提交 c046dd73 编写于 作者: J johnc

6819077: G1: first GC thread coming late into the GC.

Summary: The first worker thread is delayed when entering the GC because it clears the card count table that is used in identifying hot cards. Replace the card count table with a dynamically sized evicting hash table that includes an epoch based counter.
Reviewed-by: iveresov, tonyp
上级 8763012d
......@@ -25,11 +25,21 @@
#include "incls/_precompiled.incl"
#include "incls/_concurrentG1Refine.cpp.incl"
// Possible sizes for the card counts cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
int ConcurrentG1Refine::_cc_cache_sizes[] = {
16381, 32771, 76831, 150001, 307261,
614563, 1228891, 2457733, 4915219, 9830479,
19660831, 39321619, 78643219, 157286461, -1
};
ConcurrentG1Refine::ConcurrentG1Refine() :
_card_counts(NULL), _cur_card_count_histo(NULL), _cum_card_count_histo(NULL),
_card_counts(NULL), _card_epochs(NULL),
_n_card_counts(0), _max_n_card_counts(0),
_cache_size_index(0), _expand_card_counts(false),
_hot_cache(NULL),
_def_use_cache(false), _use_cache(false),
_n_periods(0), _total_cards(0), _total_travs(0),
_n_periods(0),
_threads(NULL), _n_threads(0)
{
if (G1ConcRefine) {
......@@ -57,26 +67,39 @@ size_t ConcurrentG1Refine::thread_num() {
}
void ConcurrentG1Refine::init() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
if (G1ConcRSLogCacheSize > 0 || G1ConcRSCountTraversals) {
_n_card_counts =
(unsigned) (g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);
_card_counts = NEW_C_HEAP_ARRAY(unsigned char, _n_card_counts);
for (size_t i = 0; i < _n_card_counts; i++) _card_counts[i] = 0;
ModRefBarrierSet* bs = g1h->mr_bs();
guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
CardTableModRefBS* ctbs = (CardTableModRefBS*)bs;
_ct_bot = ctbs->byte_for_const(g1h->reserved_region().start());
if (G1ConcRSCountTraversals) {
_cur_card_count_histo = NEW_C_HEAP_ARRAY(unsigned, 256);
_cum_card_count_histo = NEW_C_HEAP_ARRAY(unsigned, 256);
for (int i = 0; i < 256; i++) {
_cur_card_count_histo[i] = 0;
_cum_card_count_histo[i] = 0;
}
}
}
if (G1ConcRSLogCacheSize > 0) {
_g1h = G1CollectedHeap::heap();
_max_n_card_counts =
(unsigned) (_g1h->g1_reserved_obj_bytes() >> CardTableModRefBS::card_shift);
size_t max_card_num = ((size_t)1 << (sizeof(unsigned)*BitsPerByte-1)) - 1;
guarantee(_max_n_card_counts < max_card_num, "card_num representation");
int desired = _max_n_card_counts / InitialCacheFraction;
for (_cache_size_index = 0;
_cc_cache_sizes[_cache_size_index] >= 0; _cache_size_index++) {
if (_cc_cache_sizes[_cache_size_index] >= desired) break;
}
_cache_size_index = MAX2(0, (_cache_size_index - 1));
int initial_size = _cc_cache_sizes[_cache_size_index];
if (initial_size < 0) initial_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
_n_card_counts = MIN2((unsigned) initial_size, _max_n_card_counts);
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
Copy::fill_to_bytes(&_card_counts[0],
_n_card_counts * sizeof(CardCountCacheEntry));
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
ModRefBarrierSet* bs = _g1h->mr_bs();
guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
_ct_bs = (CardTableModRefBS*)bs;
_ct_bot = _ct_bs->byte_for_const(_g1h->reserved_region().start());
_def_use_cache = true;
_use_cache = true;
_hot_cache_size = (1 << G1ConcRSLogCacheSize);
......@@ -86,7 +109,7 @@ void ConcurrentG1Refine::init() {
// For refining the cards in the hot cache in parallel
int n_workers = (ParallelGCThreads > 0 ?
