提交 eedeebde 编写于 作者: Z zgu

Merge

......@@ -318,10 +318,9 @@ void Thread::record_stack_base_and_size() {
set_stack_size(os::current_stack_size());
// record thread's native stack, stack grows downward
address vm_base = _stack_base - _stack_size;
MemTracker::record_virtual_memory_reserve(vm_base, _stack_size,
CURRENT_PC, this);
MemTracker::record_virtual_memory_type(vm_base, mtThreadStack);
address low_stack_addr = stack_base() - stack_size();
MemTracker::record_thread_stack(low_stack_addr, stack_size(), this,
CURRENT_PC);
}
......@@ -329,8 +328,8 @@ Thread::~Thread() {
// Reclaim the objectmonitors from the omFreeList of the moribund thread.
ObjectSynchronizer::omFlush (this) ;
MemTracker::record_virtual_memory_release((_stack_base - _stack_size),
_stack_size, this);
address low_stack_addr = stack_base() - stack_size();
MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
// deallocate data structures
delete resource_area();
......
......@@ -43,9 +43,9 @@ jint SequenceGenerator::next() {
bool VMMemRegion::contains(const VMMemRegion* mr) const {
assert(base() != 0, "no base address");
assert(base() != 0, "Sanity check");
assert(size() != 0 || committed_size() != 0,
"no range");
"Sanity check");
address base_addr = base();
address end_addr = base_addr +
(is_reserve_record()? reserved_size(): committed_size());
......@@ -61,14 +61,14 @@ bool VMMemRegion::contains(const VMMemRegion* mr) const {
return (mr->base() >= base_addr &&
(mr->base() + mr->committed_size()) <= end_addr);
} else if (mr->is_type_tagging_record()) {
assert(mr->base() != 0, "no base");
return mr->base() == base_addr;
assert(mr->base() != NULL, "Sanity check");
return (mr->base() >= base_addr && mr->base() < end_addr);
} else if (mr->is_release_record()) {
assert(mr->base() != 0 && mr->size() > 0,
"bad record");
return (mr->base() == base_addr && mr->size() == size());
} else {
assert(false, "what happened?");
ShouldNotReachHere();
return false;
}
}
......@@ -84,11 +84,7 @@ class MemPointerArrayIterator VALUE_OBJ_CLASS_SPEC {
// implementation class
class MemPointerArrayIteratorImpl : public MemPointerArrayIterator {
#ifdef ASSERT
protected:
#else
private:
#endif
MemPointerArray* _array;
int _pos;
......
......@@ -31,148 +31,54 @@
#include "services/memSnapshot.hpp"
#include "services/memTracker.hpp"
static int sort_in_seq_order(const void* p1, const void* p2) {
assert(p1 != NULL && p2 != NULL, "Sanity check");
const MemPointerRecord* mp1 = (MemPointerRecord*)p1;
const MemPointerRecord* mp2 = (MemPointerRecord*)p2;
return (mp1->seq() - mp2->seq());
}
// stagging data groups the data of a VM memory range, so we can consolidate
// them into one record during the walk
bool StagingWalker::consolidate_vm_records(VMMemRegionEx* vm_rec) {
MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
assert(cur != NULL && cur->is_vm_pointer(), "not a virtual memory pointer");
jint cur_seq;
jint next_seq;
bool trackCallsite = MemTracker::track_callsite();
if (trackCallsite) {
vm_rec->init((MemPointerRecordEx*)cur);
cur_seq = ((SeqMemPointerRecordEx*)cur)->seq();
bool StagingArea::init() {
if (MemTracker::track_callsite()) {
_malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
_vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
} else {
vm_rec->init((MemPointerRecord*)cur);
cur_seq = ((SeqMemPointerRecord*)cur)->seq();
_malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
_vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
}
// only can consolidate when we have allocation record,
// which contains virtual memory range
if (!cur->is_allocation_record()) {
_itr.next();
if (_malloc_data != NULL && _vm_data != NULL &&
!_malloc_data->out_of_memory() &&
!_vm_data->out_of_memory()) {
return true;
} else {
if (_malloc_data != NULL) delete _malloc_data;
if (_vm_data != NULL) delete _vm_data;
_malloc_data = NULL;
_vm_data = NULL;
return false;
}
// allocation range
address base = cur->addr();
address end = base + cur->size();
MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
