1 // so use a memory temp if (src.is_single_phys_reg() && wordSize == 4) { Register tmp = L2; if (dst.first()->is_reg() && (wordSize == 8 || dst.first()->as_Register()->is_even())) { tmp = dst.first()->as_Register(); } int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size; if (Assembler::is_simm13(off)) { __ stx(src.first()->as_Register(), SP, off); __ ld_long(SP, off, tmp); } else { if (conversion_off == noreg) { __ set(off, L6); conversion_off = L6; } __ stx(src.first()->as_Register(), SP, conversion_off); __ ld_long(SP, conversion_off, tmp); } if (tmp == L2) { long_move(masm, reg64_to_VMRegPair(L2), dst); } } else { long_move(masm, src, dst); } break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: move32_64(masm, src, dst); } } // If we have any strings we must store any register based arg to the stack // This includes any still live xmm registers too. if (total_strings > 0 ) { // protect all the arg registers __ save_frame(0); __ mov(G2_thread, L7_thread_cache); const Register L2_string_off = L2; // Get first string offset __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off); for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) { if (out_sig_bt[c_arg] == T_ADDRESS) { VMRegPair dst = out_regs[c_arg]; const Register d = dst.first()->is_reg() ? dst.first()->as_Register()->after_save() : noreg; // It's a string the oop and it was already copied to the out arg // position if (d != noreg) { __ mov(d, O0); } else { assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS), "must be"); __ ld_ptr(FP, reg2offset(dst.first()) + STACK_BIAS, O0); } Label skip; __ br_null(O0, false, Assembler::pn, skip); __ delayed()->add(FP, L2_string_off, O1); if (d != noreg) { __ mov(O1, d); } else { assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS), "must be"); __ st_ptr(O1, FP, reg2offset(dst.first()) + STACK_BIAS); } __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf), relocInfo::runtime_call_type); __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off); __ bind(skip); } } __ mov(L7_thread_cache, G2_thread); __ restore(); } // Ok now we are done. Need to place the nop that dtrace wants in order to // patch in the trap int patch_offset = ((intptr_t)__ pc()) - start; __ nop(); // Return __ ret(); __ delayed()->restore(); __ flush(); nmethod *nm = nmethod::new_dtrace_nmethod( method, masm->code(), vep_offset, patch_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word); return nm; } #endif // HAVE_DTRACE_H // this function returns the adjust size (in number of words) to a c2i adapter // activation for use during deoptimization int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { assert(callee_locals >= callee_parameters, "test and remove; got more parms than locals"); if (callee_locals < callee_parameters) return 0; // No adjustment for negative locals int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords(); return round_to(diff, WordsPerLong); } // "Top of Stack" slots that may be unused by the calling convention but must // otherwise be preserved. // On Intel these are not necessary and the value can be zero. // On Sparc this describes the words reserved for storing a register window // when an interrupt occurs. uint SharedRuntime::out_preserve_stack_slots() { return frame::register_save_words * VMRegImpl::slots_per_word; } static void gen_new_frame(MacroAssembler* masm, bool deopt) { // // Common out the new frame generation for deopt and uncommon trap // Register G3pcs = G3_scratch; // Array of new pcs (input) Register Oreturn0 = O0; Register Oreturn1 = O1; Register O2UnrollBlock = O2; Register O3array = O3; // Array of frame sizes (input) Register O4array_size = O4; // number of frames (input) Register O7frame_size = O7; // number of frames (input) __ ld_ptr(O3array, 0, O7frame_size); __ sub(G0, O7frame_size, O7frame_size); __ save(SP, O7frame_size, SP); __ ld_ptr(G3pcs, 0, I7); // load frame's new pc #ifdef ASSERT // make sure that the frames are aligned properly #ifndef _LP64 __ btst(wordSize*2-1, SP); __ breakpoint_trap(Assembler::notZero); #endif #endif // Deopt needs to pass some extra live values from frame to frame if (deopt) { __ mov(Oreturn0->after_save(), Oreturn0); __ mov(Oreturn1->after_save(), Oreturn1); } __ mov(O4array_size->after_save(), O4array_size); __ sub(O4array_size, 1, O4array_size); __ mov(O3array->after_save(), O3array); __ mov(O2UnrollBlock->after_save(), O2UnrollBlock); __ add(G3pcs, wordSize, G3pcs); // point to next pc value #ifdef ASSERT // trash registers to show a clear pattern in backtraces __ set(0xDEAD0000, I0); __ add(I0, 2, I1); __ add(I0, 4, I2); __ add(I0, 6, I3); __ add(I0, 8, I4); // Don't touch I5 could have valuable savedSP __ set(0xDEADBEEF, L0); __ mov(L0, L1); __ mov(L0, L2); __ mov(L0, L3); __ mov(L0, L4); __ mov(L0, L5); // trash the return value as there is nothing to return yet __ set(0xDEAD0001, O7); #endif __ mov(SP, O5_savedSP); } static void