g1h->workers()->total_workers() : 1);
_g1h->workers()->total_workers() : 1);
_hot_cache_par_chunk_size = MAX2(1, _hot_cache_size / n_workers);
_hot_cache_par_claimed_idx = 0;
}
......@@ -101,15 +124,11 @@ void ConcurrentG1Refine::stop() {
}
ConcurrentG1Refine::~ConcurrentG1Refine() {
if (G1ConcRSLogCacheSize > 0 || G1ConcRSCountTraversals) {
assert(_card_counts != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned char, _card_counts);
assert(_cur_card_count_histo != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned, _cur_card_count_histo);
assert(_cum_card_count_histo != NULL, "Logic");
FREE_C_HEAP_ARRAY(unsigned, _cum_card_count_histo);
}
if (G1ConcRSLogCacheSize > 0) {
assert(_card_counts != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
assert(_card_epochs != NULL, "Logic");
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
assert(_hot_cache != NULL, "Logic");
FREE_C_HEAP_ARRAY(jbyte*, _hot_cache);
}
......@@ -129,42 +148,165 @@ void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
}
}
bool ConcurrentG1Refine::is_young_card(jbyte* card_ptr) {
HeapWord* start = _ct_bs->addr_for(card_ptr);
HeapRegion* r = _g1h->heap_region_containing(start);
if (r != NULL && r->is_young()) {
return true;
}
// This card is not associated with a heap region
// so can't be young.
return false;
}
jbyte* ConcurrentG1Refine::add_card_count(jbyte* card_ptr, int* count, bool* defer) {
unsigned new_card_num = ptr_2_card_num(card_ptr);
unsigned bucket = hash(new_card_num);
assert(0 <= bucket && bucket < _n_card_counts, "Bounds");
CardCountCacheEntry* count_ptr = &_card_counts[bucket];
CardEpochCacheEntry* epoch_ptr = &_card_epochs[bucket];
// We have to construct a new entry if we haven't updated the counts
// during the current period, or if the count was updated for a
// different card number.
unsigned int new_epoch = (unsigned int) _n_periods;
julong new_epoch_entry = make_epoch_entry(new_card_num, new_epoch);
while (true) {
// Fetch the previous epoch value
julong prev_epoch_entry = epoch_ptr->_value;
julong cas_res;
if (extract_epoch(prev_epoch_entry) != new_epoch) {
// This entry has not yet been updated during this period.
// Note: we update the epoch value atomically to ensure
// that there is only one winner that updates the cached
// card_ptr value even though all the refine threads share
// the same epoch value.
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
if (cas_res == prev_epoch_entry) {
// We have successfully won the race to update the
// epoch and card_num value. Make it look like the
// count and eviction count were previously cleared.
count_ptr->_count = 1;
count_ptr->_evict_count = 0;
*count = 0;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// We did not win the race to update the epoch field, so some other
// thread must have done it. The value that gets returned by CAS
// should be the new epoch value.
assert(extract_epoch(cas_res) == new_epoch, "unexpected epoch");
// We could 'continue' here or just re-read the previous epoch value
prev_epoch_entry = epoch_ptr->_value;
}
// The epoch entry for card_ptr has been updated during this period.
unsigned old_card_num = extract_card_num(prev_epoch_entry);
// The card count that will be returned to caller
*count = count_ptr->_count;
// Are we updating the count for the same card?
if (new_card_num == old_card_num) {
// Same card - just update the count. We could have more than one
// thread racing to update count for the current card. It should be
// OK not to use a CAS as the only penalty should be some missed
// increments of the count which delays identifying the card as "hot".
if (*count < max_jubyte) count_ptr->_count++;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// Different card - evict old card info
if (count_ptr->_evict_count < max_jubyte) count_ptr->_evict_count++;
if (count_ptr->_evict_count > G1CardCountCacheExpandThreshold) {
// Trigger a resize the next time we clear
_expand_card_counts = true;
}
cas_res = (julong) Atomic::cmpxchg((jlong) new_epoch_entry,
(volatile jlong*)&epoch_ptr->_value,
(jlong) prev_epoch_entry);
int ConcurrentG1Refine::add_card_count(jbyte* card_ptr) {
size_t card_num = (card_ptr - _ct_bot);
guarantee(0 <= card_num && card_num < _n_card_counts, "Bounds");
unsigned char cnt = _card_counts[card_num];
if (cnt < 255) _card_counts[card_num]++;
return cnt;
_total_travs++;
if (cas_res == prev_epoch_entry) {
// We successfully updated the card num value in the epoch entry
count_ptr->_count = 0; // initialize counter for new card num
// Even though the region containg the card at old_card_num was not
// in the young list when old_card_num was recorded in the epoch
// cache it could have been added to the free list and subsequently
// added to the young list in the intervening time. If the evicted
// card is in a young region just return the card_ptr and the evicted
// card will not be cleaned. See CR 6817995.