// if the memory range is alive
bool live_vm_rec = true;
while (next != NULL && next->is_vm_pointer()) {
if (next->is_allocation_record()) {
assert(next->addr() >= base, "sorting order or overlapping");
break;
}
if (trackCallsite) {
next_seq = ((SeqMemPointerRecordEx*)next)->seq();
} else {
next_seq = ((SeqMemPointerRecord*)next)->seq();
}
if (next_seq < cur_seq) {
_itr.next();
next = (MemPointerRecord*)_itr.peek_next();
continue;
}
if (next->is_deallocation_record()) {
if (next->addr() == base && next->size() == cur->size()) {
// the virtual memory range has been released
_itr.next();
live_vm_rec = false;
break;
} else if (next->addr() < end) { // partial release
vm_rec->partial_release(next->addr(), next->size());
_itr.next();
} else {
break;
}
} else if (next->is_commit_record()) {
if (next->addr() >= base && next->addr() + next->size() <= end) {
vm_rec->commit(next->size());
_itr.next();
} else {
assert(next->addr() >= base, "sorting order or overlapping");
break;
}
} else if (next->is_uncommit_record()) {
if (next->addr() >= base && next->addr() + next->size() <= end) {
vm_rec->uncommit(next->size());
_itr.next();
} else {
assert(next->addr() >= end, "sorting order or overlapping");
break;
}
} else if (next->is_type_tagging_record()) {
if (next->addr() >= base && next->addr() < end ) {
vm_rec->tag(next->flags());
_itr.next();
} else {
break;
}
} else {
assert(false, "unknown record type");
}
next = (MemPointerRecord*)_itr.peek_next();
}
_itr.next();
return live_vm_rec;
}
MemPointer* StagingWalker::next() {
MemPointerRecord* cur_p = (MemPointerRecord*)_itr.current();
if (cur_p == NULL) {
_end_of_array = true;
return NULL;
}
MemPointerRecord* next_p;
if (cur_p->is_vm_pointer()) {
_is_vm_record = true;
if (!consolidate_vm_records(&_vm_record)) {
return next();
}
} else { // malloc-ed pointer
_is_vm_record = false;
next_p = (MemPointerRecord*)_itr.peek_next();
if (next_p != NULL && next_p->addr() == cur_p->addr()) {
assert(cur_p->is_allocation_record(), "sorting order");
assert(!next_p->is_allocation_record(), "sorting order");
_itr.next();
if (cur_p->seq() < next_p->seq()) {
cur_p = next_p;
}
}
if (MemTracker::track_callsite()) {
_malloc_record.init((MemPointerRecordEx*)cur_p);
} else {
_malloc_record.init((MemPointerRecord*)cur_p);
}
_itr.next();
}
return current();
MemPointerArrayIteratorImpl StagingArea::virtual_memory_record_walker() {
MemPointerArray* arr = vm_data();
// sort into seq number order
arr->sort((FN_SORT)sort_in_seq_order);
return MemPointerArrayIteratorImpl(arr);
}
MemSnapshot::MemSnapshot() {
if (MemTracker::track_callsite()) {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
} else {
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
}
_staging_area.init();
_lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
NOT_PRODUCT(_untracked_count = 0;)
}
......@@ -181,11 +87,6 @@ MemSnapshot::~MemSnapshot() {
assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
{
MutexLockerEx locker(_lock);
if (_staging_area != NULL) {
delete _staging_area;
_staging_area = NULL;
}
if (_alloc_ptrs != NULL) {
delete _alloc_ptrs;
_alloc_ptrs = NULL;
......@@ -221,62 +122,64 @@ void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* s
bool MemSnapshot::merge(MemRecorder* rec) {
assert(rec != NULL && !rec->out_of_memory(), "Just check");
// out of memory
if (_staging_area == NULL || _staging_area->out_of_memory()) {
return false;
}
SequencedRecordIterator itr(rec->pointer_itr());
MutexLockerEx lock(_lock, true);
MemPointerIterator staging_itr(_staging_area);
MemPointerIterator malloc_staging_itr(_staging_area.malloc_data());
MemPointerRecord *p1, *p2;
p1 = (MemPointerRecord*) itr.current();
while (p1 != NULL) {
p2 = (MemPointerRecord*)staging_itr.locate(p1->addr());
// we have not seen this memory block, so just add to staging area
if (p2 == NULL) {
if (!staging_itr.insert(p1)) {
if (p1->is_vm_pointer()) {
// we don't do anything with virtual memory records during merge
if (!_staging_area.vm_data()->append(p1)) {
