提交 eedeebde 编写于 作者: Z zgu

Merge

...@@ -318,10 +318,9 @@ void Thread::record_stack_base_and_size() { ...@@ -318,10 +318,9 @@ void Thread::record_stack_base_and_size() {
set_stack_size(os::current_stack_size()); set_stack_size(os::current_stack_size());
// record thread's native stack, stack grows downward // record thread's native stack, stack grows downward
address vm_base = _stack_base - _stack_size; address low_stack_addr = stack_base() - stack_size();
MemTracker::record_virtual_memory_reserve(vm_base, _stack_size, MemTracker::record_thread_stack(low_stack_addr, stack_size(), this,
CURRENT_PC, this); CURRENT_PC);
MemTracker::record_virtual_memory_type(vm_base, mtThreadStack);
} }
...@@ -329,8 +328,8 @@ Thread::~Thread() { ...@@ -329,8 +328,8 @@ Thread::~Thread() {
// Reclaim the objectmonitors from the omFreeList of the moribund thread. // Reclaim the objectmonitors from the omFreeList of the moribund thread.
ObjectSynchronizer::omFlush (this) ; ObjectSynchronizer::omFlush (this) ;
MemTracker::record_virtual_memory_release((_stack_base - _stack_size), address low_stack_addr = stack_base() - stack_size();
_stack_size, this); MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
// deallocate data structures // deallocate data structures
delete resource_area(); delete resource_area();
......
...@@ -43,9 +43,9 @@ jint SequenceGenerator::next() { ...@@ -43,9 +43,9 @@ jint SequenceGenerator::next() {
bool VMMemRegion::contains(const VMMemRegion* mr) const { bool VMMemRegion::contains(const VMMemRegion* mr) const {
assert(base() != 0, "no base address"); assert(base() != 0, "Sanity check");
assert(size() != 0 || committed_size() != 0, assert(size() != 0 || committed_size() != 0,
"no range"); "Sanity check");
address base_addr = base(); address base_addr = base();
address end_addr = base_addr + address end_addr = base_addr +
(is_reserve_record()? reserved_size(): committed_size()); (is_reserve_record()? reserved_size(): committed_size());
...@@ -61,14 +61,14 @@ bool VMMemRegion::contains(const VMMemRegion* mr) const { ...@@ -61,14 +61,14 @@ bool VMMemRegion::contains(const VMMemRegion* mr) const {
return (mr->base() >= base_addr && return (mr->base() >= base_addr &&
(mr->base() + mr->committed_size()) <= end_addr); (mr->base() + mr->committed_size()) <= end_addr);
} else if (mr->is_type_tagging_record()) { } else if (mr->is_type_tagging_record()) {
assert(mr->base() != 0, "no base"); assert(mr->base() != NULL, "Sanity check");
return mr->base() == base_addr; return (mr->base() >= base_addr && mr->base() < end_addr);
} else if (mr->is_release_record()) { } else if (mr->is_release_record()) {
assert(mr->base() != 0 && mr->size() > 0, assert(mr->base() != 0 && mr->size() > 0,
"bad record"); "bad record");
return (mr->base() == base_addr && mr->size() == size()); return (mr->base() == base_addr && mr->size() == size());
} else { } else {
assert(false, "what happened?"); ShouldNotReachHere();
return false; return false;
} }
} }
...@@ -84,11 +84,7 @@ class MemPointerArrayIterator VALUE_OBJ_CLASS_SPEC { ...@@ -84,11 +84,7 @@ class MemPointerArrayIterator VALUE_OBJ_CLASS_SPEC {
// implementation class // implementation class
class MemPointerArrayIteratorImpl : public MemPointerArrayIterator { class MemPointerArrayIteratorImpl : public MemPointerArrayIterator {
#ifdef ASSERT
protected: protected:
#else
private:
#endif
MemPointerArray* _array; MemPointerArray* _array;
int _pos; int _pos;
......
