// // Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. // // This code is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License version 2 only, as // published by the Free Software Foundation. // // This code is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // version 2 for more details (a copy is included in the LICENSE file that // accompanied this code). // // You should have received a copy of the GNU General Public License version // 2 along with this work; if not, write to the Free Software Foundation, // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA // or visit www.oracle.com if you need additional information or have any // questions. // // // X86 Architecture Description File //----------REGISTER DEFINITION BLOCK------------------------------------------ // This information is used by the matcher and the register allocator to // describe individual registers and classes of registers within the target // archtecture. register %{ //----------Architecture Description Register Definitions---------------------- // General Registers // "reg_def" name ( register save type, C convention save type, // ideal register type, encoding ); // Register Save Types: // // NS = No-Save: The register allocator assumes that these registers // can be used without saving upon entry to the method, & // that they do not need to be saved at call sites. // // SOC = Save-On-Call: The register allocator assumes that these registers // can be used without saving upon entry to the method, // but that they must be saved at call sites. // // SOE = Save-On-Entry: The register allocator assumes that these registers // must be saved before using them upon entry to the // method, but they do not need to be saved at call // sites. // // AS = Always-Save: The register allocator assumes that these registers // must be saved before using them upon entry to the // method, & that they must be saved at call sites. // // Ideal Register Type is used to determine how to save & restore a // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. // // The encoding number is the actual bit-pattern placed into the opcodes. // General Registers // Previously set EBX, ESI, and EDI as save-on-entry for java code // Turn off SOE in java-code due to frequent use of uncommon-traps. // Now that allocator is better, turn on ESI and EDI as SOE registers. reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg()); reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg()); reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg()); reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg()); // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg()); reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg()); reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg()); reg_def ESP( NS, NS, Op_RegI, 4, rsp->as_VMReg()); // Special Registers reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad()); // Float registers. We treat TOS/FPR0 special. It is invisible to the // allocator, and only shows up in the encodings. reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad()); reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad()); // Ok so here's the trick FPR1 is really st(0) except in the midst // of emission of assembly for a machnode. During the emission the fpu stack // is pushed making FPR1 == st(1) temporarily. However at any safepoint // the stack will not have this element so FPR1 == st(0) from the // oopMap viewpoint. This same weirdness with numbering causes // instruction encoding to have to play games with the register // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation // where it does flt->flt moves to see an example // reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()); reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next()); reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()); reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next()); reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()); reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next()); reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()); reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next()); reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()); reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next()); reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()); reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next()); reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()); reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next()); // XMM registers. 128-bit registers or 4 words each, labeled a-d. // Word a in each register holds a Float, words ab hold a Double. // We currently do not use the SIMD capabilities, so registers cd // are unused at the moment. reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()); reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next()); reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()); reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next()); reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()); reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next()); reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()); reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next()); reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()); reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next()); reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()); reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next()); reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()); reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next()); reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()); reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next()); // Specify priority of register selection within phases of register // allocation. Highest priority is first. A useful heuristic is to // give registers a low priority when they are required by machine // instructions, like EAX and EDX. Registers which are used as // pairs must fall on an even boundary (witness the FPR#L's in this list). // For the Intel integer registers, the equivalent Long pairs are // EDX:EAX, EBX:ECX, and EDI:EBP. alloc_class chunk0( ECX, EBX, EBP, EDI, EAX, EDX, ESI, ESP, FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H, FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H, FPR6L, FPR6H, FPR7L, FPR7H ); alloc_class chunk1( XMM0a, XMM0b, XMM1a, XMM1b, XMM2a, XMM2b, XMM3a, XMM3b, XMM4a, XMM4b, XMM5a, XMM5b, XMM6a, XMM6b, XMM7a, XMM7b, EFLAGS); //----------Architecture Description Register Classes-------------------------- // Several register classes are automatically defined based upon information in // this architecture description. // 1) reg_class inline_cache_reg ( /* as def'd in frame section */ ) // 2) reg_class compiler_method_oop_reg ( /* as def'd in frame section */ ) // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ ) // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) // // Class for all registers reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP); // Class for general registers reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX); // Class for general registers which may be used for implicit null checks on win95 // Also safe for use by tailjump. We don't want to allocate in rbp, reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX); // Class of "X" registers reg_class x_reg(EBX, ECX, EDX, EAX); // Class of registers that can appear in an address with no offset. // EBP and ESP require an extra instruction byte for zero offset. // Used in fast-unlock reg_class p_reg(EDX, EDI, ESI, EBX); // Class for general registers not including ECX reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX); // Class for general registers not including EAX reg_class nax_reg(EDX, EDI, ESI, ECX, EBX); // Class for general registers not including EAX or EBX. reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP); // Class of EAX (for multiply and divide operations) reg_class eax_reg(EAX); // Class of EBX (for atomic add) reg_class ebx_reg(EBX); // Class of ECX (for shift and JCXZ operations and cmpLTMask) reg_class ecx_reg(ECX); // Class of EDX (for multiply and divide operations) reg_class edx_reg(EDX); // Class of EDI (for synchronization) reg_class edi_reg(EDI); // Class of ESI (for synchronization) reg_class esi_reg(ESI); // Singleton class for interpreter's stack pointer reg_class ebp_reg(EBP); // Singleton class for stack pointer reg_class sp_reg(ESP); // Singleton class for instruction pointer // reg_class ip_reg(EIP); // Singleton class for condition codes reg_class int_flags(EFLAGS); // Class of integer register pairs reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI ); // Class of integer register pairs that aligns with calling convention reg_class eadx_reg( EAX,EDX ); reg_class ebcx_reg( ECX,EBX ); // Not AX or DX, used in divides reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP ); // Floating point registers. Notice FPR0 is not a choice. // FPR0 is not ever allocated; we use clever encodings to fake // a 2-address instructions out of Intels FP stack. reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L ); // make a register class for SSE registers reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a); // make a double register class for SSE2 registers reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b, XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b ); reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H ); reg_class flt_reg0( FPR1L ); reg_class dbl_reg0( FPR1L,FPR1H ); reg_class dbl_reg1( FPR2L,FPR2H ); reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H ); // XMM6 and XMM7 could be used as temporary registers for long, float and // double values for SSE2. reg_class xdb_reg6( XMM6a,XMM6b ); reg_class xdb_reg7( XMM7a,XMM7b ); %} //----------SOURCE BLOCK------------------------------------------------------- // This is a block of C++ code which provides values, functions, and // definitions necessary in the rest of the architecture description source_hpp %{ // Must be visible to the DFA in dfa_x86_32.cpp extern bool is_operand_hi32_zero(Node* n); %} source %{ #define RELOC_IMM32 Assembler::imm_operand #define RELOC_DISP32 Assembler::disp32_operand #define __ _masm. // How to find the high register of a Long pair, given the low register #define HIGH_FROM_LOW(x) ((x)+2) // These masks are used to provide 128-bit aligned bitmasks to the XMM // instructions, to allow sign-masking or sign-bit flipping. They allow // fast versions of NegF/NegD and AbsF/AbsD. // Note: 'double' and 'long long' have 32-bits alignment on x86. static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { // Use the expression (adr)&(~0xF) to provide 128-bits aligned address // of 128-bits operands for SSE instructions. jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF))); // Store the value to a 128-bits operand. operand[0] = lo; operand[1] = hi; return operand; } // Buffer for 128-bits masks used by SSE instructions. static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) // Static initialization during VM startup. static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); // Offset hacking within calls. static int pre_call_FPU_size() { if (Compile::current()->in_24_bit_fp_mode()) return 6; // fldcw return 0; } static int preserve_SP_size() { return LP64_ONLY(1 +) 2; // [rex,] op, rm(reg/reg) } // !!!!! Special hack to get all type of calls to specify the byte offset // from the start of the call to the point where the return address // will point. int MachCallStaticJavaNode::ret_addr_offset() { int offset = 5 + pre_call_FPU_size(); // 5 bytes from start of call to where return address points if (_method_handle_invoke) offset += preserve_SP_size(); return offset; } int MachCallDynamicJavaNode::ret_addr_offset() { return 10 + pre_call_FPU_size(); // 10 bytes from start of call to where return address points } static int sizeof_FFree_Float_Stack_All = -1; int MachCallRuntimeNode::ret_addr_offset() { assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already"); return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size(); } // Indicate if the safepoint node needs the polling page as an input. // Since x86 does have absolute addressing, it doesn't. bool SafePointNode::needs_polling_address_input() { return false; } // // Compute padding required for nodes which need alignment // // The address of the call instruction needs to be 4-byte aligned to // ensure that it does not span a cache line so that it can be patched. int CallStaticJavaDirectNode::compute_padding(int current_offset) const { current_offset += pre_call_FPU_size(); // skip fldcw, if any current_offset += 1; // skip call opcode byte return round_to(current_offset, alignment_required()) - current_offset; } // The address of the call instruction needs to be 4-byte aligned to // ensure that it does not span a cache line so that it can be patched. int CallStaticJavaHandleNode::compute_padding(int current_offset) const { current_offset += pre_call_FPU_size(); // skip fldcw, if any current_offset += preserve_SP_size(); // skip mov rbp, rsp current_offset += 1; // skip call opcode byte return round_to(current_offset, alignment_required()) - current_offset; } // The address of the call instruction needs to be 4-byte aligned to // ensure that it does not span a cache line so that it can be patched. int CallDynamicJavaDirectNode::compute_padding(int current_offset) const { current_offset += pre_call_FPU_size(); // skip fldcw, if any current_offset += 5; // skip MOV instruction current_offset += 1; // skip call opcode byte return round_to(current_offset, alignment_required()) - current_offset; } #ifndef PRODUCT void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const { st->print("INT3"); } #endif // EMIT_RM() void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) { unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3); cbuf.insts()->emit_int8(c); } // EMIT_CC() void emit_cc(CodeBuffer &cbuf, int f1, int f2) { unsigned char c = (unsigned char)( f1 | f2 ); cbuf.insts()->emit_int8(c); } // EMIT_OPCODE() void emit_opcode(CodeBuffer &cbuf, int code) { cbuf.insts()->emit_int8((unsigned char) code); } // EMIT_OPCODE() w/ relocation information void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) { cbuf.relocate(cbuf.insts_mark() + offset, reloc); emit_opcode(cbuf, code); } // EMIT_D8() void emit_d8(CodeBuffer &cbuf, int d8) { cbuf.insts()->emit_int8((unsigned char) d8); } // EMIT_D16() void emit_d16(CodeBuffer &cbuf, int d16) { cbuf.insts()->emit_int16(d16); } // EMIT_D32() void emit_d32(CodeBuffer &cbuf, int d32) { cbuf.insts()->emit_int32(d32); } // emit 32 bit value and construct relocation entry from relocInfo::relocType void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc, int format) { cbuf.relocate(cbuf.insts_mark(), reloc, format); cbuf.insts()->emit_int32(d32); } // emit 32 bit value and construct relocation entry from RelocationHolder void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec, int format) { #ifdef ASSERT if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) { assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code"); } #endif cbuf.relocate(cbuf.insts_mark(), rspec, format); cbuf.insts()->emit_int32(d32); } // Access stack slot for load or store void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) { emit_opcode( cbuf, opcode ); // (e.g., FILD [ESP+src]) if( -128 <= disp && disp <= 127 ) { emit_rm( cbuf, 0x01, rm_field, ESP_enc ); // R/M byte emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte emit_d8 (cbuf, disp); // Displacement // R/M byte } else { emit_rm( cbuf, 0x02, rm_field, ESP_enc ); // R/M byte emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte emit_d32(cbuf, disp); // Displacement // R/M byte } } // eRegI ereg, memory mem) %{ // emit_reg_mem void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) { // There is no index & no scale, use form without SIB byte if ((index == 0x4) && (scale == 0) && (base != ESP_enc)) { // If no displacement, mode is 0x0; unless base is [EBP] if ( (displace == 0) && (base != EBP_enc) ) { emit_rm(cbuf, 0x0, reg_encoding, base); } else { // If 8-bit displacement, mode 0x1 if ((displace >= -128) && (displace <= 127) && !(displace_is_oop) ) { emit_rm(cbuf, 0x1, reg_encoding, base); emit_d8(cbuf, displace); } else { // If 32-bit displacement if (base == -1) { // Special flag for absolute address emit_rm(cbuf, 0x0, reg_encoding, 0x5); // (manual lies; no SIB needed here) if ( displace_is_oop ) { emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); } else { emit_d32 (cbuf, displace); } } else { // Normal base + offset emit_rm(cbuf, 0x2, reg_encoding, base); if ( displace_is_oop ) { emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); } else { emit_d32 (cbuf, displace); } } } } } else { // Else, encode with the SIB byte // If no displacement, mode is 0x0; unless base is [EBP] if (displace == 0 && (base != EBP_enc)) { // If no displacement emit_rm(cbuf, 0x0, reg_encoding, 0x4); emit_rm(cbuf, scale, index, base); } else { // If 8-bit displacement, mode 0x1 if ((displace >= -128) && (displace <= 127) && !(displace_is_oop) ) { emit_rm(cbuf, 0x1, reg_encoding, 0x4); emit_rm(cbuf, scale, index, base); emit_d8(cbuf, displace); } else { // If 32-bit displacement if (base == 0x04 ) { emit_rm(cbuf, 0x2, reg_encoding, 0x4); emit_rm(cbuf, scale, index, 0x04); } else { emit_rm(cbuf, 0x2, reg_encoding, 0x4); emit_rm(cbuf, scale, index, base); } if ( displace_is_oop ) { emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1); } else { emit_d32 (cbuf, displace); } } } } } void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) { if( dst_encoding == src_encoding ) { // reg-reg copy, use an empty encoding } else { emit_opcode( cbuf, 0x8B ); emit_rm(cbuf, 0x3, dst_encoding, src_encoding ); } } void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) { if( dst_encoding == src_encoding ) { // reg-reg copy, use an empty encoding } else { MacroAssembler _masm(&cbuf); __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding)); } } //============================================================================= const bool Matcher::constant_table_absolute_addressing = true; const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty; void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const { // Empty encoding } uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const { return 0; } #ifndef PRODUCT void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const { st->print("# MachConstantBaseNode (empty encoding)"); } #endif //============================================================================= #ifndef PRODUCT void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { Compile* C = ra_->C; if( C->in_24_bit_fp_mode() ) { st->print("FLDCW 24 bit fpu control word"); st->print_cr(""); st->print("\t"); } int framesize = C->frame_slots() << LogBytesPerInt; assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove two words for return addr and rbp, framesize -= 2*wordSize; // Calls to C2R adapters often do not accept exceptional returns. // We require that their callers must bang for them. But be careful, because // some VM calls (such as call site linkage) can use several kilobytes of // stack. But the stack safety zone should account for that. // See bugs 4446381, 4468289, 4497237. if (C->need_stack_bang(framesize)) { st->print_cr("# stack bang"); st->print("\t"); } st->print_cr("PUSHL EBP"); st->print("\t"); if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth st->print("PUSH 0xBADB100D\t# Majik cookie for stack depth check"); st->print_cr(""); st->print("\t"); framesize -= wordSize; } if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) { if (framesize) { st->print("SUB ESP,%d\t# Create frame",framesize); } } else { st->print("SUB ESP,%d\t# Create frame",framesize); } } #endif void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { Compile* C = ra_->C; if (UseSSE >= 2 && VerifyFPU) { MacroAssembler masm(&cbuf); masm.verify_FPU(0, "FPU stack must be clean on entry"); } // WARNING: Initial instruction MUST be 5 bytes or longer so that // NativeJump::patch_verified_entry will be able to patch out the entry // code safely. The fldcw is ok at 6 bytes, the push to verify stack // depth is ok at 5 bytes, the frame allocation can be either 3 or // 6 bytes. So if we don't do the fldcw or the push then we must // use the 6 byte frame allocation even if we have no frame. :-( // If method sets FPU control word do it now if( C->in_24_bit_fp_mode() ) { MacroAssembler masm(&cbuf); masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); } int framesize = C->frame_slots() << LogBytesPerInt; assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove two words for return addr and rbp, framesize -= 2*wordSize; // Calls to C2R adapters often do not accept exceptional returns. // We require that their callers must bang for them. But be careful, because // some VM calls (such as call site linkage) can use several kilobytes of // stack. But the stack safety zone should account for that. // See bugs 4446381, 4468289, 4497237. if (C->need_stack_bang(framesize)) { MacroAssembler masm(&cbuf); masm.generate_stack_overflow_check(framesize); } // We always push rbp, so that on return to interpreter rbp, will be // restored correctly and we can correct the stack. emit_opcode(cbuf, 0x50 | EBP_enc); if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth emit_opcode(cbuf, 0x68); // push 0xbadb100d emit_d32(cbuf, 0xbadb100d); framesize -= wordSize; } if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) { if (framesize) { emit_opcode(cbuf, 0x83); // sub SP,#framesize emit_rm(cbuf, 0x3, 0x05, ESP_enc); emit_d8(cbuf, framesize); } } else { emit_opcode(cbuf, 0x81); // sub SP,#framesize emit_rm(cbuf, 0x3, 0x05, ESP_enc); emit_d32(cbuf, framesize); } C->set_frame_complete(cbuf.insts_size()); #ifdef ASSERT if (VerifyStackAtCalls) { Label L; MacroAssembler masm(&cbuf); masm.push(rax); masm.mov(rax, rsp); masm.andptr(rax, StackAlignmentInBytes-1); masm.cmpptr(rax, StackAlignmentInBytes-wordSize); masm.pop(rax); masm.jcc(Assembler::equal, L); masm.stop("Stack is not properly aligned!"); masm.bind(L); } #endif } uint MachPrologNode::size(PhaseRegAlloc *ra_) const { return MachNode::size(ra_); // too many variables; just compute it the hard way } int MachPrologNode::reloc() const { return 0; // a large enough number } //============================================================================= #ifndef PRODUCT void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { Compile *C = ra_->C; int framesize = C->frame_slots() << LogBytesPerInt; assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove two words for return addr and rbp, framesize -= 2*wordSize; if( C->in_24_bit_fp_mode() ) { st->print("FLDCW standard control word"); st->cr(); st->print("\t"); } if( framesize ) { st->print("ADD ESP,%d\t# Destroy frame",framesize); st->cr(); st->print("\t"); } st->print_cr("POPL EBP"); st->print("\t"); if( do_polling() && C->is_method_compilation() ) { st->print("TEST PollPage,EAX\t! Poll Safepoint"); st->cr(); st->print("\t"); } } #endif void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { Compile *C = ra_->C; // If method set FPU control word, restore to standard control word if( C->in_24_bit_fp_mode() ) { MacroAssembler masm(&cbuf); masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); } int framesize = C->frame_slots() << LogBytesPerInt; assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove two words for return addr and rbp, framesize -= 2*wordSize; // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here if( framesize >= 128 ) { emit_opcode(cbuf, 0x81); // add SP, #framesize emit_rm(cbuf, 0x3, 0x00, ESP_enc); emit_d32(cbuf, framesize); } else if( framesize ) { emit_opcode(cbuf, 0x83); // add SP, #framesize emit_rm(cbuf, 0x3, 0x00, ESP_enc); emit_d8(cbuf, framesize); } emit_opcode(cbuf, 0x58 | EBP_enc); if( do_polling() && C->is_method_compilation() ) { cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0); emit_opcode(cbuf,0x85); emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX emit_d32(cbuf, (intptr_t)os::get_polling_page()); } } uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { Compile *C = ra_->C; // If method set FPU control word, restore to standard control word int size = C->in_24_bit_fp_mode() ? 6 : 0; if( do_polling() && C->is_method_compilation() ) size += 6; int framesize = C->frame_slots() << LogBytesPerInt; assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned"); // Remove two words for return addr and rbp, framesize -= 2*wordSize; size++; // popl rbp, if( framesize >= 128 ) { size += 6; } else { size += framesize ? 3 : 0; } return size; } int MachEpilogNode::reloc() const { return 0; // a large enough number } const Pipeline * MachEpilogNode::pipeline() const { return MachNode::pipeline_class(); } int MachEpilogNode::safepoint_offset() const { return 0; } //============================================================================= enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack }; static enum RC rc_class( OptoReg::Name reg ) { if( !OptoReg::is_valid(reg) ) return rc_bad; if (OptoReg::is_stack(reg)) return rc_stack; VMReg r = OptoReg::as_VMReg(reg); if (r->is_Register()) return rc_int; if (r->is_FloatRegister()) { assert(UseSSE < 2, "shouldn't be used in SSE2+ mode"); return rc_float; } assert(r->is_XMMRegister(), "must be"); return rc_xmm; } static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) { if( cbuf ) { emit_opcode (*cbuf, opcode ); encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( opcode == 0x8B || opcode == 0x89 ) { // MOV if( is_load ) st->print("%s %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset); else st->print("%s [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]); } else { // FLD, FST, PUSH, POP st->print("%s [ESP + #%d]",op_str,offset); } #endif } int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); return size+3+offset_size; } // Helper for XMM registers. Extra opcode bits, limited syntax. static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg_lo, int reg_hi, int size, outputStream* st ) { if( cbuf ) { if( reg_lo+1 == reg_hi ) { // double move? if( is_load && !UseXmmLoadAndClearUpper ) emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load else emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise } else { emit_opcode(*cbuf, 0xF3 ); } emit_opcode(*cbuf, 0x0F ); if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper ) emit_opcode(*cbuf, 0x12 ); // use 'movlpd' for load else emit_opcode(*cbuf, is_load ? 0x10 : 0x11 ); encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( reg_lo+1 == reg_hi ) { // double move? if( is_load ) st->print("%s %s,[ESP + #%d]", UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD", Matcher::regName[reg_lo], offset); else st->print("MOVSD [ESP + #%d],%s", offset, Matcher::regName[reg_lo]); } else { if( is_load ) st->print("MOVSS %s,[ESP + #%d]", Matcher::regName[reg_lo], offset); else st->print("MOVSS [ESP + #%d],%s", offset, Matcher::regName[reg_lo]); } #endif } int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); return size+5+offset_size; } static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo, int src_hi, int dst_hi, int size, outputStream* st ) { if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers if( cbuf ) { if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) { emit_opcode(*cbuf, 0x66 ); } emit_opcode(*cbuf, 0x0F ); emit_opcode(*cbuf, 0x28 ); emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move? st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); } else { st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); } #endif } return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3); } else { if( cbuf ) { emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 ); emit_opcode(*cbuf, 0x0F ); emit_opcode(*cbuf, 0x10 ); emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move? st->print("MOVSD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); } else { st->print("MOVSS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]); } #endif } return size+4; } } static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo, int src_hi, int dst_hi, int size, outputStream* st ) { // 32-bit if (cbuf) { emit_opcode(*cbuf, 0x66); emit_opcode(*cbuf, 0x0F); emit_opcode(*cbuf, 0x6E); emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7); #ifndef PRODUCT } else if (!do_size) { st->print("movdl %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]); #endif } return 4; } static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo, int src_hi, int dst_hi, int size, outputStream* st ) { // 32-bit if (cbuf) { emit_opcode(*cbuf, 0x66); emit_opcode(*cbuf, 0x0F); emit_opcode(*cbuf, 0x7E); emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7); #ifndef PRODUCT } else if (!do_size) { st->print("movdl %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]); #endif } return 4; } static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) { if( cbuf ) { emit_opcode(*cbuf, 0x8B ); emit_rm (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("MOV %s,%s",Matcher::regName[dst],Matcher::regName[src]); #endif } return size+2; } static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size, outputStream* st ) { if( src_lo != FPR1L_num ) { // Move value to top of FP stack, if not already there if( cbuf ) { emit_opcode( *cbuf, 0xD9 ); // FLD (i.e., push it) emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("FLD %s",Matcher::regName[src_lo]); #endif } size += 2; } int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/; const char *op_str; int op; if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store? op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D "; op = 0xDD; } else { // 32-bit store op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S "; op = 0xD9; assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" ); } return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st); } uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const { // Get registers to move OptoReg::Name src_second = ra_->get_reg_second(in(1)); OptoReg::Name src_first = ra_->get_reg_first(in(1)); OptoReg::Name dst_second = ra_->get_reg_second(this ); OptoReg::Name dst_first = ra_->get_reg_first(this ); enum RC src_second_rc = rc_class(src_second); enum RC src_first_rc = rc_class(src_first); enum RC dst_second_rc = rc_class(dst_second); enum RC dst_first_rc = rc_class(dst_first); assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" ); // Generate spill code! int size = 0; if( src_first == dst_first && src_second == dst_second ) return size; // Self copy, no move // -------------------------------------- // Check for mem-mem move. push/pop to move. if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) { if( src_second == dst_first ) { // overlapping stack copy ranges assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" ); size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size, st); size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size, st); src_second_rc = dst_second_rc = rc_bad; // flag as already moved the second bits } // move low bits size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH ",size, st); size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP ",size, st); if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH ",size, st); size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP ",size, st); } return size; } // -------------------------------------- // Check for integer reg-reg copy if( src_first_rc == rc_int && dst_first_rc == rc_int ) size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st); // Check for integer store if( src_first_rc == rc_int && dst_first_rc == rc_stack ) size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st); // Check for integer load if( dst_first_rc == rc_int && src_first_rc == rc_stack ) size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st); // Check for integer reg-xmm reg copy if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) { assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad), "no 64 bit integer-float reg moves" ); return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st); } // -------------------------------------- // Check for float reg-reg copy if( src_first_rc == rc_float && dst_first_rc == rc_float ) { assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) || (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" ); if( cbuf ) { // Note the mucking with the register encode to compensate for the 0/1 // indexing issue mentioned in a comment in the reg_def sections // for FPR registers many lines above here. if( src_first != FPR1L_num ) { emit_opcode (*cbuf, 0xD9 ); // FLD ST(i) emit_d8 (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 ); emit_opcode (*cbuf, 0xDD ); // FSTP ST(i) emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] ); } else { emit_opcode (*cbuf, 0xDD ); // FST ST(i) emit_d8 (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 ); } #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( src_first != FPR1L_num ) st->print("FLD %s\n\tFSTP %s",Matcher::regName[src_first],Matcher::regName[dst_first]); else st->print( "FST %s", Matcher::regName[dst_first]); #endif } return size + ((src_first != FPR1L_num) ? 2+2 : 2); } // Check for float store if( src_first_rc == rc_float && dst_first_rc == rc_stack ) { return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st); } // Check for float load if( dst_first_rc == rc_float && src_first_rc == rc_stack ) { int offset = ra_->reg2offset(src_first); const char *op_str; int op; if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load? op_str = "FLD_D"; op = 0xDD; } else { // 32-bit load op_str = "FLD_S"; op = 0xD9; assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" ); } if( cbuf ) { emit_opcode (*cbuf, op ); encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false); emit_opcode (*cbuf, 0xDD ); // FSTP ST(i) emit_d8 (*cbuf, 0xD8+Matcher::_regEncode[dst_first] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("%s ST,[ESP + #%d]\n\tFSTP %s",op_str, offset,Matcher::regName[dst_first]); #endif } int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4); return size + 3+offset_size+2; } // Check for xmm reg-reg copy if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) { assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) || (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" ); return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st); } // Check for xmm reg-integer reg copy if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) { assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad), "no 64 bit float-integer reg moves" ); return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st); } // Check for xmm store if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) { return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st); } // Check for float xmm load if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) { return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st); } // Copy from float reg to xmm reg if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) { // copy to the top of stack from floating point reg // and use LEA to preserve flags if( cbuf ) { emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP-8] emit_rm(*cbuf, 0x1, ESP_enc, 0x04); emit_rm(*cbuf, 0x0, 0x04, ESP_enc); emit_d8(*cbuf,0xF8); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("LEA ESP,[ESP-8]"); #endif } size += 4; size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st); // Copy from the temp memory to the xmm reg. size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st); if( cbuf ) { emit_opcode(*cbuf,0x8D); // LEA ESP,[ESP+8] emit_rm(*cbuf, 0x1, ESP_enc, 0x04); emit_rm(*cbuf, 0x0, 0x04, ESP_enc); emit_d8(*cbuf,0x08); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("LEA ESP,[ESP+8]"); #endif } size += 4; return size; } assert( size > 0, "missed a case" ); // -------------------------------------------------------------------- // Check for second bits still needing moving. if( src_second == dst_second ) return size; // Self copy; no move assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" ); // Check for second word int-int move if( src_second_rc == rc_int && dst_second_rc == rc_int ) return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st); // Check for second word integer store if( src_second_rc == rc_int && dst_second_rc == rc_stack ) return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st); // Check for second word integer load if( dst_second_rc == rc_int && src_second_rc == rc_stack ) return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st); Unimplemented(); } #ifndef PRODUCT void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { implementation( NULL, ra_, false, st ); } #endif void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { implementation( &cbuf, ra_, false, NULL ); } uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { return implementation( NULL, ra_, true, NULL ); } //============================================================================= #ifndef PRODUCT void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const { st->print("NOP \t# %d bytes pad for loops and calls", _count); } #endif void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const { MacroAssembler _masm(&cbuf); __ nop(_count); } uint MachNopNode::size(PhaseRegAlloc *) const { return _count; } //============================================================================= #ifndef PRODUCT void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); int reg = ra_->get_reg_first(this); st->print("LEA %s,[ESP + #%d]",Matcher::regName[reg],offset); } #endif void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); int reg = ra_->get_encode(this); if( offset >= 128 ) { emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset] emit_rm(cbuf, 0x2, reg, 0x04); emit_rm(cbuf, 0x0, 0x04, ESP_enc); emit_d32(cbuf, offset); } else { emit_opcode(cbuf, 0x8D); // LEA reg,[SP+offset] emit_rm(cbuf, 0x1, reg, 0x04); emit_rm(cbuf, 0x0, 0x04, ESP_enc); emit_d8(cbuf, offset); } } uint BoxLockNode::size(PhaseRegAlloc *ra_) const { int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); if( offset >= 128 ) { return 7; } else { return 4; } } //============================================================================= // emit call stub, compiled java to interpreter void emit_java_to_interp(CodeBuffer &cbuf ) { // Stub is fixed up when the corresponding call is converted from calling // compiled code to calling interpreted code. // mov rbx,0 // jmp -1 address mark = cbuf.insts_mark(); // get mark within main instrs section // Note that the code buffer's insts_mark is always relative to insts. // That's why we must use the macroassembler to generate a stub. MacroAssembler _masm(&cbuf); address base = __ start_a_stub(Compile::MAX_stubs_size); if (base == NULL) return; // CodeBuffer::expand failed // static stub relocation stores the instruction address of the call __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32); // static stub relocation also tags the methodOop in the code-stream. __ movoop(rbx, (jobject)NULL); // method is zapped till fixup time // This is recognized as unresolved by relocs/nativeInst/ic code __ jump(RuntimeAddress(__ pc())); __ end_a_stub(); // Update current stubs pointer and restore insts_end. } // size of call stub, compiled java to interpretor uint size_java_to_interp() { return 10; // movl; jmp } // relocation entries for call stub, compiled java to interpretor uint reloc_java_to_interp() { return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call } //============================================================================= #ifndef PRODUCT void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const { st->print_cr( "CMP EAX,[ECX+4]\t# Inline cache check"); st->print_cr("\tJNE SharedRuntime::handle_ic_miss_stub"); st->print_cr("\tNOP"); st->print_cr("\tNOP"); if( !OptoBreakpoint ) st->print_cr("\tNOP"); } #endif void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { MacroAssembler masm(&cbuf); #ifdef ASSERT uint insts_size = cbuf.insts_size(); #endif masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes())); masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub())); /* WARNING these NOPs are critical so that verified entry point is properly aligned for patching by NativeJump::patch_verified_entry() */ int nops_cnt = 2; if( !OptoBreakpoint ) // Leave space for int3 nops_cnt += 1; masm.nop(nops_cnt); assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node"); } uint MachUEPNode::size(PhaseRegAlloc *ra_) const { return OptoBreakpoint ? 11 : 12; } //============================================================================= uint size_exception_handler() { // NativeCall instruction size is the same as NativeJump. // exception handler starts out as jump and can be patched to // a call be deoptimization. (4932387) // Note that this value is also credited (in output.cpp) to // the size of the code section. return NativeJump::instruction_size; } // Emit exception handler code. Stuff framesize into a register // and call a VM stub routine. int emit_exception_handler(CodeBuffer& cbuf) { // Note that the code buffer's insts_mark is always relative to insts. // That's why we must use the macroassembler to generate a handler. MacroAssembler _masm(&cbuf); address base = __ start_a_stub(size_exception_handler()); if (base == NULL) return 0; // CodeBuffer::expand failed int offset = __ offset(); __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point())); assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); __ end_a_stub(); return offset; } uint size_deopt_handler() { // NativeCall instruction size is the same as NativeJump. // exception handler starts out as jump and can be patched to // a call be deoptimization. (4932387) // Note that this value is also credited (in output.cpp) to // the size of the code section. return 5 + NativeJump::instruction_size; // pushl(); jmp; } // Emit deopt handler code. int emit_deopt_handler(CodeBuffer& cbuf) { // Note that the code buffer's insts_mark is always relative to insts. // That's why we must use the macroassembler to generate a handler. MacroAssembler _masm(&cbuf); address base = __ start_a_stub(size_exception_handler()); if (base == NULL) return 0; // CodeBuffer::expand failed int offset = __ offset(); InternalAddress here(__ pc()); __ pushptr(here.addr()); __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); __ end_a_stub(); return offset; } const bool Matcher::match_rule_supported(int opcode) { if (!has_match_rule(opcode)) return false; return true; // Per default match rules are supported. } int Matcher::regnum_to_fpu_offset(int regnum) { return regnum - 32; // The FP registers are in the second chunk } // This is UltraSparc specific, true just means we have fast l2f conversion const bool Matcher::convL2FSupported(void) { return true; } // Vector width in bytes const uint Matcher::vector_width_in_bytes(void) { return UseSSE >= 2 ? 