jbyte* old_card_ptr = card_num_2_ptr(old_card_num);
if (is_young_card(old_card_ptr)) {
*count = 0;
// We can defer the processing of card_ptr
*defer = true;
return card_ptr;
}
// We do not want to defer processing of card_ptr in this case
// (we need to refine old_card_ptr and card_ptr)
*defer = false;
return old_card_ptr;
}
// Someone else beat us - try again.
}
}
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr) {
int count = add_card_count(card_ptr);
// Count previously unvisited cards.
if (count == 0) _total_cards++;
// We'll assume a traversal unless we store it in the cache.
jbyte* ConcurrentG1Refine::cache_insert(jbyte* card_ptr, bool* defer) {
int count;
jbyte* cached_ptr = add_card_count(card_ptr, &count, defer);
assert(cached_ptr != NULL, "bad cached card ptr");
assert(!is_young_card(cached_ptr), "shouldn't get a card in young region");
// The card pointer we obtained from card count cache is not hot
// so do not store it in the cache; return it for immediate
// refining.
if (count < G1ConcRSHotCardLimit) {
_total_travs++;
return card_ptr;
return cached_ptr;
}
// Otherwise, it's hot.
// Otherwise, the pointer we got from the _card_counts is hot.
jbyte* res = NULL;
MutexLockerEx x(HotCardCache_lock, Mutex::_no_safepoint_check_flag);
if (_n_hot == _hot_cache_size) {
_total_travs++;
res = _hot_cache[_hot_cache_idx];
_n_hot--;
}
// Now _n_hot < _hot_cache_size, and we can insert at _hot_cache_idx.
_hot_cache[_hot_cache_idx] = card_ptr;
_hot_cache[_hot_cache_idx] = cached_ptr;
_hot_cache_idx++;
if (_hot_cache_idx == _hot_cache_size) _hot_cache_idx = 0;
_n_hot++;
if (res != NULL) {
// Even though the region containg res was not in the young list
// when it was recorded in the hot cache it could have been added
// to the free list and subsequently added to the young list in
// the intervening time. If res is in a young region, return NULL
// so that res is not cleaned. See CR 6817995.
if (is_young_card(res)) {
res = NULL;
}
}
return res;
}
void ConcurrentG1Refine::clean_up_cache(int worker_i, G1RemSet* g1rs) {
assert(!use_cache(), "cache should be disabled");
int start_idx;
......@@ -186,114 +328,52 @@ void ConcurrentG1Refine::clean_up_cache(int worker_i, G1RemSet* g1rs) {
}
}
void ConcurrentG1Refine::clear_and_record_card_counts() {
if (G1ConcRSLogCacheSize == 0 && !G1ConcRSCountTraversals) return;
_n_periods++;
if (G1ConcRSCountTraversals) {
for (size_t i = 0; i < _n_card_counts; i++) {
unsigned char bucket = _card_counts[i];
_cur_card_count_histo[bucket]++;
_card_counts[i] = 0;
}
gclog_or_tty->print_cr("Card counts:");
for (int i = 0; i < 256; i++) {
if (_cur_card_count_histo[i] > 0) {
gclog_or_tty->print_cr(" %3d: %9d", i, _cur_card_count_histo[i]);
_cum_card_count_histo[i] += _cur_card_count_histo[i];
_cur_card_count_histo[i] = 0;
}
void ConcurrentG1Refine::expand_card_count_cache() {
if (_n_card_counts < _max_n_card_counts) {
int new_idx = _cache_size_index+1;
int new_size = _cc_cache_sizes[new_idx];