...@@ -31,148 +31,54 @@ ...@@ -31,148 +31,54 @@
#include "services/memSnapshot.hpp" #include "services/memSnapshot.hpp"
#include "services/memTracker.hpp" #include "services/memTracker.hpp"
static int sort_in_seq_order(const void* p1, const void* p2) {
assert(p1 != NULL && p2 != NULL, "Sanity check");
const MemPointerRecord* mp1 = (MemPointerRecord*)p1;
const MemPointerRecord* mp2 = (MemPointerRecord*)p2;
return (mp1->seq() - mp2->seq());
}
// stagging data groups the data of a VM memory range, so we can consolidate bool StagingArea::init() {
// them into one record during the walk if (MemTracker::track_callsite()) {
bool StagingWalker::consolidate_vm_records(VMMemRegionEx* vm_rec) { _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
MemPointerRecord* cur = (MemPointerRecord*)_itr.current(); _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
assert(cur != NULL && cur->is_vm_pointer(), "not a virtual memory pointer");
jint cur_seq;
jint next_seq;
bool trackCallsite = MemTracker::track_callsite();
if (trackCallsite) {
vm_rec->init((MemPointerRecordEx*)cur);
cur_seq = ((SeqMemPointerRecordEx*)cur)->seq();
} else { } else {
vm_rec->init((MemPointerRecord*)cur); _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
cur_seq = ((SeqMemPointerRecord*)cur)->seq(); _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
} }
// only can consolidate when we have allocation record, if (_malloc_data != NULL && _vm_data != NULL &&
// which contains virtual memory range !_malloc_data->out_of_memory() &&
if (!cur->is_allocation_record()) { !_vm_data->out_of_memory()) {
_itr.next();
return true; return true;
} else {
if (_malloc_data != NULL) delete _malloc_data;
if (_vm_data != NULL) delete _vm_data;
_malloc_data = NULL;
_vm_data = NULL;
return false;
} }
// allocation range
address base = cur->addr();
address end = base + cur->size();
MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
// if the memory range is alive
bool live_vm_rec = true;
while (next != NULL && next->is_vm_pointer()) {
if (next->is_allocation_record()) {
assert(next->addr() >= base, "sorting order or overlapping");
break;
}
if (trackCallsite) {
next_seq = ((SeqMemPointerRecordEx*)next)->seq();
} else {
next_seq = ((SeqMemPointerRecord*)next)->seq();
}
if (next_seq < cur_seq) {
_itr.next();
next = (MemPointerRecord*)_itr.peek_next();
continue;
}
if (next->is_deallocation_record()) {
if (next->addr() == base && next->size() == cur->size()) {
// the virtual memory range has been released
_itr.next();
live_vm_rec = false;
break;
} else if (next->addr() < end) { // partial release
vm_rec->partial_release(next->addr(), next->size());
_itr.next();
} else {
break;
}
} else if (next->is_commit_record()) {
if (next->addr() >= base && next->addr() + next->size() <= end) {
vm_rec->commit(next->size());
_itr.next();
} else {
assert(next->addr() >= base, "sorting order or overlapping");
break;
}
} else if (next->is_uncommit_record()) {
if (next->addr() >= base && next->addr() + next->size() <= end) {
vm_rec->uncommit(next->size());
_itr.next();
} else {
assert(next->addr() >= end, "sorting order or overlapping");
break;
}
} else if (next->is_type_tagging_record()) {
if (next->addr() >= base && next->addr() < end ) {
vm_rec->tag(next->flags());
_itr.next();
} else {
break;
}
} else {
assert(false, "unknown record type");
}
next = (MemPointerRecord*)_itr.peek_next();
}
_itr.next();
return live_vm_rec;
} }
MemPointer* StagingWalker::next() {
MemPointerRecord* cur_p = (MemPointerRecord*)_itr.current();
if (cur_p == NULL) {
_end_of_array = true;
return NULL;
}
MemPointerRecord* next_p;
if (cur_p->is_vm_pointer()) {
_is_vm_record = true;
if (!consolidate_vm_records(&_vm_record)) {
return next();
}
} else { // malloc-ed pointer
_is_vm_record = false;
next_p = (MemPointerRecord*)_itr.peek_next();
if (next_p != NULL && next_p->addr() == cur_p->addr()) {
assert(cur_p->is_allocation_record(), "sorting order");
assert(!next_p->is_allocation_record(), "sorting order");
_itr.next();
if (cur_p->seq() < next_p->seq()) {
cur_p = next_p;
}
}
if (MemTracker::track_callsite()) {
_malloc_record.init((MemPointerRecordEx*)cur_p);
} else {
_malloc_record.init((MemPointerRecord*)cur_p);
}
_itr.next(); MemPointerArrayIteratorImpl StagingArea::virtual_memory_record_walker() {
} MemPointerArray* arr = vm_data();
return current(); // sort into seq number order
arr->sort((FN_SORT)sort_in_seq_order);
return MemPointerArrayIteratorImpl(arr);
} }
MemSnapshot::MemSnapshot() { MemSnapshot::MemSnapshot() {
if (MemTracker::track_callsite()) { if (MemTracker::track_callsite()) {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>(); _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
} else { } else {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>(); _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