8 : 0; } // Vector ideal reg const uint Matcher::vector_ideal_reg(void) { return Op_RegD; } // Is this branch offset short enough that a short branch can be used? // // NOTE: If the platform does not provide any short branch variants, then // this method should return false for offset 0. bool Matcher::is_short_branch_offset(int rule, int offset) { // the short version of jmpConUCF2 contains multiple branches, // making the reach slightly less if (rule == jmpConUCF2_rule) return (-126 <= offset && offset <= 125); return (-128 <= offset && offset <= 127); } const bool Matcher::isSimpleConstant64(jlong value) { // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?. return false; } // The ecx parameter to rep stos for the ClearArray node is in dwords. const bool Matcher::init_array_count_is_in_bytes = false; // Threshold size for cleararray. const int Matcher::init_array_short_size = 8 * BytesPerLong; // Should the Matcher clone shifts on addressing modes, expecting them to // be subsumed into complex addressing expressions or compute them into // registers? True for Intel but false for most RISCs const bool Matcher::clone_shift_expressions = true; // Do we need to mask the count passed to shift instructions or does // the cpu only look at the lower 5/6 bits anyway? const bool Matcher::need_masked_shift_count = false; bool Matcher::narrow_oop_use_complex_address() { ShouldNotCallThis(); return true; } // Is it better to copy float constants, or load them directly from memory? // Intel can load a float constant from a direct address, requiring no // extra registers. Most RISCs will have to materialize an address into a // register first, so they would do better to copy the constant from stack. const bool Matcher::rematerialize_float_constants = true; // If CPU can load and store mis-aligned doubles directly then no fixup is // needed. Else we split the double into 2 integer pieces and move it // piece-by-piece. Only happens when passing doubles into C code as the // Java calling convention forces doubles to be aligned. const bool Matcher::misaligned_doubles_ok = true; void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) { // Get the memory operand from the node uint numopnds = node->num_opnds(); // Virtual call for number of operands uint skipped = node->oper_input_base(); // Sum of leaves skipped so far assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" ); uint opcnt = 1; // First operand uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand while( idx >= skipped+num_edges ) { skipped += num_edges; opcnt++; // Bump operand count assert( opcnt < numopnds, "Accessing non-existent operand" ); num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand } MachOper *memory = node->_opnds[opcnt]; MachOper *new_memory = NULL; switch (memory->opcode()) { case DIRECT: case INDOFFSET32X: // No transformation necessary. return; case INDIRECT: new_memory = new (C) indirect_win95_safeOper( ); break; case INDOFFSET8: new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0)); break; case INDOFFSET32: new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0)); break; case INDINDEXOFFSET: new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0)); break; case INDINDEXSCALE: new_memory = new (C) indIndexScale_win95_safeOper(memory->scale()); break; case INDINDEXSCALEOFFSET: new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0)); break; case LOAD_LONG_INDIRECT: case LOAD_LONG_INDOFFSET32: // Does not use EBP as address register, use { EDX, EBX, EDI, ESI} return; default: assert(false, "unexpected memory operand in pd_implicit_null_fixup()"); return; } node->_opnds[opcnt] = new_memory; } // Advertise here if the CPU requires explicit rounding operations // to implement the UseStrictFP mode. const bool Matcher::strict_fp_requires_explicit_rounding = true; // Are floats conerted to double when stored to stack during deoptimization? // On x32 it is stored with convertion only when FPU is used for floats. bool Matcher::float_in_double() { return (UseSSE == 0); } // Do ints take an entire long register or just half? const bool Matcher::int_in_long = false; // Return whether or not this register is ever used as an argument. This // function is used on startup to build the trampoline stubs in generateOptoStub. // Registers not mentioned will be killed by the VM call in the trampoline, and // arguments in those registers not be available to the callee. bool Matcher::can_be_java_arg( int reg ) { if( reg == ECX_num || reg == EDX_num ) return true; if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true; if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true; return false; } bool Matcher::is_spillable_arg( int reg ) { return can_be_java_arg(reg); } bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) { // Use hardware integer DIV instruction when // it is faster than a code which use multiply. // Only when constant divisor fits into 32 bit // (min_jint is excluded to get only correct // positive 32 bit values from negative). return VM_Version::has_fast_idiv() && (divisor == (int)divisor && divisor != min_jint); } // Register for DIVI projection of divmodI RegMask Matcher::divI_proj_mask() { return EAX_REG_mask; } // Register for MODI projection of divmodI RegMask Matcher::modI_proj_mask() { return EDX_REG_mask; } // Register for DIVL projection of divmodL RegMask Matcher::divL_proj_mask() { ShouldNotReachHere(); return RegMask(); } // Register for MODL projection of divmodL RegMask Matcher::modL_proj_mask() { ShouldNotReachHere(); return RegMask(); } const RegMask Matcher::method_handle_invoke_SP_save_mask() { return EBP_REG_mask; } // Returns true if the high 32 bits of the value is known to be zero. bool is_operand_hi32_zero(Node* n) { int opc = n->Opcode(); if (opc == Op_LoadUI2L) { return true; } if (opc == Op_AndL) { Node* o2 = n->in(2); if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) { return true; } } if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) { return true; } return false; } %} //----------ENCODING BLOCK----------------------------------------------------- // This block specifies the encoding classes used by the compiler to output // byte streams. Encoding classes generate functions which are called by // Machine Instruction Nodes in order to generate the bit encoding of the // instruction. Operands specify their base encoding interface with the // interface keyword. There are currently supported four interfaces, // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an // operand to generate a function which returns its register number when // queried. CONST_INTER causes an operand to generate a function which // returns the value of the constant when queried. MEMORY_INTER causes an // operand to generate four functions which return the Base Register, the // Index Register, the Scale Value, and the Offset Value of the operand when // queried. COND_INTER causes an operand to generate six functions which // return the encoding code (ie - encoding bits for the instruction) // associated with each basic boolean condition for a conditional instruction. // Instructions specify two basic values for encoding. They use the // ins_encode keyword to specify their encoding class (which must be one of // the class names specified in the encoding block), and they use the // opcode keyword to specify, in order, their primary, secondary, and // tertiary opcode. Only the opcode sections which a particular instruction // needs for encoding need to be specified. encode %{ // Build emit functions for each basic byte or larger field in the intel // encoding scheme (opcode, rm, sib, immediate), and call them from C++ // code in the enc_class source block. Emit functions will live in the // main source block for now. In future, we can generalize this by // adding a syntax that specifies the sizes of fields in an order, // so that the adlc can build the emit functions automagically // Emit primary opcode enc_class OpcP %{ emit_opcode(cbuf, $primary); %} // Emit secondary opcode enc_class OpcS %{ emit_opcode(cbuf, $secondary); %} // Emit opcode directly enc_class Opcode(immI d8) %{ emit_opcode(cbuf, $d8$$constant); %} enc_class SizePrefix %{ emit_opcode(cbuf,0x66); %} enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many) emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{ // OpcRegReg(Many) emit_opcode(cbuf,$opcode$$constant); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class mov_r32_imm0( eRegI dst ) %{ emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd -- MOV r32 ,imm32 emit_d32 ( cbuf, 0x0 ); // imm32==0x0 %} enc_class cdq_enc %{ // Full implementation of Java idiv and irem; checks for // special case as described in JVM spec., p.243 & p.271. // // normal case special case // // input : rax,: dividend min_int // reg: divisor -1 // // output: rax,: quotient (= rax, idiv reg) min_int // rdx: remainder (= rax, irem reg) 0 // // Code sequnce: // // 81 F8 00 00 00 80 cmp rax,80000000h // 0F 85 0B 00 00 00 jne normal_case // 33 D2 xor rdx,edx // 83 F9 FF cmp rcx,0FFh // 0F 84 03 00 00 00 je done // normal_case: // 99 cdq // F7 F9 idiv rax,ecx // done: // emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8); emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80); // cmp rax,80000000h emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85); emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00); emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // jne normal_case emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2); // xor rdx,edx emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84); emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00); emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00); // je done // normal_case: emit_opcode(cbuf,0x99); // cdq // idiv (note: must be emitted by the user of this rule) // normal: %} // Dense encoding for older common ops enc_class Opc_plus(immI opcode, eRegI reg) %{ emit_opcode(cbuf, $opcode$$constant + $reg$$reg); %} // Opcde enc_class for 8/32 bit immediate instructions with sign-extension enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit // Check for 8-bit immediate, and set sign extend bit in opcode if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { emit_opcode(cbuf, $primary | 0x02); } else { // If 32-bit immediate emit_opcode(cbuf, $primary); } %} enc_class OpcSErm (eRegI dst, immI imm) %{ // OpcSEr/m // Emit primary opcode and set sign-extend bit // Check for 8-bit immediate, and set sign extend bit in opcode if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { emit_opcode(cbuf, $primary | 0x02); } else { // If 32-bit immediate emit_opcode(cbuf, $primary); } // Emit r/m byte with secondary opcode, after primary opcode. emit_rm(cbuf, 0x3, $secondary, $dst$$reg); %} enc_class Con8or32 (immI imm) %{ // Con8or32(storeImmI), 8 or 32 bits // Check for 8-bit immediate, and set sign extend bit in opcode if (($imm$$constant >= -128) && ($imm$$constant <= 127)) { $$$emit8$imm$$constant; } else { // If 32-bit immediate // Output immediate $$$emit32$imm$$constant; } %} enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{ // Emit primary opcode and set sign-extend bit // Check for 8-bit immediate, and set sign extend bit in opcode int con = (int)$imm$$constant; // Throw away top bits emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary); // Emit r/m byte with secondary opcode, after primary opcode. emit_rm(cbuf, 0x3, $secondary, $dst$$reg); if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con); else emit_d32(cbuf,con); %} enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{ // Emit primary opcode and set sign-extend bit // Check for 8-bit immediate, and set sign extend bit in opcode int con = (int)($imm$$constant >> 32); // Throw away bottom bits emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary); // Emit r/m byte with tertiary opcode, after primary opcode. emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg)); if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con); else emit_d32(cbuf,con); %} enc_class Lbl (label labl) %{ // JMP, CALL Label *l = $labl$$label; emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0); %} enc_class LblShort (label labl) %{ // JMP, CALL Label *l = $labl$$label; int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0; assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp"); emit_d8(cbuf, disp); %} enc_class OpcSReg (eRegI dst) %{ // BSWAP emit_cc(cbuf, $secondary, $dst$$reg ); %} enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP int destlo = $dst$$reg; int desthi = HIGH_FROM_LOW(destlo); // bswap lo emit_opcode(cbuf, 0x0F); emit_cc(cbuf, 0xC8, destlo); // bswap hi emit_opcode(cbuf, 0x0F); emit_cc(cbuf, 0xC8, desthi); // xchg lo and hi emit_opcode(cbuf, 0x87); emit_rm(cbuf, 0x3, destlo, desthi); %} enc_class RegOpc (eRegI div) %{ // IDIV, IMOD, JMP indirect, ... emit_rm(cbuf, 0x3, $secondary, $div$$reg ); %} enc_class Jcc (cmpOp cop, label labl) %{ // JCC Label *l = $labl$$label; $$$emit8$primary; emit_cc(cbuf, $secondary, $cop$$cmpcode); emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0); %} enc_class JccShort (cmpOp cop, label labl) %{ // JCC Label *l = $labl$$label; emit_cc(cbuf, $primary, $cop$$cmpcode); int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0; assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp"); emit_d8(cbuf, disp); %} enc_class enc_cmov(cmpOp cop ) %{ // CMOV $$$emit8$primary; emit_cc(cbuf, $secondary, $cop$$cmpcode); %} enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1); emit_d8(cbuf, op >> 8 ); emit_d8(cbuf, op & 255); %} // emulate a CMOV with a conditional branch around a MOV enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV // Invert sense of branch from sense of CMOV emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) ); emit_d8( cbuf, $brOffs$$constant ); %} enc_class enc_PartialSubtypeCheck( ) %{ Register Redi = as_Register(EDI_enc); // result register Register Reax = as_Register(EAX_enc); // super class Register Recx = as_Register(ECX_enc); // killed Register Resi = as_Register(ESI_enc); // sub class Label miss; MacroAssembler _masm(&cbuf); __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi, NULL, &miss, /*set_cond_codes:*/ true); if ($primary) { __ xorptr(Redi, Redi); } __ bind(miss); %} enc_class FFree_Float_Stack_All %{ // Free_Float_Stack_All MacroAssembler masm(&cbuf); int start = masm.offset(); if (UseSSE >= 2) { if (VerifyFPU) { masm.verify_FPU(0, "must be empty in SSE2+ mode"); } } else { // External c_calling_convention expects the FPU stack to be 'clean'. // Compiled code leaves it dirty. Do cleanup now. masm.empty_FPU_stack(); } if (sizeof_FFree_Float_Stack_All == -1) { sizeof_FFree_Float_Stack_All = masm.offset() - start; } else { assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size"); } %} enc_class Verify_FPU_For_Leaf %{ if( VerifyFPU ) { MacroAssembler masm(&cbuf); masm.verify_FPU( -3, "Returning from Runtime Leaf call"); } %} enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime, Java_To_Runtime_Leaf // This is the instruction starting address for relocation info. cbuf.set_insts_mark(); $$$emit8$primary; // CALL directly to the runtime emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4), runtime_call_Relocation::spec(), RELOC_IMM32 ); if (UseSSE >= 2) { MacroAssembler _masm(&cbuf); BasicType rt = tf()->return_type(); if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) { // A C runtime call where the return value is unused. In SSE2+ // mode the result needs to be removed from the FPU stack. It's // likely that this function call could be removed by the // optimizer if the C function is a pure function. __ ffree(0); } else if (rt == T_FLOAT) { __ lea(rsp, Address(rsp, -4)); __ fstp_s(Address(rsp, 0)); __ movflt(xmm0, Address(rsp, 0)); __ lea(rsp, Address(rsp, 4)); } else if (rt == T_DOUBLE) { __ lea(rsp, Address(rsp, -8)); __ fstp_d(Address(rsp, 0)); __ movdbl(xmm0, Address(rsp, 0)); __ lea(rsp, Address(rsp, 8)); } } %} enc_class pre_call_FPU %{ // If method sets FPU control word restore it here debug_only(int off0 = cbuf.insts_size()); if( Compile::current()->in_24_bit_fp_mode() ) { MacroAssembler masm(&cbuf); masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); } debug_only(int off1 = cbuf.insts_size()); assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction"); %} enc_class post_call_FPU %{ // If method sets FPU control word do it here also if( Compile::current()->in_24_bit_fp_mode() ) { MacroAssembler masm(&cbuf); masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); } %} enc_class preserve_SP %{ debug_only(int off0 = cbuf.insts_size()); MacroAssembler _masm(&cbuf); // RBP is preserved across all calls, even compiled calls. // Use it to preserve RSP in places where the callee might change the SP. __ movptr(rbp_mh_SP_save, rsp); debug_only(int off1 = cbuf.insts_size()); assert(off1 - off0 == preserve_SP_size(), "correct size prediction"); %} enc_class restore_SP %{ MacroAssembler _masm(&cbuf); __ movptr(rsp, rbp_mh_SP_save); %} enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine // who we intended to call. cbuf.set_insts_mark(); $$$emit8$primary; if ( !_method ) { emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4), runtime_call_Relocation::spec(), RELOC_IMM32 ); } else if(_optimized_virtual) { emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4), opt_virtual_call_Relocation::spec(), RELOC_IMM32 ); } else { emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4), static_call_Relocation::spec(), RELOC_IMM32 ); } if( _method ) { // Emit stub for static call emit_java_to_interp(cbuf); } %} enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL // !!!!! // Generate "Mov EAX,0x00", placeholder instruction to load oop-info // emit_call_dynamic_prologue( cbuf ); cbuf.set_insts_mark(); emit_opcode(cbuf, 0xB8 + EAX_enc); // mov EAX,-1 emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32); address virtual_call_oop_addr = cbuf.insts_mark(); // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine // who we intended to call. cbuf.set_insts_mark(); $$$emit8$primary; emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4), virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 ); %} enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL int disp = in_bytes(methodOopDesc::from_compiled_offset()); assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small"); // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())] cbuf.set_insts_mark(); $$$emit8$primary; emit_rm(cbuf, 0x01, $secondary, EAX_enc ); // R/M byte emit_d8(cbuf, disp); // Displacement %} enc_class Xor_Reg (eRegI dst) %{ emit_opcode(cbuf, 0x33); emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg); %} // Following encoding is no longer used, but may be restored if calling // convention changes significantly. // Became: Xor_Reg(EBP), Java_To_Runtime( labl ) // // enc_class Java_Interpreter_Call (label labl) %{ // JAVA INTERPRETER CALL // // int ic_reg = Matcher::inline_cache_reg(); // // int ic_encode = Matcher::_regEncode[ic_reg]; // // int imo_reg = Matcher::interpreter_method_oop_reg(); // // int imo_encode = Matcher::_regEncode[imo_reg]; // // // // Interpreter expects method_oop in EBX, currently a callee-saved register, // // // so we load it immediately before the call // // emit_opcode(cbuf, 0x8B); // MOV imo_reg,ic_reg # method_oop // // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte // // // xor rbp,ebp // emit_opcode(cbuf, 0x33); // emit_rm(cbuf, 0x3, EBP_enc, EBP_enc); // // // CALL to interpreter. // cbuf.set_insts_mark(); // $$$emit8$primary; // emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4), // runtime_call_Relocation::spec(), RELOC_IMM32 ); // %} enc_class RegOpcImm (eRegI dst, immI8 shift) %{ // SHL, SAR, SHR $$$emit8$primary; emit_rm(cbuf, 0x3, $secondary, $dst$$reg); $$$emit8$shift$$constant; %} enc_class LdImmI (eRegI dst, immI src) %{ // Load Immediate // Load immediate does not have a zero or sign extended version // for 8-bit immediates emit_opcode(cbuf, 0xB8 + $dst$$reg); $$$emit32$src$$constant; %} enc_class LdImmP (eRegI dst, immI src) %{ // Load Immediate // Load immediate does not have a zero or sign extended version // for 8-bit immediates emit_opcode(cbuf, $primary + $dst$$reg); $$$emit32$src$$constant; %} enc_class LdImmL_Lo( eRegL dst, immL src) %{ // Load Immediate // Load immediate does not have a zero or sign extended version // for 8-bit immediates int dst_enc = $dst$$reg; int src_con = $src$$constant & 0x0FFFFFFFFL; if (src_con == 0) { // xor dst, dst emit_opcode(cbuf, 0x33); emit_rm(cbuf, 0x3, dst_enc, dst_enc); } else { emit_opcode(cbuf, $primary + dst_enc); emit_d32(cbuf, src_con); } %} enc_class LdImmL_Hi( eRegL dst, immL src) %{ // Load Immediate // Load immediate does not have a zero or sign extended version // for 8-bit immediates int dst_enc = $dst$$reg + 2; int src_con = ((julong)($src$$constant)) >> 32; if (src_con == 0) { // xor dst, dst emit_opcode(cbuf, 0x33); emit_rm(cbuf, 0x3, dst_enc, dst_enc); } else { emit_opcode(cbuf, $primary + dst_enc); emit_d32(cbuf, src_con); } %} enc_class MovI2X_reg(regX dst, eRegI src) %{ emit_opcode(cbuf, 0x66 ); // MOVD dst,src emit_opcode(cbuf, 0x0F ); emit_opcode(cbuf, 0x6E ); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class MovX2I_reg(eRegI dst, regX src) %{ emit_opcode(cbuf, 0x66 ); // MOVD dst,src emit_opcode(cbuf, 0x0F ); emit_opcode(cbuf, 0x7E ); emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg); %} enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{ { // MOVD $dst,$src.lo emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x6E); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); } { // MOVD $tmp,$src.hi emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x6E); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg)); } { // PUNPCKLDQ $dst,$tmp emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x62); emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg); } %} enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{ { // MOVD $dst.lo,$src emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x7E); emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg); } { // PSHUFLW $tmp,$src,0x4E (01001110b) emit_opcode(cbuf,0xF2); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x70); emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); emit_d8(cbuf, 0x4E); } { // MOVD $dst.hi,$tmp emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x7E); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg)); } %} // Encode a reg-reg copy. If it is useless, then empty encoding. enc_class enc_Copy( eRegI dst, eRegI src ) %{ encode_Copy( cbuf, $dst$$reg, $src$$reg ); %} enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{ encode_Copy( cbuf, $dst$$reg, $src$$reg ); %} // Encode xmm reg-reg copy. If it is useless, then empty encoding. enc_class enc_CopyXD( RegXD dst, RegXD src ) %{ encode_CopyXD( cbuf, $dst$$reg, $src$$reg ); %} enc_class RegReg (eRegI dst, eRegI src) %{ // RegReg(Many) emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class RegReg_Lo(eRegL dst, eRegL src) %{ // RegReg(Many) $$$emit8$primary; emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class RegReg_Hi(eRegL dst, eRegL src) %{ // RegReg(Many) $$$emit8$secondary; emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg)); %} enc_class RegReg_Lo2(eRegL dst, eRegL src) %{ // RegReg(Many) emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class RegReg_Hi2(eRegL dst, eRegL src) %{ // RegReg(Many) emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg)); %} enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{ emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg)); %} enc_class Con32 (immI src) %{ // Con32(storeImmI) // Output immediate $$$emit32$src$$constant; %} enc_class Con32F_as_bits(immF src) %{ // storeF_imm // Output Float immediate bits jfloat jf = $src$$constant; int jf_as_bits = jint_cast( jf ); emit_d32(cbuf, jf_as_bits); %} enc_class Con32XF_as_bits(immXF src) %{ // storeX_imm // Output Float immediate bits jfloat jf = $src$$constant; int jf_as_bits = jint_cast( jf ); emit_d32(cbuf, jf_as_bits); %} enc_class Con16 (immI src) %{ // Con16(storeImmI) // Output immediate $$$emit16$src$$constant; %} enc_class Con_d32(immI src) %{ emit_d32(cbuf,$src$$constant); %} enc_class conmemref (eRegP t1) %{ // Con32(storeImmI) // Output immediate memory reference emit_rm(cbuf, 0x00, $t1$$reg, 0x05 ); emit_d32(cbuf, 0x00); %} enc_class lock_prefix( ) %{ if( os::is_MP() ) emit_opcode(cbuf,0xF0); // [Lock] %} // Cmp-xchg long value. // Note: we need to swap rbx, and rcx before and after the // cmpxchg8 instruction because the instruction uses // rcx as the high order word of the new value to store but // our register encoding uses rbx,. enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{ // XCHG rbx,ecx emit_opcode(cbuf,0x87); emit_opcode(cbuf,0xD9); // [Lock] if( os::is_MP() ) emit_opcode(cbuf,0xF0); // CMPXCHG8 [Eptr] emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0xC7); emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg ); // XCHG rbx,ecx emit_opcode(cbuf,0x87); emit_opcode(cbuf,0xD9); %} enc_class enc_cmpxchg(eSIRegP mem_ptr) %{ // [Lock] if( os::is_MP() ) emit_opcode(cbuf,0xF0); // CMPXCHG [Eptr] emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0xB1); emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg ); %} enc_class enc_flags_ne_to_boolean( iRegI res ) %{ int res_encoding = $res$$reg; // MOV res,0 emit_opcode( cbuf, 0xB8 + res_encoding); emit_d32( cbuf, 0 ); // JNE,s fail emit_opcode(cbuf,0x75); emit_d8(cbuf, 5 ); // MOV res,1 emit_opcode( cbuf, 0xB8 + res_encoding); emit_d32( cbuf, 1 ); // fail: %} enc_class set_instruction_start( ) %{ cbuf.set_insts_mark(); // Mark start of opcode for reloc info in mem operand %} enc_class RegMem (eRegI ereg, memory mem) %{ // emit_reg_mem int reg_encoding = $ereg$$reg; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); %} enc_class RegMem_Hi(eRegL ereg, memory mem) %{ // emit_reg_mem int reg_encoding = HIGH_FROM_LOW($ereg$$reg); // Hi register of pair, computed from lo int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp + 4; // Offset is 4 further in memory assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" ); encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/); %} enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{ int r1, r2; if( $tertiary == 0xA4 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); } else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); } emit_opcode(cbuf,0x0F); emit_opcode(cbuf,$tertiary); emit_rm(cbuf, 0x3, r1, r2); emit_d8(cbuf,$cnt$$constant); emit_d8(cbuf,$primary); emit_rm(cbuf, 0x3, $secondary, r1); emit_d8(cbuf,$cnt$$constant); %} enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{ emit_opcode( cbuf, 0x8B ); // Move emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg)); if( $cnt$$constant > 32 ) { // Shift, if not by zero emit_d8(cbuf,$primary); emit_rm(cbuf, 0x3, $secondary, $dst$$reg); emit_d8(cbuf,$cnt$$constant-32); } emit_d8(cbuf,$primary); emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg)); emit_d8(cbuf,31); %} enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{ int r1, r2; if( $secondary == 0x5 ) { r1 = $dst$$reg; r2 = HIGH_FROM_LOW($dst$$reg); } else { r2 = $dst$$reg; r1 = HIGH_FROM_LOW($dst$$reg); } emit_opcode( cbuf, 0x8B ); // Move r1,r2 emit_rm(cbuf, 0x3, r1, r2); if( $cnt$$constant > 32 ) { // Shift, if not by zero emit_opcode(cbuf,$primary); emit_rm(cbuf, 0x3, $secondary, r1); emit_d8(cbuf,$cnt$$constant-32); } emit_opcode(cbuf,0x33); // XOR r2,r2 emit_rm(cbuf, 0x3, r2, r2); %} // Clone of RegMem but accepts an extra parameter to access each // half of a double in memory; it never needs relocation info. enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{ emit_opcode(cbuf,$opcode$$constant); int reg_encoding = $rm_reg$$reg; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp + $disp_for_half$$constant; bool disp_is_oop = false; encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); %} // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!! // // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant // and it never needs relocation information. // Frequently used to move data between FPU's Stack Top and memory. enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{ int rm_byte_opcode = $rm_opcode$$constant; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" ); encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false); %} enc_class RMopc_Mem (immI rm_opcode, memory mem) %{ int rm_byte_opcode = $rm_opcode$$constant; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); %} enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{ // emit_reg_lea int reg_encoding = $dst$$reg; int base = $src0$$reg; // 0xFFFFFFFF indicates no base int index = 0x04; // 0x04 indicates no index int scale = 0x00; // 0x00 indicates no scale int displace = $src1$$constant; // 0x00 indicates no displacement bool disp_is_oop = false; encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); %} enc_class min_enc (eRegI dst, eRegI src) %{ // MIN // Compare dst,src emit_opcode(cbuf,0x3B); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); // jmp dst < src around move emit_opcode(cbuf,0x7C); emit_d8(cbuf,2); // move dst,src emit_opcode(cbuf,0x8B); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class max_enc (eRegI dst, eRegI src) %{ // MAX // Compare dst,src emit_opcode(cbuf,0x3B); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); // jmp dst > src around move emit_opcode(cbuf,0x7F); emit_d8(cbuf,2); // move dst,src emit_opcode(cbuf,0x8B); emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); %} enc_class enc_FP_store(memory mem, regD src) %{ // If src is FPR1, we can just FST to store it. // Else we need to FLD it to FPR1, then FSTP to store/pop it. int reg_encoding = 0x2; // Just store int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals if( $src$$reg != FPR1L_enc ) { reg_encoding = 0x3; // Store & pop emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it) emit_d8( cbuf, 0xC0-1+$src$$reg ); } cbuf.set_insts_mark(); // Mark start of opcode for reloc info in mem operand emit_opcode(cbuf,$primary); encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); %} enc_class neg_reg(eRegI dst) %{ // NEG $dst emit_opcode(cbuf,0xF7); emit_rm(cbuf, 0x3, 0x03, $dst$$reg ); %} enc_class setLT_reg(eCXRegI dst) %{ // SETLT $dst emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x9C); emit_rm( cbuf, 0x3, 0x4, $dst$$reg ); %} enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{ // cadd_cmpLT int tmpReg = $tmp$$reg; // SUB $p,$q emit_opcode(cbuf,0x2B); emit_rm(cbuf, 0x3, $p$$reg, $q$$reg); // SBB $tmp,$tmp emit_opcode(cbuf,0x1B); emit_rm(cbuf, 0x3, tmpReg, tmpReg); // AND $tmp,$y emit_opcode(cbuf,0x23); emit_rm(cbuf, 0x3, tmpReg, $y$$reg); // ADD $p,$tmp emit_opcode(cbuf,0x03); emit_rm(cbuf, 0x3, $p$$reg, tmpReg); %} enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{ // cadd_cmpLT int tmpReg = $tmp$$reg; // SUB $p,$q emit_opcode(cbuf,0x2B); emit_rm(cbuf, 0x3, $p$$reg, $q$$reg); // SBB $tmp,$tmp emit_opcode(cbuf,0x1B); emit_rm(cbuf, 0x3, tmpReg, tmpReg); // AND $tmp,$y cbuf.set_insts_mark(); // Mark start of opcode for reloc info in mem operand emit_opcode(cbuf,0x23); int reg_encoding = tmpReg; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop); // ADD $p,$tmp emit_opcode(cbuf,0x03); emit_rm(cbuf, 0x3, $p$$reg, tmpReg); %} enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{ // TEST shift,32 emit_opcode(cbuf,0xF7); emit_rm(cbuf, 0x3, 0, ECX_enc); emit_d32(cbuf,0x20); // JEQ,s small emit_opcode(cbuf, 0x74); emit_d8(cbuf, 0x04); // MOV $dst.hi,$dst.lo emit_opcode( cbuf, 0x8B ); emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg ); // CLR $dst.lo emit_opcode(cbuf, 0x33); emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg); // small: // SHLD $dst.hi,$dst.lo,$shift emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0xA5); emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg)); // SHL $dst.lo,$shift" emit_opcode(cbuf,0xD3); emit_rm(cbuf, 0x3, 0x4, $dst$$reg ); %} enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{ // TEST shift,32 emit_opcode(cbuf,0xF7); emit_rm(cbuf, 0x3, 0, ECX_enc); emit_d32(cbuf,0x20); // JEQ,s small emit_opcode(cbuf, 0x74); emit_d8(cbuf, 0x04); // MOV $dst.lo,$dst.hi emit_opcode( cbuf, 0x8B ); emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) ); // CLR $dst.hi emit_opcode(cbuf, 0x33); emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg)); // small: // SHRD $dst.lo,$dst.hi,$shift emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0xAD); emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg); // SHR $dst.hi,$shift" emit_opcode(cbuf,0xD3); emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) ); %} enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{ // TEST shift,32 emit_opcode(cbuf,0xF7); emit_rm(cbuf, 0x3, 0, ECX_enc); emit_d32(cbuf,0x20); // JEQ,s small emit_opcode(cbuf, 0x74); emit_d8(cbuf, 0x05); // MOV $dst.lo,$dst.hi emit_opcode( cbuf, 0x8B ); emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) ); // SAR $dst.hi,31 emit_opcode(cbuf, 0xC1); emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) ); emit_d8(cbuf, 0x1F ); // small: // SHRD $dst.lo,$dst.hi,$shift emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0xAD); emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg); // SAR $dst.hi,$shift" emit_opcode(cbuf,0xD3); emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) ); %} // ----------------- Encodings for floating point unit ----------------- // May leave result in FPU-TOS or FPU reg depending on opcodes enc_class OpcReg_F (regF src) %{ // FMUL, FDIV $$$emit8$primary; emit_rm(cbuf, 0x3, $secondary, $src$$reg ); %} // Pop argument in FPR0 with FSTP ST(0) enc_class PopFPU() %{ emit_opcode( cbuf, 0xDD ); emit_d8( cbuf, 0xD8 ); %} // !!!!! equivalent to Pop_Reg_F enc_class Pop_Reg_D( regD dst ) %{ emit_opcode( cbuf, 0xDD ); // FSTP ST(i) emit_d8( cbuf, 0xD8+$dst$$reg ); %} enc_class Push_Reg_D( regD dst ) %{ emit_opcode( cbuf, 0xD9 ); emit_d8( cbuf, 0xC0-1+$dst$$reg ); // FLD ST(i-1) %} enc_class strictfp_bias1( regD dst ) %{ emit_opcode( cbuf, 0xDB ); // FLD m80real emit_opcode( cbuf, 0x2D ); emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() ); emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0 emit_opcode( cbuf, 0xC8+$dst$$reg ); %} enc_class strictfp_bias2( regD dst ) %{ emit_opcode( cbuf, 0xDB ); // FLD m80real emit_opcode( cbuf, 0x2D ); emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() ); emit_opcode( cbuf, 0xDE ); // FMULP ST(dst), ST0 emit_opcode( cbuf, 0xC8+$dst$$reg ); %} // Special case for moving an integer register to a stack slot. enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp ); %} // Special case for moving a register to a stack slot. enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS // Opcode already emitted emit_rm( cbuf, 0x02, $src$$reg, ESP_enc ); // R/M byte emit_rm( cbuf, 0x00, ESP_enc, ESP_enc); // SIB byte emit_d32(cbuf, $dst$$disp); // Displacement %} // Push the integer in stackSlot 'src' onto FP-stack enc_class Push_Mem_I( memory src ) %{ // FILD [ESP+src] store_to_stackslot( cbuf, $primary, $secondary, $src$$disp ); %} // Push the float in stackSlot 'src' onto FP-stack enc_class Push_Mem_F( memory src ) %{ // FLD_S [ESP+src] store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp ); %} // Push the double in stackSlot 'src' onto FP-stack enc_class Push_Mem_D( memory src ) %{ // FLD_D [ESP+src] store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp ); %} // Push FPU's TOS float to a stack-slot, and pop FPU-stack enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst] store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp ); %} // Same as Pop_Mem_F except for opcode // Push FPU's TOS double to a stack-slot, and pop FPU-stack enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst] store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp ); %} enc_class Pop_Reg_F( regF dst ) %{ emit_opcode( cbuf, 0xDD ); // FSTP ST(i) emit_d8( cbuf, 0xD8+$dst$$reg ); %} enc_class Push_Reg_F( regF dst ) %{ emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) emit_d8( cbuf, 0xC0-1+$dst$$reg ); %} // Push FPU's float to a stack-slot, and pop FPU-stack enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{ int pop = 0x02; if ($src$$reg != FPR1L_enc) { emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) emit_d8( cbuf, 0xC0-1+$src$$reg ); pop = 0x03; } store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST

_S [ESP+dst] %} // Push FPU's double to a stack-slot, and pop FPU-stack enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{ int pop = 0x02; if ($src$$reg != FPR1L_enc) { emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) emit_d8( cbuf, 0xC0-1+$src$$reg ); pop = 0x03; } store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST

_D [ESP+dst] %} // Push FPU's double to a FPU-stack-slot, and pop FPU-stack enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{ int pop = 0xD0 - 1; // -1 since we skip FLD if ($src$$reg != FPR1L_enc) { emit_opcode( cbuf, 0xD9 ); // FLD ST(src-1) emit_d8( cbuf, 0xC0-1+$src$$reg ); pop = 0xD8; } emit_opcode( cbuf, 0xDD ); emit_d8( cbuf, pop+$dst$$reg ); // FST

ST(i) %} enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{ MacroAssembler masm(&cbuf); masm.fld_s( $src1$$reg-1); // nothing at TOS, load TOS from src1.reg masm.fmul( $src2$$reg+0); // value at TOS masm.fadd( $src$$reg+0); // value at TOS masm.fstp_d( $dst$$reg+0); // value at TOS, popped off after store %} enc_class Push_Reg_Mod_D( regD dst, regD src) %{ // load dst in FPR0 emit_opcode( cbuf, 0xD9 ); emit_d8( cbuf, 0xC0-1+$dst$$reg ); if ($src$$reg != FPR1L_enc) { // fincstp emit_opcode (cbuf, 0xD9); emit_opcode (cbuf, 0xF7); // swap src with FPR1: // FXCH FPR1 with src emit_opcode(cbuf, 0xD9); emit_d8(cbuf, 0xC8-1+$src$$reg ); // fdecstp emit_opcode (cbuf, 0xD9); emit_opcode (cbuf, 0xF6); } %} enc_class Push_ModD_encoding( regXD src0, regXD src1) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src1 emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src0 emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); %} enc_class Push_ModX_encoding( regX src0, regX src1) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x04); emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src1 emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9 ); // FLD [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src0 emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9 ); // FLD [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); %} enc_class Push_ResultXD(regXD dst) %{ store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP] // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp] emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66); emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12); encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,8 emit_opcode(cbuf,0xC4); emit_d8(cbuf,0x08); %} enc_class Push_ResultX(regX dst, immI d8) %{ store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP] emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP] emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x10 ); encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,d8 (4 or 8) emit_opcode(cbuf,0xC4); emit_d8(cbuf,$d8$$constant); %} enc_class Push_SrcXD(regXD src) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); %} enc_class push_stack_temp_qword() %{ emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8 (cbuf,0x08); %} enc_class pop_stack_temp_qword() %{ emit_opcode(cbuf,0x83); // ADD ESP,8 emit_opcode(cbuf,0xC4); emit_d8 (cbuf,0x08); %} enc_class push_xmm_to_fpr1( regXD xmm_src ) %{ emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], xmm_src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); %} // Compute X^Y using Intel's fast hardware instructions, if possible. // Otherwise return a NaN. enc_class pow_exp_core_encoding %{ // FPR1 holds Y*ln2(X). Compute FPR1 = 2^(Y*ln2(X)) emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0); // fdup = fld st(0) Q Q emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC); // frndint int(Q) Q emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9); // fsub st(1) -= st(0); int(Q) frac(Q) emit_opcode(cbuf,0xDB); // FISTP [ESP] frac(Q) emit_opcode(cbuf,0x1C); emit_d8(cbuf,0x24); emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0); // f2xm1 2^frac(Q)-1 emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8); // fld1 1 2^frac(Q)-1 emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1); // faddp 2^frac(Q) emit_opcode(cbuf,0x8B); // mov rax,[esp+0]=int(Q) encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xC7); // mov rcx,0xFFFFF800 - overflow mask emit_rm(cbuf, 0x3, 0x0, ECX_enc); emit_d32(cbuf,0xFFFFF800); emit_opcode(cbuf,0x81); // add rax,1023 - the double exponent bias emit_rm(cbuf, 0x3, 0x0, EAX_enc); emit_d32(cbuf,1023); emit_opcode(cbuf,0x8B); // mov rbx,eax emit_rm(cbuf, 0x3, EBX_enc, EAX_enc); emit_opcode(cbuf,0xC1); // shl rax,20 - Slide to exponent position emit_rm(cbuf,0x3,0x4,EAX_enc); emit_d8(cbuf,20); emit_opcode(cbuf,0x85); // test rbx,ecx - check for overflow emit_rm(cbuf, 0x3, EBX_enc, ECX_enc); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45); // CMOVne rax,ecx - overflow; stuff NAN into EAX emit_rm(cbuf, 0x3, EAX_enc, ECX_enc); emit_opcode(cbuf,0x89); // mov [esp+4],eax - Store as part of double word encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false); emit_opcode(cbuf,0xC7); // mov [esp+0],0 - [ESP] = (double)(1< 0) { emit_opcode(cbuf, 0xC1); emit_rm(cbuf, 0x3, 7, $dst$$reg ); emit_d8(cbuf, shift_count); } %} // this version doesn't have add sp, 8 enc_class convert_long_double2( eRegL src ) %{ // push $src.hi emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg)); // push $src.lo emit_opcode(cbuf, 0x50+$src$$reg ); // fild 64-bits at [SP] emit_opcode(cbuf,0xdf); emit_d8(cbuf, 0x6C); emit_d8(cbuf, 0x24); emit_d8(cbuf, 0x00); %} enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{ // Basic idea: long = (long)int * (long)int // IMUL EDX:EAX, src emit_opcode( cbuf, 0xF7 ); emit_rm( cbuf, 0x3, 0x5, $src$$reg); %} enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{ // Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL) // MUL EDX:EAX, src emit_opcode( cbuf, 0xF7 ); emit_rm( cbuf, 0x3, 0x4, $src$$reg); %} enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{ // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) // MOV $tmp,$src.lo encode_Copy( cbuf, $tmp$$reg, $src$$reg ); // IMUL $tmp,EDX emit_opcode( cbuf, 0x0F ); emit_opcode( cbuf, 0xAF ); emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); // MOV EDX,$src.hi encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) ); // IMUL EDX,EAX emit_opcode( cbuf, 0x0F ); emit_opcode( cbuf, 0xAF ); emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg ); // ADD $tmp,EDX emit_opcode( cbuf, 0x03 ); emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); // MUL EDX:EAX,$src.lo emit_opcode( cbuf, 0xF7 ); emit_rm( cbuf, 0x3, 0x4, $src$$reg ); // ADD EDX,ESI emit_opcode( cbuf, 0x03 ); emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg ); %} enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{ // Basic idea: lo(result) = lo(src * y_lo) // hi(result) = hi(src * y_lo) + lo(src * y_hi) // IMUL $tmp,EDX,$src emit_opcode( cbuf, 0x6B ); emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) ); emit_d8( cbuf, (int)$src$$constant ); // MOV EDX,$src emit_opcode(cbuf, 0xB8 + EDX_enc); emit_d32( cbuf, (int)$src$$constant ); // MUL EDX:EAX,EDX emit_opcode( cbuf, 0xF7 ); emit_rm( cbuf, 0x3, 0x4, EDX_enc ); // ADD EDX,ESI emit_opcode( cbuf, 0x03 ); emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg ); %} enc_class long_div( eRegL src1, eRegL src2 ) %{ // PUSH src1.hi emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) ); // PUSH src1.lo emit_opcode(cbuf, 0x50+$src1$$reg ); // PUSH src2.hi emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) ); // PUSH src2.lo emit_opcode(cbuf, 0x50+$src2$$reg ); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Restore stack emit_opcode(cbuf, 0x83); // add SP, #framesize emit_rm(cbuf, 0x3, 0x00, ESP_enc); emit_d8(cbuf, 4*4); %} enc_class long_mod( eRegL src1, eRegL src2 ) %{ // PUSH src1.hi emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) ); // PUSH src1.lo emit_opcode(cbuf, 0x50+$src1$$reg ); // PUSH src2.hi emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) ); // PUSH src2.lo emit_opcode(cbuf, 0x50+$src2$$reg ); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Restore stack emit_opcode(cbuf, 0x83); // add SP, #framesize emit_rm(cbuf, 0x3, 0x00, ESP_enc); emit_d8(cbuf, 4*4); %} enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{ // MOV $tmp,$src.lo emit_opcode(cbuf, 0x8B); emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); // OR $tmp,$src.hi emit_opcode(cbuf, 0x0B); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg)); %} enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{ // CMP $src1.lo,$src2.lo emit_opcode( cbuf, 0x3B ); emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg ); // JNE,s skip emit_cc(cbuf, 0x70, 0x5); emit_d8(cbuf,2); // CMP $src1.hi,$src2.hi emit_opcode( cbuf, 0x3B ); emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) ); %} enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{ // CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits emit_opcode( cbuf, 0x3B ); emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg ); // MOV $tmp,$src1.hi emit_opcode( cbuf, 0x8B ); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) ); // SBB $tmp,$src2.hi\t! Compute flags for long compare emit_opcode( cbuf, 0x1B ); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) ); %} enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{ // XOR $tmp,$tmp emit_opcode(cbuf,0x33); // XOR emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg); // CMP $tmp,$src.lo emit_opcode( cbuf, 0x3B ); emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg ); // SBB $tmp,$src.hi emit_opcode( cbuf, 0x1B ); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) ); %} // Sniff, sniff... smells like Gnu Superoptimizer enc_class neg_long( eRegL dst ) %{ emit_opcode(cbuf,0xF7); // NEG hi emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg)); emit_opcode(cbuf,0xF7); // NEG lo emit_rm (cbuf,0x3, 0x3, $dst$$reg ); emit_opcode(cbuf,0x83); // SBB hi,0 emit_rm (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg)); emit_d8 (cbuf,0 ); %} enc_class movq_ld(regXD dst, memory mem) %{ MacroAssembler _masm(&cbuf); __ movq($dst$$XMMRegister, $mem$$Address); %} enc_class movq_st(memory mem, regXD src) %{ MacroAssembler _masm(&cbuf); __ movq($mem$$Address, $src$$XMMRegister); %} enc_class pshufd_8x8(regX dst, regX src) %{ MacroAssembler _masm(&cbuf); encode_CopyXD(cbuf, $dst$$reg, $src$$reg); __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg)); __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00); %} enc_class pshufd_4x16(regX dst, regX src) %{ MacroAssembler _masm(&cbuf); __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00); %} enc_class pshufd(regXD dst, regXD src, int mode) %{ MacroAssembler _masm(&cbuf); __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode); %} enc_class pxor(regXD dst, regXD src) %{ MacroAssembler _masm(&cbuf); __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg)); %} enc_class mov_i2x(regXD dst, eRegI src) %{ MacroAssembler _masm(&cbuf); __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg)); %} // Because the transitions from emitted code to the runtime // monitorenter/exit helper stubs are so slow it's critical that // we inline both the stack-locking fast-path and the inflated fast path. // // See also: cmpFastLock and cmpFastUnlock. // // What follows is a specialized inline transliteration of the code // in slow_enter() and slow_exit(). If we're concerned about I$ bloat // another option would be to emit TrySlowEnter and TrySlowExit methods // at startup-time. These methods would accept arguments as // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure // indications in the icc.ZFlag. Fast_Lock and Fast_Unlock would simply // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit. // In practice, however, the # of lock sites is bounded and is usually small. // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer // if the processor uses simple bimodal branch predictors keyed by EIP // Since the helper routines would be called from multiple synchronization // sites. // // An even better approach would be write "MonitorEnter()" and "MonitorExit()" // in java - using j.u.c and unsafe - and just bind the lock and unlock sites // to those specialized methods. That'd give us a mostly platform-independent // implementation that the JITs could optimize and inline at their pleasure. // Done correctly, the only time we'd need to cross to native could would be // to park() or unpark() threads. We'd also need a few more unsafe operators // to (a) prevent compiler-JIT reordering of non-volatile accesses, and // (b) explicit barriers or fence operations. // // TODO: // // * Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr). // This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals. // Given TLAB allocation, Self is usually manifested in a register, so passing it into // the lock operators would typically be faster than reifying Self. // // * Ideally I'd define the primitives as: // fast_lock (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED. // fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED // Unfortunately ADLC bugs prevent us from expressing the ideal form. // Instead, we're stuck with a rather awkward and brittle register assignments below. // Furthermore the register assignments are overconstrained, possibly resulting in // sub-optimal code near the synchronization site. // // * Eliminate the sp-proximity tests and just use "== Self" tests instead. // Alternately, use a better sp-proximity test. // // * Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value. // Either one is sufficient to uniquely identify a thread. // TODO: eliminate use of sp in _owner and use get_thread(tr) instead. // // * Intrinsify notify() and notifyAll() for the common cases where the // object is locked by the calling thread but the waitlist is empty. // avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll(). // // * use jccb and jmpb instead of jcc and jmp to improve code density. // But beware of excessive branch density on AMD Opterons. // // * Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success // or failure of the fast-path. If the fast-path fails then we pass // control to the slow-path, typically in C. In Fast_Lock and // Fast_Unlock we often branch to DONE_LABEL, just to find that C2 // will emit a conditional branch immediately after the node. // So we have branches to branches and lots of ICC.ZF games. // Instead, it might be better to have C2 pass a "FailureLabel" // into Fast_Lock and Fast_Unlock. In the case of success, control // will drop through the node. ICC.ZF is undefined at exit. // In the case of failure, the node will branch directly to the // FailureLabel // obj: object to lock // box: on-stack box address (displaced header location) - KILLED // rax,: tmp -- KILLED // scr: tmp -- KILLED enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{ Register objReg = as_Register($obj$$reg); Register boxReg = as_Register($box$$reg); Register tmpReg = as_Register($tmp$$reg); Register scrReg = as_Register($scr$$reg); // Ensure the register assignents are disjoint guarantee (objReg != boxReg, "") ; guarantee (objReg != tmpReg, "") ; guarantee (objReg != scrReg, "") ; guarantee (boxReg != tmpReg, "") ; guarantee (boxReg != scrReg, "") ; guarantee (tmpReg == as_Register(EAX_enc), "") ; MacroAssembler masm(&cbuf); if (_counters != NULL) { masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr())); } if (EmitSync & 1) { // set box->dhw = unused_mark (3) // Force all sync thru slow-path: slow_enter() and slow_exit() masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ; masm.cmpptr (rsp, (int32_t)0) ; } else if (EmitSync & 2) { Label DONE_LABEL ; if (UseBiasedLocking) { // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument. masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters); } masm.movptr(tmpReg, Address(objReg, 0)) ; // fetch markword masm.orptr (tmpReg, 0x1); masm.movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg masm.jcc(Assembler::equal, DONE_LABEL); // Recursive locking masm.subptr(tmpReg, rsp); masm.andptr(tmpReg, (int32_t) 0xFFFFF003 ); masm.movptr(Address(boxReg, 0), tmpReg); masm.bind(DONE_LABEL) ; } else { // Possible cases that we'll encounter in fast_lock // ------------------------------------------------ // * Inflated // -- unlocked // -- Locked // = by self // = by other // * biased // -- by Self // -- by other // * neutral // * stack-locked // -- by self // = sp-proximity test hits // = sp-proximity test generates false-negative // -- by other // Label IsInflated, DONE_LABEL, PopDone ; // TODO: optimize away redundant LDs of obj->mark and improve the markword triage // order to reduce the number of conditional branches in the most common cases. // Beware -- there's a subtle invariant that fetch of the markword // at [FETCH], below, will never observe a biased encoding (*101b). // If this invariant is not held we risk exclusion (safety) failure. if (UseBiasedLocking && !UseOptoBiasInlining) { masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters); } masm.movptr(tmpReg, Address(objReg, 0)) ; // [FETCH] masm.testptr(tmpReg, 0x02) ; // Inflated v (Stack-locked or neutral) masm.jccb (Assembler::notZero, IsInflated) ; // Attempt stack-locking ... masm.orptr (tmpReg, 0x1); masm.movptr(Address(boxReg, 0), tmpReg); // Anticipate successful CAS if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg if (_counters != NULL) { masm.cond_inc32(Assembler::equal, ExternalAddress((address)_counters->fast_path_entry_count_addr())); } masm.jccb (Assembler::equal, DONE_LABEL); // Recursive locking masm.subptr(tmpReg, rsp); masm.andptr(tmpReg, 0xFFFFF003 ); masm.movptr(Address(boxReg, 0), tmpReg); if (_counters != NULL) { masm.cond_inc32(Assembler::equal, ExternalAddress((address)_counters->fast_path_entry_count_addr())); } masm.jmp (DONE_LABEL) ; masm.bind (IsInflated) ; // The object is inflated. // // TODO-FIXME: eliminate the ugly use of manifest constants: // Use markOopDesc::monitor_value instead of "2". // use markOop::unused_mark() instead of "3". // The tmpReg value is an objectMonitor reference ORed with // markOopDesc::monitor_value (2). We can either convert tmpReg to an // objectmonitor pointer by masking off the "2" bit or we can just // use tmpReg as an objectmonitor pointer but bias the objectmonitor // field offsets with "-2" to compensate for and annul the low-order tag bit. // // I use the latter as it avoids AGI stalls. // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]" // instead of "mov r, [tmpReg+OFFSETOF(Owner)]". // #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2) // boxReg refers to the on-stack BasicLock in the current frame. // We'd like to write: // set box->_displaced_header = markOop::unused_mark(). Any non-0 value suffices. // This is convenient but results a ST-before-CAS penalty. The following CAS suffers // additional latency as we have another ST in the store buffer that must drain. if (EmitSync & 8192) { masm.movptr(Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty masm.get_thread (scrReg) ; masm.movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2] masm.movptr(tmpReg, NULL_WORD); // consider: xor vs mov if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; } else if ((EmitSync & 128) == 0) { // avoid ST-before-CAS masm.movptr(scrReg, boxReg) ; masm.movptr(boxReg, tmpReg); // consider: LEA box, [tmp-2] // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) { // prefetchw [eax + Offset(_owner)-2] masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2)); } if ((EmitSync & 64) == 0) { // Optimistic form: consider XORL tmpReg,tmpReg masm.movptr(tmpReg, NULL_WORD) ; } else { // Can suffer RTS->RTO upgrades on shared or cold $ lines // Test-And-CAS instead of CAS masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner masm.testptr(tmpReg, tmpReg) ; // Locked ? masm.jccb (Assembler::notZero, DONE_LABEL) ; } // Appears unlocked - try to swing _owner from null to non-null. // Ideally, I'd manifest "Self" with get_thread and then attempt // to CAS the register containing Self into m->Owner. // But we don't have enough registers, so instead we can either try to CAS // rsp or the address of the box (in scr) into &m->owner. If the CAS succeeds // we later store "Self" into m->Owner. Transiently storing a stack address // (rsp or the address of the box) into m->owner is harmless. // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; masm.movptr(Address(scrReg, 0), 3) ; // box->_displaced_header = 3 masm.jccb (Assembler::notZero, DONE_LABEL) ; masm.get_thread (scrReg) ; // beware: clobbers ICCs masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; masm.xorptr(boxReg, boxReg) ; // set icc.ZFlag = 1 to indicate success // If the CAS fails we can either retry or pass control to the slow-path. // We use the latter tactic. // Pass the CAS result in the icc.ZFlag into DONE_LABEL // If the CAS was successful ... // Self has acquired the lock // Invariant: m->_recursions should already be 0, so we don't need to explicitly set it. // Intentional fall-through into DONE_LABEL ... } else { masm.movptr(Address(boxReg, 0), 3) ; // results in ST-before-CAS penalty masm.movptr(boxReg, tmpReg) ; // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) { // prefetchw [eax + Offset(_owner)-2] masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2)); } if ((EmitSync & 64) == 0) { // Optimistic form masm.xorptr (tmpReg, tmpReg) ; } else { // Can suffer RTS->RTO upgrades on shared or cold $ lines masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // rax, = m->_owner masm.testptr(tmpReg, tmpReg) ; // Locked ? masm.jccb (Assembler::notZero, DONE_LABEL) ; } // Appears unlocked - try to swing _owner from null to non-null. // Use either "Self" (in scr) or rsp as thread identity in _owner. // Invariant: tmpReg == 0. tmpReg is EAX which is the implicit cmpxchg comparand. masm.get_thread (scrReg) ; if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; // If the CAS fails we can either retry or pass control to the slow-path. // We use the latter tactic. // Pass the CAS result in the icc.ZFlag into DONE_LABEL // If the CAS was successful ... // Self has acquired the lock // Invariant: m->_recursions should already be 0, so we don't need to explicitly set it. // Intentional fall-through into DONE_LABEL ... } // DONE_LABEL is a hot target - we'd really like to place it at the // start of cache line by padding with NOPs. // See the AMD and Intel software optimization manuals for the // most efficient "long" NOP encodings. // Unfortunately none of our alignment mechanisms suffice. masm.bind(DONE_LABEL); // Avoid branch-to-branch on AMD processors // This appears to be superstition. if (EmitSync & 32) masm.nop() ; // At DONE_LABEL the icc ZFlag is set as follows ... // Fast_Unlock uses the same protocol. // ZFlag == 1 -> Success // ZFlag == 0 -> Failure - force control through the slow-path } %} // obj: object to unlock // box: box address (displaced header location), killed. Must be EAX. // rbx,: killed tmp; cannot be obj nor box. // // Some commentary on balanced locking: // // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites. // Methods that don't have provably balanced locking are forced to run in the // interpreter - such methods won't be compiled to use fast_lock and fast_unlock. // The interpreter provides two properties: // I1: At return-time the interpreter automatically and quietly unlocks any // objects acquired the current activation (frame). Recall that the // interpreter maintains an on-stack list of locks currently held by // a frame. // I2: If a method attempts to unlock an object that is not held by the // the frame the interpreter throws IMSX. // // Lets say A(), which has provably balanced locking, acquires O and then calls B(). // B() doesn't have provably balanced locking so it runs in the interpreter. // Control returns to A() and A() unlocks O. By I1 and I2, above, we know that O // is still locked by A(). // // The only other source of unbalanced locking would be JNI. The "Java Native Interface: // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter // should not be unlocked by "normal" java-level locking and vice-versa. The specification // doesn't specify what will occur if a program engages in such mixed-mode locking, however. enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{ Register objReg = as_Register($obj$$reg); Register boxReg = as_Register($box$$reg); Register tmpReg = as_Register($tmp$$reg); guarantee (objReg != boxReg, "") ; guarantee (objReg != tmpReg, "") ; guarantee (boxReg != tmpReg, "") ; guarantee (boxReg == as_Register(EAX_enc), "") ; MacroAssembler masm(&cbuf); if (EmitSync & 4) { // Disable - inhibit all inlining. Force control through the slow-path masm.cmpptr (rsp, 0) ; } else if (EmitSync & 8) { Label DONE_LABEL ; if (UseBiasedLocking) { masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL); } // classic stack-locking code ... masm.movptr(tmpReg, Address(boxReg, 0)) ; masm.testptr(tmpReg, tmpReg) ; masm.jcc (Assembler::zero, DONE_LABEL) ; if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box masm.bind(DONE_LABEL); } else { Label DONE_LABEL, Stacked, CheckSucc, Inflated ; // Critically, the biased locking test must have precedence over // and appear before the (box->dhw == 0) recursive stack-lock test. if (UseBiasedLocking && !UseOptoBiasInlining) { masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL); } masm.cmpptr(Address(boxReg, 0), 0) ; // Examine the displaced header masm.movptr(tmpReg, Address(objReg, 0)) ; // Examine the object's markword masm.jccb (Assembler::zero, DONE_LABEL) ; // 0 indicates recursive stack-lock masm.testptr(tmpReg, 0x02) ; // Inflated? masm.jccb (Assembler::zero, Stacked) ; masm.bind (Inflated) ; // It's inflated. // Despite our balanced locking property we still check that m->_owner == Self // as java routines or native JNI code called by this thread might // have released the lock. // Refer to the comments in synchronizer.cpp for how we might encode extra // state in _succ so we can avoid fetching EntryList|cxq. // // I'd like to add more cases in fast_lock() and fast_unlock() -- // such as recursive enter and exit -- but we have to be wary of // I$ bloat, T$ effects and BP$ effects. // // If there's no contention try a 1-0 exit. That is, exit without // a costly MEMBAR or CAS. See synchronizer.cpp for details on how // we detect and recover from the race that the 1-0 exit admits. // // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier // before it STs null into _owner, releasing the lock. Updates // to data protected by the critical section must be visible before // we drop the lock (and thus before any other thread could acquire // the lock and observe the fields protected by the lock). // IA32's memory-model is SPO, so STs are ordered with respect to // each other and there's no need for an explicit barrier (fence). // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html. masm.get_thread (boxReg) ; if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) { // prefetchw [ebx + Offset(_owner)-2] masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2)); } // Note that we could employ various encoding schemes to reduce // the number of loads below (currently 4) to just 2 or 3. // Refer to the comments in synchronizer.cpp. // In practice the chain of fetches doesn't seem to impact performance, however. if ((EmitSync & 65536) == 0 && (EmitSync & 256)) { // Attempt to reduce branch density - AMD's branch predictor. masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; masm.jccb (Assembler::notZero, DONE_LABEL) ; masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; masm.jmpb (DONE_LABEL) ; } else { masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; masm.jccb (Assembler::notZero, DONE_LABEL) ; masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; masm.jccb (Assembler::notZero, CheckSucc) ; masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; masm.jmpb (DONE_LABEL) ; } // The Following code fragment (EmitSync & 65536) improves the performance of // contended applications and contended synchronization microbenchmarks. // Unfortunately the emission of the code - even though not executed - causes regressions // in scimark and jetstream, evidently because of $ effects. Replacing the code // with an equal number of never-executed NOPs results in the same regression. // We leave it off by default. if ((EmitSync & 65536) != 0) { Label LSuccess, LGoSlowPath ; masm.bind (CheckSucc) ; // Optional pre-test ... it's safe to elide this if ((EmitSync & 16) == 0) { masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; masm.jccb (Assembler::zero, LGoSlowPath) ; } // We have a classic Dekker-style idiom: // ST m->_owner = 0 ; MEMBAR; LD m->_succ // There are a number of ways to implement the barrier: // (1) lock:andl &m->_owner, 0 // is fast, but mask doesn't currently support the "ANDL M,IMM32" form. // LOCK: ANDL [ebx+Offset(_Owner)-2], 0 // Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8 // (2) If supported, an explicit MFENCE is appealing. // In older IA32 processors MFENCE is slower than lock:add or xchg // particularly if the write-buffer is full as might be the case if // if stores closely precede the fence or fence-equivalent instruction. // In more modern implementations MFENCE appears faster, however. // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack // The $lines underlying the top-of-stack should be in M-state. // The locked add instruction is serializing, of course. // (4) Use xchg, which is serializing // mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0. // The integer condition codes will tell us if succ was 0. // Since _succ and _owner should reside in the same $line and // we just stored into _owner, it's likely that the $line // remains in M-state for the lock:orl. // // We currently use (3), although it's likely that switching to (2) // is correct for the future. masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; if (os::is_MP()) { if (VM_Version::supports_sse2() && 1 == FenceInstruction) { masm.mfence(); } else { masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; } } // Ratify _succ remains non-null masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; masm.jccb (Assembler::notZero, LSuccess) ; masm.xorptr(boxReg, boxReg) ; // box is really EAX if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)); masm.jccb (Assembler::notEqual, LSuccess) ; // Since we're low on registers we installed rsp as a placeholding in _owner. // Now install Self over rsp. This is safe as we're transitioning from // non-null to non=null masm.get_thread (boxReg) ; masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ; // Intentional fall-through into LGoSlowPath ... masm.bind (LGoSlowPath) ; masm.orptr(boxReg, 1) ; // set ICC.ZF=0 to indicate failure masm.jmpb (DONE_LABEL) ; masm.bind (LSuccess) ; masm.xorptr(boxReg, boxReg) ; // set ICC.ZF=1 to indicate success masm.jmpb (DONE_LABEL) ; } masm.bind (Stacked) ; // It's not inflated and it's not recursively stack-locked and it's not biased. // It must be stack-locked. // Try to reset the header to displaced header. // The "box" value on the stack is stable, so we can reload // and be assured we observe the same value as above. masm.movptr(tmpReg, Address(boxReg, 0)) ; if (os::is_MP()) { masm.lock(); } masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box // Intention fall-thru into DONE_LABEL // DONE_LABEL is a hot target - we'd really like to place it at the // start of cache line by padding with NOPs. // See the AMD and Intel software optimization manuals for the // most efficient "long" NOP encodings. // Unfortunately none of our alignment mechanisms suffice. if ((EmitSync & 65536) == 0) { masm.bind (CheckSucc) ; } masm.bind(DONE_LABEL); // Avoid branch to branch on AMD processors if (EmitSync & 32768) { masm.nop() ; } } %} enc_class enc_pop_rdx() %{ emit_opcode(cbuf,0x5A); %} enc_class enc_rethrow() %{ cbuf.set_insts_mark(); emit_opcode(cbuf, 0xE9); // jmp entry emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4, runtime_call_Relocation::spec(), RELOC_IMM32 ); %} // Convert a double to an int. Java semantics require we do complex // manglelations in the corner cases. So we set the rounding mode to // 'zero', store the darned double down as an int, and reset the // rounding mode to 'nearest'. The hardware throws an exception which // patches up the correct value directly to the stack. enc_class D2I_encoding( regD src ) %{ // Flip to round-to-zero mode. We attempted to allow invalid-op // exceptions here, so that a NAN or other corner-case value will // thrown an exception (but normal values get converted at full speed). // However, I2C adapters and other float-stack manglers leave pending // invalid-op exceptions hanging. We would have to clear them before // enabling them and that is more expensive than just testing for the // invalid value Intel stores down in the corner cases. emit_opcode(cbuf,0xD9); // FLDCW trunc emit_opcode(cbuf,0x2D); emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x04); // Encoding assumes a double has been pushed into FPR0. // Store down the double as an int, popping the FPU stack emit_opcode(cbuf,0xDB); // FISTP [ESP] emit_opcode(cbuf,0x1C); emit_d8(cbuf,0x24); // Restore the rounding mode; mask the exception emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode emit_opcode(cbuf,0x2D); emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); // Load the converted int; adjust CPU stack emit_opcode(cbuf,0x58); // POP EAX emit_opcode(cbuf,0x3D); // CMP EAX,imm emit_d32 (cbuf,0x80000000); // 0x80000000 emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x07); // Size of slow_call // Push src onto stack slow-path emit_opcode(cbuf,0xD9 ); // FLD ST(i) emit_d8 (cbuf,0xC0-1+$src$$reg ); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Carry on here... %} enc_class D2L_encoding( regD src ) %{ emit_opcode(cbuf,0xD9); // FLDCW trunc emit_opcode(cbuf,0x2D); emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); // Encoding assumes a double has been pushed into FPR0. // Store down the double as a long, popping the FPU stack emit_opcode(cbuf,0xDF); // FISTP [ESP] emit_opcode(cbuf,0x3C); emit_d8(cbuf,0x24); // Restore the rounding mode; mask the exception emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode emit_opcode(cbuf,0x2D); emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); // Load the converted int; adjust CPU stack emit_opcode(cbuf,0x58); // POP EAX emit_opcode(cbuf,0x5A); // POP EDX emit_opcode(cbuf,0x81); // CMP EDX,imm emit_d8 (cbuf,0xFA); // rdx emit_d32 (cbuf,0x80000000); // 0x80000000 emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x07+4); // Size of slow_call emit_opcode(cbuf,0x85); // TEST EAX,EAX emit_opcode(cbuf,0xC0); // 2/rax,/rax, emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x07); // Size of slow_call // Push src onto stack slow-path emit_opcode(cbuf,0xD9 ); // FLD ST(i) emit_d8 (cbuf,0xC0-1+$src$$reg ); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Carry on here... %} enc_class X2L_encoding( regX src ) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9); // FLDCW trunc emit_opcode(cbuf,0x2D); emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); // Encoding assumes a double has been pushed into FPR0. // Store down the double as a long, popping the FPU stack emit_opcode(cbuf,0xDF); // FISTP [ESP] emit_opcode(cbuf,0x3C); emit_d8(cbuf,0x24); // Restore the rounding mode; mask the exception emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode emit_opcode(cbuf,0x2D); emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); // Load the converted int; adjust CPU stack emit_opcode(cbuf,0x58); // POP EAX emit_opcode(cbuf,0x5A); // POP EDX emit_opcode(cbuf,0x81); // CMP EDX,imm emit_d8 (cbuf,0xFA); // rdx emit_d32 (cbuf,0x80000000);// 0x80000000 emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x13+4); // Size of slow_call emit_opcode(cbuf,0x85); // TEST EAX,EAX emit_opcode(cbuf,0xC0); // 2/rax,/rax, emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x13); // Size of slow_call // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x04); emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,4 emit_opcode(cbuf,0xC4); emit_d8(cbuf,0x04); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Carry on here... %} enc_class XD2L_encoding( regXD src ) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9); // FLDCW trunc emit_opcode(cbuf,0x2D); emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc()); // Encoding assumes a double has been pushed into FPR0. // Store down the double as a long, popping the FPU stack emit_opcode(cbuf,0xDF); // FISTP [ESP] emit_opcode(cbuf,0x3C); emit_d8(cbuf,0x24); // Restore the rounding mode; mask the exception emit_opcode(cbuf,0xD9); // FLDCW std/24-bit mode emit_opcode(cbuf,0x2D); emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode() ? (int)StubRoutines::addr_fpu_cntrl_wrd_24() : (int)StubRoutines::addr_fpu_cntrl_wrd_std()); // Load the converted int; adjust CPU stack emit_opcode(cbuf,0x58); // POP EAX emit_opcode(cbuf,0x5A); // POP EDX emit_opcode(cbuf,0x81); // CMP EDX,imm emit_d8 (cbuf,0xFA); // rdx emit_d32 (cbuf,0x80000000); // 0x80000000 emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x13+4); // Size of slow_call emit_opcode(cbuf,0x85); // TEST EAX,EAX emit_opcode(cbuf,0xC0); // 2/rax,/rax, emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x13); // Size of slow_call // Push src onto stack slow-path // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,8 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x08); emit_opcode (cbuf, 0xF2 ); // MOVSD [ESP], src emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xDD ); // FLD_D [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,8 emit_opcode(cbuf,0xC4); emit_d8(cbuf,0x08); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Carry on here... %} enc_class D2X_encoding( regX dst, regD src ) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x04); int pop = 0x02; if ($src$$reg != FPR1L_enc) { emit_opcode( cbuf, 0xD9 ); // FLD ST(i-1) emit_d8( cbuf, 0xC0-1+$src$$reg ); pop = 0x03; } store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST

_S [ESP] emit_opcode (cbuf, 0xF3 ); // MOVSS dst(xmm), [ESP] emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x10 ); encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,4 emit_opcode(cbuf,0xC4); emit_d8(cbuf,0x04); // Carry on here... %} enc_class FX2I_encoding( regX src, eRegI dst ) %{ emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg); // Compare the result to see if we need to go to the slow path emit_opcode(cbuf,0x81); // CMP dst,imm emit_rm (cbuf,0x3,0x7,$dst$$reg); emit_d32 (cbuf,0x80000000); // 0x80000000 emit_opcode(cbuf,0x75); // JNE around_slow_call emit_d8 (cbuf,0x13); // Size of slow_call // Store xmm to a temp memory // location and push it onto stack. emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf, $primary ? 0x8 : 0x4); emit_opcode (cbuf, $primary ? 0xF2 : 0xF3 ); // MOVSS [ESP], xmm emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf, $primary ? 0xDD : 0xD9 ); // FLD [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,4 emit_opcode(cbuf,0xC4); emit_d8(cbuf, $primary ? 0x8 : 0x4); // CALL directly to the runtime cbuf.set_insts_mark(); emit_opcode(cbuf,0xE8); // Call into runtime emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 ); // Carry on here... %} enc_class X2D_encoding( regD dst, regX src ) %{ // Allocate a word emit_opcode(cbuf,0x83); // SUB ESP,4 emit_opcode(cbuf,0xEC); emit_d8(cbuf,0x04); emit_opcode (cbuf, 0xF3 ); // MOVSS [ESP], xmm emit_opcode (cbuf, 0x0F ); emit_opcode (cbuf, 0x11 ); encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0xD9 ); // FLD_S [ESP] encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false); emit_opcode(cbuf,0x83); // ADD ESP,4 emit_opcode(cbuf,0xC4); emit_d8(cbuf,0x04); // Carry on here... %} enc_class AbsXF_encoding(regX dst) %{ address signmask_address=(address)float_signmask_pool; // andpd:\tANDPS $dst,[signconst] emit_opcode(cbuf, 0x0F); emit_opcode(cbuf, 0x54); emit_rm(cbuf, 0x0, $dst$$reg, 0x5); emit_d32(cbuf, (int)signmask_address); %} enc_class AbsXD_encoding(regXD dst) %{ address signmask_address=(address)double_signmask_pool; // andpd:\tANDPD $dst,[signconst] emit_opcode(cbuf, 0x66); emit_opcode(cbuf, 0x0F); emit_opcode(cbuf, 0x54); emit_rm(cbuf, 0x0, $dst$$reg, 0x5); emit_d32(cbuf, (int)signmask_address); %} enc_class NegXF_encoding(regX dst) %{ address signmask_address=(address)float_signflip_pool; // andpd:\tXORPS $dst,[signconst] emit_opcode(cbuf, 0x0F); emit_opcode(cbuf, 0x57); emit_rm(cbuf, 0x0, $dst$$reg, 0x5); emit_d32(cbuf, (int)signmask_address); %} enc_class NegXD_encoding(regXD dst) %{ address signmask_address=(address)double_signflip_pool; // andpd:\tXORPD $dst,[signconst] emit_opcode(cbuf, 0x66); emit_opcode(cbuf, 0x0F); emit_opcode(cbuf, 0x57); emit_rm(cbuf, 0x0, $dst$$reg, 0x5); emit_d32(cbuf, (int)signmask_address); %} enc_class FMul_ST_reg( eRegF src1 ) %{ // Operand was loaded from memory into fp ST (stack top) // FMUL ST,$src /* D8 C8+i */ emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xC8 + $src1$$reg); %} enc_class FAdd_ST_reg( eRegF src2 ) %{ // FADDP ST,src2 /* D8 C0+i */ emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xC0 + $src2$$reg); //could use FADDP src2,fpST /* DE C0+i */ %} enc_class FAddP_reg_ST( eRegF src2 ) %{ // FADDP src2,ST /* DE C0+i */ emit_opcode(cbuf, 0xDE); emit_opcode(cbuf, 0xC0 + $src2$$reg); %} enc_class subF_divF_encode( eRegF src1, eRegF src2) %{ // Operand has been loaded into fp ST (stack top) // FSUB ST,$src1 emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xE0 + $src1$$reg); // FDIV emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xF0 + $src2$$reg); %} enc_class MulFAddF (eRegF src1, eRegF src2) %{ // Operand was loaded from memory into fp ST (stack top) // FADD ST,$src /* D8 C0+i */ emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xC0 + $src1$$reg); // FMUL ST,src2 /* D8 C*+i */ emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xC8 + $src2$$reg); %} enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{ // Operand was loaded from memory into fp ST (stack top) // FADD ST,$src /* D8 C0+i */ emit_opcode(cbuf, 0xD8); emit_opcode(cbuf, 0xC0 + $src1$$reg); // FMULP src2,ST /* DE C8+i */ emit_opcode(cbuf, 0xDE); emit_opcode(cbuf, 0xC8 + $src2$$reg); %} // Atomically load the volatile long enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{ emit_opcode(cbuf,0xDF); int rm_byte_opcode = 0x05; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp ); %} enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{ { // Atomic long load // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } { // MOVSD $dst,$tmp ! atomic long store emit_opcode(cbuf,0xF2); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x11); int base = $dst$$base; int index = $dst$$index; int scale = $dst$$scale; int displace = $dst$$disp; bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } %} enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{ { // Atomic long load // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } { // MOVD $dst.lo,$tmp emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x7E); emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg); } { // PSRLQ $tmp,32 emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x73); emit_rm(cbuf, 0x3, 0x02, $tmp$$reg); emit_d8(cbuf, 0x20); } { // MOVD $dst.hi,$tmp emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x7E); emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg)); } %} // Volatile Store Long. Must be atomic, so move it into // the FP TOS and then do a 64-bit FIST. Has to probe the // target address before the store (for null-ptr checks) // so the memory operand is used twice in the encoding. enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{ store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp ); cbuf.set_insts_mark(); // Mark start of FIST in case $mem has an oop emit_opcode(cbuf,0xDF); int rm_byte_opcode = 0x07; int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop); %} enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{ { // Atomic long load // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src] emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12); int base = $src$$base; int index = $src$$index; int scale = $src$$scale; int displace = $src$$disp; bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } cbuf.set_insts_mark(); // Mark start of MOVSD in case $mem has an oop { // MOVSD $mem,$tmp ! atomic long store emit_opcode(cbuf,0xF2); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x11); int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } %} enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{ { // MOVD $tmp,$src.lo emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x6E); emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg); } { // MOVD $tmp2,$src.hi emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x6E); emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg)); } { // PUNPCKLDQ $tmp,$tmp2 emit_opcode(cbuf,0x66); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x62); emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg); } cbuf.set_insts_mark(); // Mark start of MOVSD in case $mem has an oop { // MOVSD $mem,$tmp ! atomic long store emit_opcode(cbuf,0xF2); emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x11); int base = $mem$$base; int index = $mem$$index; int scale = $mem$$scale; int displace = $mem$$disp; bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop); } %} // Safepoint Poll. This polls the safepoint page, and causes an // exception if it is not readable. Unfortunately, it kills the condition code // in the process // We current use TESTL [spp],EDI // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0 enc_class Safepoint_Poll() %{ cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0); emit_opcode(cbuf,0x85); emit_rm (cbuf, 0x0, 0x7, 0x5); emit_d32(cbuf, (intptr_t)os::get_polling_page()); %} %} //----------FRAME-------------------------------------------------------------- // Definition of frame structure and management information. // // S T A C K L A Y O U T Allocators stack-slot number // | (to get allocators register number // G Owned by | | v add OptoReg::stack0()) // r CALLER | | // o | +--------+ pad to even-align allocators stack-slot // w V | pad0 | numbers; owned by CALLER // t -----------+--------+----> Matcher::_in_arg_limit, unaligned // h ^ | in | 5 // | | args | 4 Holes in incoming args owned by SELF // | | | | 3 // | | +--------+ // V | | old out| Empty on Intel, window on Sparc // | old |preserve| Must be even aligned. // | SP-+--------+----> Matcher::_old_SP, even aligned // | | in | 3 area for Intel ret address // Owned by |preserve| Empty on Sparc. // SELF +--------+ // | | pad2 | 2 pad to align old SP // | +--------+ 1 // | | locks | 0 // | +--------+----> OptoReg::stack0(), even aligned // | | pad1 | 11 pad to align new SP // | +--------+ // | | | 10 // | | spills | 9 spills // V | | 8 (pad0 slot for callee) // -----------+--------+----> Matcher::_out_arg_limit, unaligned // ^ | out | 7 // | | args | 6 Holes in outgoing args owned by CALLEE // Owned by +--------+ // CALLEE | new out| 6 Empty on Intel, window on Sparc // | new |preserve| Must be even-aligned. // | SP-+--------+----> Matcher::_new_SP, even aligned // | | | // // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is // known from SELF's arguments and the Java calling convention. // Region 6-7 is determined per call site. // Note 2: If the calling convention leaves holes in the incoming argument // area, those holes are owned by SELF. Holes in the outgoing area // are owned by the CALLEE. Holes should not be nessecary in the // incoming area, as the Java calling convention is completely under // the control of the AD file. Doubles can be sorted and packed to // avoid holes. Holes in the outgoing arguments may be nessecary for // varargs C calling conventions. // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is // even aligned with pad0 as needed. // Region 6 is even aligned. Region 6-7 is NOT even aligned; // region 6-11 is even aligned; it may be padded out more so that // the region from SP to FP meets the minimum stack alignment. frame %{ // What direction does stack grow in (assumed to be same for C & Java) stack_direction(TOWARDS_LOW); // These three registers define part of the calling convention // between compiled code and the interpreter. inline_cache_reg(EAX); // Inline Cache Register interpreter_method_oop_reg(EBX); // Method Oop Register when calling interpreter // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] cisc_spilling_operand_name(indOffset32); // Number of stack slots consumed by locking an object sync_stack_slots(1); // Compiled code's Frame Pointer frame_pointer(ESP); // Interpreter stores its frame pointer in a register which is // stored to the stack by I2CAdaptors. // I2CAdaptors convert from interpreted java to compiled java. interpreter_frame_pointer(EBP); // Stack alignment requirement // Alignment size in bytes (128-bit -> 16 bytes) stack_alignment(StackAlignmentInBytes); // Number of stack slots between incoming argument block and the start of // a new frame. The PROLOG must add this many slots to the stack. The // EPILOG must remove this many slots. Intel needs one slot for // return address and one for rbp, (must save rbp) in_preserve_stack_slots(2+VerifyStackAtCalls); // Number of outgoing stack slots killed above the out_preserve_stack_slots // for calls to C. Supports the var-args backing area for register parms. varargs_C_out_slots_killed(0); // The after-PROLOG location of the return address. Location of // return address specifies a type (REG or STACK) and a number // representing the register number (i.e. - use a register name) or // stack slot. // Ret Addr is on stack in slot 0 if no locks or verification or alignment. // Otherwise, it is above the locks and verification slot and alignment word return_addr(STACK - 1 + round_to(1+VerifyStackAtCalls+ Compile::current()->fixed_slots(), (StackAlignmentInBytes/wordSize))); // Body of function which returns an integer array locating // arguments either in registers or in stack slots. Passed an array // of ideal registers called "sig" and a "length" count. Stack-slot // offsets are based on outgoing arguments, i.e. a CALLER setting up // arguments for a CALLEE. Incoming stack arguments are // automatically biased by the preserve_stack_slots field above. calling_convention %{ // No difference between ingoing/outgoing just pass false SharedRuntime::java_calling_convention(sig_bt, regs, length, false); %} // Body of function which returns an integer array locating // arguments either in registers or in stack slots. Passed an array // of ideal registers called "sig" and a "length" count. Stack-slot // offsets are based on outgoing arguments, i.e. a CALLER setting up // arguments for a CALLEE. Incoming stack arguments are // automatically biased by the preserve_stack_slots field above. c_calling_convention %{ // This is obviously always outgoing (void) SharedRuntime::c_calling_convention(sig_bt, regs, length); %} // Location of C & interpreter return values c_return_value %{ assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num }; static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num }; // in SSE2+ mode we want to keep the FPU stack clean so pretend // that C functions return float and double results in XMM0. if( ideal_reg == Op_RegD && UseSSE>=2 ) return OptoRegPair(XMM0b_num,XMM0a_num); if( ideal_reg == Op_RegF && UseSSE>=2 ) return OptoRegPair(OptoReg::Bad,XMM0a_num); return OptoRegPair(hi[ideal_reg],lo[ideal_reg]); %} // Location of return values return_value %{ assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num, EAX_num, FPR1L_num, FPR1L_num, EAX_num }; static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num }; if( ideal_reg == Op_RegD && UseSSE>=2 ) return OptoRegPair(XMM0b_num,XMM0a_num); if( ideal_reg == Op_RegF && UseSSE>=1 ) return OptoRegPair(OptoReg::Bad,XMM0a_num); return OptoRegPair(hi[ideal_reg],lo[ideal_reg]); %} %} //----------ATTRIBUTES--------------------------------------------------------- //----------Operand Attributes------------------------------------------------- op_attrib op_cost(0); // Required cost attribute //----------Instruction Attributes--------------------------------------------- ins_attrib ins_cost(100); // Required cost attribute ins_attrib ins_size(8); // Required size attribute (in bits) ins_attrib ins_pc_relative(0); // Required PC Relative flag ins_attrib ins_short_branch(0); // Required flag: is this instruction a // non-matching short branch variant of some // long branch? ins_attrib ins_alignment(1); // Required alignment attribute (must be a power of 2) // specifies the alignment that some part of the instruction (not // necessarily the start) requires. If > 1, a compute_padding() // function must be provided for the instruction //----------OPERANDS----------------------------------------------------------- // Operand definitions must precede instruction definitions for correct parsing // in the ADLC because operands constitute user defined types which are used in // instruction definitions. //----------Simple Operands---------------------------------------------------- // Immediate Operands // Integer Immediate operand immI() %{ match(ConI); op_cost(10); format %{ %} interface(CONST_INTER); %} // Constant for test vs zero operand immI0() %{ predicate(n->get_int() == 0); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Constant for increment operand immI1() %{ predicate(n->get_int() == 1); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Constant for decrement operand immI_M1() %{ predicate(n->get_int() == -1); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Valid scale values for addressing modes operand immI2() %{ predicate(0 <= n->get_int() && (n->get_int() <= 3)); match(ConI); format %{ %} interface(CONST_INTER); %} operand immI8() %{ predicate((-128 <= n->get_int()) && (n->get_int() <= 127)); match(ConI); op_cost(5); format %{ %} interface(CONST_INTER); %} operand immI16() %{ predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767)); match(ConI); op_cost(10); format %{ %} interface(CONST_INTER); %} // Constant for long shifts operand immI_32() %{ predicate( n->get_int() == 32 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immI_1_31() %{ predicate( n->get_int() >= 1 && n->get_int() <= 31 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immI_32_63() %{ predicate( n->get_int() >= 32 && n->get_int() <= 63 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immI_1() %{ predicate( n->get_int() == 1 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immI_2() %{ predicate( n->get_int() == 2 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immI_3() %{ predicate( n->get_int() == 3 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Pointer Immediate operand immP() %{ match(ConP); op_cost(10); format %{ %} interface(CONST_INTER); %} // NULL Pointer Immediate operand immP0() %{ predicate( n->get_ptr() == 0 ); match(ConP); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate operand immL() %{ match(ConL); op_cost(20); format %{ %} interface(CONST_INTER); %} // Long Immediate zero operand immL0() %{ predicate( n->get_long() == 0L ); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate zero operand immL_M1() %{ predicate( n->get_long() == -1L ); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long immediate from 0 to 127. // Used for a shorter form of long mul by 10. operand immL_127() %{ predicate((0 <= n->get_long()) && (n->get_long() <= 127)); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate: low 32-bit mask operand immL_32bits() %{ predicate(n->get_long() == 0xFFFFFFFFL); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate: low 32-bit mask operand immL32() %{ predicate(n->get_long() == (int)(n->get_long())); match(ConL); op_cost(20); format %{ %} interface(CONST_INTER); %} //Double Immediate zero operand immD0() %{ // Do additional (and counter-intuitive) test against NaN to work around VC++ // bug that generates code such that NaNs compare equal to 0.0 predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) ); match(ConD); op_cost(5); format %{ %} interface(CONST_INTER); %} // Double Immediate one operand immD1() %{ predicate( UseSSE<=1 && n->getd() == 1.0 ); match(ConD); op_cost(5); format %{ %} interface(CONST_INTER); %} // Double Immediate operand immD() %{ predicate(UseSSE<=1); match(ConD); op_cost(5); format %{ %} interface(CONST_INTER); %} operand immXD() %{ predicate(UseSSE>=2); match(ConD); op_cost(5); format %{ %} interface(CONST_INTER); %} // Double Immediate zero operand immXD0() %{ // Do additional (and counter-intuitive) test against NaN to work around VC++ // bug that generates code such that NaNs compare equal to 0.0 AND do not // compare equal to -0.0. predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 ); match(ConD); format %{ %} interface(CONST_INTER); %} // Float Immediate zero operand immF0() %{ predicate(UseSSE == 0 && n->getf() == 0.0F); match(ConF); op_cost(5); format %{ %} interface(CONST_INTER); %} // Float Immediate one operand immF1() %{ predicate(UseSSE == 0 && n->getf() == 1.0F); match(ConF); op_cost(5); format %{ %} interface(CONST_INTER); %} // Float Immediate operand immF() %{ predicate( UseSSE == 0 ); match(ConF); op_cost(5); format %{ %} interface(CONST_INTER); %} // Float Immediate operand immXF() %{ predicate(UseSSE >= 1); match(ConF); op_cost(5); format %{ %} interface(CONST_INTER); %} // Float Immediate zero. Zero and not -0.0 operand immXF0() %{ predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 ); match(ConF); op_cost(5); format %{ %} interface(CONST_INTER); %} // Immediates for special shifts (sign extend) // Constants for increment operand immI_16() %{ predicate( n->get_int() == 16 ); match(ConI); format %{ %} interface(CONST_INTER); %} operand immI_24() %{ predicate( n->get_int() == 24 ); match(ConI); format %{ %} interface(CONST_INTER); %} // Constant for byte-wide masking operand immI_255() %{ predicate( n->get_int() == 255 ); match(ConI); format %{ %} interface(CONST_INTER); %} // Constant for short-wide masking operand immI_65535() %{ predicate(n->get_int() == 65535); match(ConI); format %{ %} interface(CONST_INTER); %} // Register Operands // Integer Register operand eRegI() %{ constraint(ALLOC_IN_RC(e_reg)); match(RegI); match(xRegI); match(eAXRegI); match(eBXRegI); match(eCXRegI); match(eDXRegI); match(eDIRegI); match(eSIRegI); format %{ %} interface(REG_INTER); %} // Subset of Integer Register operand xRegI(eRegI reg) %{ constraint(ALLOC_IN_RC(x_reg)); match(reg); match(eAXRegI); match(eBXRegI); match(eCXRegI); match(eDXRegI); format %{ %} interface(REG_INTER); %} // Special Registers operand eAXRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(eax_reg)); match(reg); match(eRegI); format %{ "EAX" %} interface(REG_INTER); %} // Special Registers operand eBXRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(ebx_reg)); match(reg); match(eRegI); format %{ "EBX" %} interface(REG_INTER); %} operand eCXRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(ecx_reg)); match(reg); match(eRegI); format %{ "ECX" %} interface(REG_INTER); %} operand eDXRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(edx_reg)); match(reg); match(eRegI); format %{ "EDX" %} interface(REG_INTER); %} operand eDIRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(edi_reg)); match(reg); match(eRegI); format %{ "EDI" %} interface(REG_INTER); %} operand naxRegI() %{ constraint(ALLOC_IN_RC(nax_reg)); match(RegI); match(eCXRegI); match(eDXRegI); match(eSIRegI); match(eDIRegI); format %{ %} interface(REG_INTER); %} operand nadxRegI() %{ constraint(ALLOC_IN_RC(nadx_reg)); match(RegI); match(eBXRegI); match(eCXRegI); match(eSIRegI); match(eDIRegI); format %{ %} interface(REG_INTER); %} operand ncxRegI() %{ constraint(ALLOC_IN_RC(ncx_reg)); match(RegI); match(eAXRegI); match(eDXRegI); match(eSIRegI); match(eDIRegI); format %{ %} interface(REG_INTER); %} // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg // // operand eSIRegI(xRegI reg) %{ constraint(ALLOC_IN_RC(esi_reg)); match(reg); match(eRegI); format %{ "ESI" %} interface(REG_INTER); %} // Pointer Register operand anyRegP() %{ constraint(ALLOC_IN_RC(any_reg)); match(RegP); match(eAXRegP); match(eBXRegP); match(eCXRegP); match(eDIRegP); match(eRegP); format %{ %} interface(REG_INTER); %} operand eRegP() %{ constraint(ALLOC_IN_RC(e_reg)); match(RegP); match(eAXRegP); match(eBXRegP); match(eCXRegP); match(eDIRegP); format %{ %} interface(REG_INTER); %} // On windows95, EBP is not safe to use for implicit null tests. operand eRegP_no_EBP() %{ constraint(ALLOC_IN_RC(e_reg_no_rbp)); match(RegP); match(eAXRegP); match(eBXRegP); match(eCXRegP); match(eDIRegP); op_cost(100); format %{ %} interface(REG_INTER); %} operand naxRegP() %{ constraint(ALLOC_IN_RC(nax_reg)); match(RegP); match(eBXRegP); match(eDXRegP); match(eCXRegP); match(eSIRegP); match(eDIRegP); format %{ %} interface(REG_INTER); %} operand nabxRegP() %{ constraint(ALLOC_IN_RC(nabx_reg)); match(RegP); match(eCXRegP); match(eDXRegP); match(eSIRegP); match(eDIRegP); format %{ %} interface(REG_INTER); %} operand pRegP() %{ constraint(ALLOC_IN_RC(p_reg)); match(RegP); match(eBXRegP); match(eDXRegP); match(eSIRegP); match(eDIRegP); format %{ %} interface(REG_INTER); %} // Special Registers // Return a pointer value operand eAXRegP(eRegP reg) %{ constraint(ALLOC_IN_RC(eax_reg)); match(reg); format %{ "EAX" %} interface(REG_INTER); %} // Used in AtomicAdd operand eBXRegP(eRegP reg) %{ constraint(ALLOC_IN_RC(ebx_reg)); match(reg); format %{ "EBX" %} interface(REG_INTER); %} // Tail-call (interprocedural jump) to interpreter operand eCXRegP(eRegP reg) %{ constraint(ALLOC_IN_RC(ecx_reg)); match(reg); format %{ "ECX" %} interface(REG_INTER); %} operand eSIRegP(eRegP reg) %{ constraint(ALLOC_IN_RC(esi_reg)); match(reg); format %{ "ESI" %} interface(REG_INTER); %} // Used in rep stosw operand eDIRegP(eRegP reg) %{ constraint(ALLOC_IN_RC(edi_reg)); match(reg); format %{ "EDI" %} interface(REG_INTER); %} operand eBPRegP() %{ constraint(ALLOC_IN_RC(ebp_reg)); match(RegP); format %{ "EBP" %} interface(REG_INTER); %} operand eRegL() %{ constraint(ALLOC_IN_RC(long_reg)); match(RegL); match(eADXRegL); format %{ %} interface(REG_INTER); %} operand eADXRegL( eRegL reg ) %{ constraint(ALLOC_IN_RC(eadx_reg)); match(reg); format %{ "EDX:EAX" %} interface(REG_INTER); %} operand eBCXRegL( eRegL reg ) %{ constraint(ALLOC_IN_RC(ebcx_reg)); match(reg); format %{ "EBX:ECX" %} interface(REG_INTER); %} // Special case for integer high multiply operand eADXRegL_low_only() %{ constraint(ALLOC_IN_RC(eadx_reg)); match(RegL); format %{ "EAX" %} interface(REG_INTER); %} // Flags register, used as output of compare instructions operand eFlagsReg() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "EFLAGS" %} interface(REG_INTER); %} // Flags register, used as output of FLOATING POINT compare instructions operand eFlagsRegU() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "EFLAGS_U" %} interface(REG_INTER); %} operand eFlagsRegUCF() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); predicate(false); format %{ "EFLAGS_U_CF" %} interface(REG_INTER); %} // Condition Code Register used by long compare operand flagsReg_long_LTGE() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "FLAGS_LTGE" %} interface(REG_INTER); %} operand flagsReg_long_EQNE() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "FLAGS_EQNE" %} interface(REG_INTER); %} operand flagsReg_long_LEGT() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "FLAGS_LEGT" %} interface(REG_INTER); %} // Float register operands operand regD() %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(dbl_reg)); match(RegD); match(regDPR1); match(regDPR2); format %{ %} interface(REG_INTER); %} operand regDPR1(regD reg) %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(dbl_reg0)); match(reg); format %{ "FPR1" %} interface(REG_INTER); %} operand regDPR2(regD reg) %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(dbl_reg1)); match(reg); format %{ "FPR2" %} interface(REG_INTER); %} operand regnotDPR1(regD reg) %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(dbl_notreg0)); match(reg); format %{ %} interface(REG_INTER); %} // XMM Double register operands operand regXD() %{ predicate( UseSSE>=2 ); constraint(ALLOC_IN_RC(xdb_reg)); match(RegD); match(regXD6); match(regXD7); format %{ %} interface(REG_INTER); %} // XMM6 double register operands operand regXD6(regXD reg) %{ predicate( UseSSE>=2 ); constraint(ALLOC_IN_RC(xdb_reg6)); match(reg); format %{ "XMM6" %} interface(REG_INTER); %} // XMM7 double register operands operand regXD7(regXD reg) %{ predicate( UseSSE>=2 ); constraint(ALLOC_IN_RC(xdb_reg7)); match(reg); format %{ "XMM7" %} interface(REG_INTER); %} // Float register operands operand regF() %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(flt_reg)); match(RegF); match(regFPR1); format %{ %} interface(REG_INTER); %} // Float register operands operand regFPR1(regF reg) %{ predicate( UseSSE < 2 ); constraint(ALLOC_IN_RC(flt_reg0)); match(reg); format %{ "FPR1" %} interface(REG_INTER); %} // XMM register operands operand regX() %{ predicate( UseSSE>=1 ); constraint(ALLOC_IN_RC(xmm_reg)); match(RegF); format %{ %} interface(REG_INTER); %} //----------Memory Operands---------------------------------------------------- // Direct Memory Operand operand direct(immP addr) %{ match(addr); format %{ "[$addr]" %} interface(MEMORY_INTER) %{ base(0xFFFFFFFF); index(0x4); scale(0x0); disp($addr); %} %} // Indirect Memory Operand operand indirect(eRegP reg) %{ constraint(ALLOC_IN_RC(e_reg)); match(reg); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp(0x0); %} %} // Indirect Memory Plus Short Offset Operand operand indOffset8(eRegP reg, immI8 off) %{ match(AddP reg off); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} // Indirect Memory Plus Long Offset Operand operand indOffset32(eRegP reg, immI off) %{ match(AddP reg off); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} // Indirect Memory Plus Long Offset Operand operand indOffset32X(eRegI reg, immP off) %{ match(AddP off reg); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} // Indirect Memory Plus Index Register Plus Offset Operand operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{ match(AddP (AddP reg ireg) off); op_cost(10); format %{"[$reg + $off + $ireg]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale(0x0); disp($off); %} %} // Indirect Memory Plus Index Register Plus Offset Operand operand indIndex(eRegP reg, eRegI ireg) %{ match(AddP reg ireg); op_cost(10); format %{"[$reg + $ireg]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale(0x0); disp(0x0); %} %} // // ------------------------------------------------------------------------- // // 486 architecture doesn't support "scale * index + offset" with out a base // // ------------------------------------------------------------------------- // // Scaled Memory Operands // // Indirect Memory Times Scale Plus Offset Operand // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{ // match(AddP off (LShiftI ireg scale)); // // op_cost(10); // format %{"[$off + $ireg << $scale]" %} // interface(MEMORY_INTER) %{ // base(0x4); // index($ireg); // scale($scale); // disp($off); // %} // %} // Indirect Memory Times Scale Plus Index Register operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{ match(AddP reg (LShiftI ireg scale)); op_cost(10); format %{"[$reg + $ireg << $scale]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale($scale); disp(0x0); %} %} // Indirect Memory Times Scale Plus Index Register Plus Offset Operand operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{ match(AddP (AddP reg (LShiftI ireg scale)) off); op_cost(10); format %{"[$reg + $off + $ireg << $scale]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale($scale); disp($off); %} %} //----------Load Long Memory Operands------------------------------------------ // The load-long idiom will use it's address expression again after loading // the first word of the long. If the load-long destination overlaps with // registers used in the addressing expression, the 2nd half will be loaded // from a clobbered address. Fix this by requiring that load-long use // address registers that do not overlap with the load-long target. // load-long support operand load_long_RegP() %{ constraint(ALLOC_IN_RC(esi_reg)); match(RegP); match(eSIRegP); op_cost(100); format %{ %} interface(REG_INTER); %} // Indirect Memory Operand Long operand load_long_indirect(load_long_RegP reg) %{ constraint(ALLOC_IN_RC(esi_reg)); match(reg); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp(0x0); %} %} // Indirect Memory Plus Long Offset Operand operand load_long_indOffset32(load_long_RegP reg, immI off) %{ match(AddP reg off); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} opclass load_long_memory(load_long_indirect, load_long_indOffset32); //----------Special Memory Operands-------------------------------------------- // Stack Slot Operand - This operand is used for loading and storing temporary // values on the stack where a match requires a value to // flow through memory. operand stackSlotP(sRegP reg) %{ constraint(ALLOC_IN_RC(stack_slots)); // No match rule because this operand is only generated in matching format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0x4); // ESP index(0x4); // No Index scale(0x0); // No Scale disp($reg); // Stack Offset %} %} operand stackSlotI(sRegI reg) %{ constraint(ALLOC_IN_RC(stack_slots)); // No match rule because this operand is only generated in matching format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0x4); // ESP index(0x4); // No Index scale(0x0); // No Scale disp($reg); // Stack Offset %} %} operand stackSlotF(sRegF reg) %{ constraint(ALLOC_IN_RC(stack_slots)); // No match rule because this operand is only generated in matching format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0x4); // ESP index(0x4); // No Index scale(0x0); // No Scale disp($reg); // Stack Offset %} %} operand stackSlotD(sRegD reg) %{ constraint(ALLOC_IN_RC(stack_slots)); // No match rule because this operand is only generated in matching format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0x4); // ESP index(0x4); // No Index scale(0x0); // No Scale disp($reg); // Stack Offset %} %} operand stackSlotL(sRegL reg) %{ constraint(ALLOC_IN_RC(stack_slots)); // No match rule because this operand is only generated in matching format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0x4); // ESP index(0x4); // No Index scale(0x0); // No Scale disp($reg); // Stack Offset %} %} //----------Memory Operands - Win95 Implicit Null Variants---------------- // Indirect Memory Operand operand indirect_win95_safe(eRegP_no_EBP reg) %{ constraint(ALLOC_IN_RC(e_reg)); match(reg); op_cost(100); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp(0x0); %} %} // Indirect Memory Plus Short Offset Operand operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off) %{ match(AddP reg off); op_cost(100); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} // Indirect Memory Plus Long Offset Operand operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off) %{ match(AddP reg off); op_cost(100); format %{ "[$reg + $off]" %} interface(MEMORY_INTER) %{ base($reg); index(0x4); scale(0x0); disp($off); %} %} // Indirect Memory Plus Index Register Plus Offset Operand operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off) %{ match(AddP (AddP reg ireg) off); op_cost(100); format %{"[$reg + $off + $ireg]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale(0x0); disp($off); %} %} // Indirect Memory Times Scale Plus Index Register operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale) %{ match(AddP reg (LShiftI ireg scale)); op_cost(100); format %{"[$reg + $ireg << $scale]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale($scale); disp(0x0); %} %} // Indirect Memory Times Scale Plus Index Register Plus Offset Operand operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale) %{ match(AddP (AddP reg (LShiftI ireg scale)) off); op_cost(100); format %{"[$reg + $off + $ireg << $scale]" %} interface(MEMORY_INTER) %{ base($reg); index($ireg); scale($scale); disp($off); %} %} //----------Conditional Branch Operands---------------------------------------- // Comparison Op - This is the operation of the comparison, and is limited to // the following set of codes: // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) // // Other attributes of the comparison, such as unsignedness, are specified // by the comparison instruction that sets a condition code flags register. // That result is represented by a flags operand whose subtype is appropriate // to the unsignedness (etc.) of the comparison. // // Later, the instruction which matches both the Comparison Op (a Bool) and // the flags (produced by the Cmp) specifies the coding of the comparison op // by matching a specific subtype of Bool operand below, such as cmpOpU. // Comparision Code operand cmpOp() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal(0x4, "e"); not_equal(0x5, "ne"); less(0xC, "l"); greater_equal(0xD, "ge"); less_equal(0xE, "le"); greater(0xF, "g"); %} %} // Comparison Code, unsigned compare. Used by FP also, with // C2 (unordered) turned into GT or LT already. The other bits // C0 and C3 are turned into Carry & Zero flags. operand cmpOpU() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal(0x4, "e"); not_equal(0x5, "ne"); less(0x2, "b"); greater_equal(0x3, "nb"); less_equal(0x6, "be"); greater(0x7, "nbe"); %} %} // Floating comparisons that don't require any fixup for the unordered case operand cmpOpUCF() %{ match(Bool); predicate(n->as_Bool()->_test._test == BoolTest::lt || n->as_Bool()->_test._test == BoolTest::ge || n->as_Bool()->_test._test == BoolTest::le || n->as_Bool()->_test._test == BoolTest::gt); format %{ "" %} interface(COND_INTER) %{ equal(0x4, "e"); not_equal(0x5, "ne"); less(0x2, "b"); greater_equal(0x3, "nb"); less_equal(0x6, "be"); greater(0x7, "nbe"); %} %} // Floating comparisons that can be fixed up with extra conditional jumps operand cmpOpUCF2() %{ match(Bool); predicate(n->as_Bool()->_test._test == BoolTest::ne || n->as_Bool()->_test._test == BoolTest::eq); format %{ "" %} interface(COND_INTER) %{ equal(0x4, "e"); not_equal(0x5, "ne"); less(0x2, "b"); greater_equal(0x3, "nb"); less_equal(0x6, "be"); greater(0x7, "nbe"); %} %} // Comparison Code for FP conditional move operand cmpOp_fcmov() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal (0x0C8); not_equal (0x1C8); less (0x0C0); greater_equal(0x1C0); less_equal (0x0D0); greater (0x1D0); %} %} // Comparision Code used in long compares operand cmpOp_commute() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal(0x4, "e"); not_equal(0x5, "ne"); less(0xF, "g"); greater_equal(0xE, "le"); less_equal(0xD, "ge"); greater(0xC, "l"); %} %} //----------OPERAND CLASSES---------------------------------------------------- // Operand Classes are groups of operands that are used as to simplify // instruction definitions by not requiring the AD writer to specify separate // instructions for every form of operand when the instruction accepts // multiple operand types with the same basic encoding and format. The classic // case of this is memory operands. opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset, indIndex, indIndexScale, indIndexScaleOffset); // Long memory operations are encoded in 2 instructions and a +4 offset. // This means some kind of offset is always required and you cannot use // an oop as the offset (done when working on static globals). opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset, indIndex, indIndexScale, indIndexScaleOffset); //----------PIPELINE----------------------------------------------------------- // Rules which define the behavior of the target architectures pipeline. pipeline %{ //----------ATTRIBUTES--------------------------------------------------------- attributes %{ variable_size_instructions; // Fixed size instructions max_instructions_per_bundle = 3; // Up to 3 instructions per bundle instruction_unit_size = 1; // An instruction is 1 bytes long instruction_fetch_unit_size = 16; // The processor fetches one line instruction_fetch_units = 1; // of 16 bytes // List of nop instructions nops( MachNop ); %} //----------RESOURCES---------------------------------------------------------- // Resources are the functional units available to the machine // Generic P2/P3 pipeline // 3 decoders, only D0 handles big operands; a "bundle" is the limit of // 3 instructions decoded per cycle. // 2 load/store ops per cycle, 1 branch, 1 FPU, // 2 ALU op, only ALU0 handles mul/div instructions. resources( D0, D1, D2, DECODE = D0 | D1 | D2, MS0, MS1, MEM = MS0 | MS1, BR, FPU, ALU0, ALU1, ALU = ALU0 | ALU1 ); //----------PIPELINE DESCRIPTION----------------------------------------------- // Pipeline Description specifies the stages in the machine's pipeline // Generic P2/P3 pipeline pipe_desc(S0, S1, S2, S3, S4, S5); //----------PIPELINE CLASSES--------------------------------------------------- // Pipeline Classes describe the stages in which input and output are // referenced by the hardware pipeline. // Naming convention: ialu or fpu // Then: _reg // Then: _reg if there is a 2nd register // Then: _long if it's a pair of instructions implementing a long // Then: _fat if it requires the big decoder // Or: _mem if it requires the big decoder and a memory unit. // Integer ALU reg operation pipe_class ialu_reg(eRegI dst) %{ single_instruction; dst : S4(write); dst : S3(read); DECODE : S0; // any decoder ALU : S3; // any alu %} // Long ALU reg operation pipe_class ialu_reg_long(eRegL dst) %{ instruction_count(2); dst : S4(write); dst : S3(read); DECODE : S0(2); // any 2 decoders ALU : S3(2); // both alus %} // Integer ALU reg operation using big decoder pipe_class ialu_reg_fat(eRegI dst) %{ single_instruction; dst : S4(write); dst : S3(read); D0 : S0; // big decoder only ALU : S3; // any alu %} // Long ALU reg operation using big decoder pipe_class ialu_reg_long_fat(eRegL dst) %{ instruction_count(2); dst : S4(write); dst : S3(read); D0 : S0(2); // big decoder only; twice ALU : S3(2); // any 2 alus %} // Integer ALU reg-reg operation pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{ single_instruction; dst : S4(write); src : S3(read); DECODE : S0; // any decoder ALU : S3; // any alu %} // Long ALU reg-reg operation pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{ instruction_count(2); dst : S4(write); src : S3(read); DECODE : S0(2); // any 2 decoders ALU : S3(2); // both alus %} // Integer ALU reg-reg operation pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{ single_instruction; dst : S4(write); src : S3(read); D0 : S0; // big decoder only ALU : S3; // any alu %} // Long ALU reg-reg operation pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{ instruction_count(2); dst : S4(write); src : S3(read); D0 : S0(2); // big decoder only; twice ALU : S3(2); // both alus %} // Integer ALU reg-mem operation pipe_class ialu_reg_mem(eRegI dst, memory mem) %{ single_instruction; dst : S5(write); mem : S3(read); D0 : S0; // big decoder only ALU : S4; // any alu MEM : S3; // any mem %} // Long ALU reg-mem operation pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{ instruction_count(2); dst : S5(write); mem : S3(read); D0 : S0(2); // big decoder only; twice ALU : S4(2); // any 2 alus MEM : S3(2); // both mems %} // Integer mem operation (prefetch) pipe_class ialu_mem(memory mem) %{ single_instruction; mem : S3(read); D0 : S0; // big decoder only MEM : S3; // any mem %} // Integer Store to Memory pipe_class ialu_mem_reg(memory mem, eRegI src) %{ single_instruction; mem : S3(read); src : S5(read); D0 : S0; // big decoder only ALU : S4; // any alu MEM : S3; %} // Long Store to Memory pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{ instruction_count(2); mem : S3(read); src : S5(read); D0 : S0(2); // big decoder only; twice ALU : S4(2); // any 2 alus MEM : S3(2); // Both mems %} // Integer Store to Memory pipe_class ialu_mem_imm(memory mem) %{ single_instruction; mem : S3(read); D0 : S0; // big decoder only ALU : S4; // any alu MEM : S3; %} // Integer ALU0 reg-reg operation pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{ single_instruction; dst : S4(write); src : S3(read); D0 : S0; // Big decoder only ALU0 : S3; // only alu0 %} // Integer ALU0 reg-mem operation pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{ single_instruction; dst : S5(write); mem : S3(read); D0 : S0; // big decoder only ALU0 : S4; // ALU0 only MEM : S3; // any mem %} // Integer ALU reg-reg operation pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{ single_instruction; cr : S4(write); src1 : S3(read); src2 : S3(read); DECODE : S0; // any decoder ALU : S3; // any alu %} // Integer ALU reg-imm operation pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{ single_instruction; cr : S4(write); src1 : S3(read); DECODE : S0; // any decoder ALU : S3; // any alu %} // Integer ALU reg-mem operation pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{ single_instruction; cr : S4(write); src1 : S3(read); src2 : S3(read); D0 : S0; // big decoder only ALU : S4; // any alu MEM : S3; %} // Conditional move reg-reg pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{ instruction_count(4); y : S4(read); q : S3(read); p : S3(read); DECODE : S0(4); // any decoder %} // Conditional move reg-reg pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{ single_instruction; dst : S4(write); src : S3(read); cr : S3(read); DECODE : S0; // any decoder %} // Conditional move reg-mem pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{ single_instruction; dst : S4(write); src : S3(read); cr : S3(read); DECODE : S0; // any decoder MEM : S3; %} // Conditional move reg-reg long pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{ single_instruction; dst : S4(write); src : S3(read); cr : S3(read); DECODE : S0(2); // any 2 decoders %} // Conditional move double reg-reg pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{ single_instruction; dst : S4(write); src : S3(read); cr : S3(read); DECODE : S0; // any decoder %} // Float reg-reg operation pipe_class fpu_reg(regD dst) %{ instruction_count(2); dst : S3(read); DECODE : S0(2); // any 2 decoders FPU : S3; %} // Float reg-reg operation pipe_class fpu_reg_reg(regD dst, regD src) %{ instruction_count(2); dst : S4(write); src : S3(read); DECODE : S0(2); // any 2 decoders FPU : S3; %} // Float reg-reg operation pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{ instruction_count(3); dst : S4(write); src1 : S3(read); src2 : S3(read); DECODE : S0(3); // any 3 decoders FPU : S3(2); %} // Float reg-reg operation pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{ instruction_count(4); dst : S4(write); src1 : S3(read); src2 : S3(read); src3 : S3(read); DECODE : S0(4); // any 3 decoders FPU : S3(2); %} // Float reg-reg operation pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{ instruction_count(4); dst : S4(write); src1 : S3(read); src2 : S3(read); src3 : S3(read); DECODE : S1(3); // any 3 decoders D0 : S0; // Big decoder only FPU : S3(2); MEM : S3; %} // Float reg-mem operation pipe_class fpu_reg_mem(regD dst, memory mem) %{ instruction_count(2); dst : S5(write); mem : S3(read); D0 : S0; // big decoder only DECODE : S1; // any decoder for FPU POP FPU : S4; MEM : S3; // any mem %} // Float reg-mem operation pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{ instruction_count(3); dst : S5(write); src1 : S3(read); mem : S3(read); D0 : S0; // big decoder only DECODE : S1(2); // any decoder for FPU POP FPU : S4; MEM : S3; // any mem %} // Float mem-reg operation pipe_class fpu_mem_reg(memory mem, regD src) %{ instruction_count(2); src : S5(read); mem : S3(read); DECODE : S0; // any decoder for FPU PUSH D0 : S1; // big decoder only FPU : S4; MEM : S3; // any mem %} pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{ instruction_count(3); src1 : S3(read); src2 : S3(read); mem : S3(read); DECODE : S0(2); // any decoder for FPU PUSH D0 : S1; // big decoder only FPU : S4; MEM : S3; // any mem %} pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{ instruction_count(3); src1 : S3(read); src2 : S3(read); mem : S4(read); DECODE : S0; // any decoder for FPU PUSH D0 : S0(2); // big decoder only FPU : S4; MEM : S3(2); // any mem %} pipe_class fpu_mem_mem(memory dst, memory src1) %{ instruction_count(2); src1 : S3(read); dst : S4(read); D0 : S0(2); // big decoder only MEM : S3(2); // any mem %} pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{ instruction_count(3); src1 : S3(read); src2 : S3(read); dst : S4(read); D0 : S0(3); // big decoder only FPU : S4; MEM : S3(3); // any mem %} pipe_class fpu_mem_reg_con(memory mem, regD src1) %{ instruction_count(3); src1 : S4(read); mem : S4(read); DECODE : S0; // any decoder for FPU PUSH D0 : S0(2); // big decoder only FPU : S4; MEM : S3(2); // any mem %} // Float load constant pipe_class fpu_reg_con(regD dst) %{ instruction_count(2); dst : S5(write); D0 : S0; // big decoder only for the load DECODE : S1; // any decoder for FPU POP FPU : S4; MEM : S3; // any mem %} // Float load constant pipe_class fpu_reg_reg_con(regD dst, regD src) %{ instruction_count(3); dst : S5(write); src : S3(read); D0 : S0; // big decoder only for the load DECODE : S1(2); // any decoder for FPU POP FPU : S4; MEM : S3; // any mem %} // UnConditional branch pipe_class pipe_jmp( label labl ) %{ single_instruction; BR : S3; %} // Conditional branch pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{ single_instruction; cr : S1(read); BR : S3; %} // Allocation idiom pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{ instruction_count(1); force_serialization; fixed_latency(6); heap_ptr : S3(read); DECODE : S0(3); D0 : S2; MEM : S3; ALU : S3(2); dst : S5(write); BR : S5; %} // Generic big/slow expanded idiom pipe_class pipe_slow( ) %{ instruction_count(10); multiple_bundles; force_serialization; fixed_latency(100); D0 : S0(2); MEM : S3(2); %} // The real do-nothing guy pipe_class empty( ) %{ instruction_count(0); %} // Define the class for the Nop node define %{ MachNop = empty; %} %} //----------INSTRUCTIONS------------------------------------------------------- // // match -- States which machine-independent subtree may be replaced // by this instruction. // ins_cost -- The estimated cost of this instruction is used by instruction // selection to identify a minimum cost tree of machine // instructions that matches a tree of machine-independent // instructions. // format -- A string providing the disassembly for this instruction. // The value of an instruction's operand may be inserted // by referring to it with a '$' prefix. // opcode -- Three instruction opcodes may be provided. These are referred // to within an encode class as $primary, $secondary, and $tertiary // respectively. The primary opcode is commonly used to // indicate the type of machine instruction, while secondary // and tertiary are often used for prefix options or addressing // modes. // ins_encode -- A list of encode classes with parameters. The encode class // name must have been defined in an 'enc_class' specification // in the encode section of the architecture description. //----------BSWAP-Instruction-------------------------------------------------- instruct bytes_reverse_int(eRegI dst) %{ match(Set dst (ReverseBytesI dst)); format %{ "BSWAP $dst" %} opcode(0x0F, 0xC8); ins_encode( OpcP, OpcSReg(dst) ); ins_pipe( ialu_reg ); %} instruct bytes_reverse_long(eRegL dst) %{ match(Set dst (ReverseBytesL dst)); format %{ "BSWAP $dst.lo\n\t" "BSWAP $dst.hi\n\t" "XCHG $dst.lo $dst.hi" %} ins_cost(125); ins_encode( bswap_long_bytes(dst) ); ins_pipe( ialu_reg_reg); %} instruct bytes_reverse_unsigned_short(eRegI dst) %{ match(Set dst (ReverseBytesUS dst)); format %{ "BSWAP $dst\n\t" "SHR $dst,16\n\t" %} ins_encode %{ __ bswapl($dst$$Register); __ shrl($dst$$Register, 16); %} ins_pipe( ialu_reg ); %} instruct bytes_reverse_short(eRegI dst) %{ match(Set dst (ReverseBytesS dst)); format %{ "BSWAP $dst\n\t" "SAR $dst,16\n\t" %} ins_encode %{ __ bswapl($dst$$Register); __ sarl($dst$$Register, 16); %} ins_pipe( ialu_reg ); %} //---------- Zeros Count Instructions ------------------------------------------ instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{ predicate(UseCountLeadingZerosInstruction); match(Set dst (CountLeadingZerosI src)); effect(KILL cr); format %{ "LZCNT $dst, $src\t# count leading zeros (int)" %} ins_encode %{ __ lzcntl($dst$$Register, $src$$Register); %} ins_pipe(ialu_reg); %} instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{ predicate(!UseCountLeadingZerosInstruction); match(Set dst (CountLeadingZerosI src)); effect(KILL cr); format %{ "BSR $dst, $src\t# count leading zeros (int)\n\t" "JNZ skip\n\t" "MOV $dst, -1\n" "skip:\n\t" "NEG $dst\n\t" "ADD $dst, 31" %} ins_encode %{ Register Rdst = $dst$$Register; Register Rsrc = $src$$Register; Label skip; __ bsrl(Rdst, Rsrc); __ jccb(Assembler::notZero, skip); __ movl(Rdst, -1); __ bind(skip); __ negl(Rdst); __ addl(Rdst, BitsPerInt - 1); %} ins_pipe(ialu_reg); %} instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{ predicate(UseCountLeadingZerosInstruction); match(Set dst (CountLeadingZerosL src)); effect(TEMP dst, KILL cr); format %{ "LZCNT $dst, $src.hi\t# count leading zeros (long)\n\t" "JNC done\n\t" "LZCNT $dst, $src.lo\n\t" "ADD $dst, 32\n" "done:" %} ins_encode %{ Register Rdst = $dst$$Register; Register Rsrc = $src$$Register; Label done; __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc)); __ jccb(Assembler::carryClear, done); __ lzcntl(Rdst, Rsrc); __ addl(Rdst, BitsPerInt); __ bind(done); %} ins_pipe(ialu_reg); %} instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{ predicate(!UseCountLeadingZerosInstruction); match(Set dst (CountLeadingZerosL src)); effect(TEMP dst, KILL cr); format %{ "BSR $dst, $src.hi\t# count leading zeros (long)\n\t" "JZ msw_is_zero\n\t" "ADD $dst, 32\n\t" "JMP not_zero\n" "msw_is_zero:\n\t" "BSR $dst, $src.lo\n\t" "JNZ not_zero\n\t" "MOV $dst, -1\n" "not_zero:\n\t" "NEG $dst\n\t" "ADD $dst, 63\n" %} ins_encode %{ Register Rdst = $dst$$Register; Register Rsrc = $src$$Register; Label msw_is_zero; Label not_zero; __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc)); __ jccb(Assembler::zero, msw_is_zero); __ addl(Rdst, BitsPerInt); __ jmpb(not_zero); __ bind(msw_is_zero); __ bsrl(Rdst, Rsrc); __ jccb(Assembler::notZero, not_zero); __ movl(Rdst, -1); __ bind(not_zero); __ negl(Rdst); __ addl(Rdst, BitsPerLong - 1); %} ins_pipe(ialu_reg); %} instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (CountTrailingZerosI src)); effect(KILL cr); format %{ "BSF $dst, $src\t# count trailing zeros (int)\n\t" "JNZ done\n\t" "MOV $dst, 32\n" "done:" %} ins_encode %{ Register Rdst = $dst$$Register; Label done; __ bsfl(Rdst, $src$$Register); __ jccb(Assembler::notZero, done); __ movl(Rdst, BitsPerInt); __ bind(done); %} ins_pipe(ialu_reg); %} instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{ match(Set dst (CountTrailingZerosL src)); effect(TEMP dst, KILL cr); format %{ "BSF $dst, $src.lo\t# count trailing zeros (long)\n\t" "JNZ done\n\t" "BSF $dst, $src.hi\n\t" "JNZ msw_not_zero\n\t" "MOV $dst, 32\n" "msw_not_zero:\n\t" "ADD $dst, 32\n" "done:" %} ins_encode %{ Register Rdst = $dst$$Register; Register Rsrc = $src$$Register; Label msw_not_zero; Label done; __ bsfl(Rdst, Rsrc); __ jccb(Assembler::notZero, done); __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc)); __ jccb(Assembler::notZero, msw_not_zero); __ movl(Rdst, BitsPerInt); __ bind(msw_not_zero); __ addl(Rdst, BitsPerInt); __ bind(done); %} ins_pipe(ialu_reg); %} //---------- Population Count Instructions ------------------------------------- instruct popCountI(eRegI dst, eRegI src) %{ predicate(UsePopCountInstruction); match(Set dst (PopCountI src)); format %{ "POPCNT $dst, $src" %} ins_encode %{ __ popcntl($dst$$Register, $src$$Register); %} ins_pipe(ialu_reg); %} instruct popCountI_mem(eRegI dst, memory mem) %{ predicate(UsePopCountInstruction); match(Set dst (PopCountI (LoadI mem))); format %{ "POPCNT $dst, $mem" %} ins_encode %{ __ popcntl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg); %} // Note: Long.bitCount(long) returns an int. instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{ predicate(UsePopCountInstruction); match(Set dst (PopCountL src)); effect(KILL cr, TEMP tmp, TEMP dst); format %{ "POPCNT $dst, $src.lo\n\t" "POPCNT $tmp, $src.hi\n\t" "ADD $dst, $tmp" %} ins_encode %{ __ popcntl($dst$$Register, $src$$Register); __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register)); __ addl($dst$$Register, $tmp$$Register); %} ins_pipe(ialu_reg); %} // Note: Long.bitCount(long) returns an int. instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{ predicate(UsePopCountInstruction); match(Set dst (PopCountL (LoadL mem))); effect(KILL cr, TEMP tmp, TEMP dst); format %{ "POPCNT $dst, $mem\n\t" "POPCNT $tmp, $mem+4\n\t" "ADD $dst, $tmp" %} ins_encode %{ //__ popcntl($dst$$Register, $mem$$Address$$first); //__ popcntl($tmp$$Register, $mem$$Address$$second); __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false)); __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false)); __ addl($dst$$Register, $tmp$$Register); %} ins_pipe(ialu_reg); %} //----------Load/Store/Move Instructions--------------------------------------- //----------Load Instructions-------------------------------------------------- // Load Byte (8bit signed) instruct loadB(xRegI dst, memory mem) %{ match(Set dst (LoadB mem)); ins_cost(125); format %{ "MOVSX8 $dst,$mem\t# byte" %} ins_encode %{ __ movsbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Byte (8bit signed) into Long Register instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (ConvI2L (LoadB mem))); effect(KILL cr); ins_cost(375); format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t" "MOV $dst.hi,$dst.lo\n\t" "SAR $dst.hi,7" %} ins_encode %{ __ movsbl($dst$$Register, $mem$$Address); __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register. __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended. %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Byte (8bit UNsigned) instruct loadUB(xRegI dst, memory mem) %{ match(Set dst (LoadUB mem)); ins_cost(125); format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %} ins_encode %{ __ movzbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Byte (8 bit UNsigned) into Long Register instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (ConvI2L (LoadUB mem))); effect(KILL cr); ins_cost(250); format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzbl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadUB mem) mask))); effect(KILL cr); format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t" "XOR $dst.hi,$dst.hi\n\t" "AND $dst.lo,$mask" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzbl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); __ andl(Rdst, $mask$$constant); %} ins_pipe(ialu_reg_mem); %} // Load Short (16bit signed) instruct loadS(eRegI dst, memory mem) %{ match(Set dst (LoadS mem)); ins_cost(125); format %{ "MOVSX $dst,$mem\t# short" %} ins_encode %{ __ movswl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Short (16 bit signed) to Byte (8 bit signed) instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{ match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour)); ins_cost(125); format %{ "MOVSX $dst, $mem\t# short -> byte" %} ins_encode %{ __ movsbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Short (16bit signed) into Long Register instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (ConvI2L (LoadS mem))); effect(KILL cr); ins_cost(375); format %{ "MOVSX $dst.lo,$mem\t# short -> long\n\t" "MOV $dst.hi,$dst.lo\n\t" "SAR $dst.hi,15" %} ins_encode %{ __ movswl($dst$$Register, $mem$$Address); __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register. __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended. %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Short/Char (16bit unsigned) instruct loadUS(eRegI dst, memory mem) %{ match(Set dst (LoadUS mem)); ins_cost(125); format %{ "MOVZX $dst,$mem\t# ushort/char -> int" %} ins_encode %{ __ movzwl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed) instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{ match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour)); ins_cost(125); format %{ "MOVSX $dst, $mem\t# ushort -> byte" %} ins_encode %{ __ movsbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Short/Char (16 bit UNsigned) into Long Register instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (ConvI2L (LoadUS mem))); effect(KILL cr); ins_cost(250); format %{ "MOVZX $dst.lo,$mem\t# ushort/char -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ __ movzwl($dst$$Register, $mem$$Address); __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register)); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadUS mem) mask))); effect(KILL cr); format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzbl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadUS mem) mask))); effect(KILL cr); format %{ "MOVZX $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t" "XOR $dst.hi,$dst.hi\n\t" "AND $dst.lo,$mask" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzwl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); __ andl(Rdst, $mask$$constant); %} ins_pipe(ialu_reg_mem); %} // Load Integer instruct loadI(eRegI dst, memory mem) %{ match(Set dst (LoadI mem)); ins_cost(125); format %{ "MOV $dst,$mem\t# int" %} ins_encode %{ __ movl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Integer (32 bit signed) to Byte (8 bit signed) instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{ match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour)); ins_cost(125); format %{ "MOVSX $dst, $mem\t# int -> byte" %} ins_encode %{ __ movsbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned) instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{ match(Set dst (AndI (LoadI mem) mask)); ins_cost(125); format %{ "MOVZX $dst, $mem\t# int -> ubyte" %} ins_encode %{ __ movzbl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Integer (32 bit signed) to Short (16 bit signed) instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{ match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen)); ins_cost(125); format %{ "MOVSX $dst, $mem\t# int -> short" %} ins_encode %{ __ movswl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned) instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{ match(Set dst (AndI (LoadI mem) mask)); ins_cost(125); format %{ "MOVZX $dst, $mem\t# int -> ushort/char" %} ins_encode %{ __ movzwl($dst$$Register, $mem$$Address); %} ins_pipe(ialu_reg_mem); %} // Load Integer into Long Register instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (ConvI2L (LoadI mem))); effect(KILL cr); ins_cost(375); format %{ "MOV $dst.lo,$mem\t# int -> long\n\t" "MOV $dst.hi,$dst.lo\n\t" "SAR $dst.hi,31" %} ins_encode %{ __ movl($dst$$Register, $mem$$Address); __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register. __ sarl(HIGH_FROM_LOW($dst$$Register), 31); %} ins_pipe(ialu_reg_mem); %} // Load Integer with mask 0xFF into Long Register instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadI mem) mask))); effect(KILL cr); format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzbl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); %} ins_pipe(ialu_reg_mem); %} // Load Integer with mask 0xFFFF into Long Register instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadI mem) mask))); effect(KILL cr); format %{ "MOVZX $dst.lo,$mem\t# int & 0xFFFF -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ Register Rdst = $dst$$Register; __ movzwl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); %} ins_pipe(ialu_reg_mem); %} // Load Integer with 32-bit mask into Long Register instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{ match(Set dst (ConvI2L (AndI (LoadI mem) mask))); effect(KILL cr); format %{ "MOV $dst.lo,$mem\t# int & 32-bit mask -> long\n\t" "XOR $dst.hi,$dst.hi\n\t" "AND $dst.lo,$mask" %} ins_encode %{ Register Rdst = $dst$$Register; __ movl(Rdst, $mem$$Address); __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst)); __ andl(Rdst, $mask$$constant); %} ins_pipe(ialu_reg_mem); %} // Load Unsigned Integer into Long Register instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{ match(Set dst (LoadUI2L mem)); effect(KILL cr); ins_cost(250); format %{ "MOV $dst.lo,$mem\t# uint -> long\n\t" "XOR $dst.hi,$dst.hi" %} ins_encode %{ __ movl($dst$$Register, $mem$$Address); __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register)); %} ins_pipe(ialu_reg_mem); %} // Load Long. Cannot clobber address while loading, so restrict address // register to ESI instruct loadL(eRegL dst, load_long_memory mem) %{ predicate(!