make_new_frames(MacroAssembler* masm, bool deopt) { // // loop through the UnrollBlock info and create new frames // Register G3pcs = G3_scratch; Register Oreturn0 = O0; Register Oreturn1 = O1; Register O2UnrollBlock = O2; Register O3array = O3; Register O4array_size = O4; Label loop; // Before we make new frames, check to see if stack is available. // Do this after the caller's return address is on top of stack if (UseStackBanging) { // Get total frame size for interpreted frames __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4); __ bang_stack_size(O4, O3, G3_scratch); } __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size); __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs); __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array); // Adjust old interpreter frame to make space for new frame's extra java locals // // We capture the original sp for the transition frame only because it is needed in // order to properly calculate interpreter_sp_adjustment. Even though in real life // every interpreter frame captures a savedSP it is only needed at the transition // (fortunately). If we had to have it correct everywhere then we would need to // be told the sp_adjustment for each frame we create. If the frame size array // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size] // for each frame we create and keep up the illusion every where. // __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7); __ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment __ sub(SP, O7, SP); #ifdef ASSERT // make sure that there is at least one entry in the array __ tst(O4array_size); __ breakpoint_trap(Assembler::zero); #endif // Now push the new interpreter frames __ bind(loop); // allocate a new frame, filling the registers gen_new_frame(masm, deopt); // allocate an interpreter frame __ tst(O4array_size); __ br(Assembler::notZero, false, Assembler::pn, loop); __ delayed()->add(O3array, wordSize, O3array); __ ld_ptr(G3pcs, 0, O7); // load final frame new pc } //------------------------------generate_deopt_blob---------------------------- // Ought to generate an ideal graph & compile, but here's some SPARC ASM // instead. void SharedRuntime::generate_deopt_blob() { // allocate space for the code ResourceMark rm; // setup code generation tools int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code #ifdef _LP64 CodeBuffer buffer("deopt_blob", 2100+pad, 512); #else // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread) // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread) CodeBuffer buffer("deopt_blob", 1600+pad, 512); #endif /* _LP64 */ MacroAssembler* masm = new MacroAssembler(&buffer); FloatRegister Freturn0 = F0; Register Greturn1 = G1; Register Oreturn0 = O0; Register Oreturn1 = O1; Register O2UnrollBlock = O2; Register O3tmp = O3; Register I5exception_tmp = I5; Register G4exception_tmp = G4_scratch; int frame_size_words; Address saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS); #if !defined(_LP64) && defined(COMPILER2) Address saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS); #endif Label cont; OopMapSet *oop_maps = new OopMapSet(); // // This is the entry point for code which is returning to a de-optimized // frame. // The steps taken by this frame are as follows: // - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1) // and all potentially live registers (at a pollpoint many registers can be live). // // - call the C routine: Deoptimization::fetch_unroll_info (this function // returns information about the number and size of interpreter frames // which are equivalent to the frame which is being deoptimized) // - deallocate the unpack frame, restoring only results values. Other // volatile registers will now be captured in the vframeArray as needed. // - deallocate the deoptimization frame // - in a loop using the information returned in the previous step // push new interpreter frames (take care to propagate the return // values through each new frame pushed) // - create a dummy "unpack_frame" and save the return values (O0, O1, F0) // - call the C routine: Deoptimization::unpack_frames (this function // lays out values on the interpreter frame which was just created) // - deallocate the dummy unpack_frame // - ensure that all the return values are correctly set and then do // a return to the interpreter entry point // // Refer to the following methods for more information: // - Deoptimization::fetch_unroll_info // - Deoptimization::unpack_frames OopMap* map = NULL; int start = __ offset(); // restore G2, the trampoline destroyed it __ get_thread(); // On entry we have been called by the deoptimized nmethod with a call that // replaced the original call (or safepoint polling location) so the deoptimizing // pc is now in O7. Return values are still in the expected places map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words); __ ba(false, cont); __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp); int