} }
_staging_area.init();
_lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock"); _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
NOT_PRODUCT(_untracked_count = 0;) NOT_PRODUCT(_untracked_count = 0;)
} }
...@@ -181,11 +87,6 @@ MemSnapshot::~MemSnapshot() { ...@@ -181,11 +87,6 @@ MemSnapshot::~MemSnapshot() {
assert(MemTracker::shutdown_in_progress(), "native memory tracking still on"); assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
{ {
MutexLockerEx locker(_lock); MutexLockerEx locker(_lock);
if (_staging_area != NULL) {
delete _staging_area;
_staging_area = NULL;
}
if (_alloc_ptrs != NULL) { if (_alloc_ptrs != NULL) {
delete _alloc_ptrs; delete _alloc_ptrs;
_alloc_ptrs = NULL; _alloc_ptrs = NULL;
...@@ -221,62 +122,64 @@ void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* s ...@@ -221,62 +122,64 @@ void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* s
bool MemSnapshot::merge(MemRecorder* rec) { bool MemSnapshot::merge(MemRecorder* rec) {
assert(rec != NULL && !rec->out_of_memory(), "Just check"); assert(rec != NULL && !rec->out_of_memory(), "Just check");
// out of memory
if (_staging_area == NULL || _staging_area->out_of_memory()) {
return false;
}
SequencedRecordIterator itr(rec->pointer_itr()); SequencedRecordIterator itr(rec->pointer_itr());
MutexLockerEx lock(_lock, true); MutexLockerEx lock(_lock, true);
MemPointerIterator staging_itr(_staging_area); MemPointerIterator malloc_staging_itr(_staging_area.malloc_data());
MemPointerRecord *p1, *p2; MemPointerRecord *p1, *p2;
p1 = (MemPointerRecord*) itr.current(); p1 = (MemPointerRecord*) itr.current();
while (p1 != NULL) { while (p1 != NULL) {
p2 = (MemPointerRecord*)staging_itr.locate(p1->addr()); if (p1->is_vm_pointer()) {
// we have not seen this memory block, so just add to staging area // we don't do anything with virtual memory records during merge
if (p2 == NULL) { if (!_staging_area.vm_data()->append(p1)) {
if (!staging_itr.insert(p1)) {
return false; return false;
} }
} else if (p1->addr() == p2->addr()) { } else {
MemPointerRecord* staging_next = (MemPointerRecord*)staging_itr.peek_next(); p2 = (MemPointerRecord*)malloc_staging_itr.locate(p1->addr());
// a memory block can have many tagging records, find right one to replace or // we have not seen this memory block, so just add to staging area
// right position to insert if (p2 == NULL) {
while (staging_next != NULL && staging_next->addr() == p1->addr()) { if (!malloc_staging_itr.insert(p1)) {
if ((staging_next->flags() & MemPointerRecord::tag_masks) <= return false;
(p1->flags() & MemPointerRecord::tag_masks)) {
p2 = (MemPointerRecord*)staging_itr.next();
staging_next = (MemPointerRecord*)staging_itr.peek_next();
} else {
break;
} }
} } else if (p1->addr() == p2->addr()) {
int df = (p1->flags() & MemPointerRecord::tag_masks) - MemPointerRecord* staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
(p2->flags() & MemPointerRecord::tag_masks); // a memory block can have many tagging records, find right one to replace or
if (df == 0) { // right position to insert
assert(p1->seq() > 0, "not sequenced"); while (staging_next != NULL && staging_next->addr() == p1->addr()) {
assert(p2->seq() > 0, "not sequenced"); if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
if (p1->seq() > p2->seq()) { (p1->flags() & MemPointerRecord::tag_masks)) {
copy_pointer(p2, p1); p2 = (MemPointerRecord*)malloc_staging_itr.next();
staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
} else {
break;
}
}
int df = (p1->flags() & MemPointerRecord::tag_masks) -
(p2->flags() & MemPointerRecord::tag_masks);
if (df == 0) {
assert(p1->seq() > 0, "not sequenced");
assert(p2->seq() > 0, "not sequenced");
if (p1->seq() > p2->seq()) {
copy_pointer(p2, p1);
}
} else if (df < 0) {
if (!malloc_staging_itr.insert(p1)) {
return false;
}
} else {
if (!malloc_staging_itr.insert_after(p1)) {
return false;
}
} }
} else if (df < 0) { } else if (p1->addr() < p2->addr()) {
if (!staging_itr.insert(p1)) { if (!malloc_staging_itr.insert(p1)) {
return false; return false;
} }
} else { } else {
if (!staging_itr.insert_after(p1)) { if (!malloc_staging_itr.insert_after(p1)) {
return false; return false;
} }
} }
} else if (p1->addr() < p2->addr()) {
if (!staging_itr.insert(p1)) {
return false;
}
} else {
if (!staging_itr.insert_after(p1)) {
return false;
}
} }
p1 = (MemPointerRecord*)itr.next(); p1 = (MemPointerRecord*)itr.next();
} }
...@@ -287,123 +190,180 @@ bool MemSnapshot::merge(MemRecorder* rec) { ...@@ -287,123 +190,180 @@ bool MemSnapshot::merge(MemRecorder* rec) {
// promote data to next generation // promote data to next generation
void MemSnapshot::promote() { bool MemSnapshot::promote() {