return false;
}
} else if (p1->addr() == p2->addr()) {
MemPointerRecord* staging_next = (MemPointerRecord*)staging_itr.peek_next();
// a memory block can have many tagging records, find right one to replace or
// right position to insert
while (staging_next != NULL && staging_next->addr() == p1->addr()) {
if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
(p1->flags() & MemPointerRecord::tag_masks)) {
p2 = (MemPointerRecord*)staging_itr.next();
staging_next = (MemPointerRecord*)staging_itr.peek_next();
} else {
break;
} else {
p2 = (MemPointerRecord*)malloc_staging_itr.locate(p1->addr());
// we have not seen this memory block, so just add to staging area
if (p2 == NULL) {
if (!malloc_staging_itr.insert(p1)) {
return false;
}
}
int df = (p1->flags() & MemPointerRecord::tag_masks) -
(p2->flags() & MemPointerRecord::tag_masks);
if (df == 0) {
assert(p1->seq() > 0, "not sequenced");
assert(p2->seq() > 0, "not sequenced");
if (p1->seq() > p2->seq()) {
copy_pointer(p2, p1);
} else if (p1->addr() == p2->addr()) {
MemPointerRecord* staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
// a memory block can have many tagging records, find right one to replace or
// right position to insert
while (staging_next != NULL && staging_next->addr() == p1->addr()) {
if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
(p1->flags() & MemPointerRecord::tag_masks)) {
p2 = (MemPointerRecord*)malloc_staging_itr.next();
staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
} else {
break;
}
}
int df = (p1->flags() & MemPointerRecord::tag_masks) -
(p2->flags() & MemPointerRecord::tag_masks);
if (df == 0) {
assert(p1->seq() > 0, "not sequenced");
assert(p2->seq() > 0, "not sequenced");
if (p1->seq() > p2->seq()) {
copy_pointer(p2, p1);
}
} else if (df < 0) {
if (!malloc_staging_itr.insert(p1)) {
return false;
}
} else {
if (!malloc_staging_itr.insert_after(p1)) {
return false;
}
}
} else if (df < 0) {
if (!staging_itr.insert(p1)) {
} else if (p1->addr() < p2->addr()) {
if (!malloc_staging_itr.insert(p1)) {
return false;
}
} else {
if (!staging_itr.insert_after(p1)) {
if (!malloc_staging_itr.insert_after(p1)) {
return false;
}
}
} else if (p1->addr() < p2->addr()) {
if (!staging_itr.insert(p1)) {
return false;
}
} else {
if (!staging_itr.insert_after(p1)) {
return false;
}
}
p1 = (MemPointerRecord*)itr.next();
}
......@@ -287,123 +190,180 @@ bool MemSnapshot::merge(MemRecorder* rec) {
// promote data to next generation
void MemSnapshot::promote() {
assert(_alloc_ptrs != NULL && _staging_area != NULL && _vm_ptrs != NULL,
"Just check");
bool MemSnapshot::promote() {
assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check");
assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL,
"Just check");
MutexLockerEx lock(_lock, true);
StagingWalker walker(_staging_area);
MemPointerIterator malloc_itr(_alloc_ptrs);
VMMemPointerIterator vm_itr(_vm_ptrs);
MemPointer* cur = walker.current();
while (cur != NULL) {
if (walker.is_vm_record()) {
VMMemRegion* cur_vm = (VMMemRegion*)cur;
VMMemRegion* p = (VMMemRegion*)vm_itr.locate(cur_vm->addr());
cur_vm = (VMMemRegion*)cur;
if (p != NULL && (p->contains(cur_vm) || p->base() == cur_vm->base())) {
assert(p->is_reserve_record() ||
p->is_commit_record(), "wrong vm record type");
// resize existing reserved range
if (cur_vm->is_reserve_record() && p->base() == cur_vm->base()) {
assert(cur_vm->size() >= p->committed_size(), "incorrect resizing");
p->set_reserved_size(cur_vm->size());
} else if (cur_vm->is_commit_record()) {
p->commit(cur_vm->committed_size());
} else if (cur_vm->is_uncommit_record()) {
p->uncommit(cur_vm->committed_size());
if (!p->is_reserve_record() && p->committed_size() == 0) {
vm_itr.remove();
}
} else if (cur_vm->is_type_tagging_record()) {
p->tag(cur_vm->flags());
} else if (cur_vm->is_release_record()) {
if (cur_vm->base() == p->base() && cur_vm->size() == p->size()) {
// release the whole range
vm_itr.remove();
} else {
// partial release