exception_offset = __ offset() - start; // restore G2, the trampoline destroyed it __ get_thread(); // On entry we have been jumped to by the exception handler (or exception_blob // for server). O0 contains the exception oop and O7 contains the original // exception pc. So if we push a frame here it will look to the // stack walking code (fetch_unroll_info) just like a normal call so // state will be extracted normally. // save exception oop in JavaThread and fall through into the // exception_in_tls case since they are handled in same way except // for where the pending exception is kept. __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset())); // // Vanilla deoptimization with an exception pending in exception_oop // int exception_in_tls_offset = __ offset() - start; // No need to update oop_map as each call to save_live_registers will produce identical oopmap (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words); // Restore G2_thread __ get_thread(); #ifdef ASSERT { // verify that there is really an exception oop in exception_oop Label has_exception; __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception); __ br_notnull(Oexception, false, Assembler::pt, has_exception); __ delayed()-> nop(); __ stop("no exception in thread"); __ bind(has_exception); // verify that there is no pending exception Label no_pending_exception; Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset())); __ ld_ptr(exception_addr, Oexception); __ br_null(Oexception, false, Assembler::pt, no_pending_exception); __ delayed()->nop(); __ stop("must not have pending exception here"); __ bind(no_pending_exception); } #endif __ ba(false, cont); __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);; // // Reexecute entry, similar to c2 uncommon trap // int reexecute_offset = __ offset() - start; // No need to update oop_map as each call to save_live_registers will produce identical oopmap (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words); __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp); __ bind(cont); __ set_last_Java_frame(SP, noreg); // do the call by hand so we can get the oopmap __ mov(G2_thread, L7_thread_cache); __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type); __ delayed()->mov(G2_thread, O0); // Set an oopmap for the call site this describes all our saved volatile registers oop_maps->add_gc_map( __ offset()-start, map); __ mov(L7_thread_cache, G2_thread); __ reset_last_Java_frame(); // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers // so this move will survive __ mov(I5exception_tmp, G4exception_tmp); __ mov(O0, O2UnrollBlock->after_save()); RegisterSaver::restore_result_registers(masm); Label noException; __ cmp(G4exception_tmp, Deoptimization::Unpack_exception); // Was exception pending? __ br(Assembler::notEqual, false, Assembler::pt, noException); __ delayed()->nop(); // Move the pending exception from exception_oop to Oexception so // the pending exception will be picked up the interpreter. __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset())); __ bind(noException); // deallocate the deoptimization frame taking care to preserve the return values __ mov(Oreturn0, Oreturn0->after_save()); __ mov(Oreturn1, Oreturn1->after_save()); __ mov(O2UnrollBlock, O2UnrollBlock->after_save()); __ restore(); // Allocate new interpreter frame(s) and possible c2i adapter frame make_new_frames(masm, true); // push a dummy "unpack_frame" taking care of float return values and // call Deoptimization::unpack_frames to have the unpacker layout // information in the interpreter frames just created and then return // to the interpreter entry point __ save(SP, -frame_size_words*wordSize, SP); __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr); #if !defined(_LP64) #if defined(COMPILER2) if (!TieredCompilation) { // 32-bit 1-register longs return longs in G1 __ stx(Greturn1, saved_Greturn1_addr); } #endif __ set_last_Java_frame(SP, noreg); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp); #else // LP64 uses g4 in set_last_Java_frame __ mov(G4exception_tmp, O1); __ set_last_Java_frame(SP, G0); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1); #endif __ reset_last_Java_frame(); __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0); // In tiered we never use C2 to compile methods returning longs so // the result is where we expect it already. #if !defined(_LP64) && defined(COMPILER2) // In 32 bit, C2 returns longs in G1 so restore the saved G1 into // I0/I1 if the return value is long. In the tiered world there is // a mismatch between how C1 and C2 return longs compiles and so // currently compilation of methods which return longs is disabled // for C2 and so is this code. Eventually C1 and C2 will do the // same thing for longs in the tiered world. if (!TieredCompilation) { Label not_long; __ cmp(O0,T_LONG); __ br(Assembler::notEqual, false, Assembler::pt, not_long); __ delayed()->nop(); __ ldd(saved_Greturn1_addr,I0); __ bind(not_long); } #endif __ ret(); __ delayed()->restore(); masm->flush(); _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words); _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); } #ifdef COMPILER2 //------------------------------generate_uncommon_trap_blob-------------------- // Ought to generate an ideal graph & compile, but here's some SPARC ASM // instead. void SharedRuntime::generate_uncommon_trap_blob() { // allocate space for the code ResourceMark rm; // setup code generation tools int pad = VerifyThread ? 