assert(_alloc_ptrs != NULL && _staging_area != NULL && _vm_ptrs != NULL, assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check");
"Just check"); assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL,
"Just check");
MutexLockerEx lock(_lock, true); MutexLockerEx lock(_lock, true);
StagingWalker walker(_staging_area);
MemPointerIterator malloc_itr(_alloc_ptrs); MallocRecordIterator malloc_itr = _staging_area.malloc_record_walker();
VMMemPointerIterator vm_itr(_vm_ptrs); bool promoted = false;
MemPointer* cur = walker.current(); if (promote_malloc_records(&malloc_itr)) {
while (cur != NULL) { MemPointerArrayIteratorImpl vm_itr = _staging_area.virtual_memory_record_walker();
if (walker.is_vm_record()) { if (promote_virtual_memory_records(&vm_itr)) {
VMMemRegion* cur_vm = (VMMemRegion*)cur; promoted = true;
VMMemRegion* p = (VMMemRegion*)vm_itr.locate(cur_vm->addr()); }
cur_vm = (VMMemRegion*)cur; }
if (p != NULL && (p->contains(cur_vm) || p->base() == cur_vm->base())) {
assert(p->is_reserve_record() || NOT_PRODUCT(check_malloc_pointers();)
p->is_commit_record(), "wrong vm record type"); _staging_area.clear();
// resize existing reserved range return promoted;
if (cur_vm->is_reserve_record() && p->base() == cur_vm->base()) { }
assert(cur_vm->size() >= p->committed_size(), "incorrect resizing");
p->set_reserved_size(cur_vm->size()); bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) {
} else if (cur_vm->is_commit_record()) { MemPointerIterator malloc_snapshot_itr(_alloc_ptrs);
p->commit(cur_vm->committed_size()); MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
} else if (cur_vm->is_uncommit_record()) { MemPointerRecord* matched_rec;
p->uncommit(cur_vm->committed_size()); while (new_rec != NULL) {
if (!p->is_reserve_record() && p->committed_size() == 0) { matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr());
vm_itr.remove(); // found matched memory block
} if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) {
} else if (cur_vm->is_type_tagging_record()) { // snapshot already contains 'lived' records
p->tag(cur_vm->flags()); assert(matched_rec->is_allocation_record() || matched_rec->is_arena_size_record(),
} else if (cur_vm->is_release_record()) { "Sanity check");
if (cur_vm->base() == p->base() && cur_vm->size() == p->size()) { // update block states
// release the whole range if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
vm_itr.remove(); copy_pointer(matched_rec, new_rec);
} else {
// partial release
p->partial_release(cur_vm->base(), cur_vm->size());
}
} else {
// we do see multiple reserver on the same vm range
assert((cur_vm->is_commit_record() || cur_vm->is_reserve_record()) &&
cur_vm->base() == p->base() && cur_vm->size() == p->size(), "bad record");
p->tag(cur_vm->flags());
}
} else { } else {
if(cur_vm->is_reserve_record()) { // a deallocation record
if (p == NULL || p->base() > cur_vm->base()) { assert(new_rec->is_deallocation_record(), "Sanity check");
vm_itr.insert(cur_vm); // an arena record can be followed by a size record, we need to remove both
} else { if (matched_rec->is_arena_record()) {
vm_itr.insert_after(cur_vm); MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next();
if (next->is_arena_size_record()) {
// it has to match the arena record
assert(next->is_size_record_of_arena(matched_rec), "Sanity check");
malloc_snapshot_itr.remove();
} }
} else {
// In theory, we should assert without conditions. However, in case of native
// thread stack, NMT explicitly releases the thread stack in Thread's destructor,
// due to platform dependent behaviors. On some platforms, we see uncommit/release
// native thread stack, but some, we don't.
assert(cur_vm->is_uncommit_record() || cur_vm->is_deallocation_record(),
err_msg("Should not reach here, pointer addr = [" INTPTR_FORMAT "], flags = [%x]",
cur_vm->addr(), cur_vm->flags()));
} }
// the memory is deallocated, remove related record(s)
malloc_snapshot_itr.remove();
} }
} else { } else {
MemPointerRecord* cur_p = (MemPointerRecord*)cur; // it is a new record, insert into snapshot
MemPointerRecord* p = (MemPointerRecord*)malloc_itr.locate(cur->addr()); if (new_rec->is_arena_size_record()) {
if (p != NULL && cur_p->addr() == p->addr()) { MemPointerRecord* prev = (MemPointerRecord*)malloc_snapshot_itr.peek_prev();
assert(p->is_allocation_record() || p->is_arena_size_record(), "untracked"); if (prev == NULL || !prev->is_arena_record() || !new_rec->is_size_record_of_arena(prev)) {
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) { // no matched arena record, ignore the size record
copy_pointer(p, cur_p); new_rec = NULL;
} else { // deallocation record }
assert(cur_p->is_deallocation_record(), "wrong record type"); }
// only 'live' record can go into snapshot
// we are removing an arena record, we also need to remove its 'size' if (new_rec != NULL) {