p->partial_release(cur_vm->base(), cur_vm->size());
}
} else {
// we do see multiple reserver on the same vm range
assert((cur_vm->is_commit_record() || cur_vm->is_reserve_record()) &&
cur_vm->base() == p->base() && cur_vm->size() == p->size(), "bad record");
p->tag(cur_vm->flags());
}
MallocRecordIterator malloc_itr = _staging_area.malloc_record_walker();
bool promoted = false;
if (promote_malloc_records(&malloc_itr)) {
MemPointerArrayIteratorImpl vm_itr = _staging_area.virtual_memory_record_walker();
if (promote_virtual_memory_records(&vm_itr)) {
promoted = true;
}
}
NOT_PRODUCT(check_malloc_pointers();)
_staging_area.clear();
return promoted;
}
bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) {
MemPointerIterator malloc_snapshot_itr(_alloc_ptrs);
MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
MemPointerRecord* matched_rec;
while (new_rec != NULL) {
matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr());
// found matched memory block
if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) {
// snapshot already contains 'lived' records
assert(matched_rec->is_allocation_record() || matched_rec->is_arena_size_record(),
"Sanity check");
// update block states
if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
copy_pointer(matched_rec, new_rec);
} else {
if(cur_vm->is_reserve_record()) {
if (p == NULL || p->base() > cur_vm->base()) {
vm_itr.insert(cur_vm);
} else {
vm_itr.insert_after(cur_vm);
// a deallocation record
assert(new_rec->is_deallocation_record(), "Sanity check");
// an arena record can be followed by a size record, we need to remove both
if (matched_rec->is_arena_record()) {
MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next();
if (next->is_arena_size_record()) {
// it has to match the arena record
assert(next->is_size_record_of_arena(matched_rec), "Sanity check");
malloc_snapshot_itr.remove();
}
} else {
// In theory, we should assert without conditions. However, in case of native
// thread stack, NMT explicitly releases the thread stack in Thread's destructor,
// due to platform dependent behaviors. On some platforms, we see uncommit/release
// native thread stack, but some, we don't.
assert(cur_vm->is_uncommit_record() || cur_vm->is_deallocation_record(),
err_msg("Should not reach here, pointer addr = [" INTPTR_FORMAT "], flags = [%x]",
cur_vm->addr(), cur_vm->flags()));
}
// the memory is deallocated, remove related record(s)
malloc_snapshot_itr.remove();
}
} else {
MemPointerRecord* cur_p = (MemPointerRecord*)cur;
MemPointerRecord* p = (MemPointerRecord*)malloc_itr.locate(cur->addr());
if (p != NULL && cur_p->addr() == p->addr()) {
assert(p->is_allocation_record() || p->is_arena_size_record(), "untracked");
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
copy_pointer(p, cur_p);
} else { // deallocation record
assert(cur_p->is_deallocation_record(), "wrong record type");
// we are removing an arena record, we also need to remove its 'size'
// record behind it
if (p->is_arena_record()) {
MemPointerRecord* next_p = (MemPointerRecord*)malloc_itr.peek_next();
if (next_p->is_arena_size_record()) {
assert(next_p->is_size_record_of_arena(p), "arena records dont match");
malloc_itr.remove();
// it is a new record, insert into snapshot
if (new_rec->is_arena_size_record()) {
MemPointerRecord* prev = (MemPointerRecord*)malloc_snapshot_itr.peek_prev();
if (prev == NULL || !prev->is_arena_record() || !new_rec->is_size_record_of_arena(prev)) {
// no matched arena record, ignore the size record
new_rec = NULL;
}
}
// only 'live' record can go into snapshot
if (new_rec != NULL) {
if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) {
if (!malloc_snapshot_itr.insert_after(new_rec)) {
return false;
}
} else {
if (!malloc_snapshot_itr.insert(new_rec)) {
return false;
}
}
malloc_itr.remove();
}
} else {
if (cur_p->is_arena_size_record()) {
MemPointerRecord* prev_p = (MemPointerRecord*)malloc_itr.peek_prev();
if (prev_p != NULL &&
(!prev_p->is_arena_record() || !cur_p->is_size_record_of_arena(prev_p))) {