if (new_size < 0) new_size = _max_n_card_counts;
// Make sure we don't go bigger than we will ever need
new_size = MIN2((unsigned) new_size, _max_n_card_counts);
// Expand the card count and card epoch tables
if (new_size > (int)_n_card_counts) {
// We can just free and allocate a new array as we're
// not interested in preserving the contents
assert(_card_counts != NULL, "Logic!");
assert(_card_epochs != NULL, "Logic!");
FREE_C_HEAP_ARRAY(CardCountCacheEntry, _card_counts);
FREE_C_HEAP_ARRAY(CardEpochCacheEntry, _card_epochs);
_n_card_counts = new_size;
_card_counts = NEW_C_HEAP_ARRAY(CardCountCacheEntry, _n_card_counts);
_card_epochs = NEW_C_HEAP_ARRAY(CardEpochCacheEntry, _n_card_counts);
_cache_size_index = new_idx;
}
} else {
assert(G1ConcRSLogCacheSize > 0, "Logic");
Copy::fill_to_words((HeapWord*)(&_card_counts[0]),
_n_card_counts / HeapWordSize);
}
}
void
ConcurrentG1Refine::
print_card_count_histo_range(unsigned* histo, int from, int to,
float& cum_card_pct,
float& cum_travs_pct) {
unsigned cards = 0;
unsigned travs = 0;
guarantee(to <= 256, "Precondition");
for (int i = from; i < to-1; i++) {
cards += histo[i];
travs += histo[i] * i;
}
if (to == 256) {
unsigned histo_card_sum = 0;
unsigned histo_trav_sum = 0;
for (int i = 1; i < 255; i++) {
histo_trav_sum += histo[i] * i;
}
cards += histo[255];
// correct traversals for the last one.
unsigned travs_255 = (unsigned) (_total_travs - histo_trav_sum);
travs += travs_255;
} else {
cards += histo[to-1];
travs += histo[to-1] * (to-1);
}
float fperiods = (float)_n_periods;
float f_tot_cards = (float)_total_cards/fperiods;
float f_tot_travs = (float)_total_travs/fperiods;
if (cards > 0) {
float fcards = (float)cards/fperiods;
float ftravs = (float)travs/fperiods;
if (to == 256) {
gclog_or_tty->print(" %4d- %10.2f%10.2f", from, fcards, ftravs);
} else {
gclog_or_tty->print(" %4d-%4d %10.2f%10.2f", from, to-1, fcards, ftravs);
}
float pct_cards = fcards*100.0/f_tot_cards;
cum_card_pct += pct_cards;
float pct_travs = ftravs*100.0/f_tot_travs;
cum_travs_pct += pct_travs;
gclog_or_tty->print_cr("%10.2f%10.2f%10.2f%10.2f",
pct_cards, cum_card_pct,
pct_travs, cum_travs_pct);
void ConcurrentG1Refine::clear_and_record_card_counts() {
if (G1ConcRSLogCacheSize == 0) return;
#ifndef PRODUCT
double start = os::elapsedTime();
#endif
if (_expand_card_counts) {
expand_card_count_cache();
_expand_card_counts = false;
// Only need to clear the epochs.
Copy::fill_to_bytes(&_card_epochs[0], _n_card_counts * sizeof(CardEpochCacheEntry));
}
}
void ConcurrentG1Refine::print_final_card_counts() {
if (!G1ConcRSCountTraversals) return;
gclog_or_tty->print_cr("Did %d total traversals of %d distinct cards.",
_total_travs, _total_cards);
float fperiods = (float)_n_periods;
gclog_or_tty->print_cr(" This is an average of %8.2f traversals, %8.2f cards, "
"per collection.", (float)_total_travs/fperiods,
(float)_total_cards/fperiods);
gclog_or_tty->print_cr(" This is an average of %8.2f traversals/distinct "
"dirty card.\n",
_total_cards > 0 ?