// record behind it if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
if (p->is_arena_record()) { if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) {
MemPointerRecord* next_p = (MemPointerRecord*)malloc_itr.peek_next(); if (!malloc_snapshot_itr.insert_after(new_rec)) {
if (next_p->is_arena_size_record()) { return false;
assert(next_p->is_size_record_of_arena(p), "arena records dont match"); }
malloc_itr.remove(); } else {
if (!malloc_snapshot_itr.insert(new_rec)) {
return false;
} }
} }
malloc_itr.remove();
} }
} else { #ifndef PRODUCT
if (cur_p->is_arena_size_record()) { else if (!has_allocation_record(new_rec->addr())) {
MemPointerRecord* prev_p = (MemPointerRecord*)malloc_itr.peek_prev(); // NMT can not track some startup memory, which is allocated before NMT is on
if (prev_p != NULL && _untracked_count ++;
(!prev_p->is_arena_record() || !cur_p->is_size_record_of_arena(prev_p))) { }
// arena already deallocated #endif
cur_p = NULL; }
}
new_rec = (MemPointerRecord*)itr->next();
}
return true;
}
bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) {
VMMemPointerIterator vm_snapshot_itr(_vm_ptrs);
MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
VMMemRegionEx new_vm_rec;
VMMemRegion* matched_rec;
while (new_rec != NULL) {
assert(new_rec->is_vm_pointer(), "Sanity check");
if (MemTracker::track_callsite()) {
new_vm_rec.init((MemPointerRecordEx*)new_rec);
} else {
new_vm_rec.init(new_rec);
}
matched_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr());
if (matched_rec != NULL &&
(matched_rec->contains(&new_vm_rec) || matched_rec->base() == new_vm_rec.base())) {
// snapshot can only have 'live' records
assert(matched_rec->is_reserve_record(), "Sanity check");
if (new_vm_rec.is_reserve_record() && matched_rec->base() == new_vm_rec.base()) {
// resize reserved virtual memory range
// resize has to cover committed area
assert(new_vm_rec.size() >= matched_rec->committed_size(), "Sanity check");
matched_rec->set_reserved_size(new_vm_rec.size());
} else if (new_vm_rec.is_commit_record()) {
// commit memory inside reserved memory range
assert(new_vm_rec.committed_size() <= matched_rec->reserved_size(), "Sanity check");
// thread stacks are marked committed, so we ignore 'commit' record for creating
// stack guard pages
if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) != mtThreadStack) {
matched_rec->commit(new_vm_rec.committed_size());
}
} else if (new_vm_rec.is_uncommit_record()) {
if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtThreadStack) {
// ignore 'uncommit' record from removing stack guard pages, uncommit
// thread stack as whole
if (matched_rec->committed_size() == new_vm_rec.committed_size()) {
matched_rec->uncommit(new_vm_rec.committed_size());
} }
} else {
// uncommit memory inside reserved memory range
assert(new_vm_rec.committed_size() <= matched_rec->committed_size(),
"Sanity check");
matched_rec->uncommit(new_vm_rec.committed_size());
} }
if (cur_p != NULL) { } else if (new_vm_rec.is_type_tagging_record()) {
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) { // tag this virtual memory range to a memory type
if (p != NULL && cur_p->addr() > p->addr()) { // can not re-tag a memory range to different type
malloc_itr.insert_after(cur); assert(FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtNone ||
} else { FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_vm_rec.flags()),
malloc_itr.insert(cur); "Sanity check");
} matched_rec->tag(new_vm_rec.flags());
} else if (new_vm_rec.is_release_record()) {
// release part or whole memory range
if (new_vm_rec.base() == matched_rec->base() &&
new_vm_rec.size() == matched_rec->size()) {
// release whole virtual memory range
assert(matched_rec->committed_size() == 0, "Sanity check");
vm_snapshot_itr.remove();
} else {
// partial release
matched_rec->partial_release(new_vm_rec.base(), new_vm_rec.size());
}
} else {
// multiple reserve/commit on the same virtual memory range
assert((new_vm_rec.is_reserve_record() || new_vm_rec.is_commit_record()) &&
(new_vm_rec.base() == matched_rec->base() && new_vm_rec.size() == matched_rec->size()),
"Sanity check");
matched_rec->tag(new_vm_rec.flags());
}
} else {
// no matched record
if (new_vm_rec.is_reserve_record()) {
if (matched_rec == NULL || matched_rec->base() > new_vm_rec.base()) {
if (!vm_snapshot_itr.insert(&new_vm_rec)) {
return false;
} }
#ifndef PRODUCT } else {
else if (!has_allocation_record(cur_p->addr())){ if (!vm_snapshot_itr.insert_after(&new_vm_rec)) {
// NMT can not track some startup memory, which allocated before NMT return false;
// is enabled
_untracked_count ++;
} }
#endif
} }
} else {
// throw out obsolete records, which are the commit/uncommit/release/tag records
// on memory regions that are already released.
