提交 b5000a15 编写于 作者: J jmasa

7121618: Change type of number of GC workers to unsigned int.

Summary: Change variables representing the number of GC workers to uint from int and size_t.  Change the parameter in work(int i) to work(uint worker_id).
Reviewed-by: brutisso, tonyp
上级 aeff5245
......@@ -2598,7 +2598,7 @@ void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
int CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
_cfls(cfls)
......@@ -2732,7 +2732,7 @@ void CFLS_LAB::retire(int tid) {
// Update globals stats for num_blocks used
_global_num_blocks[i] += (_num_blocks[i] - num_retire);
_global_num_workers[i]++;
assert(_global_num_workers[i] <= (ssize_t)ParallelGCThreads, "Too big");
assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
if (num_retire > 0) {
_cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
// Reset this list.
......
......@@ -631,7 +631,7 @@ class CFLS_LAB : public CHeapObj {
static AdaptiveWeightedAverage
_blocks_to_claim [CompactibleFreeListSpace::IndexSetSize];
static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
static int _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
static uint _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
// Internal work method
......
......@@ -3779,7 +3779,7 @@ class CMSConcMarkingTask: public YieldingFlexibleGangTask {
terminator()->reset_for_reuse(active_workers);
}
void work(int i);
void work(uint worker_id);
bool should_yield() {
return ConcurrentMarkSweepThread::should_yield()
&& !_collector->foregroundGCIsActive()
......@@ -3852,7 +3852,7 @@ void CMSConcMarkingTerminator::yield() {
// . if neither is available, offer termination
// -- Terminate and return result
//
void CMSConcMarkingTask::work(int i) {
void CMSConcMarkingTask::work(uint worker_id) {
elapsedTimer _timer;
ResourceMark rm;
HandleMark hm;
......@@ -3860,37 +3860,40 @@ void CMSConcMarkingTask::work(int i) {
DEBUG_ONLY(_collector->verify_overflow_empty();)
// Before we begin work, our work queue should be empty
assert(work_queue(i)->size() == 0, "Expected to be empty");
assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
// Scan the bitmap covering _cms_space, tracing through grey objects.
_timer.start();
do_scan_and_mark(i, _cms_space);
do_scan_and_mark(worker_id, _cms_space);
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
worker_id, _timer.seconds());
// XXX: need xxx/xxx type of notation, two timers
}
// ... do the same for the _perm_space
_timer.reset();
_timer.start();
do_scan_and_mark(i, _perm_space);
do_scan_and_mark(worker_id, _perm_space);
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
worker_id, _timer.seconds());
// XXX: need xxx/xxx type of notation, two timers
}
// ... do work stealing
_timer.reset();
_timer.start();
do_work_steal(i);
do_work_steal(worker_id);
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
worker_id, _timer.seconds());
// XXX: need xxx/xxx type of notation, two timers
}
assert(_collector->_markStack.isEmpty(), "Should have been emptied");
assert(work_queue(i)->size() == 0, "Should have been emptied");
assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
// Note that under the current task protocol, the
// following assertion is true even of the spaces
// expanded since the completion of the concurrent
......@@ -3946,7 +3949,7 @@ void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
// We allow that there may be no tasks to do here because
// we are restarting after a stack overflow.
assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
int nth_task = 0;
uint nth_task = 0;
HeapWord* aligned_start = sp->bottom();
if (sp->used_region().contains(_restart_addr)) {
......@@ -5075,7 +5078,7 @@ class CMSParRemarkTask: public AbstractGangTask {
ParallelTaskTerminator* terminator() { return &_term; }
int n_workers() { return _n_workers; }
void work(int i);
void work(uint worker_id);
private:
// Work method in support of parallel rescan ... of young gen spaces
......@@ -5096,7 +5099,7 @@ class CMSParRemarkTask: public AbstractGangTask {
// also is passed to do_dirty_card_rescan_tasks() and to
// do_work_steal() to select the i-th task_queue.
void CMSParRemarkTask::work(int i) {
void CMSParRemarkTask::work(uint worker_id) {
elapsedTimer _timer;
ResourceMark rm;
HandleMark hm;
......@@ -5107,7 +5110,7 @@ void CMSParRemarkTask::work(int i) {
Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
_collector->_span, _collector->ref_processor(),
&(_collector->_markBitMap),
work_queue(i), &(_collector->_revisitStack));
work_queue(worker_id), &(_collector->_revisitStack));
// Rescan young gen roots first since these are likely
// coarsely partitioned and may, on that account, constitute
......@@ -5128,15 +5131,15 @@ void CMSParRemarkTask::work(int i) {
assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr(
"Finished young gen rescan work in %dth thread: %3.3f sec",
i, _timer.seconds());
worker_id, _timer.seconds());
}
}
......@@ -5158,7 +5161,7 @@ void CMSParRemarkTask::work(int i) {
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr(
"Finished remaining root rescan work in %dth thread: %3.3f sec",
i, _timer.seconds());
worker_id, _timer.seconds());
}
// ---------- rescan dirty cards ------------
......@@ -5167,26 +5170,26 @@ void CMSParRemarkTask::work(int i) {
// Do the rescan tasks for each of the two spaces
// (cms_space and perm_space) in turn.