(float)_total_travs/(float)_total_cards : 0.0);
gclog_or_tty->print_cr("Histogram:\n\n%10s %10s%10s%10s%10s%10s%10s",
"range", "# cards", "# travs", "% cards", "(cum)",
"% travs", "(cum)");
gclog_or_tty->print_cr("------------------------------------------------------------"
"-------------");
float cum_cards_pct = 0.0;
float cum_travs_pct = 0.0;
for (int i = 1; i < 10; i++) {
print_card_count_histo_range(_cum_card_count_histo, i, i+1,
cum_cards_pct, cum_travs_pct);
}
for (int i = 10; i < 100; i += 10) {
print_card_count_histo_range(_cum_card_count_histo, i, i+10,
cum_cards_pct, cum_travs_pct);
}
print_card_count_histo_range(_cum_card_count_histo, 100, 150,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 150, 200,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 150, 255,
cum_cards_pct, cum_travs_pct);
print_card_count_histo_range(_cum_card_count_histo, 255, 256,
cum_cards_pct, cum_travs_pct);
int this_epoch = (int) _n_periods;
assert((this_epoch+1) <= max_jint, "to many periods");
// Update epoch
_n_periods++;
#ifndef PRODUCT
double elapsed = os::elapsedTime() - start;
_g1h->g1_policy()->record_cc_clear_time(elapsed * 1000.0);
#endif
}
......@@ -29,18 +29,77 @@ class G1RemSet;
class ConcurrentG1Refine: public CHeapObj {
ConcurrentG1RefineThread** _threads;
int _n_threads;
// The cache for card refinement.
bool _use_cache;
bool _def_use_cache;
size_t _n_periods;
size_t _total_cards;
size_t _total_travs;
unsigned char* _card_counts;
size_t _n_periods; // Used as clearing epoch
// An evicting cache of the number of times each card
// is accessed. Reduces, but does not eliminate, the amount
// of duplicated processing of dirty cards.
enum SomePrivateConstants {
epoch_bits = 32,
card_num_shift = epoch_bits,
epoch_mask = AllBits,
card_num_mask = AllBits,
// The initial cache size is approximately this fraction
// of a maximal cache (i.e. the size needed for all cards
// in the heap)
InitialCacheFraction = 512
};
const static julong card_num_mask_in_place =
(julong) card_num_mask << card_num_shift;
typedef struct {
julong _value; // | card_num | epoch |
} CardEpochCacheEntry;
julong make_epoch_entry(unsigned int card_num, unsigned int epoch) {
assert(0 <= card_num && card_num < _max_n_card_counts, "Bounds");
assert(0 <= epoch && epoch <= _n_periods, "must be");
return ((julong) card_num << card_num_shift) | epoch;
}
unsigned int extract_epoch(julong v) {
return (v & epoch_mask);
}
unsigned int extract_card_num(julong v) {
return (v & card_num_mask_in_place) >> card_num_shift;
}
typedef struct {
unsigned char _count;
unsigned char _evict_count;
} CardCountCacheEntry;
CardCountCacheEntry* _card_counts;
CardEpochCacheEntry* _card_epochs;
// The current number of buckets in the card count cache
unsigned _n_card_counts;
// The max number of buckets required for the number of
// cards for the entire reserved heap
unsigned _max_n_card_counts;
// Possible sizes of the cache: odd primes that roughly double in size.
// (See jvmtiTagMap.cpp).
static int _cc_cache_sizes[];
// The index in _cc_cache_sizes corresponding to the size of
// _card_counts.
int _cache_size_index;
bool _expand_card_counts;
const jbyte* _ct_bot;
unsigned* _cur_card_count_histo;
unsigned* _cum_card_count_histo;
jbyte** _hot_cache;
int _hot_cache_size;
......@@ -50,12 +109,37 @@ class ConcurrentG1Refine: public CHeapObj {
int _hot_cache_par_chunk_size;
volatile int _hot_cache_par_claimed_idx;
// Needed to workaround 6817995
CardTableModRefBS* _ct_bs;
G1CollectedHeap* _g1h;
// Expands the array that holds the card counts to the next size up
void expand_card_count_cache();
// hash a given key (index of card_ptr) with the specified size
static unsigned int hash(size_t key, int size) {
return (unsigned int) key % size;
}
// hash a given key (index of card_ptr)
unsigned int hash(size_t key) {
return hash(key, _n_card_counts);
}
unsigned ptr_2_card_num(jbyte* card_ptr) {
return (unsigned) (card_ptr - _ct_bot);
}
jbyte* card_num_2_ptr(unsigned card_num) {
return (jbyte*) (_ct_bot + card_num);
}
// Returns the count of this card after incrementing it.
int add_card_count(jbyte* card_ptr);
jbyte* add_card_count(jbyte* card_ptr, int* count, bool* defer);
// Returns true if this card is in a young region
bool is_young_card(jbyte* card_ptr);
void print_card_count_histo_range(unsigned* histo, int from, int to,
float& cum_card_pct,
float& cum_travs_pct);
public:
ConcurrentG1Refine();
~ConcurrentG1Refine();
......@@ -69,7 +153,7 @@ class ConcurrentG1Refine: public CHeapObj {
// If this is the first entry for the slot, writes into the cache and
// returns NULL. If it causes an eviction, returns the evicted pointer.