((LoadLNode*)n)->require_atomic_access()); match(Set dst (LoadL mem)); ins_cost(250); format %{ "MOV $dst.lo,$mem\t# long\n\t" "MOV $dst.hi,$mem+4" %} ins_encode %{ Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false); Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false); __ movl($dst$$Register, Amemlo); __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi); %} ins_pipe(ialu_reg_long_mem); %} // Volatile Load Long. Must be atomic, so do 64-bit FILD // then store it down to the stack and reload on the int // side. instruct loadL_volatile(stackSlotL dst, memory mem) %{ predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access()); match(Set dst (LoadL mem)); ins_cost(200); format %{ "FILD $mem\t# Atomic volatile long load\n\t" "FISTp $dst" %} ins_encode(enc_loadL_volatile(mem,dst)); ins_pipe( fpu_reg_mem ); %} instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{ predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access()); match(Set dst (LoadL mem)); effect(TEMP tmp); ins_cost(180); format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" "MOVSD $dst,$tmp" %} ins_encode(enc_loadLX_volatile(mem, dst, tmp)); ins_pipe( pipe_slow ); %} instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{ predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access()); match(Set dst (LoadL mem)); effect(TEMP tmp); ins_cost(160); format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" "MOVD $dst.lo,$tmp\n\t" "PSRLQ $tmp,32\n\t" "MOVD $dst.hi,$tmp" %} ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp)); ins_pipe( pipe_slow ); %} // Load Range instruct loadRange(eRegI dst, memory mem) %{ match(Set dst (LoadRange mem)); ins_cost(125); format %{ "MOV $dst,$mem" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_mem ); %} // Load Pointer instruct loadP(eRegP dst, memory mem) %{ match(Set dst (LoadP mem)); ins_cost(125); format %{ "MOV $dst,$mem" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_mem ); %} // Load Klass Pointer instruct loadKlass(eRegP dst, memory mem) %{ match(Set dst (LoadKlass mem)); ins_cost(125); format %{ "MOV $dst,$mem" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_mem ); %} // Load Double instruct loadD(regD dst, memory mem) %{ predicate(UseSSE<=1); match(Set dst (LoadD mem)); ins_cost(150); format %{ "FLD_D ST,$mem\n\t" "FSTP $dst" %} opcode(0xDD); /* DD /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Pop_Reg_D(dst) ); ins_pipe( fpu_reg_mem ); %} // Load Double to XMM instruct loadXD(regXD dst, memory mem) %{ predicate(UseSSE>=2 && UseXmmLoadAndClearUpper); match(Set dst (LoadD mem)); ins_cost(145); format %{ "MOVSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} instruct loadXD_partial(regXD dst, memory mem) %{ predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper); match(Set dst (LoadD mem)); ins_cost(145); format %{ "MOVLPD $dst,$mem" %} ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Load to XMM register (single-precision floating point) // MOVSS instruction instruct loadX(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (LoadF mem)); ins_cost(145); format %{ "MOVSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Load Float instruct loadF(regF dst, memory mem) %{ predicate(UseSSE==0); match(Set dst (LoadF mem)); ins_cost(150); format %{ "FLD_S ST,$mem\n\t" "FSTP $dst" %} opcode(0xD9); /* D9 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_mem ); %} // Load Aligned Packed Byte to XMM register instruct loadA8B(regXD dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (Load8B mem)); ins_cost(125); format %{ "MOVQ $dst,$mem\t! packed8B" %} ins_encode( movq_ld(dst, mem)); ins_pipe( pipe_slow ); %} // Load Aligned Packed Short to XMM register instruct loadA4S(regXD dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (Load4S mem)); ins_cost(125); format %{ "MOVQ $dst,$mem\t! packed4S" %} ins_encode( movq_ld(dst, mem)); ins_pipe( pipe_slow ); %} // Load Aligned Packed Char to XMM register instruct loadA4C(regXD dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (Load4C mem)); ins_cost(125); format %{ "MOVQ $dst,$mem\t! packed4C" %} ins_encode( movq_ld(dst, mem)); ins_pipe( pipe_slow ); %} // Load Aligned Packed Integer to XMM register instruct load2IU(regXD dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (Load2I mem)); ins_cost(125); format %{ "MOVQ $dst,$mem\t! packed2I" %} ins_encode( movq_ld(dst, mem)); ins_pipe( pipe_slow ); %} // Load Aligned Packed Single to XMM instruct loadA2F(regXD dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (Load2F mem)); ins_cost(145); format %{ "MOVQ $dst,$mem\t! packed2F" %} ins_encode( movq_ld(dst, mem)); ins_pipe( pipe_slow ); %} // Load Effective Address instruct leaP8(eRegP dst, indOffset8 mem) %{ match(Set dst mem); ins_cost(110); format %{ "LEA $dst,$mem" %} opcode(0x8D); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_reg_fat ); %} instruct leaP32(eRegP dst, indOffset32 mem) %{ match(Set dst mem); ins_cost(110); format %{ "LEA $dst,$mem" %} opcode(0x8D); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_reg_fat ); %} instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{ match(Set dst mem); ins_cost(110); format %{ "LEA $dst,$mem" %} opcode(0x8D); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_reg_fat ); %} instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{ match(Set dst mem); ins_cost(110); format %{ "LEA $dst,$mem" %} opcode(0x8D); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_reg_fat ); %} instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{ match(Set dst mem); ins_cost(110); format %{ "LEA $dst,$mem" %} opcode(0x8D); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_reg_fat ); %} // Load Constant instruct loadConI(eRegI dst, immI src) %{ match(Set dst src); format %{ "MOV $dst,$src" %} ins_encode( LdImmI(dst, src) ); ins_pipe( ialu_reg_fat ); %} // Load Constant zero instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{ match(Set dst src); effect(KILL cr); ins_cost(50); format %{ "XOR $dst,$dst" %} opcode(0x33); /* + rd */ ins_encode( OpcP, RegReg( dst, dst ) ); ins_pipe( ialu_reg ); %} instruct loadConP(eRegP dst, immP src) %{ match(Set dst src); format %{ "MOV $dst,$src" %} opcode(0xB8); /* + rd */ ins_encode( LdImmP(dst, src) ); ins_pipe( ialu_reg_fat ); %} instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst src); effect(KILL cr); ins_cost(200); format %{ "MOV $dst.lo,$src.lo\n\t" "MOV $dst.hi,$src.hi" %} opcode(0xB8); ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) ); ins_pipe( ialu_reg_long_fat ); %} instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{ match(Set dst src); effect(KILL cr); ins_cost(150); format %{ "XOR $dst.lo,$dst.lo\n\t" "XOR $dst.hi,$dst.hi" %} opcode(0x33,0x33); ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) ); ins_pipe( ialu_reg_long ); %} // The instruction usage is guarded by predicate in operand immF(). instruct loadConF(regF dst, immF con) %{ match(Set dst con); ins_cost(125); format %{ "FLD_S ST,[$constantaddress]\t# load from constant table: float=$con\n\t" "FSTP $dst" %} ins_encode %{ __ fld_s($constantaddress($con)); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immF0(). instruct loadConF0(regF dst, immF0 con) %{ match(Set dst con); ins_cost(125); format %{ "FLDZ ST\n\t" "FSTP $dst" %} ins_encode %{ __ fldz(); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immF1(). instruct loadConF1(regF dst, immF1 con) %{ match(Set dst con); ins_cost(125); format %{ "FLD1 ST\n\t" "FSTP $dst" %} ins_encode %{ __ fld1(); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immXF(). instruct loadConX(regX dst, immXF con) %{ match(Set dst con); ins_cost(125); format %{ "MOVSS $dst,[$constantaddress]\t# load from constant table: float=$con" %} ins_encode %{ __ movflt($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} // The instruction usage is guarded by predicate in operand immXF0(). instruct loadConX0(regX dst, immXF0 src) %{ match(Set dst src); ins_cost(100); format %{ "XORPS $dst,$dst\t# float 0.0" %} ins_encode %{ __ xorps($dst$$XMMRegister, $dst$$XMMRegister); %} ins_pipe(pipe_slow); %} // The instruction usage is guarded by predicate in operand immD(). instruct loadConD(regD dst, immD con) %{ match(Set dst con); ins_cost(125); format %{ "FLD_D ST,[$constantaddress]\t# load from constant table: double=$con\n\t" "FSTP $dst" %} ins_encode %{ __ fld_d($constantaddress($con)); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immD0(). instruct loadConD0(regD dst, immD0 con) %{ match(Set dst con); ins_cost(125); format %{ "FLDZ ST\n\t" "FSTP $dst" %} ins_encode %{ __ fldz(); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immD1(). instruct loadConD1(regD dst, immD1 con) %{ match(Set dst con); ins_cost(125); format %{ "FLD1 ST\n\t" "FSTP $dst" %} ins_encode %{ __ fld1(); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_con); %} // The instruction usage is guarded by predicate in operand immXD(). instruct loadConXD(regXD dst, immXD con) %{ match(Set dst con); ins_cost(125); format %{ "MOVSD $dst,[$constantaddress]\t# load from constant table: double=$con" %} ins_encode %{ __ movdbl($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} // The instruction usage is guarded by predicate in operand immXD0(). instruct loadConXD0(regXD dst, immXD0 src) %{ match(Set dst src); ins_cost(100); format %{ "XORPD $dst,$dst\t# double 0.0" %} ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst)); ins_pipe( pipe_slow ); %} // Load Stack Slot instruct loadSSI(eRegI dst, stackSlotI src) %{ match(Set dst src); ins_cost(125); format %{ "MOV $dst,$src" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,src)); ins_pipe( ialu_reg_mem ); %} instruct loadSSL(eRegL dst, stackSlotL src) %{ match(Set dst src); ins_cost(200); format %{ "MOV $dst,$src.lo\n\t" "MOV $dst+4,$src.hi" %} opcode(0x8B, 0x8B); ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) ); ins_pipe( ialu_mem_long_reg ); %} // Load Stack Slot instruct loadSSP(eRegP dst, stackSlotP src) %{ match(Set dst src); ins_cost(125); format %{ "MOV $dst,$src" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,src)); ins_pipe( ialu_reg_mem ); %} // Load Stack Slot instruct loadSSF(regF dst, stackSlotF src) %{ match(Set dst src); ins_cost(125); format %{ "FLD_S $src\n\t" "FSTP $dst" %} opcode(0xD9); /* D9 /0, FLD m32real */ ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_mem ); %} // Load Stack Slot instruct loadSSD(regD dst, stackSlotD src) %{ match(Set dst src); ins_cost(125); format %{ "FLD_D $src\n\t" "FSTP $dst" %} opcode(0xDD); /* DD /0, FLD m64real */ ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), Pop_Reg_D(dst) ); ins_pipe( fpu_reg_mem ); %} // Prefetch instructions. // Must be safe to execute with invalid address (cannot fault). instruct prefetchr0( memory mem ) %{ predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch()); match(PrefetchRead mem); ins_cost(0); size(0); format %{ "PREFETCHR (non-SSE is empty encoding)" %} ins_encode(); ins_pipe(empty); %} instruct prefetchr( memory mem ) %{ predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3); match(PrefetchRead mem); ins_cost(100); format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %} opcode(0x0F, 0x0d); /* Opcode 0F 0d /0 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); ins_pipe(ialu_mem); %} instruct prefetchrNTA( memory mem ) %{ predicate(UseSSE>=1 && ReadPrefetchInstr==0); match(PrefetchRead mem); ins_cost(100); format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); ins_pipe(ialu_mem); %} instruct prefetchrT0( memory mem ) %{ predicate(UseSSE>=1 && ReadPrefetchInstr==1); match(PrefetchRead mem); ins_cost(100); format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); ins_pipe(ialu_mem); %} instruct prefetchrT2( memory mem ) %{ predicate(UseSSE>=1 && ReadPrefetchInstr==2); match(PrefetchRead mem); ins_cost(100); format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem)); ins_pipe(ialu_mem); %} instruct prefetchw0( memory mem ) %{ predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch()); match(PrefetchWrite mem); ins_cost(0); size(0); format %{ "Prefetch (non-SSE is empty encoding)" %} ins_encode(); ins_pipe(empty); %} instruct prefetchw( memory mem ) %{ predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || AllocatePrefetchInstr==3); match( PrefetchWrite mem ); ins_cost(100); format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %} opcode(0x0F, 0x0D); /* Opcode 0F 0D /1 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); ins_pipe(ialu_mem); %} instruct prefetchwNTA( memory mem ) %{ predicate(UseSSE>=1 && AllocatePrefetchInstr==0); match(PrefetchWrite mem); ins_cost(100); format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /0 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem)); ins_pipe(ialu_mem); %} instruct prefetchwT0( memory mem ) %{ predicate(UseSSE>=1 && AllocatePrefetchInstr==1); match(PrefetchWrite mem); ins_cost(100); format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem)); ins_pipe(ialu_mem); %} instruct prefetchwT2( memory mem ) %{ predicate(UseSSE>=1 && AllocatePrefetchInstr==2); match(PrefetchWrite mem); ins_cost(100); format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %} opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */ ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem)); ins_pipe(ialu_mem); %} //----------Store Instructions------------------------------------------------- // Store Byte instruct storeB(memory mem, xRegI src) %{ match(Set mem (StoreB mem src)); ins_cost(125); format %{ "MOV8 $mem,$src" %} opcode(0x88); ins_encode( OpcP, RegMem( src, mem ) ); ins_pipe( ialu_mem_reg ); %} // Store Char/Short instruct storeC(memory mem, eRegI src) %{ match(Set mem (StoreC mem src)); ins_cost(125); format %{ "MOV16 $mem,$src" %} opcode(0x89, 0x66); ins_encode( OpcS, OpcP, RegMem( src, mem ) ); ins_pipe( ialu_mem_reg ); %} // Store Integer instruct storeI(memory mem, eRegI src) %{ match(Set mem (StoreI mem src)); ins_cost(125); format %{ "MOV $mem,$src" %} opcode(0x89); ins_encode( OpcP, RegMem( src, mem ) ); ins_pipe( ialu_mem_reg ); %} // Store Long instruct storeL(long_memory mem, eRegL src) %{ predicate(!((StoreLNode*)n)->require_atomic_access()); match(Set mem (StoreL mem src)); ins_cost(200); format %{ "MOV $mem,$src.lo\n\t" "MOV $mem+4,$src.hi" %} opcode(0x89, 0x89); ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) ); ins_pipe( ialu_mem_long_reg ); %} // Store Long to Integer instruct storeL2I(memory mem, eRegL src) %{ match(Set mem (StoreI mem (ConvL2I src))); format %{ "MOV $mem,$src.lo\t# long -> int" %} ins_encode %{ __ movl($mem$$Address, $src$$Register); %} ins_pipe(ialu_mem_reg); %} // Volatile Store Long. Must be atomic, so move it into // the FP TOS and then do a 64-bit FIST. Has to probe the // target address before the store (for null-ptr checks) // so the memory operand is used twice in the encoding. instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{ predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access()); match(Set mem (StoreL mem src)); effect( KILL cr ); ins_cost(400); format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" "FILD $src\n\t" "FISTp $mem\t # 64-bit atomic volatile long store" %} opcode(0x3B); ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src)); ins_pipe( fpu_reg_mem ); %} instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{ predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access()); match(Set mem (StoreL mem src)); effect( TEMP tmp, KILL cr ); ins_cost(380); format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" "MOVSD $tmp,$src\n\t" "MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %} opcode(0x3B); ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp)); ins_pipe( pipe_slow ); %} instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{ predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access()); match(Set mem (StoreL mem src)); effect( TEMP tmp2 , TEMP tmp, KILL cr ); ins_cost(360); format %{ "CMP $mem,EAX\t# Probe address for implicit null check\n\t" "MOVD $tmp,$src.lo\n\t" "MOVD $tmp2,$src.hi\n\t" "PUNPCKLDQ $tmp,$tmp2\n\t" "MOVSD $mem,$tmp\t # 64-bit atomic volatile long store" %} opcode(0x3B); ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2)); ins_pipe( pipe_slow ); %} // Store Pointer; for storing unknown oops and raw pointers instruct storeP(memory mem, anyRegP src) %{ match(Set mem (StoreP mem src)); ins_cost(125); format %{ "MOV $mem,$src" %} opcode(0x89); ins_encode( OpcP, RegMem( src, mem ) ); ins_pipe( ialu_mem_reg ); %} // Store Integer Immediate instruct storeImmI(memory mem, immI src) %{ match(Set mem (StoreI mem src)); ins_cost(150); format %{ "MOV $mem,$src" %} opcode(0xC7); /* C7 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src )); ins_pipe( ialu_mem_imm ); %} // Store Short/Char Immediate instruct storeImmI16(memory mem, immI16 src) %{ predicate(UseStoreImmI16); match(Set mem (StoreC mem src)); ins_cost(150); format %{ "MOV16 $mem,$src" %} opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */ ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem), Con16( src )); ins_pipe( ialu_mem_imm ); %} // Store Pointer Immediate; null pointers or constant oops that do not // need card-mark barriers. instruct storeImmP(memory mem, immP src) %{ match(Set mem (StoreP mem src)); ins_cost(150); format %{ "MOV $mem,$src" %} opcode(0xC7); /* C7 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32( src )); ins_pipe( ialu_mem_imm ); %} // Store Byte Immediate instruct storeImmB(memory mem, immI8 src) %{ match(Set mem (StoreB mem src)); ins_cost(150); format %{ "MOV8 $mem,$src" %} opcode(0xC6); /* C6 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src )); ins_pipe( ialu_mem_imm ); %} // Store Aligned Packed Byte XMM register to memory instruct storeA8B(memory mem, regXD src) %{ predicate(UseSSE>=1); match(Set mem (Store8B mem src)); ins_cost(145); format %{ "MOVQ $mem,$src\t! packed8B" %} ins_encode( movq_st(mem, src)); ins_pipe( pipe_slow ); %} // Store Aligned Packed Char/Short XMM register to memory instruct storeA4C(memory mem, regXD src) %{ predicate(UseSSE>=1); match(Set mem (Store4C mem src)); ins_cost(145); format %{ "MOVQ $mem,$src\t! packed4C" %} ins_encode( movq_st(mem, src)); ins_pipe( pipe_slow ); %} // Store Aligned Packed Integer XMM register to memory instruct storeA2I(memory mem, regXD src) %{ predicate(UseSSE>=1); match(Set mem (Store2I mem src)); ins_cost(145); format %{ "MOVQ $mem,$src\t! packed2I" %} ins_encode( movq_st(mem, src)); ins_pipe( pipe_slow ); %} // Store CMS card-mark Immediate instruct storeImmCM(memory mem, immI8 src) %{ match(Set mem (StoreCM mem src)); ins_cost(150); format %{ "MOV8 $mem,$src\t! CMS card-mark imm0" %} opcode(0xC6); /* C6 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con8or32( src )); ins_pipe( ialu_mem_imm ); %} // Store Double instruct storeD( memory mem, regDPR1 src) %{ predicate(UseSSE<=1); match(Set mem (StoreD mem src)); ins_cost(100); format %{ "FST_D $mem,$src" %} opcode(0xDD); /* DD /2 */ ins_encode( enc_FP_store(mem,src) ); ins_pipe( fpu_mem_reg ); %} // Store double does rounding on x86 instruct storeD_rounded( memory mem, regDPR1 src) %{ predicate(UseSSE<=1); match(Set mem (StoreD mem (RoundDouble src))); ins_cost(100); format %{ "FST_D $mem,$src\t# round" %} opcode(0xDD); /* DD /2 */ ins_encode( enc_FP_store(mem,src) ); ins_pipe( fpu_mem_reg ); %} // Store XMM register to memory (double-precision floating points) // MOVSD instruction instruct storeXD(memory mem, regXD src) %{ predicate(UseSSE>=2); match(Set mem (StoreD mem src)); ins_cost(95); format %{ "MOVSD $mem,$src" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem)); ins_pipe( pipe_slow ); %} // Store XMM register to memory (single-precision floating point) // MOVSS instruction instruct storeX(memory mem, regX src) %{ predicate(UseSSE>=1); match(Set mem (StoreF mem src)); ins_cost(95); format %{ "MOVSS $mem,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem)); ins_pipe( pipe_slow ); %} // Store Aligned Packed Single Float XMM register to memory instruct storeA2F(memory mem, regXD src) %{ predicate(UseSSE>=1); match(Set mem (Store2F mem src)); ins_cost(145); format %{ "MOVQ $mem,$src\t! packed2F" %} ins_encode( movq_st(mem, src)); ins_pipe( pipe_slow ); %} // Store Float instruct storeF( memory mem, regFPR1 src) %{ predicate(UseSSE==0); match(Set mem (StoreF mem src)); ins_cost(100); format %{ "FST_S $mem,$src" %} opcode(0xD9); /* D9 /2 */ ins_encode( enc_FP_store(mem,src) ); ins_pipe( fpu_mem_reg ); %} // Store Float does rounding on x86 instruct storeF_rounded( memory mem, regFPR1 src) %{ predicate(UseSSE==0); match(Set mem (StoreF mem (RoundFloat src))); ins_cost(100); format %{ "FST_S $mem,$src\t# round" %} opcode(0xD9); /* D9 /2 */ ins_encode( enc_FP_store(mem,src) ); ins_pipe( fpu_mem_reg ); %} // Store Float does rounding on x86 instruct storeF_Drounded( memory mem, regDPR1 src) %{ predicate(UseSSE<=1); match(Set mem (StoreF mem (ConvD2F src))); ins_cost(100); format %{ "FST_S $mem,$src\t# D-round" %} opcode(0xD9); /* D9 /2 */ ins_encode( enc_FP_store(mem,src) ); ins_pipe( fpu_mem_reg ); %} // Store immediate Float value (it is faster than store from FPU register) // The instruction usage is guarded by predicate in operand immF(). instruct storeF_imm( memory mem, immF src) %{ match(Set mem (StoreF mem src)); ins_cost(50); format %{ "MOV $mem,$src\t# store float" %} opcode(0xC7); /* C7 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32F_as_bits( src )); ins_pipe( ialu_mem_imm ); %} // Store immediate Float value (it is faster than store from XMM register) // The instruction usage is guarded by predicate in operand immXF(). instruct storeX_imm( memory mem, immXF src) %{ match(Set mem (StoreF mem src)); ins_cost(50); format %{ "MOV $mem,$src\t# store float" %} opcode(0xC7); /* C7 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Con32XF_as_bits( src )); ins_pipe( ialu_mem_imm ); %} // Store Integer to stack slot instruct storeSSI(stackSlotI dst, eRegI src) %{ match(Set dst src); ins_cost(100); format %{ "MOV $dst,$src" %} opcode(0x89); ins_encode( OpcPRegSS( dst, src ) ); ins_pipe( ialu_mem_reg ); %} // Store Integer to stack slot instruct storeSSP(stackSlotP dst, eRegP src) %{ match(Set dst src); ins_cost(100); format %{ "MOV $dst,$src" %} opcode(0x89); ins_encode( OpcPRegSS( dst, src ) ); ins_pipe( ialu_mem_reg ); %} // Store Long to stack slot instruct storeSSL(stackSlotL dst, eRegL src) %{ match(Set dst src); ins_cost(200); format %{ "MOV $dst,$src.lo\n\t" "MOV $dst+4,$src.hi" %} opcode(0x89, 0x89); ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) ); ins_pipe( ialu_mem_long_reg ); %} //----------MemBar Instructions----------------------------------------------- // Memory barrier flavors instruct membar_acquire() %{ match(MemBarAcquire); ins_cost(400); size(0); format %{ "MEMBAR-acquire ! (empty encoding)" %} ins_encode(); ins_pipe(empty); %} instruct membar_acquire_lock() %{ match(MemBarAcquire); predicate(Matcher::prior_fast_lock(n)); ins_cost(0); size(0); format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} instruct membar_release() %{ match(MemBarRelease); ins_cost(400); size(0); format %{ "MEMBAR-release ! (empty encoding)" %} ins_encode( ); ins_pipe(empty); %} instruct membar_release_lock() %{ match(MemBarRelease); predicate(Matcher::post_fast_unlock(n)); ins_cost(0); size(0); format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} instruct membar_volatile(eFlagsReg cr) %{ match(MemBarVolatile); effect(KILL cr); ins_cost(400); format %{ $$template if (os::is_MP()) { $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile" } else { $$emit$$"MEMBAR-volatile ! (empty encoding)" } %} ins_encode %{ __ membar(Assembler::StoreLoad); %} ins_pipe(pipe_slow); %} instruct unnecessary_membar_volatile() %{ match(MemBarVolatile); predicate(Matcher::post_store_load_barrier(n)); ins_cost(0); size(0); format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} //----------Move Instructions-------------------------------------------------- instruct castX2P(eAXRegP dst, eAXRegI src) %{ match(Set dst (CastX2P src)); format %{ "# X2P $dst, $src" %} ins_encode( /*empty encoding*/ ); ins_cost(0); ins_pipe(empty); %} instruct castP2X(eRegI dst, eRegP src ) %{ match(Set dst (CastP2X src)); ins_cost(50); format %{ "MOV $dst, $src\t# CastP2X" %} ins_encode( enc_Copy( dst, src) ); ins_pipe( ialu_reg_reg ); %} //----------Conditional Move--------------------------------------------------- // Conditional move instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst src))); ins_cost(200); expand %{ cmovI_regU(cop, cr, dst, src); %} %} // Conditional move instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src)))); ins_cost(250); format %{ "CMOV$cop $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegMem( dst, src ) ); ins_pipe( pipe_cmov_mem ); %} // Conditional move instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src)))); ins_cost(250); format %{ "CMOV$cop $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegMem( dst, src ) ); ins_pipe( pipe_cmov_mem ); %} instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src)))); ins_cost(250); expand %{ cmovI_memU(cop, cr, dst, src); %} %} // Conditional move instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst,$src\t# ptr" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} // Conditional move (non-P6 version) // Note: a CMoveP is generated for stubs and native wrappers // regardless of whether we are on a P6, so we // emulate a cmov here instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{ match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); ins_cost(300); format %{ "Jn$cop skip\n\t" "MOV $dst,$src\t# pointer\n" "skip:" %} opcode(0x8b); ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src)); ins_pipe( pipe_cmov_reg ); %} // Conditional move instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst,$src\t# ptr" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveP (Binary cop cr) (Binary dst src))); ins_cost(200); expand %{ cmovP_regU(cop, cr, dst, src); %} %} // DISABLED: Requires the ADLC to emit a bottom_type call that // correctly meets the two pointer arguments; one is an incoming // register but the other is a memory operand. ALSO appears to // be buggy with implicit null checks. // //// Conditional move //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{ // predicate(VM_Version::supports_cmov() ); // match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src)))); // ins_cost(250); // format %{ "CMOV$cop $dst,$src\t# ptr" %} // opcode(0x0F,0x40); // ins_encode( enc_cmov(cop), RegMem( dst, src ) ); // ins_pipe( pipe_cmov_mem ); //%} // //// Conditional move //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{ // predicate(VM_Version::supports_cmov() ); // match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src)))); // ins_cost(250); // format %{ "CMOV$cop $dst,$src\t# ptr" %} // opcode(0x0F,0x40); // ins_encode( enc_cmov(cop), RegMem( dst, src ) ); // ins_pipe( pipe_cmov_mem ); //%} // Conditional move instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "FCMOV$cop $dst,$src\t# double" %} opcode(0xDA); ins_encode( enc_cmov_d(cop,src) ); ins_pipe( pipe_cmovD_reg ); %} // Conditional move instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{ predicate(UseSSE==0); match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "FCMOV$cop $dst,$src\t# float" %} opcode(0xDA); ins_encode( enc_cmov_d(cop,src) ); ins_pipe( pipe_cmovD_reg ); %} // Float CMOV on Intel doesn't handle *signed* compares, only unsigned. instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOV $dst,$src\t# double\n" "skip:" %} opcode (0xdd, 0x3); /* DD D8+i or DD /3 */ ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) ); ins_pipe( pipe_cmovD_reg ); %} // Float CMOV on Intel doesn't handle *signed* compares, only unsigned. instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{ predicate(UseSSE==0); match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOV $dst,$src\t# float\n" "skip:" %} opcode (0xdd, 0x3); /* DD D8+i or DD /3 */ ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) ); ins_pipe( pipe_cmovD_reg ); %} // No CMOVE with SSE/SSE2 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{ predicate (UseSSE>=1); match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOVSS $dst,$src\t# float\n" "skip:" %} ins_encode %{ Label skip; // Invert sense of branch from sense of CMOV __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); __ movflt($dst$$XMMRegister, $src$$XMMRegister); __ bind(skip); %} ins_pipe( pipe_slow ); %} // No CMOVE with SSE/SSE2 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{ predicate (UseSSE>=2); match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOVSD $dst,$src\t# float\n" "skip:" %} ins_encode %{ Label skip; // Invert sense of branch from sense of CMOV __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); __ movdbl($dst$$XMMRegister, $src$$XMMRegister); __ bind(skip); %} ins_pipe( pipe_slow ); %} // unsigned version instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{ predicate (UseSSE>=1); match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOVSS $dst,$src\t# float\n" "skip:" %} ins_encode %{ Label skip; // Invert sense of branch from sense of CMOV __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); __ movflt($dst$$XMMRegister, $src$$XMMRegister); __ bind(skip); %} ins_pipe( pipe_slow ); %} instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{ predicate (UseSSE>=1); match(Set dst (CMoveF (Binary cop cr) (Binary dst src))); ins_cost(200); expand %{ fcmovX_regU(cop, cr, dst, src); %} %} // unsigned version instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{ predicate (UseSSE>=2); match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "Jn$cop skip\n\t" "MOVSD $dst,$src\t# float\n" "skip:" %} ins_encode %{ Label skip; // Invert sense of branch from sense of CMOV __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip); __ movdbl($dst$$XMMRegister, $src$$XMMRegister); __ bind(skip); %} ins_pipe( pipe_slow ); %} instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{ predicate (UseSSE>=2); match(Set dst (CMoveD (Binary cop cr) (Binary dst src))); ins_cost(200); expand %{ fcmovXD_regU(cop, cr, dst, src); %} %} instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveL (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst.lo,$src.lo\n\t" "CMOV$cop $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) ); ins_pipe( pipe_cmov_reg_long ); %} instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveL (Binary cop cr) (Binary dst src))); ins_cost(200); format %{ "CMOV$cop $dst.lo,$src.lo\n\t" "CMOV$cop $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) ); ins_pipe( pipe_cmov_reg_long ); %} instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{ predicate(VM_Version::supports_cmov() ); match(Set dst (CMoveL (Binary cop cr) (Binary dst src))); ins_cost(200); expand %{ cmovL_regU(cop, cr, dst, src); %} %} //----------Arithmetic Instructions-------------------------------------------- //----------Addition Instructions---------------------------------------------- // Integer Addition Instructions instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (AddI dst src)); effect(KILL cr); size(2); format %{ "ADD $dst,$src" %} opcode(0x03); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ match(Set dst (AddI dst src)); effect(KILL cr); format %{ "ADD $dst,$src" %} opcode(0x81, 0x00); /* /0 id */ ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{ predicate(UseIncDec); match(Set dst (AddI dst src)); effect(KILL cr); size(1); format %{ "INC $dst" %} opcode(0x40); /* */ ins_encode( Opc_plus( primary, dst ) ); ins_pipe( ialu_reg ); %} instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{ match(Set dst (AddI src0 src1)); ins_cost(110); format %{ "LEA $dst,[$src0 + $src1]" %} opcode(0x8D); /* 0x8D /r */ ins_encode( OpcP, RegLea( dst, src0, src1 ) ); ins_pipe( ialu_reg_reg ); %} instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{ match(Set dst (AddP src0 src1)); ins_cost(110); format %{ "LEA $dst,[$src0 + $src1]\t# ptr" %} opcode(0x8D); /* 0x8D /r */ ins_encode( OpcP, RegLea( dst, src0, src1 ) ); ins_pipe( ialu_reg_reg ); %} instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{ predicate(UseIncDec); match(Set dst (AddI dst src)); effect(KILL cr); size(1); format %{ "DEC $dst" %} opcode(0x48); /* */ ins_encode( Opc_plus( primary, dst ) ); ins_pipe( ialu_reg ); %} instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{ match(Set dst (AddP dst src)); effect(KILL cr); size(2); format %{ "ADD $dst,$src" %} opcode(0x03); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{ match(Set dst (AddP dst src)); effect(KILL cr); format %{ "ADD $dst,$src" %} opcode(0x81,0x00); /* Opcode 81 /0 id */ // ins_encode( RegImm( dst, src) ); ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (AddI dst (LoadI src))); effect(KILL cr); ins_cost(125); format %{ "ADD $dst,$src" %} opcode(0x03); ins_encode( OpcP, RegMem( dst, src) ); ins_pipe( ialu_reg_mem ); %} instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AddI (LoadI dst) src))); effect(KILL cr); ins_cost(150); format %{ "ADD $dst,$src" %} opcode(0x01); /* Opcode 01 /r */ ins_encode( OpcP, RegMem( src, dst ) ); ins_pipe( ialu_mem_reg ); %} // Add Memory with Immediate instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AddI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "ADD $dst,$src" %} opcode(0x81); /* Opcode 81 /0 id */ ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) ); ins_pipe( ialu_mem_imm ); %} instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AddI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "INC $dst" %} opcode(0xFF); /* Opcode FF /0 */ ins_encode( OpcP, RMopc_Mem(0x00,dst)); ins_pipe( ialu_mem_imm ); %} instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AddI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "DEC $dst" %} opcode(0xFF); /* Opcode FF /1 */ ins_encode( OpcP, RMopc_Mem(0x01,dst)); ins_pipe( ialu_mem_imm ); %} instruct checkCastPP( eRegP dst ) %{ match(Set dst (CheckCastPP dst)); size(0); format %{ "#checkcastPP of $dst" %} ins_encode( /*empty encoding*/ ); ins_pipe( empty ); %} instruct castPP( eRegP dst ) %{ match(Set dst (CastPP dst)); format %{ "#castPP of $dst" %} ins_encode( /*empty encoding*/ ); ins_pipe( empty ); %} instruct castII( eRegI dst ) %{ match(Set dst (CastII dst)); format %{ "#castII of $dst" %} ins_encode( /*empty encoding*/ ); ins_cost(0); ins_pipe( empty ); %} // Load-locked - same as a regular pointer load when used with compare-swap instruct loadPLocked(eRegP dst, memory mem) %{ match(Set dst (LoadPLocked mem)); ins_cost(125); format %{ "MOV $dst,$mem\t# Load ptr. locked" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,mem)); ins_pipe( ialu_reg_mem ); %} // LoadLong-locked - same as a volatile long load when used with compare-swap instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{ predicate(UseSSE<=1); match(Set dst (LoadLLocked mem)); ins_cost(200); format %{ "FILD $mem\t# Atomic volatile long load\n\t" "FISTp $dst" %} ins_encode(enc_loadL_volatile(mem,dst)); ins_pipe( fpu_reg_mem ); %} instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{ predicate(UseSSE>=2); match(Set dst (LoadLLocked mem)); effect(TEMP tmp); ins_cost(180); format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" "MOVSD $dst,$tmp" %} ins_encode(enc_loadLX_volatile(mem, dst, tmp)); ins_pipe( pipe_slow ); %} instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{ predicate(UseSSE>=2); match(Set dst (LoadLLocked mem)); effect(TEMP tmp); ins_cost(160); format %{ "MOVSD $tmp,$mem\t# Atomic volatile long load\n\t" "MOVD $dst.lo,$tmp\n\t" "PSRLQ $tmp,32\n\t" "MOVD $dst.hi,$tmp" %} ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp)); ins_pipe( pipe_slow ); %} // Conditional-store of the updated heap-top. // Used during allocation of the shared heap. // Sets flags (EQ) on success. Implemented with a CMPXCHG on Intel. instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{ match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval))); // EAX is killed if there is contention, but then it's also unused. // In the common case of no contention, EAX holds the new oop address. format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %} ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) ); ins_pipe( pipe_cmpxchg ); %} // Conditional-store of an int value. // ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG on Intel. instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{ match(Set cr (StoreIConditional mem (Binary oldval newval))); effect(KILL oldval); format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %} ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) ); ins_pipe( pipe_cmpxchg ); %} // Conditional-store of a long value. // ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel. instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{ match(Set cr (StoreLConditional mem (Binary oldval newval))); effect(KILL oldval); format %{ "XCHG EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t" "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t" "XCHG EBX,ECX" %} ins_encode %{ // Note: we need to swap rbx, and rcx before and after the // cmpxchg8 instruction because the instruction uses // rcx as the high order word of the new value to store but // our register encoding uses rbx. __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc)); if( os::is_MP() ) __ lock(); __ cmpxchg8($mem$$Address); __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc)); %} ins_pipe( pipe_cmpxchg ); %} // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{ match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval))); effect(KILL cr, KILL oldval); format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" "MOV $res,0\n\t" "JNE,s fail\n\t" "MOV $res,1\n" "fail:" %} ins_encode( enc_cmpxchg8(mem_ptr), enc_flags_ne_to_boolean(res) ); ins_pipe( pipe_cmpxchg ); %} instruct compareAndSwapP( eRegI res, pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{ match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval))); effect(KILL cr, KILL oldval); format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" "MOV $res,0\n\t" "JNE,s fail\n\t" "MOV $res,1\n" "fail:" %} ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) ); ins_pipe( pipe_cmpxchg ); %} instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{ match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval))); effect(KILL cr, KILL oldval); format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" "MOV $res,0\n\t" "JNE,s fail\n\t" "MOV $res,1\n" "fail:" %} ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) ); ins_pipe( pipe_cmpxchg ); %} //----------Subtraction Instructions------------------------------------------- // Integer Subtraction Instructions instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (SubI dst src)); effect(KILL cr); size(2); format %{ "SUB $dst,$src" %} opcode(0x2B); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ match(Set dst (SubI dst src)); effect(KILL cr); format %{ "SUB $dst,$src" %} opcode(0x81,0x05); /* Opcode 81 /5 */ // ins_encode( RegImm( dst, src) ); ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (SubI dst (LoadI src))); effect(KILL cr); ins_cost(125); format %{ "SUB $dst,$src" %} opcode(0x2B); ins_encode( OpcP, RegMem( dst, src) ); ins_pipe( ialu_reg_mem ); %} instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (SubI (LoadI dst) src))); effect(KILL cr); ins_cost(150); format %{ "SUB $dst,$src" %} opcode(0x29); /* Opcode 29 /r */ ins_encode( OpcP, RegMem( src, dst ) ); ins_pipe( ialu_mem_reg ); %} // Subtract from a pointer instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{ match(Set dst (AddP dst (SubI zero src))); effect(KILL cr); size(2); format %{ "SUB $dst,$src" %} opcode(0x2B); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{ match(Set dst (SubI zero dst)); effect(KILL cr); size(2); format %{ "NEG $dst" %} opcode(0xF7,0x03); // Opcode F7 /3 ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg ); %} //----------Multiplication/Division Instructions------------------------------- // Integer Multiplication Instructions // Multiply Register instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (MulI dst src)); effect(KILL cr); size(3); ins_cost(300); format %{ "IMUL $dst,$src" %} opcode(0xAF, 0x0F); ins_encode( OpcS, OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg_alu0 ); %} // Multiply 32-bit Immediate instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{ match(Set dst (MulI src imm)); effect(KILL cr); ins_cost(300); format %{ "IMUL $dst,$src,$imm" %} opcode(0x69); /* 69 /r id */ ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) ); ins_pipe( ialu_reg_reg_alu0 ); %} instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{ match(Set dst src); effect(KILL cr); // Note that this is artificially increased to make it more expensive than loadConL ins_cost(250); format %{ "MOV EAX,$src\t// low word only" %} opcode(0xB8); ins_encode( LdImmL_Lo(dst, src) ); ins_pipe( ialu_reg_fat ); %} // Multiply by 32-bit Immediate, taking the shifted high order results // (special case for shift by 32) instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{ match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt))); predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL && _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint && _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint ); effect(USE src1, KILL cr); // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only ins_cost(0*100 + 1*400 - 150); format %{ "IMUL EDX:EAX,$src1" %} ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) ); ins_pipe( pipe_slow ); %} // Multiply by 32-bit Immediate, taking the shifted high order results instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{ match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt))); predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL && _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint && _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint ); effect(USE src1, KILL cr); // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only ins_cost(1*100 + 1*400 - 150); format %{ "IMUL EDX:EAX,$src1\n\t" "SAR EDX,$cnt-32" %} ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) ); ins_pipe( pipe_slow ); %} // Multiply Memory 32-bit Immediate instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{ match(Set dst (MulI (LoadI src) imm)); effect(KILL cr); ins_cost(300); format %{ "IMUL $dst,$src,$imm" %} opcode(0x69); /* 69 /r id */ ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) ); ins_pipe( ialu_reg_mem_alu0 ); %} // Multiply Memory instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (MulI dst (LoadI src))); effect(KILL cr); ins_cost(350); format %{ "IMUL $dst,$src" %} opcode(0xAF, 0x0F); ins_encode( OpcS, OpcP, RegMem( dst, src) ); ins_pipe( ialu_reg_mem_alu0 ); %} // Multiply Register Int to Long instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{ // Basic Idea: long = (long)int * (long)int match(Set dst (MulL (ConvI2L src) (ConvI2L src1))); effect(DEF dst, USE src, USE src1, KILL flags); ins_cost(300); format %{ "IMUL $dst,$src1" %} ins_encode( long_int_multiply( dst, src1 ) ); ins_pipe( ialu_reg_reg_alu0 ); %} instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{ // Basic Idea: long = (int & 0xffffffffL) * (int & 0xffffffffL) match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask))); effect(KILL flags); ins_cost(300); format %{ "MUL $dst,$src1" %} ins_encode( long_uint_multiply(dst, src1) ); ins_pipe( ialu_reg_reg_alu0 ); %} // Multiply Register Long instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{ match(Set dst (MulL dst src)); effect(KILL cr, TEMP tmp); ins_cost(4*100+3*400); // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) format %{ "MOV $tmp,$src.lo\n\t" "IMUL $tmp,EDX\n\t" "MOV EDX,$src.hi\n\t" "IMUL EDX,EAX\n\t" "ADD $tmp,EDX\n\t" "MUL EDX:EAX,$src.lo\n\t" "ADD EDX,$tmp" %} ins_encode( long_multiply( dst, src, tmp ) ); ins_pipe( pipe_slow ); %} // Multiply Register Long where the left operand's high 32 bits are zero instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{ predicate(is_operand_hi32_zero(n->in(1))); match(Set dst (MulL dst src)); effect(KILL cr, TEMP tmp); ins_cost(2*100+2*400); // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0 format %{ "MOV $tmp,$src.hi\n\t" "IMUL $tmp,EAX\n\t" "MUL EDX:EAX,$src.lo\n\t" "ADD EDX,$tmp" %} ins_encode %{ __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register)); __ imull($tmp$$Register, rax); __ mull($src$$Register); __ addl(rdx, $tmp$$Register); %} ins_pipe( pipe_slow ); %} // Multiply Register Long where the right operand's high 32 bits are zero instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{ predicate(is_operand_hi32_zero(n->in(2))); match(Set dst (MulL dst src)); effect(KILL cr, TEMP tmp); ins_cost(2*100+2*400); // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0 format %{ "MOV $tmp,$src.lo\n\t" "IMUL $tmp,EDX\n\t" "MUL EDX:EAX,$src.lo\n\t" "ADD EDX,$tmp" %} ins_encode %{ __ movl($tmp$$Register, $src$$Register); __ imull($tmp$$Register, rdx); __ mull($src$$Register); __ addl(rdx, $tmp$$Register); %} ins_pipe( pipe_slow ); %} // Multiply Register Long where the left and the right operands' high 32 bits are zero instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{ predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2))); match(Set dst (MulL dst src)); effect(KILL cr); ins_cost(1*400); // Basic idea: lo(result) = lo(x_lo * y_lo) // hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0 format %{ "MUL EDX:EAX,$src.lo\n\t" %} ins_encode %{ __ mull($src$$Register); %} ins_pipe( pipe_slow ); %} // Multiply Register Long