// "i" is passed to select the "i-th" task_queue
do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
// "worker_id" is passed to select the task_queue for "worker_id"
do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl);
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr(
"Finished dirty card rescan work in %dth thread: %3.3f sec",
i, _timer.seconds());
worker_id, _timer.seconds());
}
// ---------- steal work from other threads ...
// ---------- ... and drain overflow list.
_timer.reset();
_timer.start();
do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
_timer.stop();
if (PrintCMSStatistics != 0) {
gclog_or_tty->print_cr(
"Finished work stealing in %dth thread: %3.3f sec",
i, _timer.seconds());
worker_id, _timer.seconds());
}
}
......@@ -5207,8 +5210,8 @@ CMSParRemarkTask::do_young_space_rescan(int i,
SequentialSubTasksDone* pst = space->par_seq_tasks();
assert(pst->valid(), "Uninitialized use?");
int nth_task = 0;
int n_tasks = pst->n_tasks();
uint nth_task = 0;
uint n_tasks = pst->n_tasks();
HeapWord *start, *end;
while (!pst->is_task_claimed(/* reference */ nth_task)) {
......@@ -5220,12 +5223,12 @@ CMSParRemarkTask::do_young_space_rescan(int i,
} else if (nth_task == 0) {
start = space->bottom();
end = chunk_array[nth_task];
} else if (nth_task < (jint)chunk_top) {
} else if (nth_task < (uint)chunk_top) {
assert(nth_task >= 1, "Control point invariant");
start = chunk_array[nth_task - 1];
end = chunk_array[nth_task];
} else {
assert(nth_task == (jint)chunk_top, "Control point invariant");
assert(nth_task == (uint)chunk_top, "Control point invariant");
start = chunk_array[chunk_top - 1];
end = space->top();
}
......@@ -5288,7 +5291,7 @@ CMSParRemarkTask::do_dirty_card_rescan_tasks(
SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
assert(pst->valid(), "Uninitialized use?");
int nth_task = 0;
uint nth_task = 0;
const int alignment = CardTableModRefBS::card_size * BitsPerWord;
MemRegion span = sp->used_region();
HeapWord* start_addr = span.start();
......@@ -5736,26 +5739,26 @@ public:
CMSParKeepAliveClosure* keep_alive,
int* seed);
virtual void work(int i);
virtual void work(uint worker_id);
};
void CMSRefProcTaskProxy::work(int i) {
void CMSRefProcTaskProxy::work(uint worker_id) {
assert(_collector->_span.equals(_span), "Inconsistency in _span");
CMSParKeepAliveClosure par_keep_alive(_collector, _span,
_mark_bit_map,
&_collector->_revisitStack,
work_queue(i));
work_queue(worker_id));
CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
_mark_bit_map,
&_collector->_revisitStack,
work_queue(i));
work_queue(worker_id));
CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
_task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
_task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
if (_task.marks_oops_alive()) {
do_work_steal(i, &par_drain_stack, &par_keep_alive,
_collector->hash_seed(i));
do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
_collector->hash_seed(worker_id));
}
assert(work_queue(i)->size() == 0, "work_queue should be empty");
assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
}
......@@ -5769,9 +5772,9 @@ public:
_task(task)
{ }
virtual void work(int i)
virtual void work(uint worker_id)
{
_task.work(i);
_task.work(worker_id);
}
};
......
......@@ -264,7 +264,7 @@ prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
// or some improperly initialized variable with leads to no
// active threads, protect against that in a product build.
n_threads = MAX2(G1CollectedHeap::heap()->workers()->active_workers(),
1);
1U);
}
size_t max_waste = n_threads * chunkSize;
// it should be aligned with respect to chunkSize
......