// Otherwise, its a cache hit, and returns NULL.
jbyte* cache_insert(jbyte* card_ptr);
jbyte* cache_insert(jbyte* card_ptr, bool* defer);
// Process the cached entries.
void clean_up_cache(int worker_i, G1RemSet* g1rs);
......@@ -93,7 +177,6 @@ class ConcurrentG1Refine: public CHeapObj {
}
void clear_and_record_card_counts();
void print_final_card_counts();
static size_t thread_num();
};
......@@ -2414,8 +2414,6 @@ void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
}
void G1CollectedHeap::print_tracing_info() const {
concurrent_g1_refine()->print_final_card_counts();
// We'll overload this to mean "trace GC pause statistics."
if (TraceGen0Time || TraceGen1Time) {
// The "G1CollectorPolicy" is keeping track of these stats, so delegate
......
......@@ -94,7 +94,14 @@ G1CollectorPolicy::G1CollectorPolicy() :
_summary(new Summary()),
_abandoned_summary(new AbandonedSummary()),
#ifndef PRODUCT
_cur_clear_ct_time_ms(0.0),
_min_clear_cc_time_ms(-1.0),
_max_clear_cc_time_ms(-1.0),
_cur_clear_cc_time_ms(0.0),
_cum_clear_cc_time_ms(0.0),
_num_cc_clears(0L),
#endif
_region_num_young(0),
_region_num_tenured(0),
......@@ -1648,6 +1655,15 @@ void G1CollectorPolicy::record_collection_pause_end(bool abandoned) {
print_stats(1, "Object Copying", obj_copy_time);
}
}
#ifndef PRODUCT
print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
if (_num_cc_clears > 0) {
print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
}
#endif
print_stats(1, "Other", other_time_ms);
for (int i = 0; i < _aux_num; ++i) {
if (_cur_aux_times_set[i]) {
......
......@@ -112,7 +112,6 @@ protected:
return 8*M;
}
double _cur_collection_start_sec;
size_t _cur_collection_pause_used_at_start_bytes;
size_t _cur_collection_pause_used_regions_at_start;
......@@ -122,6 +121,15 @@ protected:
double _cur_clear_ct_time_ms;
bool _satb_drain_time_set;
#ifndef PRODUCT
// Card Table Count Cache stats
double _min_clear_cc_time_ms; // min
double _max_clear_cc_time_ms; // max
double _cur_clear_cc_time_ms; // clearing time during current pause
double _cum_clear_cc_time_ms; // cummulative clearing time
jlong _num_cc_clears; // number of times the card count cache has been cleared
#endif
double _cur_CH_strong_roots_end_sec;
double _cur_CH_strong_roots_dur_ms;
double _cur_G1_strong_roots_end_sec;
......@@ -931,6 +939,18 @@ public:
_cur_aux_times_ms[i] += ms;
}
#ifndef PRODUCT
void record_cc_clear_time(double ms) {
if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
_min_clear_cc_time_ms = ms;
if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
_max_clear_cc_time_ms = ms;
_cur_clear_cc_time_ms = ms;
_cum_clear_cc_time_ms += ms;
_num_cc_clears++;
}
#endif
// Record the fact that "bytes" bytes allocated in a region.
void record_before_bytes(size_t bytes);
void record_after_bytes(size_t bytes);
......
......@@ -676,6 +676,55 @@ void HRInto_G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
static IntHistogram out_of_histo(50, 50);
void HRInto_G1RemSet::concurrentRefineOneCard_impl(jbyte* card_ptr, int worker_i) {
// Construct the region representing the card.
HeapWord* start = _ct_bs->addr_for(card_ptr);
// And find the region containing it.
