提交 cf62aa47 编写于 作者: B brutisso

7016112: CMS: crash during promotion testing

Summary: Also reviewed by mikael.gerdin@oracle.com; stdlib:qsort() does byte-by-byte swapping on Windows. This leads to pointer shearing. Fix is to implement a quicksort that does full pointer updates.
Reviewed-by: never, coleenp, ysr
上级 f8e4c60f
......@@ -49,6 +49,7 @@
#include "runtime/relocator.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "utilities/quickSort.hpp"
#include "utilities/xmlstream.hpp"
......@@ -1204,41 +1205,6 @@ void methodOopDesc::print_short_name(outputStream* st) {
if (WizardMode) signature()->print_symbol_on(st);
}
extern "C" {
static int method_compare(methodOop* a, methodOop* b) {
return (*a)->name()->fast_compare((*b)->name());
}
// Prevent qsort from reordering a previous valid sort by
// considering the address of the methodOops if two methods
// would otherwise compare as equal. Required to preserve
// optimal access order in the shared archive. Slower than
// method_compare, only used for shared archive creation.
static int method_compare_idempotent(methodOop* a, methodOop* b) {
int i = method_compare(a, b);
if (i != 0) return i;
return ( a < b ? -1 : (a == b ? 0 : 1));
}
// We implement special compare versions for narrow oops to avoid
// testing for UseCompressedOops on every comparison.
static int method_compare_narrow(narrowOop* a, narrowOop* b) {
methodOop m = (methodOop)oopDesc::load_decode_heap_oop(a);
methodOop n = (methodOop)oopDesc::load_decode_heap_oop(b);
return m->name()->fast_compare(n->name());
}
static int method_compare_narrow_idempotent(narrowOop* a, narrowOop* b) {
int i = method_compare_narrow(a, b);
if (i != 0) return i;
return ( a < b ? -1 : (a == b ? 0 : 1));
}
typedef int (*compareFn)(const void*, const void*);
}
// This is only done during class loading, so it is OK to assume method_idnum matches the methods() array
static void reorder_based_on_method_index(objArrayOop methods,
objArrayOop annotations,
......@@ -1262,6 +1228,14 @@ static void reorder_based_on_method_index(objArrayOop methods,
}
}
// Comparer for sorting an object array containing
// methodOops.
template <class T>
static int method_comparator(T a, T b) {
methodOop m = (methodOop)oopDesc::decode_heap_oop_not_null(a);
methodOop n = (methodOop)oopDesc::decode_heap_oop_not_null(b);
return m->name()->fast_compare(n->name());
}
// This is only done during class loading, so it is OK to assume method_idnum matches the methods() array
void methodOopDesc::sort_methods(objArrayOop methods,
......@@ -1284,30 +1258,19 @@ void methodOopDesc::sort_methods(objArrayOop methods,
m->set_method_idnum(i);
}
}
// Use a simple bubble sort for small number of methods since
// qsort requires a functional pointer call for each comparison.
if (length < 8) {
bool sorted = true;
for (int i=length-1; i>0; i--) {
for (int j=0; j<i; j++) {
methodOop m1 = (methodOop)methods->obj_at(j);
methodOop m2 = (methodOop)methods->obj_at(j+1);
if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
methods->obj_at_put(j, m2);
methods->obj_at_put(j+1, m1);
sorted = false;
}
{
No_Safepoint_Verifier nsv;
if (UseCompressedOops) {
QuickSort::sort<narrowOop>((narrowOop*)(methods->base()), length, method_comparator<narrowOop>, idempotent);
} else {
QuickSort::sort<oop>((oop*)(methods->base()), length, method_comparator<oop>, idempotent);
}
if (sorted) break;
sorted = true;
if (UseConcMarkSweepGC) {
// For CMS we need to dirty the cards for the array
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
bs->write_ref_array(methods->base(), length);
}
} else {
compareFn compare =
(UseCompressedOops ?
(compareFn) (idempotent ? method_compare_narrow_idempotent : method_compare_narrow):
(compareFn) (idempotent ? method_compare_idempotent : method_compare));
qsort(methods->base(), length, heapOopSize, compare);
}
// Sort annotations if necessary
......
......@@ -3296,6 +3296,19 @@ _JNI_IMPORT_OR_EXPORT_ jint JNICALL JNI_GetDefaultJavaVMInitArgs(void *args_) {
return ret;
}
#ifndef PRODUCT
#include "utilities/quickSort.hpp"
void execute_internal_vm_tests() {
if (ExecuteInternalVMTests) {
assert(QuickSort::test_quick_sort(), "test_quick_sort failed");
tty->print_cr("All tests passed");
}
}
#endif
HS_DTRACE_PROBE_DECL3(hotspot_jni, CreateJavaVM__entry, vm, penv, args);
DT_RETURN_MARK_DECL(CreateJavaVM, jint);
......@@ -3386,6 +3399,7 @@ _JNI_IMPORT_OR_EXPORT_ jint JNICALL JNI_CreateJavaVM(JavaVM **vm, void **penv, v
}
NOT_PRODUCT(test_error_handler(ErrorHandlerTest));
NOT_PRODUCT(execute_internal_vm_tests());
return result;
}
......