by small constant instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{ match(Set dst (MulL dst src)); effect(KILL cr, TEMP tmp); ins_cost(2*100+2*400); size(12); // Basic idea: lo(result) = lo(src * EAX) // hi(result) = hi(src * EAX) + lo(src * EDX) format %{ "IMUL $tmp,EDX,$src\n\t" "MOV EDX,$src\n\t" "MUL EDX\t# EDX*EAX -> EDX:EAX\n\t" "ADD EDX,$tmp" %} ins_encode( long_multiply_con( dst, src, tmp ) ); ins_pipe( pipe_slow ); %} // Integer DIV with Register instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{ match(Set rax (DivI rax div)); effect(KILL rdx, KILL cr); size(26); ins_cost(30*100+10*100); format %{ "CMP EAX,0x80000000\n\t" "JNE,s normal\n\t" "XOR EDX,EDX\n\t" "CMP ECX,-1\n\t" "JE,s done\n" "normal: CDQ\n\t" "IDIV $div\n\t" "done:" %} opcode(0xF7, 0x7); /* Opcode F7 /7 */ ins_encode( cdq_enc, OpcP, RegOpc(div) ); ins_pipe( ialu_reg_reg_alu0 ); %} // Divide Register Long instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{ match(Set dst (DivL src1 src2)); effect( KILL cr, KILL cx, KILL bx ); ins_cost(10000); format %{ "PUSH $src1.hi\n\t" "PUSH $src1.lo\n\t" "PUSH $src2.hi\n\t" "PUSH $src2.lo\n\t" "CALL SharedRuntime::ldiv\n\t" "ADD ESP,16" %} ins_encode( long_div(src1,src2) ); ins_pipe( pipe_slow ); %} // Integer DIVMOD with Register, both quotient and mod results instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{ match(DivModI rax div); effect(KILL cr); size(26); ins_cost(30*100+10*100); format %{ "CMP EAX,0x80000000\n\t" "JNE,s normal\n\t" "XOR EDX,EDX\n\t" "CMP ECX,-1\n\t" "JE,s done\n" "normal: CDQ\n\t" "IDIV $div\n\t" "done:" %} opcode(0xF7, 0x7); /* Opcode F7 /7 */ ins_encode( cdq_enc, OpcP, RegOpc(div) ); ins_pipe( pipe_slow ); %} // Integer MOD with Register instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{ match(Set rdx (ModI rax div)); effect(KILL rax, KILL cr); size(26); ins_cost(300); format %{ "CDQ\n\t" "IDIV $div" %} opcode(0xF7, 0x7); /* Opcode F7 /7 */ ins_encode( cdq_enc, OpcP, RegOpc(div) ); ins_pipe( ialu_reg_reg_alu0 ); %} // Remainder Register Long instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{ match(Set dst (ModL src1 src2)); effect( KILL cr, KILL cx, KILL bx ); ins_cost(10000); format %{ "PUSH $src1.hi\n\t" "PUSH $src1.lo\n\t" "PUSH $src2.hi\n\t" "PUSH $src2.lo\n\t" "CALL SharedRuntime::lrem\n\t" "ADD ESP,16" %} ins_encode( long_mod(src1,src2) ); ins_pipe( pipe_slow ); %} // Divide Register Long (no special case since divisor != -1) instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{ match(Set dst (DivL dst imm)); effect( TEMP tmp, TEMP tmp2, KILL cr ); ins_cost(1000); format %{ "MOV $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t" "XOR $tmp2,$tmp2\n\t" "CMP $tmp,EDX\n\t" "JA,s fast\n\t" "MOV $tmp2,EAX\n\t" "MOV EAX,EDX\n\t" "MOV EDX,0\n\t" "JLE,s pos\n\t" "LNEG EAX : $tmp2\n\t" "DIV $tmp # unsigned division\n\t" "XCHG EAX,$tmp2\n\t" "DIV $tmp\n\t" "LNEG $tmp2 : EAX\n\t" "JMP,s done\n" "pos:\n\t" "DIV $tmp\n\t" "XCHG EAX,$tmp2\n" "fast:\n\t" "DIV $tmp\n" "done:\n\t" "MOV EDX,$tmp2\n\t" "NEG EDX:EAX # if $imm < 0" %} ins_encode %{ int con = (int)$imm$$constant; assert(con != 0 && con != -1 && con != min_jint, "wrong divisor"); int pcon = (con > 0) ? con : -con; Label Lfast, Lpos, Ldone; __ movl($tmp$$Register, pcon); __ xorl($tmp2$$Register,$tmp2$$Register); __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register)); __ jccb(Assembler::above, Lfast); // result fits into 32 bit __ movl($tmp2$$Register, $dst$$Register); // save __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register)); __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags __ jccb(Assembler::lessEqual, Lpos); // result is positive // Negative dividend. // convert value to positive to use unsigned division __ lneg($dst$$Register, $tmp2$$Register); __ divl($tmp$$Register); __ xchgl($dst$$Register, $tmp2$$Register); __ divl($tmp$$Register); // revert result back to negative __ lneg($tmp2$$Register, $dst$$Register); __ jmpb(Ldone); __ bind(Lpos); __ divl($tmp$$Register); // Use unsigned division __ xchgl($dst$$Register, $tmp2$$Register); // Fallthrow for final divide, tmp2 has 32 bit hi result __ bind(Lfast); // fast path: src is positive __ divl($tmp$$Register); // Use unsigned division __ bind(Ldone); __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register); if (con < 0) { __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register); } %} ins_pipe( pipe_slow ); %} // Remainder Register Long (remainder fit into 32 bits) instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{ match(Set dst (ModL dst imm)); effect( TEMP tmp, TEMP tmp2, KILL cr ); ins_cost(1000); format %{ "MOV $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t" "CMP $tmp,EDX\n\t" "JA,s fast\n\t" "MOV $tmp2,EAX\n\t" "MOV EAX,EDX\n\t" "MOV EDX,0\n\t" "JLE,s pos\n\t" "LNEG EAX : $tmp2\n\t" "DIV $tmp # unsigned division\n\t" "MOV EAX,$tmp2\n\t" "DIV $tmp\n\t" "NEG EDX\n\t" "JMP,s done\n" "pos:\n\t" "DIV $tmp\n\t" "MOV EAX,$tmp2\n" "fast:\n\t" "DIV $tmp\n" "done:\n\t" "MOV EAX,EDX\n\t" "SAR EDX,31\n\t" %} ins_encode %{ int con = (int)$imm$$constant; assert(con != 0 && con != -1 && con != min_jint, "wrong divisor"); int pcon = (con > 0) ? con : -con; Label Lfast, Lpos, Ldone; __ movl($tmp$$Register, pcon); __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register)); __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit __ movl($tmp2$$Register, $dst$$Register); // save __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register)); __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags __ jccb(Assembler::lessEqual, Lpos); // result is positive // Negative dividend. // convert value to positive to use unsigned division __ lneg($dst$$Register, $tmp2$$Register); __ divl($tmp$$Register); __ movl($dst$$Register, $tmp2$$Register); __ divl($tmp$$Register); // revert remainder back to negative __ negl(HIGH_FROM_LOW($dst$$Register)); __ jmpb(Ldone); __ bind(Lpos); __ divl($tmp$$Register); __ movl($dst$$Register, $tmp2$$Register); __ bind(Lfast); // fast path: src is positive __ divl($tmp$$Register); __ bind(Ldone); __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register)); __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign %} ins_pipe( pipe_slow ); %} // Integer Shift Instructions // Shift Left by one instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ match(Set dst (LShiftI dst shift)); effect(KILL cr); size(2); format %{ "SHL $dst,$shift" %} opcode(0xD1, 0x4); /* D1 /4 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg ); %} // Shift Left by 8-bit immediate instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ match(Set dst (LShiftI dst shift)); effect(KILL cr); size(3); format %{ "SHL $dst,$shift" %} opcode(0xC1, 0x4); /* C1 /4 ib */ ins_encode( RegOpcImm( dst, shift) ); ins_pipe( ialu_reg ); %} // Shift Left by variable instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (LShiftI dst shift)); effect(KILL cr); size(2); format %{ "SHL $dst,$shift" %} opcode(0xD3, 0x4); /* D3 /4 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg_reg ); %} // Arithmetic shift right by one instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ match(Set dst (RShiftI dst shift)); effect(KILL cr); size(2); format %{ "SAR $dst,$shift" %} opcode(0xD1, 0x7); /* D1 /7 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg ); %} // Arithmetic shift right by one instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{ match(Set dst (StoreI dst (RShiftI (LoadI dst) shift))); effect(KILL cr); format %{ "SAR $dst,$shift" %} opcode(0xD1, 0x7); /* D1 /7 */ ins_encode( OpcP, RMopc_Mem(secondary,dst) ); ins_pipe( ialu_mem_imm ); %} // Arithmetic Shift Right by 8-bit immediate instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ match(Set dst (RShiftI dst shift)); effect(KILL cr); size(3); format %{ "SAR $dst,$shift" %} opcode(0xC1, 0x7); /* C1 /7 ib */ ins_encode( RegOpcImm( dst, shift ) ); ins_pipe( ialu_mem_imm ); %} // Arithmetic Shift Right by 8-bit immediate instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{ match(Set dst (StoreI dst (RShiftI (LoadI dst) shift))); effect(KILL cr); format %{ "SAR $dst,$shift" %} opcode(0xC1, 0x7); /* C1 /7 ib */ ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) ); ins_pipe( ialu_mem_imm ); %} // Arithmetic Shift Right by variable instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (RShiftI dst shift)); effect(KILL cr); size(2); format %{ "SAR $dst,$shift" %} opcode(0xD3, 0x7); /* D3 /7 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg_reg ); %} // Logical shift right by one instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{ match(Set dst (URShiftI dst shift)); effect(KILL cr); size(2); format %{ "SHR $dst,$shift" %} opcode(0xD1, 0x5); /* D1 /5 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg ); %} // Logical Shift Right by 8-bit immediate instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{ match(Set dst (URShiftI dst shift)); effect(KILL cr); size(3); format %{ "SHR $dst,$shift" %} opcode(0xC1, 0x5); /* C1 /5 ib */ ins_encode( RegOpcImm( dst, shift) ); ins_pipe( ialu_reg ); %} // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24. // This idiom is used by the compiler for the i2b bytecode. instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{ match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour)); size(3); format %{ "MOVSX $dst,$src :8" %} ins_encode %{ __ movsbl($dst$$Register, $src$$Register); %} ins_pipe(ialu_reg_reg); %} // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16. // This idiom is used by the compiler the i2s bytecode. instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{ match(Set dst (RShiftI (LShiftI src sixteen) sixteen)); size(3); format %{ "MOVSX $dst,$src :16" %} ins_encode %{ __ movswl($dst$$Register, $src$$Register); %} ins_pipe(ialu_reg_reg); %} // Logical Shift Right by variable instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (URShiftI dst shift)); effect(KILL cr); size(2); format %{ "SHR $dst,$shift" %} opcode(0xD3, 0x5); /* D3 /5 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg_reg ); %} //----------Logical Instructions----------------------------------------------- //----------Integer Logical Instructions--------------------------------------- // And Instructions // And Register with Register instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (AndI dst src)); effect(KILL cr); size(2); format %{ "AND $dst,$src" %} opcode(0x23); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} // And Register with Immediate instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ match(Set dst (AndI dst src)); effect(KILL cr); format %{ "AND $dst,$src" %} opcode(0x81,0x04); /* Opcode 81 /4 */ // ins_encode( RegImm( dst, src) ); ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} // And Register with Memory instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (AndI dst (LoadI src))); effect(KILL cr); ins_cost(125); format %{ "AND $dst,$src" %} opcode(0x23); ins_encode( OpcP, RegMem( dst, src) ); ins_pipe( ialu_reg_mem ); %} // And Memory with Register instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AndI (LoadI dst) src))); effect(KILL cr); ins_cost(150); format %{ "AND $dst,$src" %} opcode(0x21); /* Opcode 21 /r */ ins_encode( OpcP, RegMem( src, dst ) ); ins_pipe( ialu_mem_reg ); %} // And Memory with Immediate instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (AndI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "AND $dst,$src" %} opcode(0x81, 0x4); /* Opcode 81 /4 id */ // ins_encode( MemImm( dst, src) ); ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); ins_pipe( ialu_mem_imm ); %} // Or Instructions // Or Register with Register instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (OrI dst src)); effect(KILL cr); size(2); format %{ "OR $dst,$src" %} opcode(0x0B); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{ match(Set dst (OrI dst (CastP2X src))); effect(KILL cr); size(2); format %{ "OR $dst,$src" %} opcode(0x0B); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} // Or Register with Immediate instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ match(Set dst (OrI dst src)); effect(KILL cr); format %{ "OR $dst,$src" %} opcode(0x81,0x01); /* Opcode 81 /1 id */ // ins_encode( RegImm( dst, src) ); ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} // Or Register with Memory instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (OrI dst (LoadI src))); effect(KILL cr); ins_cost(125); format %{ "OR $dst,$src" %} opcode(0x0B); ins_encode( OpcP, RegMem( dst, src) ); ins_pipe( ialu_reg_mem ); %} // Or Memory with Register instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (OrI (LoadI dst) src))); effect(KILL cr); ins_cost(150); format %{ "OR $dst,$src" %} opcode(0x09); /* Opcode 09 /r */ ins_encode( OpcP, RegMem( src, dst ) ); ins_pipe( ialu_mem_reg ); %} // Or Memory with Immediate instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (OrI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "OR $dst,$src" %} opcode(0x81,0x1); /* Opcode 81 /1 id */ // ins_encode( MemImm( dst, src) ); ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); ins_pipe( ialu_mem_imm ); %} // ROL/ROR // ROL expand instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{ effect(USE_DEF dst, USE shift, KILL cr); format %{ "ROL $dst, $shift" %} opcode(0xD1, 0x0); /* Opcode D1 /0 */ ins_encode( OpcP, RegOpc( dst )); ins_pipe( ialu_reg ); %} instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{ effect(USE_DEF dst, USE shift, KILL cr); format %{ "ROL $dst, $shift" %} opcode(0xC1, 0x0); /*Opcode /C1 /0 */ ins_encode( RegOpcImm(dst, shift) ); ins_pipe(ialu_reg); %} instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{ effect(USE_DEF dst, USE shift, KILL cr); format %{ "ROL $dst, $shift" %} opcode(0xD3, 0x0); /* Opcode D3 /0 */ ins_encode(OpcP, RegOpc(dst)); ins_pipe( ialu_reg_reg ); %} // end of ROL expand // ROL 32bit by one once instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{ match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift))); expand %{ rolI_eReg_imm1(dst, lshift, cr); %} %} // ROL 32bit var by imm8 once instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{ predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f)); match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift))); expand %{ rolI_eReg_imm8(dst, lshift, cr); %} %} // ROL 32bit var by var once instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{ match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift)))); expand %{ rolI_eReg_CL(dst, shift, cr); %} %} // ROL 32bit var by var once instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{ match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift)))); expand %{ rolI_eReg_CL(dst, shift, cr); %} %} // ROR expand instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{ effect(USE_DEF dst, USE shift, KILL cr); format %{ "ROR $dst, $shift" %} opcode(0xD1,0x1); /* Opcode D1 /1 */ ins_encode( OpcP, RegOpc( dst ) ); ins_pipe( ialu_reg ); %} instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{ effect (USE_DEF dst, USE shift, KILL cr); format %{ "ROR $dst, $shift" %} opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */ ins_encode( RegOpcImm(dst, shift) ); ins_pipe( ialu_reg ); %} instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{ effect(USE_DEF dst, USE shift, KILL cr); format %{ "ROR $dst, $shift" %} opcode(0xD3, 0x1); /* Opcode D3 /1 */ ins_encode(OpcP, RegOpc(dst)); ins_pipe( ialu_reg_reg ); %} // end of ROR expand // ROR right once instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{ match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift))); expand %{ rorI_eReg_imm1(dst, rshift, cr); %} %} // ROR 32bit by immI8 once instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{ predicate( 0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f)); match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift))); expand %{ rorI_eReg_imm8(dst, rshift, cr); %} %} // ROR 32bit var by var once instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{ match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift)))); expand %{ rorI_eReg_CL(dst, shift, cr); %} %} // ROR 32bit var by var once instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{ match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift)))); expand %{ rorI_eReg_CL(dst, shift, cr); %} %} // Xor Instructions // Xor Register with Register instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{ match(Set dst (XorI dst src)); effect(KILL cr); size(2); format %{ "XOR $dst,$src" %} opcode(0x33); ins_encode( OpcP, RegReg( dst, src) ); ins_pipe( ialu_reg_reg ); %} // Xor Register with Immediate -1 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{ match(Set dst (XorI dst imm)); size(2); format %{ "NOT $dst" %} ins_encode %{ __ notl($dst$$Register); %} ins_pipe( ialu_reg ); %} // Xor Register with Immediate instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{ match(Set dst (XorI dst src)); effect(KILL cr); format %{ "XOR $dst,$src" %} opcode(0x81,0x06); /* Opcode 81 /6 id */ // ins_encode( RegImm( dst, src) ); ins_encode( OpcSErm( dst, src ), Con8or32( src ) ); ins_pipe( ialu_reg ); %} // Xor Register with Memory instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{ match(Set dst (XorI dst (LoadI src))); effect(KILL cr); ins_cost(125); format %{ "XOR $dst,$src" %} opcode(0x33); ins_encode( OpcP, RegMem(dst, src) ); ins_pipe( ialu_reg_mem ); %} // Xor Memory with Register instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (XorI (LoadI dst) src))); effect(KILL cr); ins_cost(150); format %{ "XOR $dst,$src" %} opcode(0x31); /* Opcode 31 /r */ ins_encode( OpcP, RegMem( src, dst ) ); ins_pipe( ialu_mem_reg ); %} // Xor Memory with Immediate instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{ match(Set dst (StoreI dst (XorI (LoadI dst) src))); effect(KILL cr); ins_cost(125); format %{ "XOR $dst,$src" %} opcode(0x81,0x6); /* Opcode 81 /6 id */ ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) ); ins_pipe( ialu_mem_imm ); %} //----------Convert Int to Boolean--------------------------------------------- instruct movI_nocopy(eRegI dst, eRegI src) %{ effect( DEF dst, USE src ); format %{ "MOV $dst,$src" %} ins_encode( enc_Copy( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{ effect( USE_DEF dst, USE src, KILL cr ); size(4); format %{ "NEG $dst\n\t" "ADC $dst,$src" %} ins_encode( neg_reg(dst), OpcRegReg(0x13,dst,src) ); ins_pipe( ialu_reg_reg_long ); %} instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{ match(Set dst (Conv2B src)); expand %{ movI_nocopy(dst,src); ci2b(dst,src,cr); %} %} instruct movP_nocopy(eRegI dst, eRegP src) %{ effect( DEF dst, USE src ); format %{ "MOV $dst,$src" %} ins_encode( enc_Copy( dst, src) ); ins_pipe( ialu_reg_reg ); %} instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{ effect( USE_DEF dst, USE src, KILL cr ); format %{ "NEG $dst\n\t" "ADC $dst,$src" %} ins_encode( neg_reg(dst), OpcRegReg(0x13,dst,src) ); ins_pipe( ialu_reg_reg_long ); %} instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{ match(Set dst (Conv2B src)); expand %{ movP_nocopy(dst,src); cp2b(dst,src,cr); %} %} instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{ match(Set dst (CmpLTMask p q)); effect( KILL cr ); ins_cost(400); // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination format %{ "XOR $dst,$dst\n\t" "CMP $p,$q\n\t" "SETlt $dst\n\t" "NEG $dst" %} ins_encode( OpcRegReg(0x33,dst,dst), OpcRegReg(0x3B,p,q), setLT_reg(dst), neg_reg(dst) ); ins_pipe( pipe_slow ); %} instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{ match(Set dst (CmpLTMask dst zero)); effect( DEF dst, KILL cr ); ins_cost(100); format %{ "SAR $dst,31" %} opcode(0xC1, 0x7); /* C1 /7 ib */ ins_encode( RegOpcImm( dst, 0x1F ) ); ins_pipe( ialu_reg ); %} instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{ match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q))); effect( KILL tmp, KILL cr ); ins_cost(400); // annoyingly, $tmp has no edges so you cant ask for it in // any format or encoding format %{ "SUB $p,$q\n\t" "SBB ECX,ECX\n\t" "AND ECX,$y\n\t" "ADD $p,ECX" %} ins_encode( enc_cmpLTP(p,q,y,tmp) ); ins_pipe( pipe_cmplt ); %} /* If I enable this, I encourage spilling in the inner loop of compress. instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{ match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q))); effect( USE_KILL tmp, KILL cr ); ins_cost(400); format %{ "SUB $p,$q\n\t" "SBB ECX,ECX\n\t" "AND ECX,$y\n\t" "ADD $p,ECX" %} ins_encode( enc_cmpLTP_mem(p,q,y,tmp) ); %} */ //----------Long Instructions------------------------------------------------ // Add Long Register with Register instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ match(Set dst (AddL dst src)); effect(KILL cr); ins_cost(200); format %{ "ADD $dst.lo,$src.lo\n\t" "ADC $dst.hi,$src.hi" %} opcode(0x03, 0x13); ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) ); ins_pipe( ialu_reg_reg_long ); %} // Add Long Register with Immediate instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst (AddL dst src)); effect(KILL cr); format %{ "ADD $dst.lo,$src.lo\n\t" "ADC $dst.hi,$src.hi" %} opcode(0x81,0x00,0x02); /* Opcode 81 /0, 81 /2 */ ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); ins_pipe( ialu_reg_long ); %} // Add Long Register with Memory instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ match(Set dst (AddL dst (LoadL mem))); effect(KILL cr); ins_cost(125); format %{ "ADD $dst.lo,$mem\n\t" "ADC $dst.hi,$mem+4" %} opcode(0x03, 0x13); ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); ins_pipe( ialu_reg_long_mem ); %} // Subtract Long Register with Register. instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ match(Set dst (SubL dst src)); effect(KILL cr); ins_cost(200); format %{ "SUB $dst.lo,$src.lo\n\t" "SBB $dst.hi,$src.hi" %} opcode(0x2B, 0x1B); ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) ); ins_pipe( ialu_reg_reg_long ); %} // Subtract Long Register with Immediate instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst (SubL dst src)); effect(KILL cr); format %{ "SUB $dst.lo,$src.lo\n\t" "SBB $dst.hi,$src.hi" %} opcode(0x81,0x05,0x03); /* Opcode 81 /5, 81 /3 */ ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); ins_pipe( ialu_reg_long ); %} // Subtract Long Register with Memory instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ match(Set dst (SubL dst (LoadL mem))); effect(KILL cr); ins_cost(125); format %{ "SUB $dst.lo,$mem\n\t" "SBB $dst.hi,$mem+4" %} opcode(0x2B, 0x1B); ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); ins_pipe( ialu_reg_long_mem ); %} instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{ match(Set dst (SubL zero dst)); effect(KILL cr); ins_cost(300); format %{ "NEG $dst.hi\n\tNEG $dst.lo\n\tSBB $dst.hi,0" %} ins_encode( neg_long(dst) ); ins_pipe( ialu_reg_reg_long ); %} // And Long Register with Register instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ match(Set dst (AndL dst src)); effect(KILL cr); format %{ "AND $dst.lo,$src.lo\n\t" "AND $dst.hi,$src.hi" %} opcode(0x23,0x23); ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); ins_pipe( ialu_reg_reg_long ); %} // And Long Register with Immediate instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst (AndL dst src)); effect(KILL cr); format %{ "AND $dst.lo,$src.lo\n\t" "AND $dst.hi,$src.hi" %} opcode(0x81,0x04,0x04); /* Opcode 81 /4, 81 /4 */ ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); ins_pipe( ialu_reg_long ); %} // And Long Register with Memory instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ match(Set dst (AndL dst (LoadL mem))); effect(KILL cr); ins_cost(125); format %{ "AND $dst.lo,$mem\n\t" "AND $dst.hi,$mem+4" %} opcode(0x23, 0x23); ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); ins_pipe( ialu_reg_long_mem ); %} // Or Long Register with Register instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ match(Set dst (OrL dst src)); effect(KILL cr); format %{ "OR $dst.lo,$src.lo\n\t" "OR $dst.hi,$src.hi" %} opcode(0x0B,0x0B); ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); ins_pipe( ialu_reg_reg_long ); %} // Or Long Register with Immediate instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst (OrL dst src)); effect(KILL cr); format %{ "OR $dst.lo,$src.lo\n\t" "OR $dst.hi,$src.hi" %} opcode(0x81,0x01,0x01); /* Opcode 81 /1, 81 /1 */ ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); ins_pipe( ialu_reg_long ); %} // Or Long Register with Memory instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ match(Set dst (OrL dst (LoadL mem))); effect(KILL cr); ins_cost(125); format %{ "OR $dst.lo,$mem\n\t" "OR $dst.hi,$mem+4" %} opcode(0x0B,0x0B); ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); ins_pipe( ialu_reg_long_mem ); %} // Xor Long Register with Register instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{ match(Set dst (XorL dst src)); effect(KILL cr); format %{ "XOR $dst.lo,$src.lo\n\t" "XOR $dst.hi,$src.hi" %} opcode(0x33,0x33); ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) ); ins_pipe( ialu_reg_reg_long ); %} // Xor Long Register with Immediate -1 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{ match(Set dst (XorL dst imm)); format %{ "NOT $dst.lo\n\t" "NOT $dst.hi" %} ins_encode %{ __ notl($dst$$Register); __ notl(HIGH_FROM_LOW($dst$$Register)); %} ins_pipe( ialu_reg_long ); %} // Xor Long Register with Immediate instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{ match(Set dst (XorL dst src)); effect(KILL cr); format %{ "XOR $dst.lo,$src.lo\n\t" "XOR $dst.hi,$src.hi" %} opcode(0x81,0x06,0x06); /* Opcode 81 /6, 81 /6 */ ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) ); ins_pipe( ialu_reg_long ); %} // Xor Long Register with Memory instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{ match(Set dst (XorL dst (LoadL mem))); effect(KILL cr); ins_cost(125); format %{ "XOR $dst.lo,$mem\n\t" "XOR $dst.hi,$mem+4" %} opcode(0x33,0x33); ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) ); ins_pipe( ialu_reg_long_mem ); %} // Shift Left Long by 1 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{ predicate(UseNewLongLShift); match(Set dst (LShiftL dst cnt)); effect(KILL cr); ins_cost(100); format %{ "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi" %} ins_encode %{ __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); %} ins_pipe( ialu_reg_long ); %} // Shift Left Long by 2 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{ predicate(UseNewLongLShift); match(Set dst (LShiftL dst cnt)); effect(KILL cr); ins_cost(100); format %{ "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi\n\t" "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi" %} ins_encode %{ __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); %} ins_pipe( ialu_reg_long ); %} // Shift Left Long by 3 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{ predicate(UseNewLongLShift); match(Set dst (LShiftL dst cnt)); effect(KILL cr); ins_cost(100); format %{ "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi\n\t" "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi\n\t" "ADD $dst.lo,$dst.lo\n\t" "ADC $dst.hi,$dst.hi" %} ins_encode %{ __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); __ addl($dst$$Register,$dst$$Register); __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register)); %} ins_pipe( ialu_reg_long ); %} // Shift Left Long by 1-31 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ match(Set dst (LShiftL dst cnt)); effect(KILL cr); ins_cost(200); format %{ "SHLD $dst.hi,$dst.lo,$cnt\n\t" "SHL $dst.lo,$cnt" %} opcode(0xC1, 0x4, 0xA4); /* 0F/A4, then C1 /4 ib */ ins_encode( move_long_small_shift(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Left Long by 32-63 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ match(Set dst (LShiftL dst cnt)); effect(KILL cr); ins_cost(300); format %{ "MOV $dst.hi,$dst.lo\n" "\tSHL $dst.hi,$cnt-32\n" "\tXOR $dst.lo,$dst.lo" %} opcode(0xC1, 0x4); /* C1 /4 ib */ ins_encode( move_long_big_shift_clr(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Left Long by variable instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (LShiftL dst shift)); effect(KILL cr); ins_cost(500+200); size(17); format %{ "TEST $shift,32\n\t" "JEQ,s small\n\t" "MOV $dst.hi,$dst.lo\n\t" "XOR $dst.lo,$dst.lo\n" "small:\tSHLD $dst.hi,$dst.lo,$shift\n\t" "SHL $dst.lo,$shift" %} ins_encode( shift_left_long( dst, shift ) ); ins_pipe( pipe_slow ); %} // Shift Right Long by 1-31 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ match(Set dst (URShiftL dst cnt)); effect(KILL cr); ins_cost(200); format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t" "SHR $dst.hi,$cnt" %} opcode(0xC1, 0x5, 0xAC); /* 0F/AC, then C1 /5 ib */ ins_encode( move_long_small_shift(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Right Long by 32-63 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ match(Set dst (URShiftL dst cnt)); effect(KILL cr); ins_cost(300); format %{ "MOV $dst.lo,$dst.hi\n" "\tSHR $dst.lo,$cnt-32\n" "\tXOR $dst.hi,$dst.hi" %} opcode(0xC1, 0x5); /* C1 /5 ib */ ins_encode( move_long_big_shift_clr(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Right Long by variable instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (URShiftL dst shift)); effect(KILL cr); ins_cost(600); size(17); format %{ "TEST $shift,32\n\t" "JEQ,s small\n\t" "MOV $dst.lo,$dst.hi\n\t" "XOR $dst.hi,$dst.hi\n" "small:\tSHRD $dst.lo,$dst.hi,$shift\n\t" "SHR $dst.hi,$shift" %} ins_encode( shift_right_long( dst, shift ) ); ins_pipe( pipe_slow ); %} // Shift Right Long by 1-31 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{ match(Set dst (RShiftL dst cnt)); effect(KILL cr); ins_cost(200); format %{ "SHRD $dst.lo,$dst.hi,$cnt\n\t" "SAR $dst.hi,$cnt" %} opcode(0xC1, 0x7, 0xAC); /* 0F/AC, then C1 /7 ib */ ins_encode( move_long_small_shift(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Right Long by 32-63 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{ match(Set dst (RShiftL dst cnt)); effect(KILL cr); ins_cost(300); format %{ "MOV $dst.lo,$dst.hi\n" "\tSAR $dst.lo,$cnt-32\n" "\tSAR $dst.hi,31" %} opcode(0xC1, 0x7); /* C1 /7 ib */ ins_encode( move_long_big_shift_sign(dst,cnt) ); ins_pipe( ialu_reg_long ); %} // Shift Right arithmetic Long by variable instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{ match(Set dst (RShiftL dst shift)); effect(KILL cr); ins_cost(600); size(18); format %{ "TEST $shift,32\n\t" "JEQ,s small\n\t" "MOV $dst.lo,$dst.hi\n\t" "SAR $dst.hi,31\n" "small:\tSHRD $dst.lo,$dst.hi,$shift\n\t" "SAR $dst.hi,$shift" %} ins_encode( shift_right_arith_long( dst, shift ) ); ins_pipe( pipe_slow ); %} //----------Double Instructions------------------------------------------------ // Double Math // Compare & branch // P6 version of float compare, sets condition codes in EFLAGS instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{ predicate(VM_Version::supports_cmov() && UseSSE <=1); match(Set cr (CmpD src1 src2)); effect(KILL rax); ins_cost(150); format %{ "FLD $src1\n\t" "FUCOMIP ST,$src2 // P6 instruction\n\t" "JNP exit\n\t" "MOV ah,1 // saw a NaN, set CF\n\t" "SAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), cmpF_P6_fixup ); ins_pipe( pipe_slow ); %} instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{ predicate(VM_Version::supports_cmov() && UseSSE <=1); match(Set cr (CmpD src1 src2)); ins_cost(150); format %{ "FLD $src1\n\t" "FUCOMIP ST,$src2 // P6 instruction" %} opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2)); ins_pipe( pipe_slow ); %} // Compare & branch instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{ predicate(UseSSE<=1); match(Set cr (CmpD src1 src2)); effect(KILL rax); ins_cost(200); format %{ "FLD $src1\n\t" "FCOMp $src2\n\t" "FNSTSW AX\n\t" "TEST AX,0x400\n\t" "JZ,s flags\n\t" "MOV AH,1\t# unordered treat as LT\n" "flags:\tSAHF" %} opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), fpu_flags); ins_pipe( pipe_slow ); %} // Compare vs zero into -1,0,1 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE<=1); match(Set dst (CmpD3 src1 zero)); effect(KILL cr, KILL rax); ins_cost(280); format %{ "FTSTD $dst,$src1" %} opcode(0xE4, 0xD9); ins_encode( Push_Reg_D(src1), OpcS, OpcP, PopFPU, CmpF_Result(dst)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE<=1); match(Set dst (CmpD3 src1 src2)); effect(KILL cr, KILL rax); ins_cost(300); format %{ "FCMPD $dst,$src1,$src2" %} opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), CmpF_Result(dst)); ins_pipe( pipe_slow ); %} // float compare and set condition codes in EFLAGS by XMM regs instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{ predicate(UseSSE>=2); match(Set cr (CmpD dst src)); effect(KILL rax); ins_cost(125); format %{ "COMISD $dst,$src\n" "\tJNP exit\n" "\tMOV ah,1 // saw a NaN, set CF\n" "\tSAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0x66, 0x0F, 0x2F); ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup); ins_pipe( pipe_slow ); %} instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set cr (CmpD dst src)); ins_cost(100); format %{ "COMISD $dst,$src" %} opcode(0x66, 0x0F, 0x2F); ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); ins_pipe( pipe_slow ); %} // float compare and set condition codes in EFLAGS by XMM regs instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{ predicate(UseSSE>=2); match(Set cr (CmpD dst (LoadD src))); effect(KILL rax); ins_cost(145); format %{ "COMISD $dst,$src\n" "\tJNP exit\n" "\tMOV ah,1 // saw a NaN, set CF\n" "\tSAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0x66, 0x0F, 0x2F); ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup); ins_pipe( pipe_slow ); %} instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{ predicate(UseSSE>=2); match(Set cr (CmpD dst (LoadD src))); ins_cost(100); format %{ "COMISD $dst,$src" %} opcode(0x66, 0x0F, 0x2F); ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 in XMM instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{ predicate(UseSSE>=2); match(Set dst (CmpD3 src1 src2)); effect(KILL cr); ins_cost(255); format %{ "XOR $dst,$dst\n" "\tCOMISD $src1,$src2\n" "\tJP,s nan\n" "\tJEQ,s exit\n" "\tJA,s inc\n" "nan:\tDEC $dst\n" "\tJMP,s exit\n" "inc:\tINC $dst\n" "exit:" %} opcode(0x66, 0x0F, 0x2F); ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2), CmpX_Result(dst)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 in XMM and memory instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{ predicate(UseSSE>=2); match(Set dst (CmpD3 src1 (LoadD mem))); effect(KILL cr); ins_cost(275); format %{ "COMISD $src1,$mem\n" "\tMOV $dst,0\t\t# do not blow flags\n" "\tJP,s nan\n" "\tJEQ,s exit\n" "\tJA,s inc\n" "nan:\tDEC $dst\n" "\tJMP,s exit\n" "inc:\tINC $dst\n" "exit:" %} opcode(0x66, 0x0F, 0x2F); ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst)); ins_pipe( pipe_slow ); %} instruct subD_reg(regD dst, regD src) %{ predicate (UseSSE <=1); match(Set dst (SubD dst src)); format %{ "FLD $src\n\t" "DSUBp $dst,ST" %} opcode(0xDE, 0x5); /* DE E8+i or DE /5 */ ins_cost(150); ins_encode( Push_Reg_D(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{ predicate (UseSSE <=1); match(Set dst (RoundDouble (SubD src1 src2))); ins_cost(250); format %{ "FLD $src2\n\t" "DSUB ST,$src1\n\t" "FSTP_D $dst\t# D-round" %} opcode(0xD8, 0x5); ins_encode( Push_Reg_D(src2), OpcP, RegOpc(src1), Pop_Mem_D(dst) ); ins_pipe( fpu_mem_reg_reg ); %} instruct subD_reg_mem(regD dst, memory src) %{ predicate (UseSSE <=1); match(Set dst (SubD dst (LoadD src))); ins_cost(150); format %{ "FLD $src\n\t" "DSUBp $dst,ST" %} opcode(0xDE, 0x5, 0xDD); /* DE C0+i */ /* LoadD DD /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_mem ); %} instruct absD_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); match(Set dst (AbsD src)); ins_cost(100); format %{ "FABS" %} opcode(0xE1, 0xD9); ins_encode( OpcS, OpcP ); ins_pipe( fpu_reg_reg ); %} instruct absXD_reg( regXD dst ) %{ predicate(UseSSE>=2); match(Set dst (AbsD dst)); format %{ "ANDPD $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %} ins_encode( AbsXD_encoding(dst)); ins_pipe( pipe_slow ); %} instruct negD_reg(regDPR1 dst, regDPR1 src) %{ predicate(UseSSE<=1); match(Set dst (NegD src)); ins_cost(100); format %{ "FCHS" %} opcode(0xE0, 0xD9); ins_encode( OpcS, OpcP ); ins_pipe( fpu_reg_reg ); %} instruct negXD_reg( regXD dst ) %{ predicate(UseSSE>=2); match(Set dst (NegD dst)); format %{ "XORPD $dst,[0x8000000000000000]\t# CHS D by sign flipping" %} ins_encode %{ __ xorpd($dst$$XMMRegister, ExternalAddress((address)double_signflip_pool)); %} ins_pipe( pipe_slow ); %} instruct addD_reg(regD dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (AddD dst src)); format %{ "FLD $src\n\t" "DADD $dst,ST" %} size(4); ins_cost(150); opcode(0xDE, 0x0); /* DE C0+i or DE /0*/ ins_encode( Push_Reg_D(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{ predicate(UseSSE<=1); match(Set dst (RoundDouble (AddD src1 src2))); ins_cost(250); format %{ "FLD $src2\n\t" "DADD ST,$src1\n\t" "FSTP_D $dst\t# D-round" %} opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/ ins_encode( Push_Reg_D(src2), OpcP, RegOpc(src1), Pop_Mem_D(dst) ); ins_pipe( fpu_mem_reg_reg ); %} instruct addD_reg_mem(regD dst, memory src) %{ predicate(UseSSE<=1); match(Set dst (AddD dst (LoadD src))); ins_cost(150); format %{ "FLD $src\n\t" "DADDp $dst,ST" %} opcode(0xDE, 0x0, 0xDD); /* DE C0+i */ /* LoadD DD /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_mem ); %} // add-to-memory instruct addD_mem_reg(memory dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src)))); ins_cost(150); format %{ "FLD_D $dst\n\t" "DADD ST,$src\n\t" "FST_D $dst" %} opcode(0xDD, 0x0); ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst), Opcode(0xD8), RegOpc(src), set_instruction_start, Opcode(0xDD), RMopc_Mem(0x03,dst) ); ins_pipe( fpu_reg_mem ); %} instruct addD_reg_imm1(regD dst, immD1 con) %{ predicate(UseSSE<=1); match(Set dst (AddD dst con)); ins_cost(125); format %{ "FLD1\n\t" "DADDp $dst,ST" %} ins_encode %{ __ fld1(); __ faddp($dst$$reg); %} ins_pipe(fpu_reg); %} instruct addD_reg_imm(regD dst, immD con) %{ predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 ); match(Set dst (AddD dst con)); ins_cost(200); format %{ "FLD_D [$constantaddress]\t# load from constant table: double=$con\n\t" "DADDp $dst,ST" %} ins_encode %{ __ fld_d($constantaddress($con)); __ faddp($dst$$reg); %} ins_pipe(fpu_reg_mem); %} instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{ predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 ); match(Set dst (RoundDouble (AddD src con))); ins_cost(200); format %{ "FLD_D [$constantaddress]\t# load from constant table: double=$con\n\t" "DADD ST,$src\n\t" "FSTP_D $dst\t# D-round" %} ins_encode %{ __ fld_d($constantaddress($con)); __ fadd($src$$reg); __ fstp_d(Address(rsp, $dst$$disp)); %} ins_pipe(fpu_mem_reg_con); %} // Add two double precision floating point values in xmm instruct addXD_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (AddD dst src)); format %{ "ADDSD $dst,$src" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct addXD_imm(regXD dst, immXD con) %{ predicate(UseSSE>=2); match(Set dst (AddD dst con)); format %{ "ADDSD $dst,[$constantaddress]\t# load from constant table: double=$con" %} ins_encode %{ __ addsd($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct addXD_mem(regXD dst, memory mem) %{ predicate(UseSSE>=2); match(Set dst (AddD dst (LoadD mem))); format %{ "ADDSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Sub two double precision floating point values in xmm instruct subXD_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (SubD dst src)); format %{ "SUBSD $dst,$src" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct subXD_imm(regXD dst, immXD con) %{ predicate(UseSSE>=2); match(Set dst (SubD dst con)); format %{ "SUBSD $dst,[$constantaddress]\t# load from constant table: double=$con" %} ins_encode %{ __ subsd($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct subXD_mem(regXD dst, memory mem) %{ predicate(UseSSE>=2); match(Set dst (SubD dst (LoadD mem))); format %{ "SUBSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Mul two double precision floating point values in xmm instruct mulXD_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (MulD dst src)); format %{ "MULSD $dst,$src" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct mulXD_imm(regXD dst, immXD con) %{ predicate(UseSSE>=2); match(Set dst (MulD dst con)); format %{ "MULSD $dst,[$constantaddress]\t# load from constant table: double=$con" %} ins_encode %{ __ mulsd($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct mulXD_mem(regXD dst, memory mem) %{ predicate(UseSSE>=2); match(Set dst (MulD dst (LoadD mem))); format %{ "MULSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Div two double precision floating point values in xmm instruct divXD_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (DivD dst src)); format %{ "DIVSD $dst,$src" %} opcode(0xF2, 0x0F, 0x5E); ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct divXD_imm(regXD dst, immXD con) %{ predicate(UseSSE>=2); match(Set dst (DivD dst con)); format %{ "DIVSD $dst,[$constantaddress]\t# load from constant table: double=$con" %} ins_encode %{ __ divsd($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct divXD_mem(regXD dst, memory mem) %{ predicate(UseSSE>=2); match(Set dst (DivD dst (LoadD mem))); format %{ "DIVSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} instruct mulD_reg(regD dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (MulD dst src)); format %{ "FLD $src\n\t" "DMULp $dst,ST" %} opcode(0xDE, 0x1); /* DE C8+i or DE /1*/ ins_cost(150); ins_encode( Push_Reg_D(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} // Strict FP instruction biases argument before multiply then // biases result to avoid double rounding of subnormals. // // scale arg1 by multiplying arg1 by 2^(-15360) // load arg2 // multiply scaled arg1 by arg2 // rescale product by 2^(15360) // instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{ predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() ); match(Set dst (MulD dst src)); ins_cost(1); // Select this instruction for all strict FP double multiplies format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t" "DMULp $dst,ST\n\t" "FLD $src\n\t" "DMULp $dst,ST\n\t" "FLD StubRoutines::_fpu_subnormal_bias2\n\t" "DMULp $dst,ST\n\t" %} opcode(0xDE, 0x1); /* DE C8+i or DE /1*/ ins_encode( strictfp_bias1(dst), Push_Reg_D(src), OpcP, RegOpc(dst), strictfp_bias2(dst) ); ins_pipe( fpu_reg_reg ); %} instruct mulD_reg_imm(regD dst, immD con) %{ predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 ); match(Set dst (MulD dst con)); ins_cost(200); format %{ "FLD_D [$constantaddress]\t# load from constant table: double=$con\n\t" "DMULp $dst,ST" %} ins_encode %{ __ fld_d($constantaddress($con)); __ fmulp($dst$$reg); %} ins_pipe(fpu_reg_mem); %} instruct mulD_reg_mem(regD dst, memory src) %{ predicate( UseSSE<=1 ); match(Set dst (MulD dst (LoadD src))); ins_cost(200); format %{ "FLD_D $src\n\t" "DMULp $dst,ST" %} opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/ /* LoadD DD /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_mem ); %} // // Cisc-alternate to reg-reg multiply instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{ predicate( UseSSE<=1 ); match(Set dst (MulD src (LoadD mem))); ins_cost(250); format %{ "FLD_D $mem\n\t" "DMUL ST,$src\n\t" "FSTP_D $dst" %} opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadD D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem), OpcReg_F(src), Pop_Reg_D(dst) ); ins_pipe( fpu_reg_reg_mem ); %} // MACRO3 -- addD a mulD // This instruction is a '2-address' instruction in that the result goes // back to src2. This eliminates a move from the macro; possibly the // register allocator will have to add it back (and maybe not). instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{ predicate( UseSSE<=1 ); match(Set src2 (AddD (MulD src0 src1) src2)); format %{ "FLD $src0\t# ===MACRO3d===\n\t" "DMUL ST,$src1\n\t" "DADDp $src2,ST" %} ins_cost(250); opcode(0xDD); /* LoadD DD /0 */ ins_encode( Push_Reg_F(src0), FMul_ST_reg(src1), FAddP_reg_ST(src2) ); ins_pipe( fpu_reg_reg_reg ); %} // MACRO3 -- subD a mulD instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{ predicate( UseSSE<=1 ); match(Set src2 (SubD (MulD src0 src1) src2)); format %{ "FLD $src0\t# ===MACRO3d===\n\t" "DMUL ST,$src1\n\t" "DSUBRp $src2,ST" %} ins_cost(250); ins_encode( Push_Reg_F(src0), FMul_ST_reg(src1), Opcode(0xDE), Opc_plus(0xE0,src2)); ins_pipe( fpu_reg_reg_reg ); %} instruct divD_reg(regD dst, regD src) %{ predicate( UseSSE<=1 ); match(Set dst (DivD dst src)); format %{ "FLD $src\n\t" "FDIVp $dst,ST" %} opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ ins_cost(150); ins_encode( Push_Reg_D(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} // Strict FP instruction biases argument before division then // biases result, to avoid double rounding of subnormals. // // scale dividend by multiplying dividend by 2^(-15360) // load divisor // divide scaled dividend by divisor // rescale quotient by 2^(15360) // instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{ predicate (UseSSE<=1); match(Set dst (DivD dst src)); predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() ); ins_cost(01); format %{ "FLD StubRoutines::_fpu_subnormal_bias1\n\t" "DMULp $dst,ST\n\t" "FLD $src\n\t" "FDIVp $dst,ST\n\t" "FLD StubRoutines::_fpu_subnormal_bias2\n\t" "DMULp $dst,ST\n\t" %} opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ ins_encode( strictfp_bias1(dst), Push_Reg_D(src), OpcP, RegOpc(dst), strictfp_bias2(dst) ); ins_pipe( fpu_reg_reg ); %} instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{ predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) ); match(Set dst (RoundDouble (DivD src1 src2))); format %{ "FLD $src1\n\t" "FDIV ST,$src2\n\t" "FSTP_D $dst\t# D-round" %} opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), Pop_Mem_D(dst) ); ins_pipe( fpu_mem_reg_reg ); %} instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE<=1); match(Set dst (ModD dst src)); effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS format %{ "DMOD $dst,$src" %} ins_cost(250); ins_encode(Push_Reg_Mod_D(dst, src), emitModD(), Push_Result_Mod_D(src), Pop_Reg_D(dst)); ins_pipe( pipe_slow ); %} instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE>=2); match(Set dst (ModD src0 src1)); effect(KILL rax, KILL cr); format %{ "SUB ESP,8\t # DMOD\n" "\tMOVSD [ESP+0],$src1\n" "\tFLD_D [ESP+0]\n" "\tMOVSD [ESP+0],$src0\n" "\tFLD_D [ESP+0]\n" "loop:\tFPREM\n" "\tFWAIT\n" "\tFNSTSW AX\n" "\tSAHF\n" "\tJP loop\n" "\tFSTP_D [ESP+0]\n" "\tMOVSD $dst,[ESP+0]\n" "\tADD ESP,8\n" "\tFSTP ST0\t # Restore FPU Stack" %} ins_cost(250); ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU); ins_pipe( pipe_slow ); %} instruct sinD_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); match(Set dst (SinD src)); ins_cost(1800); format %{ "DSIN $dst" %} opcode(0xD9, 0xFE); ins_encode( OpcP, OpcS ); ins_pipe( pipe_slow ); %} instruct sinXD_reg(regXD dst, eFlagsReg cr) %{ predicate (UseSSE>=2); match(Set dst (SinD dst)); effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" ins_cost(1800); format %{ "DSIN $dst" %} opcode(0xD9, 0xFE); ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct cosD_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); match(Set dst (CosD src)); ins_cost(1800); format %{ "DCOS $dst" %} opcode(0xD9, 0xFF); ins_encode( OpcP, OpcS ); ins_pipe( pipe_slow ); %} instruct cosXD_reg(regXD dst, eFlagsReg cr) %{ predicate (UseSSE>=2); match(Set dst (CosD dst)); effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" ins_cost(1800); format %{ "DCOS $dst" %} opcode(0xD9, 0xFF); ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct tanD_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); match(Set dst(TanD src)); format %{ "DTAN $dst" %} ins_encode( Opcode(0xD9), Opcode(0xF2), // fptan Opcode(0xDD), Opcode(0xD8)); // fstp st ins_pipe( pipe_slow ); %} instruct tanXD_reg(regXD dst, eFlagsReg cr) %{ predicate (UseSSE>=2); match(Set dst(TanD dst)); effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" format %{ "DTAN $dst" %} ins_encode( Push_SrcXD(dst), Opcode(0xD9), Opcode(0xF2), // fptan Opcode(0xDD), Opcode(0xD8), // fstp st Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct atanD_reg(regD dst, regD src) %{ predicate (UseSSE<=1); match(Set dst(AtanD dst src)); format %{ "DATA $dst,$src" %} opcode(0xD9, 0xF3); ins_encode( Push_Reg_D(src), OpcP, OpcS, RegOpc(dst) ); ins_pipe( pipe_slow ); %} instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{ predicate (UseSSE>=2); match(Set dst(AtanD dst src)); effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8" format %{ "DATA $dst,$src" %} opcode(0xD9, 0xF3); ins_encode( Push_SrcXD(src), OpcP, OpcS, Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct sqrtD_reg(regD dst, regD src) %{ predicate (UseSSE<=1); match(Set dst (SqrtD src)); format %{ "DSQRT $dst,$src" %} opcode(0xFA, 0xD9); ins_encode( Push_Reg_D(src), OpcS, OpcP, Pop_Reg_D(dst) ); ins_pipe( pipe_slow ); %} instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ predicate (UseSSE<=1); match(Set Y (PowD X Y)); // Raise X to the Yth power effect(KILL rax, KILL rbx, KILL rcx); format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t" "FLD_D $X\n\t" "FYL2X \t\t\t# Q=Y*ln2(X)\n\t" "FDUP \t\t\t# Q Q\n\t" "FRNDINT\t\t\t# int(Q) Q\n\t" "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" "FISTP dword [ESP]\n\t" "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" "ADD EAX,1023\t\t# Double exponent bias\n\t" "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" "SHL EAX,20\t\t# Shift exponent into place\n\t" "TEST EBX,ECX\t\t# Check for overflow\n\t" "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" "MOV [ESP+0],0\n\t" "FMUL ST(0),[ESP+0]\t# Scale\n\t" "ADD ESP,8" %} ins_encode( push_stack_temp_qword, Push_Reg_D(X), Opcode(0xD9), Opcode(0xF1), // fyl2x pow_exp_core_encoding, pop_stack_temp_qword); ins_pipe( pipe_slow ); %} instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{ predicate (UseSSE>=2); match(Set dst (PowD src0 src1)); // Raise src0 to the src1'th power effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx ); format %{ "SUB ESP,8\t\t# Fast-path POW encoding\n\t" "MOVSD [ESP],$src1\n\t" "FLD FPR1,$src1\n\t" "MOVSD [ESP],$src0\n\t" "FLD FPR1,$src0\n\t" "FYL2X \t\t\t# Q=Y*ln2(X)\n\t" "FDUP \t\t\t# Q Q\n\t" "FRNDINT\t\t\t# int(Q) Q\n\t" "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" "FISTP dword [ESP]\n\t" "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" "ADD EAX,1023\t\t# Double exponent bias\n\t" "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" "SHL EAX,20\t\t# Shift exponent into place\n\t" "TEST EBX,ECX\t\t# Check for overflow\n\t" "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" "MOV [ESP+0],0\n\t" "FMUL ST(0),[ESP+0]\t# Scale\n\t" "FST_D [ESP]\n\t" "MOVSD $dst,[ESP]\n\t" "ADD ESP,8" %} ins_encode( push_stack_temp_qword, push_xmm_to_fpr1(src1), push_xmm_to_fpr1(src0), Opcode(0xD9), Opcode(0xF1), // fyl2x pow_exp_core_encoding, Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ predicate (UseSSE<=1); match(Set dpr1 (ExpD dpr1)); effect(KILL rax, KILL rbx, KILL rcx); format %{ "SUB ESP,8\t\t# Fast-path EXP encoding" "FLDL2E \t\t\t# Ld log2(e) X\n\t" "FMULP \t\t\t# Q=X*log2(e)\n\t" "FDUP \t\t\t# Q Q\n\t" "FRNDINT\t\t\t# int(Q) Q\n\t" "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" "FISTP dword [ESP]\n\t" "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" "ADD EAX,1023\t\t# Double exponent bias\n\t" "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" "SHL EAX,20\t\t# Shift exponent into place\n\t" "TEST EBX,ECX\t\t# Check for overflow\n\t" "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" "MOV [ESP+0],0\n\t" "FMUL ST(0),[ESP+0]\t# Scale\n\t" "ADD ESP,8" %} ins_encode( push_stack_temp_qword, Opcode(0xD9), Opcode(0xEA), // fldl2e Opcode(0xDE), Opcode(0xC9), // fmulp pow_exp_core_encoding, pop_stack_temp_qword); ins_pipe( pipe_slow ); %} instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{ predicate (UseSSE>=2); match(Set dst (ExpD src)); effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx); format %{ "SUB ESP,8\t\t# Fast-path EXP encoding\n\t" "MOVSD [ESP],$src\n\t" "FLDL2E \t\t\t# Ld log2(e) X\n\t" "FMULP \t\t\t# Q=X*log2(e) X\n\t" "FDUP \t\t\t# Q Q\n\t" "FRNDINT\t\t\t# int(Q) Q\n\t" "FSUB ST(1),ST(0)\t# int(Q) frac(Q)\n\t" "FISTP dword [ESP]\n\t" "F2XM1 \t\t\t# 2^frac(Q)-1 int(Q)\n\t" "FLD1 \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t" "FADDP \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead "MOV EAX,[ESP]\t# Pick up int(Q)\n\t" "MOV ECX,0xFFFFF800\t# Overflow mask\n\t" "ADD EAX,1023\t\t# Double exponent bias\n\t" "MOV EBX,EAX\t\t# Preshifted biased expo\n\t" "SHL EAX,20\t\t# Shift exponent into place\n\t" "TEST EBX,ECX\t\t# Check for overflow\n\t" "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t" "MOV [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t" "MOV [ESP+0],0\n\t" "FMUL ST(0),[ESP+0]\t# Scale\n\t" "FST_D [ESP]\n\t" "MOVSD $dst,[ESP]\n\t" "ADD ESP,8" %} ins_encode( Push_SrcXD(src), Opcode(0xD9), Opcode(0xEA), // fldl2e Opcode(0xDE), Opcode(0xC9), // fmulp pow_exp_core_encoding, Push_ResultXD(dst) ); ins_pipe( pipe_slow ); %} instruct log10D_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); // The source Double operand on FPU stack match(Set dst (Log10D src)); // fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number // fxch ; swap ST(0) with ST(1) // fyl2x ; compute log_10(2) * log_2(x) format %{ "FLDLG2 \t\t\t#Log10\n\t" "FXCH \n\t" "FYL2X \t\t\t# Q=Log10*Log_2(x)" %} ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2 Opcode(0xD9), Opcode(0xC9), // fxch Opcode(0xD9), Opcode(0xF1)); // fyl2x ins_pipe( pipe_slow ); %} instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{ predicate (UseSSE>=2); effect(KILL cr); match(Set dst (Log10D src)); // fldlg2 ; push log_10(2) on the FPU stack; full 80-bit number // fyl2x ; compute log_10(2) * log_2(x) format %{ "FLDLG2 \t\t\t#Log10\n\t" "FYL2X \t\t\t# Q=Log10*Log_2(x)" %} ins_encode( Opcode(0xD9), Opcode(0xEC), // fldlg2 Push_SrcXD(src), Opcode(0xD9), Opcode(0xF1), // fyl2x Push_ResultXD(dst)); ins_pipe( pipe_slow ); %} instruct logD_reg(regDPR1 dst, regDPR1 src) %{ predicate (UseSSE<=1); // The source Double operand on FPU stack match(Set dst (LogD src)); // fldln2 ; push log_e(2) on the FPU stack; full 80-bit number // fxch ; swap ST(0) with ST(1) // fyl2x ; compute log_e(2) * log_2(x) format %{ "FLDLN2 \t\t\t#Log_e\n\t" "FXCH \n\t" "FYL2X \t\t\t# Q=Log_e*Log_2(x)" %} ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2 Opcode(0xD9), Opcode(0xC9), // fxch Opcode(0xD9), Opcode(0xF1)); // fyl2x ins_pipe( pipe_slow ); %} instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{ predicate (UseSSE>=2); effect(KILL cr); // The source and result Double operands in XMM registers match(Set dst (LogD src)); // fldln2 ; push log_e(2) on the FPU stack; full 80-bit number // fyl2x ; compute log_e(2) * log_2(x) format %{ "FLDLN2 \t\t\t#Log_e\n\t" "FYL2X \t\t\t# Q=Log_e*Log_2(x)" %} ins_encode( Opcode(0xD9), Opcode(0xED), // fldln2 Push_SrcXD(src), Opcode(0xD9), Opcode(0xF1), // fyl2x Push_ResultXD(dst)); ins_pipe( pipe_slow ); %} //-------------Float Instructions------------------------------- // Float Math // Code for float compare: // fcompp(); // fwait(); fnstsw_ax(); // sahf(); // movl(dst, unordered_result); // jcc(Assembler::parity, exit); // movl(dst, less_result); // jcc(Assembler::below, exit); // movl(dst, equal_result); // jcc(Assembler::equal, exit); // movl(dst, greater_result); // exit: // P6 version of float compare, sets condition codes in EFLAGS instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{ predicate(VM_Version::supports_cmov() && UseSSE == 0); match(Set cr (CmpF src1 src2)); effect(KILL rax); ins_cost(150); format %{ "FLD $src1\n\t" "FUCOMIP ST,$src2 // P6 instruction\n\t" "JNP exit\n\t" "MOV ah,1 // saw a NaN, set CF (treat as LT)\n\t" "SAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), cmpF_P6_fixup ); ins_pipe( pipe_slow ); %} instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{ predicate(VM_Version::supports_cmov() && UseSSE == 0); match(Set cr (CmpF src1 src2)); ins_cost(100); format %{ "FLD $src1\n\t" "FUCOMIP ST,$src2 // P6 instruction" %} opcode(0xDF, 0x05); /* DF E8+i or DF /5 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2)); ins_pipe( pipe_slow ); %} // Compare & branch instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{ predicate(UseSSE == 0); match(Set cr (CmpF src1 src2)); effect(KILL rax); ins_cost(200); format %{ "FLD $src1\n\t" "FCOMp $src2\n\t" "FNSTSW AX\n\t" "TEST AX,0x400\n\t" "JZ,s flags\n\t" "MOV AH,1\t# unordered treat as LT\n" "flags:\tSAHF" %} opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), fpu_flags); ins_pipe( pipe_slow ); %} // Compare vs zero into -1,0,1 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE == 0); match(Set dst (CmpF3 src1 zero)); effect(KILL cr, KILL rax); ins_cost(280); format %{ "FTSTF $dst,$src1" %} opcode(0xE4, 0xD9); ins_encode( Push_Reg_D(src1), OpcS, OpcP, PopFPU, CmpF_Result(dst)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE == 0); match(Set dst (CmpF3 src1 src2)); effect(KILL cr, KILL rax); ins_cost(300); format %{ "FCMPF $dst,$src1,$src2" %} opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */ ins_encode( Push_Reg_D(src1), OpcP, RegOpc(src2), CmpF_Result(dst)); ins_pipe( pipe_slow ); %} // float compare and set condition codes in EFLAGS by XMM regs instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{ predicate(UseSSE>=1); match(Set cr (CmpF dst src)); effect(KILL rax); ins_cost(145); format %{ "COMISS $dst,$src\n" "\tJNP exit\n" "\tMOV ah,1 // saw a NaN, set CF\n" "\tSAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0x0F, 0x2F); ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup); ins_pipe( pipe_slow ); %} instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{ predicate(UseSSE>=1); match(Set cr (CmpF dst src)); ins_cost(100); format %{ "COMISS $dst,$src" %} opcode(0x0F, 0x2F); ins_encode(OpcP, OpcS, RegReg(dst, src)); ins_pipe( pipe_slow ); %} // float compare and set condition codes in EFLAGS by XMM regs instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{ predicate(UseSSE>=1); match(Set cr (CmpF dst (LoadF src))); effect(KILL rax); ins_cost(165); format %{ "COMISS $dst,$src\n" "\tJNP exit\n" "\tMOV ah,1 // saw a NaN, set CF\n" "\tSAHF\n" "exit:\tNOP // avoid branch to branch" %} opcode(0x0F, 0x2F); ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup); ins_pipe( pipe_slow ); %} instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{ predicate(UseSSE>=1); match(Set cr (CmpF dst (LoadF src))); ins_cost(100); format %{ "COMISS $dst,$src" %} opcode(0x0F, 0x2F); ins_encode(OpcP, OpcS, RegMem(dst, src)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 in XMM instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{ predicate(UseSSE>=1); match(Set dst (CmpF3 src1 src2)); effect(KILL cr); ins_cost(255); format %{ "XOR $dst,$dst\n" "\tCOMISS $src1,$src2\n" "\tJP,s nan\n" "\tJEQ,s exit\n" "\tJA,s inc\n" "nan:\tDEC $dst\n" "\tJMP,s exit\n" "inc:\tINC $dst\n" "exit:" %} opcode(0x0F, 0x2F); ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst)); ins_pipe( pipe_slow ); %} // Compare into -1,0,1 in XMM and memory instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{ predicate(UseSSE>=1); match(Set dst (CmpF3 src1 (LoadF mem))); effect(KILL cr); ins_cost(275); format %{ "COMISS $src1,$mem\n" "\tMOV $dst,0\t\t# do not blow flags\n" "\tJP,s nan\n" "\tJEQ,s exit\n" "\tJA,s inc\n" "nan:\tDEC $dst\n" "\tJMP,s exit\n" "inc:\tINC $dst\n" "exit:" %} opcode(0x0F, 0x2F); ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst)); ins_pipe( pipe_slow ); %} // Spill to obtain 24-bit precision instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (SubF src1 src2)); format %{ "FSUB $dst,$src1 - $src2" %} opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */ ins_encode( Push_Reg_F(src1), OpcReg_F(src2), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_reg ); %} // // This instruction does not round to 24-bits instruct subF_reg(regF dst, regF src) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (SubF dst src)); format %{ "FSUB $dst,$src" %} opcode(0xDE, 0x5); /* DE E8+i or DE /5 */ ins_encode( Push_Reg_F(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} // Spill to obtain 24-bit precision instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src1 src2)); format %{ "FADD $dst,$src1,$src2" %} opcode(0xD8, 0x0); /* D8 C0+i */ ins_encode( Push_Reg_F(src2), OpcReg_F(src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_reg ); %} // // This instruction does not round to 24-bits instruct addF_reg(regF dst, regF src) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (AddF dst src)); format %{ "FLD $src\n\t" "FADDp $dst,ST" %} opcode(0xDE, 0x0); /* DE C0+i or DE /0*/ ins_encode( Push_Reg_F(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} // Add two single precision floating point values in xmm instruct addX_reg(regX dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (AddF dst src)); format %{ "ADDSS $dst,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct addX_imm(regX dst, immXF con) %{ predicate(UseSSE>=1); match(Set dst (AddF dst con)); format %{ "ADDSS $dst,[$constantaddress]\t# load from constant table: float=$con" %} ins_encode %{ __ addss($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct addX_mem(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (AddF dst (LoadF mem))); format %{ "ADDSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem)); ins_pipe( pipe_slow ); %} // Subtract two single precision floating point values in xmm instruct subX_reg(regX dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (SubF dst src)); format %{ "SUBSS $dst,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct subX_imm(regX dst, immXF con) %{ predicate(UseSSE>=1); match(Set dst (SubF dst con)); format %{ "SUBSS $dst,[$constantaddress]\t# load from constant table: float=$con" %} ins_encode %{ __ subss($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct subX_mem(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (SubF dst (LoadF mem))); format %{ "SUBSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Multiply two single precision floating point values in xmm instruct mulX_reg(regX dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (MulF dst src)); format %{ "MULSS $dst,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct mulX_imm(regX dst, immXF con) %{ predicate(UseSSE>=1); match(Set dst (MulF dst con)); format %{ "MULSS $dst,[$constantaddress]\t# load from constant table: float=$con" %} ins_encode %{ __ mulss($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct mulX_mem(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (MulF dst (LoadF mem))); format %{ "MULSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Divide two single precision floating point values in xmm instruct divX_reg(regX dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (DivF dst src)); format %{ "DIVSS $dst,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct divX_imm(regX dst, immXF con) %{ predicate(UseSSE>=1); match(Set dst (DivF dst con)); format %{ "DIVSS $dst,[$constantaddress]\t# load from constant table: float=$con" %} ins_encode %{ __ divss($dst$$XMMRegister, $constantaddress($con)); %} ins_pipe(pipe_slow); %} instruct divX_mem(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (DivF dst (LoadF mem))); format %{ "DIVSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem)); ins_pipe( pipe_slow ); %} // Get the square root of a single precision floating point values in xmm instruct sqrtX_reg(regX dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (ConvD2F (SqrtD (ConvF2D src)))); format %{ "SQRTSS $dst,$src" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct sqrtX_mem(regX dst, memory mem) %{ predicate(UseSSE>=1); match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem))))); format %{ "SQRTSS $dst,$mem" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem)); ins_pipe( pipe_slow ); %} // Get the square root of a double precision floating point values in xmm instruct sqrtXD_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (SqrtD src)); format %{ "SQRTSD $dst,$src" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct sqrtXD_mem(regXD dst, memory mem) %{ predicate(UseSSE>=2); match(Set dst (SqrtD (LoadD mem))); format %{ "SQRTSD $dst,$mem" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem)); ins_pipe( pipe_slow ); %} instruct absF_reg(regFPR1 dst, regFPR1 src) %{ predicate(UseSSE==0); match(Set dst (AbsF src)); ins_cost(100); format %{ "FABS" %} opcode(0xE1, 0xD9); ins_encode( OpcS, OpcP ); ins_pipe( fpu_reg_reg ); %} instruct absX_reg(regX dst ) %{ predicate(UseSSE>=1); match(Set dst (AbsF dst)); format %{ "ANDPS $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %} ins_encode( AbsXF_encoding(dst)); ins_pipe( pipe_slow ); %} instruct negF_reg(regFPR1 dst, regFPR1 src) %{ predicate(UseSSE==0); match(Set dst (NegF src)); ins_cost(100); format %{ "FCHS" %} opcode(0xE0, 0xD9); ins_encode( OpcS, OpcP ); ins_pipe( fpu_reg_reg ); %} instruct negX_reg( regX dst ) %{ predicate(UseSSE>=1); match(Set dst (NegF dst)); format %{ "XORPS $dst,[0x80000000]\t# CHS F by sign flipping" %} ins_encode( NegXF_encoding(dst)); ins_pipe( pipe_slow ); %} // Cisc-alternate to addF_reg // Spill to obtain 24-bit precision instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src1 (LoadF src2))); format %{ "FLD $src2\n\t" "FADD ST,$src1\n\t" "FSTP_S $dst" %} opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), OpcReg_F(src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_mem ); %} // // Cisc-alternate to addF_reg // This instruction does not round to 24-bits instruct addF_reg_mem(regF dst, memory src) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (AddF dst (LoadF src))); format %{ "FADD $dst,$src" %} opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_mem ); %} // // Following two instructions for _222_mpegaudio // Spill to obtain 24-bit precision instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src1 src2)); format %{ "FADD $dst,$src1,$src2" %} opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1), OpcReg_F(src2), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_mem ); %} // Cisc-spill variant // Spill to obtain 24-bit precision instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src1 (LoadF src2))); format %{ "FADD $dst,$src1,$src2 cisc" %} opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), set_instruction_start, OpcP, RMopc_Mem(secondary,src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_mem_mem ); %} // Spill to obtain 24-bit precision instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src1 src2)); format %{ "FADD $dst,$src1,$src2" %} opcode(0xD8, 0x0, 0xD9); /* D8 /0 */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), set_instruction_start, OpcP, RMopc_Mem(secondary,src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_mem_mem ); %} // Spill to obtain 24-bit precision instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (AddF src con)); format %{ "FLD $src\n\t" "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t" "FSTP_S $dst" %} ins_encode %{ __ fld_s($src$$reg - 1); // FLD ST(i-1) __ fadd_s($constantaddress($con)); __ fstp_s(Address(rsp, $dst$$disp)); %} ins_pipe(fpu_mem_reg_con); %} // // This instruction does not round to 24-bits instruct addF_reg_imm(regF dst, regF src, immF con) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (AddF src con)); format %{ "FLD $src\n\t" "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t" "FSTP $dst" %} ins_encode %{ __ fld_s($src$$reg - 1); // FLD ST(i-1) __ fadd_s($constantaddress($con)); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_reg_con); %} // Spill to obtain 24-bit precision instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (MulF src1 src2)); format %{ "FLD $src1\n\t" "FMUL $src2\n\t" "FSTP_S $dst" %} opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */ ins_encode( Push_Reg_F(src1), OpcReg_F(src2), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_reg ); %} // // This instruction does not round to 24-bits instruct mulF_reg(regF dst, regF src1, regF src2) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (MulF src1 src2)); format %{ "FLD $src1\n\t" "FMUL $src2\n\t" "FSTP_S $dst" %} opcode(0xD8, 0x1); /* D8 C8+i */ ins_encode( Push_Reg_F(src2), OpcReg_F(src1), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_reg_reg ); %} // Spill to obtain 24-bit precision // Cisc-alternate to reg-reg multiply instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (MulF src1 (LoadF src2))); format %{ "FLD_S $src2\n\t" "FMUL $src1\n\t" "FSTP_S $dst" %} opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), OpcReg_F(src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_mem ); %} // // This instruction does not round to 24-bits // Cisc-alternate to reg-reg multiply instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (MulF src1 (LoadF src2))); format %{ "FMUL $dst,$src1,$src2" %} opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), OpcReg_F(src1), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_reg_mem ); %} // Spill to obtain 24-bit precision instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (MulF src1 src2)); format %{ "FMUL $dst,$src1,$src2" %} opcode(0xD8, 0x1, 0xD9); /* D8 /1 */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2), set_instruction_start, OpcP, RMopc_Mem(secondary,src1), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_mem_mem ); %} // Spill to obtain 24-bit precision instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (MulF src con)); format %{ "FLD $src\n\t" "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t" "FSTP_S $dst" %} ins_encode %{ __ fld_s($src$$reg - 1); // FLD ST(i-1) __ fmul_s($constantaddress($con)); __ fstp_s(Address(rsp, $dst$$disp)); %} ins_pipe(fpu_mem_reg_con); %} // // This instruction does not round to 24-bits instruct mulF_reg_imm(regF dst, regF src, immF con) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (MulF src con)); format %{ "FLD $src\n\t" "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t" "FSTP $dst" %} ins_encode %{ __ fld_s($src$$reg - 1); // FLD ST(i-1) __ fmul_s($constantaddress($con)); __ fstp_d($dst$$reg); %} ins_pipe(fpu_reg_reg_con); %} // // MACRO1 -- subsume unshared load into mulF // This instruction does not round to 24-bits instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (MulF (LoadF mem1) src)); format %{ "FLD $mem1 ===MACRO1===\n\t" "FMUL ST,$src\n\t" "FSTP $dst" %} opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */ /* LoadF D9 /0 */ ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1), OpcReg_F(src), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_reg_mem ); %} // // MACRO2 -- addF a mulF which subsumed an unshared load // This instruction does not round to 24-bits instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (AddF (MulF (LoadF mem1) src1) src2)); ins_cost(95); format %{ "FLD $mem1 ===MACRO2===\n\t" "FMUL ST,$src1 subsume mulF left load\n\t" "FADD ST,$src2\n\t" "FSTP $dst" %} opcode(0xD9); /* LoadF D9 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem1), FMul_ST_reg(src1), FAdd_ST_reg(src2), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_mem_reg_reg ); %} // MACRO3 -- addF a mulF // This instruction does not round to 24-bits. It is a '2-address' // instruction in that the result goes back to src2. This eliminates // a move from the macro; possibly the register allocator will have // to add it back (and maybe not). instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set src2 (AddF (MulF src0 src1) src2)); format %{ "FLD $src0 ===MACRO3===\n\t" "FMUL ST,$src1\n\t" "FADDP $src2,ST" %} opcode(0xD9); /* LoadF D9 /0 */ ins_encode( Push_Reg_F(src0), FMul_ST_reg(src1), FAddP_reg_ST(src2) ); ins_pipe( fpu_reg_reg_reg ); %} // MACRO4 -- divF subF // This instruction does not round to 24-bits instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (DivF (SubF src2 src1) src3)); format %{ "FLD $src2 ===MACRO4===\n\t" "FSUB ST,$src1\n\t" "FDIV ST,$src3\n\t" "FSTP $dst" %} opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ ins_encode( Push_Reg_F(src2), subF_divF_encode(src1,src3), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_reg_reg_reg ); %} // Spill to obtain 24-bit precision instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{ predicate(UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (DivF src1 src2)); format %{ "FDIV $dst,$src1,$src2" %} opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/ ins_encode( Push_Reg_F(src1), OpcReg_F(src2), Pop_Mem_F(dst) ); ins_pipe( fpu_mem_reg_reg ); %} // // This instruction does not round to 24-bits instruct divF_reg(regF dst, regF src) %{ predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (DivF dst src)); format %{ "FDIV $dst,$src" %} opcode(0xDE, 0x7); /* DE F8+i or DE /7*/ ins_encode( Push_Reg_F(src), OpcP, RegOpc(dst) ); ins_pipe( fpu_reg_reg ); %} // Spill to obtain 24-bit precision instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{ predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (ModF src1 src2)); effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS format %{ "FMOD $dst,$src1,$src2" %} ins_encode( Push_Reg_Mod_D(src1, src2), emitModD(), Push_Result_Mod_D(src2), Pop_Mem_F(dst)); ins_pipe( pipe_slow ); %} // // This instruction does not round to 24-bits instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{ predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (ModF dst src)); effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS format %{ "FMOD $dst,$src" %} ins_encode(Push_Reg_Mod_D(dst, src), emitModD(), Push_Result_Mod_D(src), Pop_Reg_F(dst)); ins_pipe( pipe_slow ); %} instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{ predicate(UseSSE>=1); match(Set dst (ModF src0 src1)); effect(KILL rax, KILL cr); format %{ "SUB ESP,4\t # FMOD\n" "\tMOVSS [ESP+0],$src1\n" "\tFLD_S [ESP+0]\n" "\tMOVSS [ESP+0],$src0\n" "\tFLD_S [ESP+0]\n" "loop:\tFPREM\n" "\tFWAIT\n" "\tFNSTSW AX\n" "\tSAHF\n" "\tJP loop\n" "\tFSTP_S [ESP+0]\n" "\tMOVSS $dst,[ESP+0]\n" "\tADD ESP,4\n" "\tFSTP ST0\t # Restore FPU Stack" %} ins_cost(250); ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU); ins_pipe( pipe_slow ); %} //----------Arithmetic Conversion Instructions--------------------------------- // The conversions operations are all Alpha sorted. Please keep it that way! instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{ predicate(UseSSE==0); match(Set dst (RoundFloat src)); ins_cost(125); format %{ "FST_S $dst,$src\t# F-round" %} ins_encode( Pop_Mem_Reg_F(dst, src) ); ins_pipe( fpu_mem_reg ); %} instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (RoundDouble src)); ins_cost(125); format %{ "FST_D $dst,$src\t# D-round" %} ins_encode( Pop_Mem_Reg_D(dst, src) ); ins_pipe( fpu_mem_reg ); %} // Force rounding to 24-bit precision and 6-bit exponent instruct convD2F_reg(stackSlotF dst, regD src) %{ predicate(UseSSE==0); match(Set dst (ConvD2F src)); format %{ "FST_S $dst,$src\t# F-round" %} expand %{ roundFloat_mem_reg(dst,src); %} %} // Force rounding to 24-bit precision and 6-bit exponent instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{ predicate(UseSSE==1); match(Set dst (ConvD2F src)); effect( KILL cr ); format %{ "SUB ESP,4\n\t" "FST_S [ESP],$src\t# F-round\n\t" "MOVSS $dst,[ESP]\n\t" "ADD ESP,4" %} ins_encode( D2X_encoding(dst, src) ); ins_pipe( pipe_slow ); %} // Force rounding double precision to single precision instruct convXD2X_reg(regX dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (ConvD2F src)); format %{ "CVTSD2SS $dst,$src\t# F-round" %} opcode(0xF2, 0x0F, 0x5A); ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct convF2D_reg_reg(regD dst, regF src) %{ predicate(UseSSE==0); match(Set dst (ConvF2D src)); format %{ "FST_S $dst,$src\t# D-round" %} ins_encode( Pop_Reg_Reg_D(dst, src)); ins_pipe( fpu_reg_reg ); %} instruct convF2D_reg(stackSlotD dst, regF src) %{ predicate(UseSSE==1); match(Set dst (ConvF2D src)); format %{ "FST_D $dst,$src\t# D-round" %} expand %{ roundDouble_mem_reg(dst,src); %} %} instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{ predicate(UseSSE==1); match(Set dst (ConvF2D src)); effect( KILL cr ); format %{ "SUB ESP,4\n\t" "MOVSS [ESP] $src\n\t" "FLD_S [ESP]\n\t" "ADD ESP,4\n\t" "FSTP $dst\t# D-round" %} ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst)); ins_pipe( pipe_slow ); %} instruct convX2XD_reg(regXD dst, regX src) %{ predicate(UseSSE>=2); match(Set dst (ConvF2D src)); format %{ "CVTSS2SD $dst,$src\t# D-round" %} opcode(0xF3, 0x0F, 0x5A); ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); ins_pipe( pipe_slow ); %} // Convert a double to an int. If the double is a NAN, stuff a zero in instead. instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{ predicate(UseSSE<=1); match(Set dst (ConvD2I src)); effect( KILL tmp, KILL cr ); format %{ "FLD $src\t# Convert double to int \n\t" "FLDCW trunc mode\n\t" "SUB ESP,4\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "CMP EAX,0x80000000\n\t" "JNE,s fast\n\t" "FLD_D $src\n\t" "CALL d2i_wrapper\n" "fast:" %} ins_encode( Push_Reg_D(src), D2I_encoding(src) ); ins_pipe( pipe_slow ); %} // Convert a double to an int. If the double is a NAN, stuff a zero in instead. instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{ predicate(UseSSE>=2); match(Set dst (ConvD2I src)); effect( KILL tmp, KILL cr ); format %{ "CVTTSD2SI $dst, $src\n\t" "CMP $dst,0x80000000\n\t" "JNE,s fast\n\t" "SUB ESP, 8\n\t" "MOVSD [ESP], $src\n\t" "FLD_D [ESP]\n\t" "ADD ESP, 8\n\t" "CALL d2i_wrapper\n" "fast:" %} opcode(0x1); // double-precision conversion ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst)); ins_pipe( pipe_slow ); %} instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{ predicate(UseSSE<=1); match(Set dst (ConvD2L src)); effect( KILL cr ); format %{ "FLD $src\t# Convert double to long\n\t" "FLDCW trunc mode\n\t" "SUB ESP,8\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "POP EDX\n\t" "CMP EDX,0x80000000\n\t" "JNE,s fast\n\t" "TEST EAX,EAX\n\t" "JNE,s fast\n\t" "FLD $src\n\t" "CALL d2l_wrapper\n" "fast:" %} ins_encode( Push_Reg_D(src), D2L_encoding(src) ); ins_pipe( pipe_slow ); %} // XMM lacks a float/double->long conversion, so use the old FPU stack. instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{ predicate (UseSSE>=2); match(Set dst (ConvD2L src)); effect( KILL cr ); format %{ "SUB ESP,8\t# Convert double to long\n\t" "MOVSD [ESP],$src\n\t" "FLD_D [ESP]\n\t" "FLDCW trunc mode\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "POP EDX\n\t" "CMP EDX,0x80000000\n\t" "JNE,s fast\n\t" "TEST EAX,EAX\n\t" "JNE,s fast\n\t" "SUB ESP,8\n\t" "MOVSD [ESP],$src\n\t" "FLD_D [ESP]\n\t" "CALL d2l_wrapper\n" "fast:" %} ins_encode( XD2L_encoding(src) ); ins_pipe( pipe_slow ); %} // Convert a double to an int. Java semantics require we do complex // manglations in the corner cases. So we set the rounding mode to // 'zero', store the darned double down as an int, and reset the // rounding mode to 'nearest'. The hardware stores a flag value down // if we would overflow or converted a NAN; we check for this and // and go the slow path if needed. instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{ predicate(UseSSE==0); match(Set dst (ConvF2I src)); effect( KILL tmp, KILL cr ); format %{ "FLD $src\t# Convert float to int \n\t" "FLDCW trunc mode\n\t" "SUB ESP,4\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "CMP EAX,0x80000000\n\t" "JNE,s fast\n\t" "FLD $src\n\t" "CALL d2i_wrapper\n" "fast:" %} // D2I_encoding works for F2I ins_encode( Push_Reg_F(src), D2I_encoding(src) ); ins_pipe( pipe_slow ); %} // Convert a float in xmm to an int reg. instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{ predicate(UseSSE>=1); match(Set dst (ConvF2I src)); effect( KILL tmp, KILL cr ); format %{ "CVTTSS2SI $dst, $src\n\t" "CMP $dst,0x80000000\n\t" "JNE,s fast\n\t" "SUB ESP, 4\n\t" "MOVSS [ESP], $src\n\t" "FLD [ESP]\n\t" "ADD ESP, 4\n\t" "CALL d2i_wrapper\n" "fast:" %} opcode(0x0); // single-precision conversion ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst)); ins_pipe( pipe_slow ); %} instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{ predicate(UseSSE==0); match(Set dst (ConvF2L src)); effect( KILL cr ); format %{ "FLD $src\t# Convert float to long\n\t" "FLDCW trunc mode\n\t" "SUB ESP,8\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "POP EDX\n\t" "CMP EDX,0x80000000\n\t" "JNE,s fast\n\t" "TEST EAX,EAX\n\t" "JNE,s fast\n\t" "FLD $src\n\t" "CALL d2l_wrapper\n" "fast:" %} // D2L_encoding works for F2L ins_encode( Push_Reg_F(src), D2L_encoding(src) ); ins_pipe( pipe_slow ); %} // XMM lacks a float/double->long conversion, so use the old FPU stack. instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{ predicate (UseSSE>=1); match(Set dst (ConvF2L src)); effect( KILL cr ); format %{ "SUB ESP,8\t# Convert float to long\n\t" "MOVSS [ESP],$src\n\t" "FLD_S [ESP]\n\t" "FLDCW trunc mode\n\t" "FISTp [ESP + #0]\n\t" "FLDCW std/24-bit mode\n\t" "POP EAX\n\t" "POP EDX\n\t" "CMP EDX,0x80000000\n\t" "JNE,s fast\n\t" "TEST EAX,EAX\n\t" "JNE,s fast\n\t" "SUB ESP,4\t# Convert float to long\n\t" "MOVSS [ESP],$src\n\t" "FLD_S [ESP]\n\t" "ADD ESP,4\n\t" "CALL d2l_wrapper\n" "fast:" %} ins_encode( X2L_encoding(src) ); ins_pipe( pipe_slow ); %} instruct convI2D_reg(regD dst, stackSlotI src) %{ predicate( UseSSE<=1 ); match(Set dst (ConvI2D src)); format %{ "FILD $src\n\t" "FSTP $dst" %} opcode(0xDB, 0x0); /* DB /0 */ ins_encode(Push_Mem_I(src), Pop_Reg_D(dst)); ins_pipe( fpu_reg_mem ); %} instruct convI2XD_reg(regXD dst, eRegI src) %{ predicate( UseSSE>=2 && !UseXmmI2D ); match(Set dst (ConvI2D src)); format %{ "CVTSI2SD $dst,$src" %} opcode(0xF2, 0x0F, 0x2A); ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct convI2XD_mem(regXD dst, memory mem) %{ predicate( UseSSE>=2 ); match(Set dst (ConvI2D (LoadI mem))); format %{ "CVTSI2SD $dst,$mem" %} opcode(0xF2, 0x0F, 0x2A); ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem)); ins_pipe( pipe_slow ); %} instruct convXI2XD_reg(regXD dst, eRegI src) %{ predicate( UseSSE>=2 && UseXmmI2D ); match(Set dst (ConvI2D src)); format %{ "MOVD $dst,$src\n\t" "CVTDQ2PD $dst,$dst\t# i2d" %} ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister); %} ins_pipe(pipe_slow); // XXX %} instruct convI2D_mem(regD dst, memory mem) %{ predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr()); match(Set dst (ConvI2D (LoadI mem))); format %{ "FILD $mem\n\t" "FSTP $dst" %} opcode(0xDB); /* DB /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Pop_Reg_D(dst)); ins_pipe( fpu_reg_mem ); %} // Convert a byte to a float; no rounding step needed. instruct conv24I2F_reg(regF dst, stackSlotI src) %{ predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 ); match(Set dst (ConvI2F src)); format %{ "FILD $src\n\t" "FSTP $dst" %} opcode(0xDB, 0x0); /* DB /0 */ ins_encode(Push_Mem_I(src), Pop_Reg_F(dst)); ins_pipe( fpu_reg_mem ); %} // In 24-bit mode, force exponent rounding by storing back out instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{ predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (ConvI2F src)); ins_cost(200); format %{ "FILD $src\n\t" "FSTP_S $dst" %} opcode(0xDB, 0x0); /* DB /0 */ ins_encode( Push_Mem_I(src), Pop_Mem_F(dst)); ins_pipe( fpu_mem_mem ); %} // In 24-bit mode, force exponent rounding by storing back out instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{ predicate( UseSSE==0 && Compile::current()->select_24_bit_instr()); match(Set dst (ConvI2F (LoadI mem))); ins_cost(200); format %{ "FILD $mem\n\t" "FSTP_S $dst" %} opcode(0xDB); /* DB /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Pop_Mem_F(dst)); ins_pipe( fpu_mem_mem ); %} // This instruction does not round to 24-bits instruct convI2F_reg(regF dst, stackSlotI src) %{ predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (ConvI2F src)); format %{ "FILD $src\n\t" "FSTP $dst" %} opcode(0xDB, 0x0); /* DB /0 */ ins_encode( Push_Mem_I(src), Pop_Reg_F(dst)); ins_pipe( fpu_reg_mem ); %} // This instruction does not round to 24-bits instruct convI2F_mem(regF dst, memory mem) %{ predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr()); match(Set dst (ConvI2F (LoadI mem))); format %{ "FILD $mem\n\t" "FSTP $dst" %} opcode(0xDB); /* DB /0 */ ins_encode( OpcP, RMopc_Mem(0x00,mem), Pop_Reg_F(dst)); ins_pipe( fpu_reg_mem ); %} // Convert an int to a float in xmm; no rounding step needed. instruct convI2X_reg(regX dst, eRegI src) %{ predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F ); match(Set dst (ConvI2F src)); format %{ "CVTSI2SS $dst, $src" %} opcode(0xF3, 0x0F, 0x2A); /* F3 0F 2A /r */ ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src)); ins_pipe( pipe_slow ); %} instruct convXI2X_reg(regX dst, eRegI src) %{ predicate( UseSSE>=2 && UseXmmI2F ); match(Set dst (ConvI2F src)); format %{ "MOVD $dst,$src\n\t" "CVTDQ2PS $dst,$dst\t# i2f" %} ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister); %} ins_pipe(pipe_slow); // XXX %} instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{ match(Set dst (ConvI2L src)); effect(KILL cr); ins_cost(375); format %{ "MOV $dst.lo,$src\n\t" "MOV $dst.hi,$src\n\t" "SAR $dst.hi,31" %} ins_encode(convert_int_long(dst,src)); ins_pipe( ialu_reg_reg_long ); %} // Zero-extend convert int to long instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{ match(Set dst (AndL (ConvI2L src) mask) ); effect( KILL flags ); ins_cost(250); format %{ "MOV $dst.lo,$src\n\t" "XOR $dst.hi,$dst.hi" %} opcode(0x33); // XOR ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) ); ins_pipe( ialu_reg_reg_long ); %} // Zero-extend long instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{ match(Set dst (AndL src mask) ); effect( KILL flags ); ins_cost(250); format %{ "MOV $dst.lo,$src.lo\n\t" "XOR $dst.hi,$dst.hi\n\t" %} opcode(0x33); // XOR ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) ); ins_pipe( ialu_reg_reg_long ); %} instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{ predicate (UseSSE<=1); match(Set dst (ConvL2D src)); effect( KILL cr ); format %{ "PUSH $src.hi\t# Convert long to double\n\t" "PUSH $src.lo\n\t" "FILD ST,[ESP + #0]\n\t" "ADD ESP,8\n\t" "FSTP_D $dst\t# D-round" %} opcode(0xDF, 0x5); /* DF /5 */ ins_encode(convert_long_double(src), Pop_Mem_D(dst)); ins_pipe( pipe_slow ); %} instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{ predicate (UseSSE>=2); match(Set dst (ConvL2D src)); effect( KILL cr ); format %{ "PUSH $src.hi\t# Convert long to double\n\t" "PUSH $src.lo\n\t" "FILD_D [ESP]\n\t" "FSTP_D [ESP]\n\t" "MOVSD $dst,[ESP]\n\t" "ADD ESP,8" %} opcode(0xDF, 0x5); /* DF /5 */ ins_encode(convert_long_double2(src), Push_ResultXD(dst)); ins_pipe( pipe_slow ); %} instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{ predicate (UseSSE>=1); match(Set dst (ConvL2F src)); effect( KILL cr ); format %{ "PUSH $src.hi\t# Convert long to single float\n\t" "PUSH $src.lo\n\t" "FILD_D [ESP]\n\t" "FSTP_S [ESP]\n\t" "MOVSS $dst,[ESP]\n\t" "ADD ESP,8" %} opcode(0xDF, 0x5); /* DF /5 */ ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8)); ins_pipe( pipe_slow ); %} instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{ match(Set dst (ConvL2F src)); effect( KILL cr ); format %{ "PUSH $src.hi\t# Convert long to single float\n\t" "PUSH $src.lo\n\t" "FILD ST,[ESP + #0]\n\t" "ADD ESP,8\n\t" "FSTP_S $dst\t# F-round" %} opcode(0xDF, 0x5); /* DF /5 */ ins_encode(convert_long_double(src), Pop_Mem_F(dst)); ins_pipe( pipe_slow ); %} instruct convL2I_reg( eRegI dst, eRegL src ) %{ match(Set dst (ConvL2I src)); effect( DEF dst, USE src ); format %{ "MOV $dst,$src.lo" %} ins_encode(enc_CopyL_Lo(dst,src)); ins_pipe( ialu_reg_reg ); %} instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{ match(Set dst (MoveF2I src)); effect( DEF dst, USE src ); ins_cost(100); format %{ "MOV $dst,$src\t# MoveF2I_stack_reg" %} opcode(0x8B); ins_encode( OpcP, RegMem(dst,src)); ins_pipe( ialu_reg_mem ); %} instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{ predicate(UseSSE==0); match(Set dst (MoveF2I src)); effect( DEF dst, USE src ); ins_cost(125); format %{ "FST_S $dst,$src\t# MoveF2I_reg_stack" %} ins_encode( Pop_Mem_Reg_F(dst, src) ); ins_pipe( fpu_mem_reg ); %} instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{ predicate(UseSSE>=1); match(Set dst (MoveF2I src)); effect( DEF dst, USE src ); ins_cost(95); format %{ "MOVSS $dst,$src\t# MoveF2I_reg_stack_sse" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst)); ins_pipe( pipe_slow ); %} instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{ predicate(UseSSE>=2); match(Set dst (MoveF2I src)); effect( DEF dst, USE src ); ins_cost(85); format %{ "MOVD $dst,$src\t# MoveF2I_reg_reg_sse" %} ins_encode( MovX2I_reg(dst, src)); ins_pipe( pipe_slow ); %} instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{ match(Set dst (MoveI2F src)); effect( DEF dst, USE src ); ins_cost(100); format %{ "MOV $dst,$src\t# MoveI2F_reg_stack" %} opcode(0x89); ins_encode( OpcPRegSS( dst, src ) ); ins_pipe( ialu_mem_reg ); %} instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{ predicate(UseSSE==0); match(Set dst (MoveI2F src)); effect(DEF dst, USE src); ins_cost(125); format %{ "FLD_S $src\n\t" "FSTP $dst\t# MoveI2F_stack_reg" %} opcode(0xD9); /* D9 /0, FLD m32real */ ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), Pop_Reg_F(dst) ); ins_pipe( fpu_reg_mem ); %} instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{ predicate(UseSSE>=1); match(Set dst (MoveI2F src)); effect( DEF dst, USE src ); ins_cost(95); format %{ "MOVSS $dst,$src\t# MoveI2F_stack_reg_sse" %} ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src)); ins_pipe( pipe_slow ); %} instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{ predicate(UseSSE>=2); match(Set dst (MoveI2F src)); effect( DEF dst, USE src ); ins_cost(85); format %{ "MOVD $dst,$src\t# MoveI2F_reg_reg_sse" %} ins_encode( MovI2X_reg(dst, src) ); ins_pipe( pipe_slow ); %} instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{ match(Set dst (MoveD2L src)); effect(DEF dst, USE src); ins_cost(250); format %{ "MOV $dst.lo,$src\n\t" "MOV $dst.hi,$src+4\t# MoveD2L_stack_reg" %} opcode(0x8B, 0x8B); ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src)); ins_pipe( ialu_mem_long_reg ); %} instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{ predicate(UseSSE<=1); match(Set dst (MoveD2L src)); effect(DEF dst, USE src); ins_cost(125); format %{ "FST_D $dst,$src\t# MoveD2L_reg_stack" %} ins_encode( Pop_Mem_Reg_D(dst, src) ); ins_pipe( fpu_mem_reg ); %} instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (MoveD2L src)); effect(DEF dst, USE src); ins_cost(95); format %{ "MOVSD $dst,$src\t# MoveD2L_reg_stack_sse" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst)); ins_pipe( pipe_slow ); %} instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{ predicate(UseSSE>=2); match(Set dst (MoveD2L src)); effect(DEF dst, USE src, TEMP tmp); ins_cost(85); format %{ "MOVD $dst.lo,$src\n\t" "PSHUFLW $tmp,$src,0x4E\n\t" "MOVD $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %} ins_encode( MovXD2L_reg(dst, src, tmp) ); ins_pipe( pipe_slow ); %} instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{ match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(200); format %{ "MOV $dst,$src.lo\n\t" "MOV $dst+4,$src.hi\t# MoveL2D_reg_stack" %} opcode(0x89, 0x89); ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) ); ins_pipe( ialu_mem_long_reg ); %} instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{ predicate(UseSSE<=1); match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(125); format %{ "FLD_D $src\n\t" "FSTP $dst\t# MoveL2D_stack_reg" %} opcode(0xDD); /* DD /0, FLD m64real */ ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src), Pop_Reg_D(dst) ); ins_pipe( fpu_reg_mem ); %} instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{ predicate(UseSSE>=2 && UseXmmLoadAndClearUpper); match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(95); format %{ "MOVSD $dst,$src\t# MoveL2D_stack_reg_sse" %} ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src)); ins_pipe( pipe_slow ); %} instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{ predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper); match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(95); format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %} ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src)); ins_pipe( pipe_slow ); %} instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{ predicate(UseSSE>=2); match(Set dst (MoveL2D src)); effect(TEMP dst, USE src, TEMP tmp); ins_cost(85); format %{ "MOVD $dst,$src.lo\n\t" "MOVD $tmp,$src.hi\n\t" "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %} ins_encode( MovL2XD_reg(dst, src, tmp) ); ins_pipe( pipe_slow ); %} // Replicate scalar to packed byte (1 byte) values in xmm instruct Repl8B_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (Replicate8B src)); format %{ "MOVDQA $dst,$src\n\t" "PUNPCKLBW $dst,$dst\n\t" "PSHUFLW $dst,$dst,0x00\t! replicate8B" %} ins_encode( pshufd_8x8(dst, src)); ins_pipe( pipe_slow ); %} // Replicate scalar to packed byte (1 byte) values in xmm instruct Repl8B_eRegI(regXD dst, eRegI src) %{ predicate(UseSSE>=2); match(Set dst (Replicate8B src)); format %{ "MOVD $dst,$src\n\t" "PUNPCKLBW $dst,$dst\n\t" "PSHUFLW $dst,$dst,0x00\t! replicate8B" %} ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst)); ins_pipe( pipe_slow ); %} // Replicate scalar zero to packed byte (1 byte) values in xmm instruct Repl8B_immI0(regXD dst, immI0 zero) %{ predicate(UseSSE>=2); match(Set dst (Replicate8B zero)); format %{ "PXOR $dst,$dst\t! replicate8B" %} ins_encode( pxor(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed shore (2 byte) values in xmm instruct Repl4S_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (Replicate4S src)); format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %} ins_encode( pshufd_4x16(dst, src)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed shore (2 byte) values in xmm instruct Repl4S_eRegI(regXD dst, eRegI src) %{ predicate(UseSSE>=2); match(Set dst (Replicate4S src)); format %{ "MOVD $dst,$src\n\t" "PSHUFLW $dst,$dst,0x00\t! replicate4S" %} ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar zero to packed short (2 byte) values in xmm instruct Repl4S_immI0(regXD dst, immI0 zero) %{ predicate(UseSSE>=2); match(Set dst (Replicate4S zero)); format %{ "PXOR $dst,$dst\t! replicate4S" %} ins_encode( pxor(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed char (2 byte) values in xmm instruct Repl4C_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (Replicate4C src)); format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %} ins_encode( pshufd_4x16(dst, src)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed char (2 byte) values in xmm instruct Repl4C_eRegI(regXD dst, eRegI src) %{ predicate(UseSSE>=2); match(Set dst (Replicate4C src)); format %{ "MOVD $dst,$src\n\t" "PSHUFLW $dst,$dst,0x00\t! replicate4C" %} ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar zero to packed char (2 byte) values in xmm instruct Repl4C_immI0(regXD dst, immI0 zero) %{ predicate(UseSSE>=2); match(Set dst (Replicate4C zero)); format %{ "PXOR $dst,$dst\t! replicate4C" %} ins_encode( pxor(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed integer (4 byte) values in xmm instruct Repl2I_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (Replicate2I src)); format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %} ins_encode( pshufd(dst, src, 0x00)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed integer (4 byte) values in xmm instruct Repl2I_eRegI(regXD dst, eRegI src) %{ predicate(UseSSE>=2); match(Set dst (Replicate2I src)); format %{ "MOVD $dst,$src\n\t" "PSHUFD $dst,$dst,0x00\t! replicate2I" %} ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar zero to packed integer (2 byte) values in xmm instruct Repl2I_immI0(regXD dst, immI0 zero) %{ predicate(UseSSE>=2); match(Set dst (Replicate2I zero)); format %{ "PXOR $dst,$dst\t! replicate2I" %} ins_encode( pxor(dst, dst)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed single precision floating point values in xmm instruct Repl2F_reg(regXD dst, regXD src) %{ predicate(UseSSE>=2); match(Set dst (Replicate2F src)); format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %} ins_encode( pshufd(dst, src, 0xe0)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed single precision floating point values in xmm instruct Repl2F_regX(regXD dst, regX src) %{ predicate(UseSSE>=2); match(Set dst (Replicate2F src)); format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %} ins_encode( pshufd(dst, src, 0xe0)); ins_pipe( fpu_reg_reg ); %} // Replicate scalar to packed single precision floating point values in xmm instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{ predicate(UseSSE>=2); match(Set dst (Replicate2F zero)); format %{ "PXOR $dst,$dst\t! replicate2F" %} ins_encode( pxor(dst, dst)); ins_pipe( fpu_reg_reg ); %} // ======================================================================= // fast clearing of an array instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{ match(Set dummy (ClearArray cnt base)); effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr); format %{ "SHL ECX,1\t# Convert doublewords to words\n\t" "XOR EAX,EAX\n\t" "REP STOS\t# store EAX into [EDI++] while ECX--" %} opcode(0,0x4); ins_encode( Opcode(0xD1), RegOpc(ECX), OpcRegReg(0x33,EAX,EAX), Opcode(0xF3), Opcode(0xAB) ); ins_pipe( pipe_slow ); %} instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2, eAXRegI result, regXD tmp1, eFlagsReg cr) %{ match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2))); effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr); format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result // KILL $tmp1" %} ins_encode %{ __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register, $result$$Register, $tmp1$$XMMRegister); %} ins_pipe( pipe_slow ); %} // fast string equals instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result, regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{ match(Set result (StrEquals (Binary str1 str2) cnt)); effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr); format %{ "String Equals $str1,$str2,$cnt -> $result // KILL $tmp1, $tmp2, $tmp3" %} ins_encode %{ __ char_arrays_equals(false, $str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register, $tmp3$$Register, $tmp1$$XMMRegister, $tmp2$$XMMRegister); %} ins_pipe( pipe_slow ); %} // fast search of substring with known size. instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2, eBXRegI result, regXD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{ predicate(UseSSE42Intrinsics); match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2))); effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr); format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result // KILL $vec, $cnt1, $cnt2, $tmp" %} ins_encode %{ int icnt2 = (int)$int_cnt2$$constant; if (icnt2 >= 8) { // IndexOf for constant substrings with size >= 8 elements // which don't need to be loaded through stack. __ string_indexofC8($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register, icnt2, $result$$Register, $vec$$XMMRegister, $tmp$$Register); } else { // Small strings are loaded through stack if they cross page boundary. __ string_indexof($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register, icnt2, $result$$Register, $vec$$XMMRegister, $tmp$$Register); } %} ins_pipe( pipe_slow ); %} instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2, eBXRegI result, regXD vec, eCXRegI tmp, eFlagsReg cr) %{ predicate(UseSSE42Intrinsics); match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2))); effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr); format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result // KILL all" %} ins_encode %{ __ string_indexof($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register, (-1), $result$$Register, $vec$$XMMRegister, $tmp$$Register); %} ins_pipe( pipe_slow ); %} // fast array equals instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result, regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr) %{ match(Set result (AryEq ary1 ary2)); effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr); //ins_cost(300); format %{ "Array Equals $ary1,$ary2 -> $result // KILL $tmp1, $tmp2, $tmp3, $tmp4" %} ins_encode %{ __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register, $tmp3$$Register, $result$$Register, $tmp4$$Register, $tmp1$$XMMRegister, $tmp2$$XMMRegister); %} ins_pipe( pipe_slow ); %} //----------Control Flow Instructions------------------------------------------ // Signed compare Instructions instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{ match(Set cr (CmpI op1 op2)); effect( DEF cr, USE op1, USE op2 ); format %{ "CMP $op1,$op2" %} opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegReg( op1, op2) ); ins_pipe( ialu_cr_reg_reg ); %} instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{ match(Set cr (CmpI op1 op2)); effect( DEF cr, USE op1 ); format %{ "CMP $op1,$op2" %} opcode(0x81,0x07); /* Opcode 81 /7 */ // ins_encode( RegImm( op1, op2) ); /* Was CmpImm */ ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); ins_pipe( ialu_cr_reg_imm ); %} // Cisc-spilled version of cmpI_eReg instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{ match(Set cr (CmpI op1 (LoadI op2))); format %{ "CMP $op1,$op2" %} ins_cost(500); opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegMem( op1, op2) ); ins_pipe( ialu_cr_reg_mem ); %} instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{ match(Set cr (CmpI src zero)); effect( DEF cr, USE src ); format %{ "TEST $src,$src" %} opcode(0x85); ins_encode( OpcP, RegReg( src, src ) ); ins_pipe( ialu_cr_reg_imm ); %} instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{ match(Set cr (CmpI (AndI src con) zero)); format %{ "TEST $src,$con" %} opcode(0xF7,0x00); ins_encode( OpcP, RegOpc(src), Con32(con) ); ins_pipe( ialu_cr_reg_imm ); %} instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{ match(Set cr (CmpI (AndI src mem) zero)); format %{ "TEST $src,$mem" %} opcode(0x85); ins_encode( OpcP, RegMem( src, mem ) ); ins_pipe( ialu_cr_reg_mem ); %} // Unsigned compare Instructions; really, same as signed except they // produce an eFlagsRegU instead of eFlagsReg. instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{ match(Set cr (CmpU op1 op2)); format %{ "CMPu $op1,$op2" %} opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegReg( op1, op2) ); ins_pipe( ialu_cr_reg_reg ); %} instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{ match(Set cr (CmpU op1 op2)); format %{ "CMPu $op1,$op2" %} opcode(0x81,0x07); /* Opcode 81 /7 */ ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); ins_pipe( ialu_cr_reg_imm ); %} // // Cisc-spilled version of cmpU_eReg instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{ match(Set cr (CmpU op1 (LoadI op2))); format %{ "CMPu $op1,$op2" %} ins_cost(500); opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegMem( op1, op2) ); ins_pipe( ialu_cr_reg_mem ); %} // // Cisc-spilled version of cmpU_eReg //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{ // match(Set cr (CmpU (LoadI op1) op2)); // // format %{ "CMPu $op1,$op2" %} // ins_cost(500); // opcode(0x39); /* Opcode 39 /r */ // ins_encode( OpcP, RegMem( op1, op2) ); //%} instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{ match(Set cr (CmpU src zero)); format %{ "TESTu $src,$src" %} opcode(0x85); ins_encode( OpcP, RegReg( src, src ) ); ins_pipe( ialu_cr_reg_imm ); %} // Unsigned pointer compare Instructions instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{ match(Set cr (CmpP op1 op2)); format %{ "CMPu $op1,$op2" %} opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegReg( op1, op2) ); ins_pipe( ialu_cr_reg_reg ); %} instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{ match(Set cr (CmpP op1 op2)); format %{ "CMPu $op1,$op2" %} opcode(0x81,0x07); /* Opcode 81 /7 */ ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) ); ins_pipe( ialu_cr_reg_imm ); %} // // Cisc-spilled version of cmpP_eReg instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{ match(Set cr (CmpP op1 (LoadP op2))); format %{ "CMPu $op1,$op2" %} ins_cost(500); opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegMem( op1, op2) ); ins_pipe( ialu_cr_reg_mem ); %} // // Cisc-spilled version of cmpP_eReg //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{ // match(Set cr (CmpP (LoadP op1) op2)); // // format %{ "CMPu $op1,$op2" %} // ins_cost(500); // opcode(0x39); /* Opcode 39 /r */ // ins_encode( OpcP, RegMem( op1, op2) ); //%} // Compare raw pointer (used in out-of-heap check). // Only works because non-oop pointers must be raw pointers // and raw pointers have no anti-dependencies. instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{ predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() ); match(Set cr (CmpP op1 (LoadP op2))); format %{ "CMPu $op1,$op2" %} opcode(0x3B); /* Opcode 3B /r */ ins_encode( OpcP, RegMem( op1, op2) ); ins_pipe( ialu_cr_reg_mem ); %} // // This will generate a signed flags result. This should be ok // since any compare to a zero should be eq/neq. instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{ match(Set cr (CmpP src zero)); format %{ "TEST $src,$src" %} opcode(0x85); ins_encode( OpcP, RegReg( src, src ) ); ins_pipe( ialu_cr_reg_imm ); %} // Cisc-spilled version of testP_reg // This will generate a signed flags result. This should be ok // since any compare to a zero should be eq/neq. instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{ match(Set cr (CmpP (LoadP op) zero)); format %{ "TEST $op,0xFFFFFFFF" %} ins_cost(500); opcode(0xF7); /* Opcode F7 /0 */ ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) ); ins_pipe( ialu_cr_reg_imm ); %} // Yanked all unsigned pointer compare operations. // Pointer compares are done with CmpP which is already unsigned. //----------Max and Min-------------------------------------------------------- // Min Instructions //// // *** Min and Max using the conditional move are slower than the // *** branch version on a Pentium III. // // Conditional move for min //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{ // effect( USE_DEF op2, USE op1, USE cr ); // format %{ "CMOVlt $op2,$op1\t! min" %} // opcode(0x4C,0x0F); // ins_encode( OpcS, OpcP, RegReg( op2, op1 ) ); // ins_pipe( pipe_cmov_reg ); //%} // //// Min Register with Register (P6 version) //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{ // predicate(VM_Version::supports_cmov() ); // match(Set op2 (MinI op1 op2)); // ins_cost(200); // expand %{ // eFlagsReg cr; // compI_eReg(cr,op1,op2); // cmovI_reg_lt(op2,op1,cr); // %} //%} // Min Register with Register (generic version) instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{ match(Set dst (MinI dst src)); effect(KILL flags); ins_cost(300); format %{ "MIN $dst,$src" %} opcode(0xCC); ins_encode( min_enc(dst,src) ); ins_pipe( pipe_slow ); %} // Max Register with Register // *** Min and Max using the conditional move are slower than the // *** branch version on a Pentium III. // // Conditional move for max //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{ // effect( USE_DEF op2, USE op1, USE cr ); // format %{ "CMOVgt $op2,$op1\t! max" %} // opcode(0x4F,0x0F); // ins_encode( OpcS, OpcP, RegReg( op2, op1 ) ); // ins_pipe( pipe_cmov_reg ); //%} // // // Max Register with Register (P6 version) //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{ // predicate(VM_Version::supports_cmov() ); // match(Set op2 (MaxI op1 op2)); // ins_cost(200); // expand %{ // eFlagsReg cr; // compI_eReg(cr,op1,op2); // cmovI_reg_gt(op2,op1,cr); // %} //%} // Max Register with Register (generic version) instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{ match(Set dst (MaxI dst src)); effect(KILL flags); ins_cost(300); format %{ "MAX $dst,$src" %} opcode(0xCC); ins_encode( max_enc(dst,src) ); ins_pipe( pipe_slow ); %} // ============================================================================ // Branch Instructions // Jump Table instruct jumpXtnd(eRegI switch_val) %{ match(Jump switch_val); ins_cost(350); format %{ "JMP [$constantaddress](,$switch_val,1)\n\t" %} ins_encode %{ // Jump to Address(table_base + switch_reg) Address index(noreg, $switch_val$$Register, Address::times_1); __ jump(ArrayAddress($constantaddress, index)); %} ins_pc_relative(1); ins_pipe(pipe_jmp); %} // Jump Direct - Label defines a relative address from JMP+1 instruct jmpDir(label labl) %{ match(Goto); effect(USE labl); ins_cost(300); format %{ "JMP $labl" %} size(5); opcode(0xE9); ins_encode( OpcP, Lbl( labl ) ); ins_pipe( pipe_jmp ); ins_pc_relative(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{ match(If cop cr); effect(USE labl); ins_cost(300); format %{ "J$cop $labl" %} size(6); opcode(0x0F, 0x80); ins_encode( Jcc( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{ match(CountedLoopEnd cop cr); effect(USE labl); ins_cost(300); format %{ "J$cop $labl\t# Loop end" %} size(6); opcode(0x0F, 0x80); ins_encode( Jcc( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{ match(CountedLoopEnd cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,u $labl\t# Loop end" %} size(6); opcode(0x0F, 0x80); ins_encode( Jcc( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); %} instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{ match(CountedLoopEnd cop cmp); effect(USE labl); ins_cost(200); format %{ "J$cop,u $labl\t# Loop end" %} size(6); opcode(0x0F, 0x80); ins_encode( Jcc( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); %} // Jump Direct Conditional - using unsigned comparison instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,u $labl" %} size(6); opcode(0x0F, 0x80); ins_encode(Jcc(cop, labl)); ins_pipe(pipe_jcc); ins_pc_relative(1); %} instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(200); format %{ "J$cop,u $labl" %} size(6); opcode(0x0F, 0x80); ins_encode(Jcc(cop, labl)); ins_pipe(pipe_jcc); ins_pc_relative(1); %} instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(200); format %{ $$template if ($cop$$cmpcode == Assembler::notEqual) { $$emit$$"JP,u $labl\n\t" $$emit$$"J$cop,u $labl" } else { $$emit$$"JP,u done\n\t" $$emit$$"J$cop,u $labl\n\t" $$emit$$"done:" } %} size(12); opcode(0x0F, 0x80); ins_encode %{ Label* l = $labl$$label; $$$emit8$primary; emit_cc(cbuf, $secondary, Assembler::parity); int parity_disp = -1; bool ok = false; if ($cop$$cmpcode == Assembler::notEqual) { // the two jumps 6 bytes apart so the jump distances are too parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0; } else if ($cop$$cmpcode == Assembler::equal) { parity_disp = 6; ok = true; } else { ShouldNotReachHere(); } emit_d32(cbuf, parity_disp); $$$emit8$primary; emit_cc(cbuf, $secondary, $cop$$cmpcode); int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0; emit_d32(cbuf, disp); %} ins_pipe(pipe_jcc); ins_pc_relative(1); %} // ============================================================================ // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass // array for an instance of the superklass. Set a hidden internal cache on a // hit (cache is checked with exposed code in gen_subtype_check()). Return // NZ for a miss or zero for a hit. The encoding ALSO sets flags. instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{ match(Set result (PartialSubtypeCheck sub super)); effect( KILL rcx, KILL cr ); ins_cost(1100); // slightly larger than the next version format %{ "MOV EDI,[$sub+Klass::secondary_supers]\n\t" "MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t" "ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t" "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t" "JNE,s miss\t\t# Missed: EDI not-zero\n\t" "MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t" "XOR $result,$result\t\t Hit: EDI zero\n\t" "miss:\t" %} opcode(0x1); // Force a XOR of EDI ins_encode( enc_PartialSubtypeCheck() ); ins_pipe( pipe_slow ); %} instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{ match(Set cr (CmpP (PartialSubtypeCheck sub super) zero)); effect( KILL rcx, KILL result ); ins_cost(1000); format %{ "MOV EDI,[$sub+Klass::secondary_supers]\n\t" "MOV ECX,[EDI+arrayKlass::length]\t# length to scan\n\t" "ADD EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t" "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t" "JNE,s miss\t\t# Missed: flags NZ\n\t" "MOV [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t" "miss:\t" %} opcode(0x0); // No need to XOR EDI ins_encode( enc_PartialSubtypeCheck() ); ins_pipe( pipe_slow ); %} // ============================================================================ // Branch Instructions -- short offset versions // // These instructions are used to replace jumps of a long offset (the default // match) with jumps of a shorter offset. These instructions are all tagged // with the ins_short_branch attribute, which causes the ADLC to suppress the // match rules in general matching. Instead, the ADLC generates a conversion // method in the MachNode which can be used to do in-place replacement of the // long variant with the shorter variant. The compiler will determine if a // branch can be taken by the is_short_branch_offset() predicate in the machine // specific code section of the file. // Jump Direct - Label defines a relative address from JMP+1 instruct jmpDir_short(label labl) %{ match(Goto); effect(USE labl); ins_cost(300); format %{ "JMP,s $labl" %} size(2); opcode(0xEB); ins_encode( OpcP, LblShort( labl ) ); ins_pipe( pipe_jmp ); ins_pc_relative(1); ins_short_branch(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{ match(If cop cr); effect(USE labl); ins_cost(300); format %{ "J$cop,s $labl" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{ match(CountedLoopEnd cop cr); effect(USE labl); ins_cost(300); format %{ "J$cop,s $labl\t# Loop end" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} // Jump Direct Conditional - Label defines a relative address from Jcc+1 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{ match(CountedLoopEnd cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,us $labl\t# Loop end" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{ match(CountedLoopEnd cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,us $labl\t# Loop end" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} // Jump Direct Conditional - using unsigned comparison instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,us $labl" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(300); format %{ "J$cop,us $labl" %} size(2); opcode(0x70); ins_encode( JccShort( cop, labl) ); ins_pipe( pipe_jcc ); ins_pc_relative(1); ins_short_branch(1); %} instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{ match(If cop cmp); effect(USE labl); ins_cost(300); format %{ $$template if ($cop$$cmpcode == Assembler::notEqual) { $$emit$$"JP,u,s $labl\n\t" $$emit$$"J$cop,u,s $labl" } else { $$emit$$"JP,u,s done\n\t" $$emit$$"J$cop,u,s $labl\n\t" $$emit$$"done:" } %} size(4); opcode(0x70); ins_encode %{ Label* l = $labl$$label; emit_cc(cbuf, $primary, Assembler::parity); int parity_disp = -1; if ($cop$$cmpcode == Assembler::notEqual) { parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0; } else if ($cop$$cmpcode == Assembler::equal) { parity_disp = 2; } else { ShouldNotReachHere(); } emit_d8(cbuf, parity_disp); emit_cc(cbuf, $primary, $cop$$cmpcode); int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0; emit_d8(cbuf, disp); assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp"); assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp"); %} ins_pipe(pipe_jcc); ins_pc_relative(1); ins_short_branch(1); %} // ============================================================================ // Long Compare // // Currently we hold longs in 2 registers. Comparing such values efficiently // is tricky. The flavor of compare used depends on whether we are testing // for LT, LE, or EQ. For a simple LT test we can check just the sign bit. // The GE test is the negated LT test. The LE test can be had by commuting // the operands (yielding a GE test) and then negating; negate again for the // GT test. The EQ test is done by ORcc'ing the high and low halves, and the // NE test is negated from that. // Due to a shortcoming in the ADLC, it mixes up expressions like: // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the // difference between 'Y' and '0L'. The tree-matches for the CmpI sections // are collapsed internally in the ADLC's dfa-gen code. The match for // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the // foo match ends up with the wrong leaf. One fix is to not match both // reg-reg and reg-zero forms of long-compare. This is unfortunate because // both forms beat the trinary form of long-compare and both are very useful // on Intel which has so few registers. // Manifest a CmpL result in an integer register. Very painful. // This is the test to avoid. instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{ match(Set dst (CmpL3 src1 src2)); effect( KILL flags ); ins_cost(1000); format %{ "XOR $dst,$dst\n\t" "CMP $src1.hi,$src2.hi\n\t" "JLT,s m_one\n\t" "JGT,s p_one\n\t" "CMP $src1.lo,$src2.lo\n\t" "JB,s m_one\n\t" "JEQ,s done\n" "p_one:\tINC $dst\n\t" "JMP,s done\n" "m_one:\tDEC $dst\n" "done:" %} ins_encode %{ Label p_one, m_one, done; __ xorptr($dst$$Register, $dst$$Register); __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register)); __ jccb(Assembler::less, m_one); __ jccb(Assembler::greater, p_one); __ cmpl($src1$$Register, $src2$$Register); __ jccb(Assembler::below, m_one); __ jccb(Assembler::equal, done); __ bind(p_one); __ incrementl($dst$$Register); __ jmpb(done); __ bind(m_one); __ decrementl($dst$$Register); __ bind(done); %} ins_pipe( pipe_slow ); %} //====== // Manifest a CmpL result in the normal flags. Only good for LT or GE // compares. Can be used for LE or GT compares by reversing arguments. // NOT GOOD FOR EQ/NE tests. instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{ match( Set flags (CmpL src zero )); ins_cost(100); format %{ "TEST $src.hi,$src.hi" %} opcode(0x85); ins_encode( OpcP, RegReg_Hi2( src, src ) ); ins_pipe( ialu_cr_reg_reg ); %} // Manifest a CmpL result in the normal flags. Only good for LT or GE // compares. Can be used for LE or GT compares by reversing arguments. // NOT GOOD FOR EQ/NE tests. instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{ match( Set flags (CmpL src1 src2 )); effect( TEMP tmp ); ins_cost(300); format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t" "MOV $tmp,$src1.hi\n\t" "SBB $tmp,$src2.hi\t! Compute flags for long compare" %} ins_encode( long_cmp_flags2( src1, src2, tmp ) ); ins_pipe( ialu_cr_reg_reg ); %} // Long compares reg < zero/req OR reg >= zero/req. // Just a wrapper for a normal branch, plus the predicate test. instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{ match(If cmp flags); effect(USE labl); predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); expand %{ jmpCon(cmp,flags,labl); // JLT or JGE... %} %} // Compare 2 longs and CMOVE longs. instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); ins_cost(400); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); ins_pipe( pipe_cmov_reg_long ); %} instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); ins_cost(500); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); ins_pipe( pipe_cmov_reg_long ); %} // Compare 2 longs and CMOVE ints. instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); ins_cost(250); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); ins_pipe( pipe_cmov_mem ); %} // Compare 2 longs and CMOVE ints. instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge )); match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} // Compare 2 longs and CMOVE doubles instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{ predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovD_regS(cmp,flags,dst,src); %} %} // Compare 2 longs and CMOVE doubles instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{ predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovXD_regS(cmp,flags,dst,src); %} %} instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{ predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovF_regS(cmp,flags,dst,src); %} %} instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{ predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovX_regS(cmp,flags,dst,src); %} %} //====== // Manifest a CmpL result in the normal flags. Only good for EQ/NE compares. instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{ match( Set flags (CmpL src zero )); effect(TEMP tmp); ins_cost(200); format %{ "MOV $tmp,$src.lo\n\t" "OR $tmp,$src.hi\t! Long is EQ/NE 0?" %} ins_encode( long_cmp_flags0( src, tmp ) ); ins_pipe( ialu_reg_reg_long ); %} // Manifest a CmpL result in the normal flags. Only good for EQ/NE compares. instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{ match( Set flags (CmpL src1 src2 )); ins_cost(200+300); format %{ "CMP $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t" "JNE,s skip\n\t" "CMP $src1.hi,$src2.hi\n\t" "skip:\t" %} ins_encode( long_cmp_flags1( src1, src2 ) ); ins_pipe( ialu_cr_reg_reg ); %} // Long compare reg == zero/reg OR reg != zero/reg // Just a wrapper for a normal branch, plus the predicate test. instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{ match(If cmp flags); effect(USE labl); predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); expand %{ jmpCon(cmp,flags,labl); // JEQ or JNE... %} %} // Compare 2 longs and CMOVE longs. instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); ins_cost(400); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); ins_pipe( pipe_cmov_reg_long ); %} instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); ins_cost(500); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); ins_pipe( pipe_cmov_reg_long ); %} // Compare 2 longs and CMOVE ints. instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); ins_cost(250); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); ins_pipe( pipe_cmov_mem ); %} // Compare 2 longs and CMOVE ints. instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne )); match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} // Compare 2 longs and CMOVE doubles instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{ predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovD_regS(cmp,flags,dst,src); %} %} // Compare 2 longs and CMOVE doubles instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{ predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovXD_regS(cmp,flags,dst,src); %} %} instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{ predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovF_regS(cmp,flags,dst,src); %} %} instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{ predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovX_regS(cmp,flags,dst,src); %} %} //====== // Manifest a CmpL result in the normal flags. Only good for LE or GT compares. // Same as cmpL_reg_flags_LEGT except must negate src instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{ match( Set flags (CmpL src zero )); effect( TEMP tmp ); ins_cost(300); format %{ "XOR $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t" "CMP $tmp,$src.lo\n\t" "SBB $tmp,$src.hi\n\t" %} ins_encode( long_cmp_flags3(src, tmp) ); ins_pipe( ialu_reg_reg_long ); %} // Manifest a CmpL result in the normal flags. Only good for LE or GT compares. // Same as cmpL_reg_flags_LTGE except operands swapped. Swapping operands // requires a commuted test to get the same result. instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{ match( Set flags (CmpL src1 src2 )); effect( TEMP tmp ); ins_cost(300); format %{ "CMP $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t" "MOV $tmp,$src2.hi\n\t" "SBB $tmp,$src1.hi\t! Compute flags for long compare" %} ins_encode( long_cmp_flags2( src2, src1, tmp ) ); ins_pipe( ialu_cr_reg_reg ); %} // Long compares reg < zero/req OR reg >= zero/req. // Just a wrapper for a normal branch, plus the predicate test instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{ match(If cmp flags); effect(USE labl); predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le ); ins_cost(300); expand %{ jmpCon(cmp,flags,labl); // JGT or JLE... %} %} // Compare 2 longs and CMOVE longs. instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst src))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); ins_cost(400); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) ); ins_pipe( pipe_cmov_reg_long ); %} instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{ match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src)))); predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); ins_cost(500); format %{ "CMOV$cmp $dst.lo,$src.lo\n\t" "CMOV$cmp $dst.hi,$src.hi+4" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) ); ins_pipe( pipe_cmov_reg_long ); %} // Compare 2 longs and CMOVE ints. instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src)))); ins_cost(250); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegMem( dst, src ) ); ins_pipe( pipe_cmov_mem ); %} // Compare 2 longs and CMOVE ptrs. instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{ predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt )); match(Set dst (CMoveP (Binary cmp flags) (Binary dst src))); ins_cost(200); format %{ "CMOV$cmp $dst,$src" %} opcode(0x0F,0x40); ins_encode( enc_cmov(cmp), RegReg( dst, src ) ); ins_pipe( pipe_cmov_reg ); %} // Compare 2 longs and CMOVE doubles instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{ predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovD_regS(cmp,flags,dst,src); %} %} // Compare 2 longs and CMOVE doubles instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{ predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); match(Set dst (CMoveD (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovXD_regS(cmp,flags,dst,src); %} %} instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{ predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovF_regS(cmp,flags,dst,src); %} %} instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{ predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ); match(Set dst (CMoveF (Binary cmp flags) (Binary dst src))); ins_cost(200); expand %{ fcmovX_regS(cmp,flags,dst,src); %} %} // ============================================================================ // Procedure Call/Return Instructions // Call Java Static Instruction // Note: If this code changes, the corresponding ret_addr_offset() and // compute_padding() functions will have to be adjusted. instruct CallStaticJavaDirect(method meth) %{ match(CallStaticJava); predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke()); effect(USE meth); ins_cost(300); format %{ "CALL,static " %} opcode(0xE8); /* E8 cd */ ins_encode( pre_call_FPU, Java_Static_Call( meth ), call_epilog, post_call_FPU ); ins_pipe( pipe_slow ); ins_pc_relative(1); ins_alignment(4); %} // Call Java Static Instruction (method handle version) // Note: If this code changes, the corresponding ret_addr_offset() and // compute_padding() functions will have to be adjusted. instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{ match(CallStaticJava); predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke()); effect(USE meth); // EBP is saved by all callees (for interpreter stack correction). // We use it here for a similar purpose, in {preserve,restore}_SP. ins_cost(300); format %{ "CALL,static/MethodHandle " %} opcode(0xE8); /* E8 cd */ ins_encode( pre_call_FPU, preserve_SP, Java_Static_Call( meth ), restore_SP, call_epilog, post_call_FPU ); ins_pipe( pipe_slow ); ins_pc_relative(1); ins_alignment(4); %} // Call Java Dynamic Instruction // Note: If this code changes, the corresponding ret_addr_offset() and // compute_padding() functions will have to be adjusted. instruct CallDynamicJavaDirect(method meth) %{ match(CallDynamicJava); effect(USE meth); ins_cost(300); format %{ "MOV EAX,(oop)-1\n\t" "CALL,dynamic" %} opcode(0xE8); /* E8 cd */ ins_encode( pre_call_FPU, Java_Dynamic_Call( meth ), call_epilog, post_call_FPU ); ins_pipe( pipe_slow ); ins_pc_relative(1); ins_alignment(4); %} // Call Runtime Instruction instruct CallRuntimeDirect(method meth) %{ match(CallRuntime ); effect(USE meth); ins_cost(300); format %{ "CALL,runtime " %} opcode(0xE8); /* E8 cd */ // Use FFREEs to clear entries in float stack ins_encode( pre_call_FPU, FFree_Float_Stack_All, Java_To_Runtime( meth ), post_call_FPU ); ins_pipe( pipe_slow ); ins_pc_relative(1); %} // Call runtime without safepoint instruct CallLeafDirect(method meth) %{ match(CallLeaf); effect(USE meth); ins_cost(300); format %{ "CALL_LEAF,runtime " %} opcode(0xE8); /* E8 cd */ ins_encode( pre_call_FPU, FFree_Float_Stack_All, Java_To_Runtime( meth ), Verify_FPU_For_Leaf, post_call_FPU ); ins_pipe( pipe_slow ); ins_pc_relative(1); %} instruct CallLeafNoFPDirect(method meth) %{ match(CallLeafNoFP); effect(USE meth); ins_cost(300); format %{ "CALL_LEAF_NOFP,runtime " %} opcode(0xE8); /* E8 cd */ ins_encode(Java_To_Runtime(meth)); ins_pipe( pipe_slow ); ins_pc_relative(1); %} // Return Instruction // Remove the return address & jump to it. instruct Ret() %{ match(Return); format %{ "RET" %} opcode(0xC3); ins_encode(OpcP); ins_pipe( pipe_jmp ); %} // Tail Call; Jump from runtime stub to Java code. // Also known as an 'interprocedural jump'. // Target of jump will eventually return to caller. // TailJump below removes the return address. instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{ match(TailCall jump_target method_oop ); ins_cost(300); format %{ "JMP $jump_target \t# EBX holds method oop" %} opcode(0xFF, 0x4); /* Opcode FF /4 */ ins_encode( OpcP, RegOpc(jump_target) ); ins_pipe( pipe_jmp ); %} // Tail Jump; remove the return address; jump to target. // TailCall above leaves the return address around. instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{ match( TailJump jump_target ex_oop ); ins_cost(300); format %{ "POP EDX\t# pop return address into dummy\n\t" "JMP $jump_target " %} opcode(0xFF, 0x4); /* Opcode FF /4 */ ins_encode( enc_pop_rdx, OpcP, RegOpc(jump_target) ); ins_pipe( pipe_jmp ); %} // Create exception oop: created by stack-crawling runtime code. // Created exception is now available to this handler, and is setup // just prior to jumping to this handler. No code emitted. instruct CreateException( eAXRegP ex_oop ) %{ match(Set ex_oop (CreateEx)); size(0); // use the following format syntax format %{ "# exception oop is in EAX; no code emitted" %} ins_encode(); ins_pipe( empty ); %} // Rethrow exception: // The exception oop will come in the first argument position. // Then JUMP (not call) to the rethrow stub code. instruct RethrowException() %{ match(Rethrow); // use the following format syntax format %{ "JMP rethrow_stub" %} ins_encode(enc_rethrow); ins_pipe( pipe_jmp ); %} // inlined locking and unlocking instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{ match( Set cr (FastLock object box) ); effect( TEMP tmp, TEMP scr ); ins_cost(300); format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %} ins_encode( Fast_Lock(object,box,tmp,scr) ); ins_pipe( pipe_slow ); ins_pc_relative(1); %} instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{ match( Set cr (FastUnlock object box) ); effect( TEMP tmp ); ins_cost(300); format %{ "FASTUNLOCK $object, $box, $tmp" %} ins_encode( Fast_Unlock(object,box,tmp) ); ins_pipe( pipe_slow ); ins_pc_relative(1); %} // ============================================================================ // Safepoint Instruction instruct safePoint_poll(eFlagsReg cr) %{ match(SafePoint); effect(KILL cr); // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page. // On SPARC that might be acceptable as we can generate the address with // just a sethi, saving an or. By polling at offset 0 we can end up // putting additional pressure on the index-0 in the D$. Because of // alignment (just like the situation at hand) the lower indices tend // to see more traffic. It'd be better to change the polling address // to offset 0 of the last $line in the polling page. format %{ "TSTL #polladdr,EAX\t! Safepoint: poll for GC" %} ins_cost(125); size(6) ; ins_encode( Safepoint_Poll() ); ins_pipe( ialu_reg_mem ); %} //----------PEEPHOLE RULES----------------------------------------------------- // These must follow all instruction definitions as they use the names // defined in the instructions definitions. // // peepmatch ( root_instr_name [preceding_instruction]* ); // // peepconstraint %{ // (instruction_number.operand_name relational_op instruction_number.operand_name // [, ...] ); // // instruction numbers are zero-based using left to right order in peepmatch // // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); // // provide an instruction_number.operand_name for each operand that appears // // in the replacement instruction's match rule // // ---------VM FLAGS--------------------------------------------------------- // // All peephole optimizations can be turned off using -XX:-OptoPeephole // // Each peephole rule is given an identifying number starting with zero and // increasing by one in the order seen by the parser. An individual peephole // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# // on the command-line. // // ---------CURRENT LIMITATIONS---------------------------------------------- // // Only match adjacent instructions in same basic block // Only equality constraints // Only constraints between operands, not (0.dest_reg == EAX_enc) // Only one replacement instruction // // ---------EXAMPLE---------------------------------------------------------- // // // pertinent parts of existing instructions in architecture description // instruct movI(eRegI dst, eRegI src) %{ // match(Set dst (CopyI src)); // %} // // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{ // match(Set dst (AddI dst src)); // effect(KILL cr); // %} // // // Change (inc mov) to lea // peephole %{ // // increment preceeded by register-register move // peepmatch ( incI_eReg movI ); // // require that the destination register of the increment // // match the destination register of the move // peepconstraint ( 0.dst == 1.dst ); // // construct a replacement instruction that sets // // the destination to ( move's source register + one ) // peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); // %} // // Implementation no longer uses movX instructions since // machine-independent system no longer uses CopyX nodes. // // peephole %{ // peepmatch ( incI_eReg movI ); // peepconstraint ( 0.dst == 1.dst ); // peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); // %} // // peephole %{ // peepmatch ( decI_eReg movI ); // peepconstraint ( 0.dst == 1.dst ); // peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); // %} // // peephole %{ // peepmatch ( addI_eReg_imm movI ); // peepconstraint ( 0.dst == 1.dst ); // peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) ); // %} // // peephole %{ // peepmatch ( addP_eReg_imm movP ); // peepconstraint ( 0.dst == 1.dst ); // peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) ); // %} // // Change load of spilled value to only a spill // instruct storeI(memory mem, eRegI src) %{ // match(Set mem (StoreI mem src)); // %} // // instruct loadI(eRegI dst, memory mem) %{ // match(Set dst (LoadI mem)); // %} // peephole %{ peepmatch ( loadI storeI ); peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem ); peepreplace ( storeI( 1.mem 1.mem 1.src ) ); %} //----------SMARTSPILL RULES--------------------------------------------------- // These must follow all instruction definitions as they use the names // defined in the instructions definitions.