HeapRegion* r = _g1->heap_region_containing(start);
assert(r != NULL, "unexpected null");
HeapWord* end = _ct_bs->addr_for(card_ptr + 1);
MemRegion dirtyRegion(start, end);
#if CARD_REPEAT_HISTO
init_ct_freq_table(_g1->g1_reserved_obj_bytes());
ct_freq_note_card(_ct_bs->index_for(start));
#endif
UpdateRSOopClosure update_rs_oop_cl(this, worker_i);
update_rs_oop_cl.set_from(r);
FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r, &update_rs_oop_cl);
// Undirty the card.
*card_ptr = CardTableModRefBS::clean_card_val();
// We must complete this write before we do any of the reads below.
OrderAccess::storeload();
// And process it, being careful of unallocated portions of TLAB's.
HeapWord* stop_point =
r->oops_on_card_seq_iterate_careful(dirtyRegion,
&filter_then_update_rs_oop_cl);
// If stop_point is non-null, then we encountered an unallocated region
// (perhaps the unfilled portion of a TLAB.) For now, we'll dirty the
// card and re-enqueue: if we put off the card until a GC pause, then the
// unallocated portion will be filled in. Alternatively, we might try
// the full complexity of the technique used in "regular" precleaning.
if (stop_point != NULL) {
// The card might have gotten re-dirtied and re-enqueued while we
// worked. (In fact, it's pretty likely.)
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
*card_ptr = CardTableModRefBS::dirty_card_val();
MutexLockerEx x(Shared_DirtyCardQ_lock,
Mutex::_no_safepoint_check_flag);
DirtyCardQueue* sdcq =
JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
sdcq->enqueue(card_ptr);
}
} else {
out_of_histo.add_entry(filter_then_update_rs_oop_cl.out_of_region());
_conc_refine_cards++;
}
}
void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
// If the card is no longer dirty, nothing to do.
if (*card_ptr != CardTableModRefBS::dirty_card_val()) return;
......@@ -716,61 +765,63 @@ void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
return;
}
// Should we defer it?
// Should we defer processing the card?
//
// Previously the result from the insert_cache call would be
// either card_ptr (implying that card_ptr was currently "cold"),
// null (meaning we had inserted the card ptr into the "hot"
// cache, which had some headroom), or a "hot" card ptr
// extracted from the "hot" cache.
//
// Now that the _card_counts cache in the ConcurrentG1Refine
// instance is an evicting hash table, the result we get back
// could be from evicting the card ptr in an already occupied
// bucket (in which case we have replaced the card ptr in the
// bucket with card_ptr and "defer" is set to false). To avoid
// having a data structure (updates to which would need a lock)
// to hold these unprocessed dirty cards, we need to immediately
// process card_ptr. The actions needed to be taken on return
// from cache_insert are summarized in the following table:
//
// res defer action
// --------------------------------------------------------------
// null false card evicted from _card_counts & replaced with
// card_ptr; evicted ptr added to hot cache.
// No need to process res; immediately process card_ptr
//
// null true card not evicted from _card_counts; card_ptr added
// to hot cache.
// Nothing to do.
//
// non-null false card evicted from _card_counts & replaced with
// card_ptr; evicted ptr is currently "cold" or
// caused an eviction from the hot cache.
// Immediately process res; process card_ptr.
//
// non-null true card not evicted from _card_counts; card_ptr is
// currently cold, or caused an eviction from hot
// cache.
// Immediately process res; no need to process card_ptr.
jbyte* res = card_ptr;
bool defer = false;
if (_cg1r->use_cache()) {
card_ptr = _cg1r->cache_insert(card_ptr);
// If it was not an eviction, nothing to do.
if (card_ptr == NULL) return;
// OK, we have to reset the card start, region, etc.
start = _ct_bs->addr_for(card_ptr);
jbyte* res = _cg1r->cache_insert(card_ptr, &defer);
if (res != NULL && (res != card_ptr || defer)) {
start = _ct_bs->addr_for(res);
r = _g1->heap_region_containing(start);
if (r == NULL) {
guarantee(_g1->is_in_permanent(start), "Or else where?");
return; // Not in the G1 heap (might be in perm, for example.)