// arena already deallocated
cur_p = NULL;
#ifndef PRODUCT
else if (!has_allocation_record(new_rec->addr())) {
// NMT can not track some startup memory, which is allocated before NMT is on
_untracked_count ++;
}
#endif
}
}
new_rec = (MemPointerRecord*)itr->next();
}
return true;
}
bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) {
VMMemPointerIterator vm_snapshot_itr(_vm_ptrs);
MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
VMMemRegionEx new_vm_rec;
VMMemRegion* matched_rec;
while (new_rec != NULL) {
assert(new_rec->is_vm_pointer(), "Sanity check");
if (MemTracker::track_callsite()) {
new_vm_rec.init((MemPointerRecordEx*)new_rec);
} else {
new_vm_rec.init(new_rec);
}
matched_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr());
if (matched_rec != NULL &&
(matched_rec->contains(&new_vm_rec) || matched_rec->base() == new_vm_rec.base())) {
// snapshot can only have 'live' records
assert(matched_rec->is_reserve_record(), "Sanity check");
if (new_vm_rec.is_reserve_record() && matched_rec->base() == new_vm_rec.base()) {
// resize reserved virtual memory range
// resize has to cover committed area
assert(new_vm_rec.size() >= matched_rec->committed_size(), "Sanity check");
matched_rec->set_reserved_size(new_vm_rec.size());
} else if (new_vm_rec.is_commit_record()) {
// commit memory inside reserved memory range
assert(new_vm_rec.committed_size() <= matched_rec->reserved_size(), "Sanity check");
// thread stacks are marked committed, so we ignore 'commit' record for creating
// stack guard pages
if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) != mtThreadStack) {
matched_rec->commit(new_vm_rec.committed_size());
}
} else if (new_vm_rec.is_uncommit_record()) {
if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtThreadStack) {
// ignore 'uncommit' record from removing stack guard pages, uncommit
// thread stack as whole
if (matched_rec->committed_size() == new_vm_rec.committed_size()) {
matched_rec->uncommit(new_vm_rec.committed_size());
}
} else {
// uncommit memory inside reserved memory range
assert(new_vm_rec.committed_size() <= matched_rec->committed_size(),
"Sanity check");
matched_rec->uncommit(new_vm_rec.committed_size());
}
if (cur_p != NULL) {
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
if (p != NULL && cur_p->addr() > p->addr()) {
malloc_itr.insert_after(cur);
} else {
malloc_itr.insert(cur);
}
} else if (new_vm_rec.is_type_tagging_record()) {
// tag this virtual memory range to a memory type
// can not re-tag a memory range to different type
assert(FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtNone ||
FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_vm_rec.flags()),
"Sanity check");
matched_rec->tag(new_vm_rec.flags());
} else if (new_vm_rec.is_release_record()) {
// release part or whole memory range
if (new_vm_rec.base() == matched_rec->base() &&
new_vm_rec.size() == matched_rec->size()) {
// release whole virtual memory range
assert(matched_rec->committed_size() == 0, "Sanity check");
vm_snapshot_itr.remove();
} else {
// partial release
matched_rec->partial_release(new_vm_rec.base(), new_vm_rec.size());
}
} else {
// multiple reserve/commit on the same virtual memory range
assert((new_vm_rec.is_reserve_record() || new_vm_rec.is_commit_record()) &&
(new_vm_rec.base() == matched_rec->base() && new_vm_rec.size() == matched_rec->size()),
"Sanity check");
matched_rec->tag(new_vm_rec.flags());
}
} else {
// no matched record
if (new_vm_rec.is_reserve_record()) {
if (matched_rec == NULL || matched_rec->base() > new_vm_rec.base()) {
if (!vm_snapshot_itr.insert(&new_vm_rec)) {
return false;
}
#ifndef PRODUCT
else if (!has_allocation_record(cur_p->addr())){
// NMT can not track some startup memory, which allocated before NMT
// is enabled
_untracked_count ++;
} else {
if (!vm_snapshot_itr.insert_after(&new_vm_rec)) {
return false;
}
#endif
}
} else {
// throw out obsolete records, which are the commit/uncommit/release/tag records
// on memory regions that are already released.