} }
}
cur = walker.next();
} }
NOT_PRODUCT(check_malloc_pointers();) new_rec = (MemPointerRecord*)itr->next();
_staging_area->shrink(); }
_staging_area->clear(); return true;
} }
#ifndef PRODUCT #ifndef PRODUCT
void MemSnapshot::print_snapshot_stats(outputStream* st) { void MemSnapshot::print_snapshot_stats(outputStream* st) {
st->print_cr("Snapshot:"); st->print_cr("Snapshot:");
...@@ -413,8 +373,15 @@ void MemSnapshot::print_snapshot_stats(outputStream* st) { ...@@ -413,8 +373,15 @@ void MemSnapshot::print_snapshot_stats(outputStream* st) {
st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(), st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
(100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K); (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);
st->print_cr("\tStaging: %d/%d [%5.2f%%] %dKB", _staging_area->length(), _staging_area->capacity(), st->print_cr("\tMalloc staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(),
(100.0 * (float)_staging_area->length()) / (float)_staging_area->capacity(), _staging_area->instance_size()/K); _staging_area.malloc_data()->capacity(),
(100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(),
_staging_area.malloc_data()->instance_size()/K);
st->print_cr("\tVirtual memory staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(),
_staging_area.vm_data()->capacity(),
(100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(),
_staging_area.vm_data()->instance_size()/K);
st->print_cr("\tUntracked allocation: %d", _untracked_count); st->print_cr("\tUntracked allocation: %d", _untracked_count);
} }
...@@ -433,7 +400,7 @@ void MemSnapshot::check_malloc_pointers() { ...@@ -433,7 +400,7 @@ void MemSnapshot::check_malloc_pointers() {
} }
bool MemSnapshot::has_allocation_record(address addr) { bool MemSnapshot::has_allocation_record(address addr) {
MemPointerArrayIteratorImpl itr(_staging_area); MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current(); MemPointerRecord* cur = (MemPointerRecord*)itr.current();
while (cur != NULL) { while (cur != NULL) {
if (cur->addr() == addr && cur->is_allocation_record()) { if (cur->addr() == addr && cur->is_allocation_record()) {
...@@ -447,7 +414,7 @@ bool MemSnapshot::has_allocation_record(address addr) { ...@@ -447,7 +414,7 @@ bool MemSnapshot::has_allocation_record(address addr) {
#ifdef ASSERT #ifdef ASSERT
void MemSnapshot::check_staging_data() { void MemSnapshot::check_staging_data() {
MemPointerArrayIteratorImpl itr(_staging_area); MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current(); MemPointerRecord* cur = (MemPointerRecord*)itr.current();
MemPointerRecord* next = (MemPointerRecord*)itr.next(); MemPointerRecord* next = (MemPointerRecord*)itr.next();
while (next != NULL) { while (next != NULL) {
...@@ -458,6 +425,13 @@ void MemSnapshot::check_staging_data() { ...@@ -458,6 +425,13 @@ void MemSnapshot::check_staging_data() {
cur = next; cur = next;
next = (MemPointerRecord*)itr.next(); next = (MemPointerRecord*)itr.next();
} }
MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data());
cur = (MemPointerRecord*)vm_itr.current();
while (cur != NULL) {
assert(cur->is_vm_pointer(), "virtual memory pointer only");
cur = (MemPointerRecord*)vm_itr.next();
}
} }
#endif // ASSERT #endif // ASSERT
...@@ -111,37 +111,31 @@ class VMMemPointerIterator : public MemPointerIterator { ...@@ -111,37 +111,31 @@ class VMMemPointerIterator : public MemPointerIterator {
MemPointerIterator(arr) { MemPointerIterator(arr) {
} }
// locate an exiting record that contains specified address, or // locate an existing record that contains specified address, or
// the record, where the record with specified address, should // the record, where the record with specified address, should
// be inserted // be inserted.
// virtual memory record array is sorted in address order, so
// binary search is performed
virtual MemPointer* locate(address addr) { virtual MemPointer* locate(address addr) {
VMMemRegion* cur = (VMMemRegion*)current(); int index_low = 0;
VMMemRegion* next_p; int index_high = _array->length();
int index_mid = (index_high + index_low) / 2;
while (cur != NULL) { int r = 1;
if (cur->base() > addr) { while (index_low < index_high && (r = compare(index_mid, addr)) != 0) {
return cur; if (r > 0) {
index_high = index_mid;
} else { } else {
// find nearest existing range that has base address <= addr index_low = index_mid;
next_p = (VMMemRegion*)peek_next();
if (next_p != NULL && next_p->base() <= addr) {
cur = (VMMemRegion*)next();
continue;
}
}
if (cur->is_reserve_record() &&
cur->base() <= addr &&
(cur->base() + cur->size() > addr)) {
return cur;
} else if (cur->is_commit_record() &&
cur->base() <= addr &&
(cur->base() + cur->committed_size() > addr)) {
return cur;
} }
cur = (VMMemRegion*)next(); index_mid = (index_high + index_low) / 2;
}
if (r == 0) {
// update current location
_pos = index_mid;
return _array->at(index_mid);
} else {
return NULL;
} }
return NULL;
} }
#ifdef ASSERT #ifdef ASSERT
...@@ -160,75 +154,99 @@ class VMMemPointerIterator : public MemPointerIterator { ...@@ -160,75 +154,99 @@ class VMMemPointerIterator : public MemPointerIterator {
(p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_release; (p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_release;
} }
#endif #endif
// compare if an address falls into a memory region,
// return 0, if the address falls into a memory region at specified index
// return 1, if memory region pointed by specified index is higher than the address
// return -1, if memory region pointed by specified index is lower than the address
int compare(int index, address addr) const {
VMMemRegion* r = (VMMemRegion*)_array->at(index);
assert(r->is_reserve_record(), "Sanity check");
if (r->addr() > addr) {
return 1;