512 : 0; #ifdef _LP64 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512); #else // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread) // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread) CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512); #endif MacroAssembler* masm = new MacroAssembler(&buffer); Register O2UnrollBlock = O2; Register O3tmp = O3; Register O2klass_index = O2; // // This is the entry point for all traps the compiler takes when it thinks // it cannot handle further execution of compilation code. The frame is // deoptimized in these cases and converted into interpreter frames for // execution // The steps taken by this frame are as follows: // - push a fake "unpack_frame" // - call the C routine Deoptimization::uncommon_trap (this function // packs the current compiled frame into vframe arrays and returns // information about the number and size of interpreter frames which // are equivalent to the frame which is being deoptimized) // - deallocate the "unpack_frame" // - deallocate the deoptimization frame // - in a loop using the information returned in the previous step // push interpreter frames; // - create a dummy "unpack_frame" // - call the C routine: Deoptimization::unpack_frames (this function // lays out values on the interpreter frame which was just created) // - deallocate the dummy unpack_frame // - return to the interpreter entry point // // Refer to the following methods for more information: // - Deoptimization::uncommon_trap // - Deoptimization::unpack_frame // the unloaded class index is in O0 (first parameter to this blob) // push a dummy "unpack_frame" // and call Deoptimization::uncommon_trap to pack the compiled frame into // vframe array and return the UnrollBlock information __ save_frame(0); __ set_last_Java_frame(SP, noreg); __ mov(I0, O2klass_index); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index); __ reset_last_Java_frame(); __ mov(O0, O2UnrollBlock->after_save()); __ restore(); // deallocate the deoptimized frame taking care to preserve the return values __ mov(O2UnrollBlock, O2UnrollBlock->after_save()); __ restore(); // Allocate new interpreter frame(s) and possible c2i adapter frame make_new_frames(masm, false); // push a dummy "unpack_frame" taking care of float return values and // call Deoptimization::unpack_frames to have the unpacker layout // information in the interpreter frames just created and then return // to the interpreter entry point __ save_frame(0); __ set_last_Java_frame(SP, noreg); __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3); __ reset_last_Java_frame(); __ ret(); __ delayed()->restore(); masm->flush(); _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize); } #endif // COMPILER2 //------------------------------generate_handler_blob------------------- // // Generate a special Compile2Runtime blob that saves all registers, and sets // up an OopMap. // // This blob is jumped to (via a breakpoint and the signal handler) from a // safepoint in compiled code. On entry to this blob, O7 contains the // address in the original nmethod at which we should resume normal execution. // Thus, this blob looks like a subroutine which must preserve lots of // registers and return normally. Note that O7 is never register-allocated, // so it is guaranteed to be free here. // // The hardest part of what this blob must do is to save the 64-bit %o // registers in the 32-bit build. A simple 'save' turn the %o's to %i's and // an interrupt will chop off their heads. Making space in the caller's frame // first will let us save the 64-bit %o's before save'ing, but we cannot hand // the adjusted FP off to the GC stack-crawler: this will modify the caller's // SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP). // Tricky, tricky, tricky... static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) { assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); // allocate space for the code ResourceMark rm; // setup code generation tools // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread) // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread) // even larger with TraceJumps int pad = TraceJumps ? 