......@@ -458,8 +458,8 @@ bool ConcurrentMark::not_yet_marked(oop obj) const {
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER
size_t ConcurrentMark::scale_parallel_threads(size_t n_par_threads) {
return MAX2((n_par_threads + 2) / 4, (size_t)1);
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
return MAX2((n_par_threads + 2) / 4, 1U);
}
ConcurrentMark::ConcurrentMark(ReservedSpace rs,
......@@ -486,7 +486,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
_regionStack(),
// _finger set in set_non_marking_state
_max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
_max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
// _active_tasks set in set_non_marking_state
// _tasks set inside the constructor
_task_queues(new CMTaskQueueSet((int) _max_task_num)),
......@@ -506,7 +506,6 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
_cleanup_times(),
_total_counting_time(0.0),
_total_rs_scrub_time(0.0),
_parallel_workers(NULL) {
CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
if (verbose_level < no_verbose) {
......@@ -568,7 +567,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
// notice that ConcGCThreads overwrites G1MarkingOverheadPercent
// if both are set
_parallel_marking_threads = ConcGCThreads;
_parallel_marking_threads = (uint) ConcGCThreads;
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = 0.0;
_marking_task_overhead = 1.0;
......@@ -589,12 +588,12 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
double sleep_factor =
(1.0 - marking_task_overhead) / marking_task_overhead;
_parallel_marking_threads = (size_t) marking_thread_num;
_parallel_marking_threads = (uint) marking_thread_num;
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = sleep_factor;
_marking_task_overhead = marking_task_overhead;
} else {
_parallel_marking_threads = scale_parallel_threads(ParallelGCThreads);
_parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = 0.0;
_marking_task_overhead = 1.0;
......@@ -618,7 +617,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
guarantee(parallel_marking_threads() > 0, "peace of mind");
_parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
(int) _max_parallel_marking_threads, false, true);
_max_parallel_marking_threads, false, true);
if (_parallel_workers == NULL) {
vm_exit_during_initialization("Failed necessary allocation.");
} else {
......@@ -691,7 +690,7 @@ void ConcurrentMark::reset() {
set_concurrent_marking_in_progress();
}
void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
assert(active_tasks <= _max_task_num, "we should not have more");
_active_tasks = active_tasks;
......@@ -1048,7 +1047,7 @@ private:
ConcurrentMarkThread* _cmt;
public:
void work(int worker_i) {
void work(uint worker_id) {
assert(Thread::current()->is_ConcurrentGC_thread(),
"this should only be done by a conc GC thread");
ResourceMark rm;
......@@ -1057,8 +1056,8 @@ public:
ConcurrentGCThread::stsJoin();
assert((size_t) worker_i < _cm->active_tasks(), "invariant");
CMTask* the_task = _cm->task(worker_i);
assert(worker_id < _cm->active_tasks(), "invariant");
CMTask* the_task = _cm->task(worker_id);
the_task->record_start_time();
if (!_cm->has_aborted()) {
do {
......@@ -1076,7 +1075,7 @@ public:
double elapsed_time_sec = end_time_sec - start_time_sec;
_cm->clear_has_overflown();
bool ret = _cm->do_yield_check(worker_i);
bool ret = _cm->do_yield_check(worker_id);
jlong sleep_time_ms;
if (!_cm->has_aborted() && the_task->has_aborted()) {
......@@ -1105,7 +1104,7 @@ public:
ConcurrentGCThread::stsLeave();
double end_vtime = os::elapsedVTime();
_cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
_cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
}
CMConcurrentMarkingTask(ConcurrentMark* cm,
......@@ -1117,9 +1116,9 @@ public:
// Calculates the number of active workers for a concurrent
// phase.