......@@ -1944,6 +1944,9 @@ class CommandLineFlags {
"Number of ObjArray elements to push onto the marking stack" \
"before pushing a continuation entry") \
\
notproduct(bool, ExecuteInternalVMTests, false, \
"Enable execution of internal VM tests.") \
\
product_pd(bool, UseTLAB, "Use thread-local object allocation") \
\
product_pd(bool, ResizeTLAB, \
......
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/quickSort.hpp"
#ifndef PRODUCT
// Unit tests
#include "runtime/os.hpp"
#include <stdlib.h>
static int test_comparator(int a, int b) {
if (a == b) {
return 0;
}
if (a < b) {
return -1;
}
return 1;
}
static int test_even_odd_comparator(int a, int b) {
bool a_is_odd = (a % 2) == 1;
bool b_is_odd = (b % 2) == 1;
if (a_is_odd == b_is_odd) {
return 0;
}
if (a_is_odd) {
return -1;
}
return 1;
}
static int test_stdlib_comparator(const void* a, const void* b) {
int ai = *(int*)a;
int bi = *(int*)b;
if (ai == bi) {
return 0;
}
if (ai < bi) {
return -1;
}
return 1;
}
void QuickSort::print_array(const char* prefix, int* array, int length) {
tty->print("%s:", prefix);
for (int i = 0; i < length; i++) {
tty->print(" %d", array[i]);
}
tty->print_cr("");
}
bool QuickSort::compare_arrays(int* actual, int* expected, int length) {
for (int i = 0; i < length; i++) {
if (actual[i] != expected[i]) {
print_array("Sorted array ", actual, length);
print_array("Expected array", expected, length);
return false;
}
}
return true;
}
template <class C>
bool QuickSort::sort_and_compare(int* arrayToSort, int* expectedResult, int length, C comparator, bool idempotent) {
sort<int, C>(arrayToSort, length, comparator, idempotent);
return compare_arrays(arrayToSort, expectedResult, length);
}
bool QuickSort::test_quick_sort() {
tty->print_cr("test_quick_sort\n");
{
int* test_array = NULL;
int* expected_array = NULL;
assert(sort_and_compare(test_array, expected_array, 0, test_comparator), "Empty array not handled");
}
{
int test_array[] = {3};
int expected_array[] = {3};
assert(sort_and_compare(test_array, expected_array, 1, test_comparator), "Single value array not handled");
}
{
int test_array[] = {3,2};
int expected_array[] = {2,3};
assert(sort_and_compare(test_array, expected_array, 2, test_comparator), "Array with 2 values not correctly sorted");
}
{
int test_array[] = {3,2,1};
int expected_array[] = {1,2,3};
assert(sort_and_compare(test_array, expected_array, 3, test_comparator), "Array with 3 values not correctly sorted");
}
{
int test_array[] = {4,3,2,1};
int expected_array[] = {1,2,3,4};
assert(sort_and_compare(test_array, expected_array, 4, test_comparator), "Array with 4 values not correctly sorted");
}
{
int test_array[] = {7,1,5,3,6,9,8,2,4,0};
int expected_array[] = {0,1,2,3,4,5,6,7,8,9};
assert(sort_and_compare(test_array, expected_array, 10, test_comparator), "Array with 10 values not correctly sorted");
}
{
int test_array[] = {4,4,1,4};
int expected_array[] = {1,4,4,4};
assert(sort_and_compare(test_array, expected_array, 4, test_comparator), "3 duplicates not sorted correctly");
}
{
int test_array[] = {0,1,2,3,4,5,6,7,8,9};
int expected_array[] = {0,1,2,3,4,5,6,7,8,9};
assert(sort_and_compare(test_array, expected_array, 10, test_comparator), "Already sorted array not correctly sorted");
}
{
// one of the random arrays that found an issue in the partion method.
int test_array[] = {76,46,81,8,64,56,75,11,51,55,11,71,59,27,9,64,69,75,21,25,39,40,44,32,7,8,40,41,24,78,24,74,9,65,28,6,40,31,22,13,27,82};
int expected_array[] = {6,7,8,8,9,9,11,11,13,21,22,24,24,25,27,27,28,31,32,39,40,40,40,41,44,46,51,55,56,59,64,64,65,69,71,74,75,75,76,78,81,82};
assert(sort_and_compare(test_array, expected_array, 42, test_comparator), "Not correctly sorted");
}
{
int test_array[] = {2,8,1,4};
int expected_array[] = {1,4,2,8};
assert(sort_and_compare(test_array, expected_array, 4, test_even_odd_comparator), "Even/odd not sorted correctly");
}
{ // Some idempotent tests
{
// An array of lenght 3 is only sorted by find_pivot. Make sure that it is idempotent.