512 : 0; CodeBuffer buffer("handler_blob", 1600 + pad, 512); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_words; OopMapSet *oop_maps = new OopMapSet(); OopMap* map = NULL; int start = __ offset(); // If this causes a return before the processing, then do a "restore" if (cause_return) { __ restore(); } else { // Make it look like we were called via the poll // so that frame constructor always sees a valid return address __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7); __ sub(O7, frame::pc_return_offset, O7); } map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words); // setup last_Java_sp (blows G4) __ set_last_Java_frame(SP, noreg); // call into the runtime to handle illegal instructions exception // Do not use call_VM_leaf, because we need to make a GC map at this call site. __ mov(G2_thread, O0); __ save_thread(L7_thread_cache); __ call(call_ptr); __ delayed()->nop(); // Set an oopmap for the call site. // We need this not only for callee-saved registers, but also for volatile // registers that the compiler might be keeping live across a safepoint. oop_maps->add_gc_map( __ offset() - start, map); __ restore_thread(L7_thread_cache); // clear last_Java_sp __ reset_last_Java_frame(); // Check for exceptions Label pending; __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1); __ tst(O1); __ brx(Assembler::notEqual, true, Assembler::pn, pending); __ delayed()->nop(); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry and ready to go. __ retl(); __ delayed()->nop(); // Pending exception after the safepoint __ bind(pending); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry. // Tail-call forward_exception_entry, with the issuing PC in O7, // so it looks like the original nmethod called forward_exception_entry. __ set((intptr_t)StubRoutines::forward_exception_entry(), O0); __ JMP(O0, 0); __ delayed()->nop(); // ------------- // make sure all code is generated masm->flush(); // return exception blob return SafepointBlob::create(&buffer, oop_maps, frame_size_words); } // // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss // // Generate a stub that calls into vm to find out the proper destination // of a java call. All the argument registers are live at this point // but since this is generic code we don't know what they are and the caller // must do any gc of the args. // static RuntimeStub* generate_resolve_blob(address destination, const char* name) { assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); // allocate space for the code ResourceMark rm; // setup code generation tools // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread) // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread) // even larger with TraceJumps int pad = TraceJumps ? 512 : 0; CodeBuffer buffer(name, 1600 + pad, 512); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_words; OopMapSet *oop_maps = new OopMapSet(); OopMap* map = NULL; int start = __ offset(); map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words); int frame_complete = __ offset(); // setup last_Java_sp (blows G4) __ set_last_Java_frame(SP, noreg); // call into the runtime to handle illegal instructions exception // Do not use call_VM_leaf, because we need to make a GC map at this call site. __ mov(G2_thread, O0); __ save_thread(L7_thread_cache); __ call(destination, relocInfo::runtime_call_type); __ delayed()->nop(); // O0 contains the address we are going to jump to assuming no exception got installed // Set an oopmap for the call site. // We need this not only for callee-saved registers, but also for volatile // registers that the compiler might be keeping live across a safepoint. oop_maps->add_gc_map( __ offset() - start, map); __ restore_thread(L7_thread_cache); // clear last_Java_sp __ reset_last_Java_frame(); // Check for exceptions Label pending; __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1); __ tst(O1); __ brx(Assembler::notEqual, true, Assembler::pn, pending); __ delayed()->nop(); // get the returned methodOop __ get_vm_result(G5_method); __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS); // O0 is where we want to jump, overwrite G3 which is saved and scratch __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry and ready to go. __ JMP(G3, 0); __ delayed()->nop(); // Pending exception after the safepoint __ bind(pending); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry. // Tail-call forward_exception_entry, with the issuing PC in O7, // so it looks like the original nmethod called forward_exception_entry. __ set((intptr_t)StubRoutines::forward_exception_entry(), O0); __ JMP(O0, 0); __ delayed()->nop(); // ------------- // make sure all code is generated masm->flush(); // return the blob // frame_size_words or bytes?? return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); } void SharedRuntime::generate_stubs() { _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false); _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true); generate_deopt_blob(); #ifdef COMPILER2 generate_uncommon_trap_blob(); #endif // COMPILER2 }