}
assert(_g1->is_in_permanent(start), "Or else where?");
} else {
guarantee(!r->is_young(), "It was evicted in the current minor cycle.");
// Process card pointer we get back from the hot card cache
concurrentRefineOneCard_impl(res, worker_i);
}
HeapWord* end = _ct_bs->addr_for(card_ptr + 1);
MemRegion dirtyRegion(start, end);
#if CARD_REPEAT_HISTO
init_ct_freq_table(_g1->g1_reserved_obj_bytes());
ct_freq_note_card(_ct_bs->index_for(start));
#endif
UpdateRSOopClosure update_rs_oop_cl(this, worker_i);
update_rs_oop_cl.set_from(r);
FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r, &update_rs_oop_cl);
// Undirty the card.
*card_ptr = CardTableModRefBS::clean_card_val();
// We must complete this write before we do any of the reads below.
OrderAccess::storeload();
// And process it, being careful of unallocated portions of TLAB's.
HeapWord* stop_point =
r->oops_on_card_seq_iterate_careful(dirtyRegion,
&filter_then_update_rs_oop_cl);
// If stop_point is non-null, then we encountered an unallocated region
// (perhaps the unfilled portion of a TLAB.) For now, we'll dirty the
// card and re-enqueue: if we put off the card until a GC pause, then the
// unallocated portion will be filled in. Alternatively, we might try
// the full complexity of the technique used in "regular" precleaning.
if (stop_point != NULL) {
// The card might have gotten re-dirtied and re-enqueued while we
// worked. (In fact, it's pretty likely.)
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
*card_ptr = CardTableModRefBS::dirty_card_val();
MutexLockerEx x(Shared_DirtyCardQ_lock,
Mutex::_no_safepoint_check_flag);
DirtyCardQueue* sdcq =
JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
sdcq->enqueue(card_ptr);
}
} else {
out_of_histo.add_entry(filter_then_update_rs_oop_cl.out_of_region());
_conc_refine_cards++;
}
if (!defer) {
concurrentRefineOneCard_impl(card_ptr, worker_i);
}
}
......
......@@ -157,6 +157,10 @@ protected:
}
}
// The routine that performs the actual work of refining a dirty
// card.
void concurrentRefineOneCard_impl(jbyte* card_ptr, int worker_i);
protected:
template <class T> void write_ref_nv(HeapRegion* from, T* p);
template <class T> void par_write_ref_nv(HeapRegion* from, T* p, int tid);
......
......@@ -187,10 +187,6 @@
develop(intx, G1ConcRSLogCacheSize, 10, \
"Log base 2 of the length of conc RS hot-card cache.") \
\
develop(bool, G1ConcRSCountTraversals, false, \
"If true, gather data about the number of times CR traverses " \
"cards ") \
\
develop(intx, G1ConcRSHotCardLimit, 4, \
"The threshold that defines (>=) a hot card.") \
\
......@@ -264,6 +260,10 @@
\
product(uintx, G1ParallelRSetThreads, 0, \
"If non-0 is the number of parallel rem set update threads, " \
"otherwise the value is determined ergonomically.")
"otherwise the value is determined ergonomically.") \
\
develop(intx, G1CardCountCacheExpandThreshold, 16, \
"Expand the card count cache if the number of collisions for " \
"a particular entry exceeds this value.")
G1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_DIAGNOSTIC_FLAG, DECLARE_EXPERIMENTAL_FLAG, DECLARE_NOTPRODUCT_FLAG, DECLARE_MANAGEABLE_FLAG, DECLARE_PRODUCT_RW_FLAG)
......@@ -45,11 +45,14 @@ concurrentG1Refine.cpp concurrentG1Refine.hpp
concurrentG1Refine.cpp concurrentG1RefineThread.hpp
concurrentG1Refine.cpp copy.hpp
concurrentG1Refine.cpp g1CollectedHeap.inline.hpp
concurrentG1Refine.cpp g1CollectorPolicy.hpp
concurrentG1Refine.cpp g1RemSet.hpp
concurrentG1Refine.cpp space.inline.hpp
concurrentG1Refine.cpp heapRegionSeq.inline.hpp
concurrentG1Refine.hpp globalDefinitions.hpp
concurrentG1Refine.hpp allocation.hpp
concurrentG1Refine.hpp cardTableModRefBS.hpp
concurrentG1Refine.hpp thread.hpp
concurrentG1RefineThread.cpp concurrentG1Refine.hpp
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册