}
}
cur = walker.next();
}
NOT_PRODUCT(check_malloc_pointers();)
_staging_area->shrink();
_staging_area->clear();
new_rec = (MemPointerRecord*)itr->next();
}
return true;
}
#ifndef PRODUCT
void MemSnapshot::print_snapshot_stats(outputStream* st) {
st->print_cr("Snapshot:");
......@@ -413,8 +373,15 @@ void MemSnapshot::print_snapshot_stats(outputStream* st) {
st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
(100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);
st->print_cr("\tStaging: %d/%d [%5.2f%%] %dKB", _staging_area->length(), _staging_area->capacity(),
(100.0 * (float)_staging_area->length()) / (float)_staging_area->capacity(), _staging_area->instance_size()/K);
st->print_cr("\tMalloc staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(),
_staging_area.malloc_data()->capacity(),
(100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(),
_staging_area.malloc_data()->instance_size()/K);
st->print_cr("\tVirtual memory staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(),
_staging_area.vm_data()->capacity(),
(100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(),
_staging_area.vm_data()->instance_size()/K);
st->print_cr("\tUntracked allocation: %d", _untracked_count);
}
......@@ -433,7 +400,7 @@ void MemSnapshot::check_malloc_pointers() {
}
bool MemSnapshot::has_allocation_record(address addr) {
MemPointerArrayIteratorImpl itr(_staging_area);
MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
while (cur != NULL) {
if (cur->addr() == addr && cur->is_allocation_record()) {
......@@ -447,7 +414,7 @@ bool MemSnapshot::has_allocation_record(address addr) {
#ifdef ASSERT
void MemSnapshot::check_staging_data() {
MemPointerArrayIteratorImpl itr(_staging_area);
MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
MemPointerRecord* next = (MemPointerRecord*)itr.next();
while (next != NULL) {
......@@ -458,6 +425,13 @@ void MemSnapshot::check_staging_data() {
cur = next;
next = (MemPointerRecord*)itr.next();
}
MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data());
cur = (MemPointerRecord*)vm_itr.current();
while (cur != NULL) {
assert(cur->is_vm_pointer(), "virtual memory pointer only");
cur = (MemPointerRecord*)vm_itr.next();
}
}
#endif // ASSERT
......@@ -111,37 +111,31 @@ class VMMemPointerIterator : public MemPointerIterator {
MemPointerIterator(arr) {
}
// locate an exiting record that contains specified address, or
// locate an existing record that contains specified address, or
// the record, where the record with specified address, should
// be inserted
// be inserted.
// virtual memory record array is sorted in address order, so
// binary search is performed
virtual MemPointer* locate(address addr) {
VMMemRegion* cur = (VMMemRegion*)current();
VMMemRegion* next_p;
while (cur != NULL) {
if (cur->base() > addr) {
return cur;
int index_low = 0;
int index_high = _array->length();
int index_mid = (index_high + index_low) / 2;
int r = 1;
while (index_low < index_high && (r = compare(index_mid, addr)) != 0) {
if (r > 0) {
index_high = index_mid;
} else {
// find nearest existing range that has base address <= addr
next_p = (VMMemRegion*)peek_next();
if (next_p != NULL && next_p->base() <= addr) {
cur = (VMMemRegion*)next();
continue;
}
}
if (cur->is_reserve_record() &&
cur->base() <= addr &&
(cur->base() + cur->size() > addr)) {
return cur;
} else if (cur->is_commit_record() &&
cur->base() <= addr &&
(cur->base() + cur->committed_size() > addr)) {
return cur;
index_low = index_mid;
}
cur = (VMMemRegion*)next();
index_mid = (index_high + index_low) / 2;
}
if (r == 0) {
// update current location
_pos = index_mid;
return _array->at(index_mid);
} else {
return NULL;
}
return NULL;
}
#ifdef ASSERT
......@@ -160,75 +154,99 @@ class VMMemPointerIterator : public MemPointerIterator {
(p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_release;