} else if (r->addr() + r->reserved_size() <= addr) {
return -1;
} else {
return 0;
}
}
}; };
class StagingWalker : public MemPointerArrayIterator { class MallocRecordIterator : public MemPointerArrayIterator {
private: private:
MemPointerArrayIteratorImpl _itr; MemPointerArrayIteratorImpl _itr;
bool _is_vm_record;
bool _end_of_array;
VMMemRegionEx _vm_record;
MemPointerRecordEx _malloc_record;
public: public:
StagingWalker(MemPointerArray* arr): _itr(arr) { MallocRecordIterator(MemPointerArray* arr) : _itr(arr) {
_end_of_array = false;
next();
} }
// return the pointer at current position
MemPointer* current() const { MemPointer* current() const {
if (_end_of_array) { MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
assert(cur == NULL || !cur->is_vm_pointer(), "seek error");
MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
if (next == NULL || next->addr() != cur->addr()) {
return cur;
} else {
assert(!cur->is_vm_pointer(), "Sanity check");
assert(cur->is_allocation_record() && next->is_deallocation_record(),
"sorting order");
assert(cur->seq() != next->seq(), "Sanity check");
return cur->seq() > next->seq() ? cur : next;
}
}
MemPointer* next() {
MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
assert(cur == NULL || !cur->is_vm_pointer(), "Sanity check");
MemPointerRecord* next = (MemPointerRecord*)_itr.next();
if (next == NULL) {
return NULL; return NULL;
} }
if (is_vm_record()) { if (cur->addr() == next->addr()) {
return (MemPointer*)&_vm_record; next = (MemPointerRecord*)_itr.next();
} else {
return (MemPointer*)&_malloc_record;
} }
return current();
} }
// return the next pointer and advance current position MemPointer* peek_next() const { ShouldNotReachHere(); return NULL; }
MemPointer* next(); MemPointer* peek_prev() const { ShouldNotReachHere(); return NULL; }
void remove() { ShouldNotReachHere(); }
bool insert(MemPointer* ptr) { ShouldNotReachHere(); return false; }
bool insert_after(MemPointer* ptr) { ShouldNotReachHere(); return false; }
};
// type of 'current' record class StagingArea : public _ValueObj {
bool is_vm_record() const { private:
return _is_vm_record; MemPointerArray* _malloc_data;
} MemPointerArray* _vm_data;
// return the next poinger without advancing current position public:
MemPointer* peek_next() const { StagingArea() : _malloc_data(NULL), _vm_data(NULL) {
assert(false, "not supported"); init();
return NULL;
} }
MemPointer* peek_prev() const { ~StagingArea() {
assert(false, "not supported"); if (_malloc_data != NULL) delete _malloc_data;
return NULL; if (_vm_data != NULL) delete _vm_data;
}
// remove the pointer at current position
void remove() {
assert(false, "not supported");
} }
// insert the pointer at current position MallocRecordIterator malloc_record_walker() {
bool insert(MemPointer* ptr) { return MallocRecordIterator(malloc_data());
assert(false, "not supported");
return false;
} }
bool insert_after(MemPointer* ptr) { MemPointerArrayIteratorImpl virtual_memory_record_walker();
assert(false, "not supported"); bool init();
return false; void clear() {
assert(_malloc_data != NULL && _vm_data != NULL, "Just check");
_malloc_data->shrink();
_malloc_data->clear();
_vm_data->clear();
} }
private: inline MemPointerArray* malloc_data() { return _malloc_data; }
// consolidate all records referring to this vm region inline MemPointerArray* vm_data() { return _vm_data; }
bool consolidate_vm_records(VMMemRegionEx* vm_rec);
}; };
class MemBaseline; class MemBaseline;
class MemSnapshot : public CHeapObj<mtNMT> { class MemSnapshot : public CHeapObj<mtNMT> {
private: private:
// the following two arrays contain records of all known lived memory blocks // the following two arrays contain records of all known lived memory blocks
...@@ -237,9 +255,7 @@ class MemSnapshot : public CHeapObj<mtNMT> { ...@@ -237,9 +255,7 @@ class MemSnapshot : public CHeapObj<mtNMT> {
// live virtual memory pointers // live virtual memory pointers
MemPointerArray* _vm_ptrs; MemPointerArray* _vm_ptrs;
// stagging a generation's data, before StagingArea _staging_area;
// it can be prompted to snapshot
MemPointerArray* _staging_area;
// the lock to protect this snapshot // the lock to protect this snapshot
Monitor* _lock; Monitor* _lock;
...@@ -252,18 +268,19 @@ class MemSnapshot : public CHeapObj<mtNMT> { ...@@ -252,18 +268,19 @@ class MemSnapshot : public CHeapObj<mtNMT> {
virtual ~MemSnapshot(); virtual ~MemSnapshot();
// if we are running out of native memory // if we are running out of native memory
bool out_of_memory() const { bool out_of_memory() {
return (_alloc_ptrs == NULL || _staging_area == NULL || return (_alloc_ptrs == NULL ||
_staging_area.malloc_data() == NULL ||
_staging_area.vm_data() == NULL ||
_vm_ptrs == NULL || _lock == NULL || _vm_ptrs == NULL || _lock == NULL ||
_alloc_ptrs->out_of_memory() || _alloc_ptrs->out_of_memory() ||
_staging_area->out_of_memory() ||
_vm_ptrs->out_of_memory()); _vm_ptrs->out_of_memory());
} }
// merge a per-thread memory recorder into staging area // merge a per-thread memory recorder into staging area
bool merge(MemRecorder* rec); bool merge(MemRecorder* rec);
// promote staged data to snapshot // promote staged data to snapshot
void promote(); bool promote();
void wait(long timeout) { void wait(long timeout) {
...@@ -280,6 +297,9 @@ class MemSnapshot : public CHeapObj<mtNMT> { ...@@ -280,6 +297,9 @@ class MemSnapshot : public CHeapObj<mtNMT> {
private: private:
// copy pointer data from src to dest // copy pointer data from src to dest
void copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src); void copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src);
bool promote_malloc_records(MemPointerArrayIterator* itr);
bool promote_virtual_memory_records(MemPointerArrayIterator* itr);
}; };
......