int test_array[] = {1,4,8};
int expected_array[] = {1,4,8};
assert(sort_and_compare(test_array, expected_array, 3, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {1,7,9,4,8,2};
int expected_array[] = {1,7,9,4,8,2};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {1,9,7,4,2,8};
int expected_array[] = {1,9,7,4,2,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {7,9,1,2,8,4};
int expected_array[] = {7,9,1,2,8,4};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {7,1,9,2,4,8};
int expected_array[] = {7,1,9,2,4,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {9,1,7,4,8,2};
int expected_array[] = {9,1,7,4,8,2};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
{
int test_array[] = {9,7,1,4,2,8};
int expected_array[] = {9,7,1,4,2,8};
assert(sort_and_compare(test_array, expected_array, 6, test_even_odd_comparator, true), "Even/odd not idempotent");
}
}
// test sorting random arrays
for (int i = 0; i < 1000; i++) {
int length = os::random() % 100;
int* test_array = new int[length];
int* expected_array = new int[length];
for (int j = 0; j < length; j++) {
// Choose random values, but get a chance of getting duplicates
test_array[j] = os::random() % (length * 2);
expected_array[j] = test_array[j];
}
// Compare sorting to stdlib::qsort()
qsort(expected_array, length, sizeof(int), test_stdlib_comparator);
assert(sort_and_compare(test_array, expected_array, length, test_comparator), "Random array not correctly sorted");
// Make sure sorting is idempotent.
// Both test_array and expected_array are sorted by the test_comparator.
// Now sort them once with the test_even_odd_comparator. Then sort the
// test_array one more time with test_even_odd_comparator and verify that
// it is idempotent.
sort(expected_array, length, test_even_odd_comparator, true);
sort(test_array, length, test_even_odd_comparator, true);
assert(compare_arrays(test_array, expected_array, length), "Sorting identical arrays rendered different results");
sort(test_array, length, test_even_odd_comparator, true);
assert(compare_arrays(test_array, expected_array, length), "Sorting already sorted array changed order of elements - not idempotent");
delete[] test_array;
delete[] expected_array;
}
return true;
}
#endif
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_QUICKSORT_HPP
#define SHARE_VM_UTILITIES_QUICKSORT_HPP
#include "memory/allocation.hpp"
#include "runtime/globals.hpp"
#include "utilities/debug.hpp"
class QuickSort : AllStatic {
private:
template<class T>
static void swap(T* array, int x, int y) {
T tmp = array[x];
array[x] = array[y];
array[y] = tmp;
}
// As pivot we use the median of the first, last and middle elements.
// We swap in these three values at the right place in the array. This
// means that this method not only returns the index of the pivot
// element. It also alters the array so that:
// array[first] <= array[middle] <= array[last]
// A side effect of this is that arrays of length <= 3 are sorted.
template<class T, class C>
static int find_pivot(T* array, int length, C comparator) {
assert(length > 1, "length of array must be > 0");
int middle_index = length / 2;
int last_index = length - 1;
if (comparator(array[0], array[middle_index]) == 1) {
swap(array, 0, middle_index);
}
if (comparator(array[0], array[last_index]) == 1) {
swap(array, 0, last_index);
}
if (comparator(array[middle_index], array[last_index]) == 1) {
swap(array, middle_index, last_index);
}
// Now the value in the middle of the array is the median
// of the fist, last and middle values. Use this as pivot.
return middle_index;
}
template<class T, class C, bool idempotent>
static int partition(T* array, int pivot, int length, C comparator) {
int left_index = -1;
int right_index = length;
T pivot_val = array[pivot];
while (true) {
do {
left_index++;
} while (comparator(array[left_index], pivot_val) == -1);
do {
right_index--;
} while (comparator(array[right_index], pivot_val) == 1);
if (left_index < right_index) {
if (!idempotent || comparator(array[left_index], array[right_index]) != 0) {
swap(array, left_index, right_index);
}
} else {
return right_index;
}
}
ShouldNotReachHere();
return 0;
}
template<class T, class C, bool idempotent>
static void inner_sort(T* array, int length, C comparator) {
if (length < 2) {
return;
}
int pivot = find_pivot(array, length, comparator);
if (length < 4) {
// arrays up to length 3 will be sorted after finding the pivot
return;
}
int split = partition<T, C, idempotent>(array, pivot, length, comparator);
int first_part_length = split + 1;
inner_sort<T, C, idempotent>(array, first_part_length, comparator);
inner_sort<T, C, idempotent>(&array[first_part_length], length - first_part_length, comparator);
}
public:
// The idempotent parameter prevents the sort from
// reordering a previous valid sort by not swapping
// fields that compare as equal. This requires extra
// calls to the comparator, so the performance
// impact depends on the comparator.
template<class T, class C>
static void sort(T* array, int length, C comparator, bool idempotent) {
// Switch "idempotent" from function paramter to template parameter
if (idempotent) {
inner_sort<T, C, true>(array, length, comparator);
} else {
inner_sort<T, C, false>(array, length, comparator);
}
}
// for unit testing
#ifndef PRODUCT
static void print_array(const char* prefix, int* array, int length);
static bool compare_arrays(int* actual, int* expected, int length);
template <class C> static bool sort_and_compare(int* arrayToSort, int* expectedResult, int length, C comparator, bool idempotent = false);
static bool test_quick_sort();
#endif
};
#endif //SHARE_VM_UTILITIES_QUICKSORT_HPP
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册