}
#endif
// compare if an address falls into a memory region,
// return 0, if the address falls into a memory region at specified index
// return 1, if memory region pointed by specified index is higher than the address
// return -1, if memory region pointed by specified index is lower than the address
int compare(int index, address addr) const {
VMMemRegion* r = (VMMemRegion*)_array->at(index);
assert(r->is_reserve_record(), "Sanity check");
if (r->addr() > addr) {
return 1;
} else if (r->addr() + r->reserved_size() <= addr) {
return -1;
} else {
return 0;
}
}
};
class StagingWalker : public MemPointerArrayIterator {
class MallocRecordIterator : public MemPointerArrayIterator {
private:
MemPointerArrayIteratorImpl _itr;
bool _is_vm_record;
bool _end_of_array;
VMMemRegionEx _vm_record;
MemPointerRecordEx _malloc_record;
public:
StagingWalker(MemPointerArray* arr): _itr(arr) {
_end_of_array = false;
next();
MallocRecordIterator(MemPointerArray* arr) : _itr(arr) {
}
// return the pointer at current position
MemPointer* current() const {
if (_end_of_array) {
MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
assert(cur == NULL || !cur->is_vm_pointer(), "seek error");
MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
if (next == NULL || next->addr() != cur->addr()) {
return cur;
} else {
assert(!cur->is_vm_pointer(), "Sanity check");
assert(cur->is_allocation_record() && next->is_deallocation_record(),
"sorting order");
assert(cur->seq() != next->seq(), "Sanity check");
return cur->seq() > next->seq() ? cur : next;
}
}
MemPointer* next() {
MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
assert(cur == NULL || !cur->is_vm_pointer(), "Sanity check");
MemPointerRecord* next = (MemPointerRecord*)_itr.next();
if (next == NULL) {
return NULL;
}
if (is_vm_record()) {
return (MemPointer*)&_vm_record;
} else {
return (MemPointer*)&_malloc_record;
if (cur->addr() == next->addr()) {
next = (MemPointerRecord*)_itr.next();
}
return current();
}
// return the next pointer and advance current position
MemPointer* next();
MemPointer* peek_next() const { ShouldNotReachHere(); return NULL; }
MemPointer* peek_prev() const { ShouldNotReachHere(); return NULL; }
void remove() { ShouldNotReachHere(); }
bool insert(MemPointer* ptr) { ShouldNotReachHere(); return false; }
bool insert_after(MemPointer* ptr) { ShouldNotReachHere(); return false; }
};
// type of 'current' record
bool is_vm_record() const {
return _is_vm_record;
}
class StagingArea : public _ValueObj {
private:
MemPointerArray* _malloc_data;
MemPointerArray* _vm_data;
// return the next poinger without advancing current position
MemPointer* peek_next() const {
assert(false, "not supported");
return NULL;
public:
StagingArea() : _malloc_data(NULL), _vm_data(NULL) {
init();
}
MemPointer* peek_prev() const {
assert(false, "not supported");
return NULL;
}
// remove the pointer at current position
void remove() {
assert(false, "not supported");
~StagingArea() {
if (_malloc_data != NULL) delete _malloc_data;
if (_vm_data != NULL) delete _vm_data;
}
// insert the pointer at current position
bool insert(MemPointer* ptr) {
assert(false, "not supported");
return false;
MallocRecordIterator malloc_record_walker() {
return MallocRecordIterator(malloc_data());
}
bool insert_after(MemPointer* ptr) {
assert(false, "not supported");
return false;
MemPointerArrayIteratorImpl virtual_memory_record_walker();
bool init();
void clear() {
assert(_malloc_data != NULL && _vm_data != NULL, "Just check");
_malloc_data->shrink();
_malloc_data->clear();
_vm_data->clear();
}
private:
// consolidate all records referring to this vm region
bool consolidate_vm_records(VMMemRegionEx* vm_rec);
inline MemPointerArray* malloc_data() { return _malloc_data; }
inline MemPointerArray* vm_data() { return _vm_data; }
};
class MemBaseline;