...@@ -118,7 +118,10 @@ void MemTrackWorker::run() { ...@@ -118,7 +118,10 @@ void MemTrackWorker::run() {
_head = (_head + 1) % MAX_GENERATIONS; _head = (_head + 1) % MAX_GENERATIONS;
} }
// promote this generation data to snapshot // promote this generation data to snapshot
snapshot->promote(); if (!snapshot->promote()) {
// failed to promote, means out of memory
MemTracker::shutdown(MemTracker::NMT_out_of_memory);
}
} else { } else {
snapshot->wait(1000); snapshot->wait(1000);
ThreadCritical tc; ThreadCritical tc;
......
...@@ -39,7 +39,7 @@ ...@@ -39,7 +39,7 @@
#include "thread_solaris.inline.hpp" #include "thread_solaris.inline.hpp"
#endif #endif
#ifdef _DEBUG_ #ifdef _DEBUG
#define DEBUG_CALLER_PC os::get_caller_pc(3) #define DEBUG_CALLER_PC os::get_caller_pc(3)
#else #else
#define DEBUG_CALLER_PC 0 #define DEBUG_CALLER_PC 0
...@@ -223,12 +223,33 @@ class MemTracker : AllStatic { ...@@ -223,12 +223,33 @@ class MemTracker : AllStatic {
} }
} }
static inline void record_thread_stack(address addr, size_t size, Thread* thr,
address pc = 0) {
if (is_on()) {
assert(size > 0 && thr != NULL, "Sanity check");
create_memory_record(addr, MemPointerRecord::virtual_memory_reserve_tag() | mtThreadStack,
size, pc, thr);
create_memory_record(addr, MemPointerRecord::virtual_memory_commit_tag() | mtThreadStack,
size, pc, thr);
}
}
static inline void release_thread_stack(address addr, size_t size, Thread* thr) {
if (is_on()) {
assert(size > 0 && thr != NULL, "Sanity check");
create_memory_record(addr, MemPointerRecord::virtual_memory_uncommit_tag() | mtThreadStack,
size, DEBUG_CALLER_PC, thr);
create_memory_record(addr, MemPointerRecord::virtual_memory_release_tag() | mtThreadStack,
size, DEBUG_CALLER_PC, thr);
}
}
// record a virtual memory 'commit' call // record a virtual memory 'commit' call
static inline void record_virtual_memory_commit(address addr, size_t size, static inline void record_virtual_memory_commit(address addr, size_t size,
address pc = 0, Thread* thread = NULL) { address pc = 0, Thread* thread = NULL) {
if (is_on()) { if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_commit_tag(), create_memory_record(addr, MemPointerRecord::virtual_memory_commit_tag(),
size, pc, thread); size, DEBUG_CALLER_PC, thread);
} }
} }
...@@ -237,7 +258,7 @@ class MemTracker : AllStatic { ...@@ -237,7 +258,7 @@ class MemTracker : AllStatic {
Thread* thread = NULL) { Thread* thread = NULL) {
if (is_on()) { if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_uncommit_tag(), create_memory_record(addr, MemPointerRecord::virtual_memory_uncommit_tag(),
size, 0, thread); size, DEBUG_CALLER_PC, thread);
} }
} }
...@@ -246,7 +267,7 @@ class MemTracker : AllStatic { ...@@ -246,7 +267,7 @@ class MemTracker : AllStatic {
Thread* thread = NULL) { Thread* thread = NULL) {
if (is_on()) { if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_release_tag(), create_memory_record(addr, MemPointerRecord::virtual_memory_release_tag(),
size, 0, thread); size, DEBUG_CALLER_PC, thread);
} }
} }
...@@ -257,7 +278,7 @@ class MemTracker : AllStatic { ...@@ -257,7 +278,7 @@ class MemTracker : AllStatic {
assert(base > 0, "wrong base address"); assert(base > 0, "wrong base address");
assert((flags & (~mt_masks)) == 0, "memory type only"); assert((flags & (~mt_masks)) == 0, "memory type only");
create_memory_record(base, (flags | MemPointerRecord::virtual_memory_type_tag()), create_memory_record(base, (flags | MemPointerRecord::virtual_memory_type_tag()),
0, 0, thread); 0, DEBUG_CALLER_PC, thread);
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册