class MemSnapshot : public CHeapObj<mtNMT> {
private:
// the following two arrays contain records of all known lived memory blocks
......@@ -237,9 +255,7 @@ class MemSnapshot : public CHeapObj<mtNMT> {
// live virtual memory pointers
MemPointerArray* _vm_ptrs;
// stagging a generation's data, before
// it can be prompted to snapshot
MemPointerArray* _staging_area;
StagingArea _staging_area;
// the lock to protect this snapshot
Monitor* _lock;
......@@ -252,18 +268,19 @@ class MemSnapshot : public CHeapObj<mtNMT> {
virtual ~MemSnapshot();
// if we are running out of native memory
bool out_of_memory() const {
return (_alloc_ptrs == NULL || _staging_area == NULL ||
bool out_of_memory() {
return (_alloc_ptrs == NULL ||
_staging_area.malloc_data() == NULL ||
_staging_area.vm_data() == NULL ||
_vm_ptrs == NULL || _lock == NULL ||
_alloc_ptrs->out_of_memory() ||
_staging_area->out_of_memory() ||
_vm_ptrs->out_of_memory());
}
// merge a per-thread memory recorder into staging area
bool merge(MemRecorder* rec);
// promote staged data to snapshot
void promote();
bool promote();
void wait(long timeout) {
......@@ -280,6 +297,9 @@ class MemSnapshot : public CHeapObj<mtNMT> {
private:
// copy pointer data from src to dest
void copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src);
bool promote_malloc_records(MemPointerArrayIterator* itr);
bool promote_virtual_memory_records(MemPointerArrayIterator* itr);
};
......
......@@ -118,7 +118,10 @@ void MemTrackWorker::run() {
_head = (_head + 1) % MAX_GENERATIONS;
}
// promote this generation data to snapshot
snapshot->promote();
if (!snapshot->promote()) {
// failed to promote, means out of memory
MemTracker::shutdown(MemTracker::NMT_out_of_memory);
}
} else {
snapshot->wait(1000);
ThreadCritical tc;
......
......@@ -39,7 +39,7 @@
#include "thread_solaris.inline.hpp"
#endif
#ifdef _DEBUG_
#ifdef _DEBUG
#define DEBUG_CALLER_PC os::get_caller_pc(3)
#else
#define DEBUG_CALLER_PC 0
......@@ -223,12 +223,33 @@ class MemTracker : AllStatic {
}
}
static inline void record_thread_stack(address addr, size_t size, Thread* thr,
address pc = 0) {
if (is_on()) {
assert(size > 0 && thr != NULL, "Sanity check");
create_memory_record(addr, MemPointerRecord::virtual_memory_reserve_tag() | mtThreadStack,
size, pc, thr);
create_memory_record(addr, MemPointerRecord::virtual_memory_commit_tag() | mtThreadStack,
size, pc, thr);
}
}
static inline void release_thread_stack(address addr, size_t size, Thread* thr) {
if (is_on()) {
assert(size > 0 && thr != NULL, "Sanity check");
create_memory_record(addr, MemPointerRecord::virtual_memory_uncommit_tag() | mtThreadStack,
size, DEBUG_CALLER_PC, thr);
create_memory_record(addr, MemPointerRecord::virtual_memory_release_tag() | mtThreadStack,
size, DEBUG_CALLER_PC, thr);
}
}
// record a virtual memory 'commit' call
static inline void record_virtual_memory_commit(address addr, size_t size,
address pc = 0, Thread* thread = NULL) {
if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_commit_tag(),
size, pc, thread);
size, DEBUG_CALLER_PC, thread);
}
}
......@@ -237,7 +258,7 @@ class MemTracker : AllStatic {
Thread* thread = NULL) {
if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_uncommit_tag(),
size, 0, thread);
size, DEBUG_CALLER_PC, thread);
}
}
......@@ -246,7 +267,7 @@ class MemTracker : AllStatic {
Thread* thread = NULL) {
if (is_on()) {
create_memory_record(addr, MemPointerRecord::virtual_memory_release_tag(),
size, 0, thread);
size, DEBUG_CALLER_PC, thread);
}
}
......@@ -257,7 +278,7 @@ class MemTracker : AllStatic {
assert(base > 0, "wrong base address");
assert((flags & (~mt_masks)) == 0, "memory type only");
create_memory_record(base, (flags | MemPointerRecord::virtual_memory_type_tag()),
0, 0, thread);
0, DEBUG_CALLER_PC, thread);
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册