size_t ConcurrentMark::calc_parallel_marking_threads() {
uint ConcurrentMark::calc_parallel_marking_threads() {
if (G1CollectedHeap::use_parallel_gc_threads()) {
size_t n_conc_workers = 0;
uint n_conc_workers = 0;
if (!UseDynamicNumberOfGCThreads ||
(!FLAG_IS_DEFAULT(ConcGCThreads) &&
!ForceDynamicNumberOfGCThreads)) {
......@@ -1159,7 +1158,7 @@ void ConcurrentMark::markFromRoots() {
assert(parallel_marking_threads() <= max_parallel_marking_threads(),
"Maximum number of marking threads exceeded");
size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
uint active_workers = MAX2(1U, parallel_marking_threads());
// Parallel task terminator is set in "set_phase()"
set_phase(active_workers, true /* concurrent */);
......@@ -1503,7 +1502,7 @@ class G1ParFinalCountTask: public AbstractGangTask {
protected:
G1CollectedHeap* _g1h;
CMBitMap* _bm;
size_t _n_workers;
uint _n_workers;
size_t *_live_bytes;
size_t *_used_bytes;
BitMap* _region_bm;
......@@ -1535,13 +1534,13 @@ public:
FREE_C_HEAP_ARRAY(size_t, _used_bytes);
}
void work(int i) {
void work(uint worker_id) {
CalcLiveObjectsClosure calccl(true /*final*/,
_bm, _g1h->concurrent_mark(),
_region_bm, _card_bm);
calccl.no_yield();
if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1h->heap_region_par_iterate_chunked(&calccl, i,
_g1h->heap_region_par_iterate_chunked(&calccl, worker_id,
(int) _n_workers,
HeapRegion::FinalCountClaimValue);
} else {
......@@ -1549,19 +1548,19 @@ public:
}
assert(calccl.complete(), "Shouldn't have yielded!");
assert((size_t) i < _n_workers, "invariant");
_live_bytes[i] = calccl.tot_live();
_used_bytes[i] = calccl.tot_used();
assert(worker_id < _n_workers, "invariant");
_live_bytes[worker_id] = calccl.tot_live();
_used_bytes[worker_id] = calccl.tot_used();
}
size_t live_bytes() {
size_t live_bytes = 0;
for (size_t i = 0; i < _n_workers; ++i)
for (uint i = 0; i < _n_workers; ++i)
live_bytes += _live_bytes[i];
return live_bytes;
}
size_t used_bytes() {
size_t used_bytes = 0;
for (size_t i = 0; i < _n_workers; ++i)
for (uint i = 0; i < _n_workers; ++i)
used_bytes += _used_bytes[i];
return used_bytes;
}
......@@ -1646,18 +1645,18 @@ public:
AbstractGangTask("G1 note end"), _g1h(g1h),
_max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
void work(int i) {
void work(uint worker_id) {
double start = os::elapsedTime();
FreeRegionList local_cleanup_list("Local Cleanup List");
OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
HRRSCleanupTask hrrs_cleanup_task;
G1NoteEndOfConcMarkClosure g1_note_end(_g1h, i, &local_cleanup_list,
G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
&old_proxy_set,
&humongous_proxy_set,
&hrrs_cleanup_task);
if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
_g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
_g1h->workers()->active_workers(),
HeapRegion::NoteEndClaimValue);
} else {
......@@ -1701,8 +1700,8 @@ public:
double end = os::elapsedTime();
if (G1PrintParCleanupStats) {
gclog_or_tty->print(" Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
"claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
i, start, end, (end-start)*1000.0,
"claimed %u regions (tot = %8.3f ms, max = %8.3f ms).\n",
worker_id, start, end, (end-start)*1000.0,
g1_note_end.regions_claimed(),
g1_note_end.claimed_region_time_sec()*1000.0,
g1_note_end.max_region_time_sec()*1000.0);
......@@ -1724,9 +1723,9 @@ public:
_region_bm(region_bm), _card_bm(card_bm)
{}
void work(int i) {
void work(uint worker_id) {
if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1rs->scrub_par(_region_bm, _card_bm, i,
_g1rs->scrub_par(_region_bm, _card_bm, worker_id,
HeapRegion::ScrubRemSetClaimValue);
} else {
_g1rs->scrub(_region_bm, _card_bm);
......@@ -1766,7 +1765,7 @@ void ConcurrentMark::cleanup() {
HeapRegionRemSet::reset_for_cleanup_tasks();
size_t n_workers;
uint n_workers;
// Do counting once more with the world stopped for good measure.
G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
......@@ -1778,7 +1777,7 @@ void ConcurrentMark::cleanup() {
g1h->set_par_threads();
n_workers = g1h->n_par_threads();
assert(g1h->n_par_threads() == (int) n_workers,
assert(g1h->n_par_threads() == n_workers,
"Should not have been reset");
g1h->workers()->run_task(&g1_par_count_task);
// Done with the parallel phase so reset to 0.
......@@ -2169,13 +2168,13 @@ public:
AbstractGangTask("Process reference objects in parallel"),
_proc_task(proc_task), _g1h(g1h), _cm(cm) { }
virtual void work(int i) {
CMTask* marking_task = _cm->task(i);
virtual void work(uint worker_id) {
CMTask* marking_task = _cm->task(worker_id);
G1CMIsAliveClosure g1_is_alive(_g1h);
G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
_proc_task.work(i, g1_is_alive, g1_par_keep_alive, g1_par_drain);
_proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
}
};
......@@ -2201,8 +2200,8 @@ public:
AbstractGangTask("Enqueue reference objects in parallel"),
_enq_task(enq_task) { }
virtual void work(int i) {
_enq_task.work(i);
virtual void work(uint worker_id) {
_enq_task.work(worker_id);
}
};
......@@ -2249,8 +2248,8 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
// We use the work gang from the G1CollectedHeap and we utilize all
// the worker threads.
int active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1;
active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1);
uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
G1CMRefProcTaskExecutor par_task_executor(g1h, this,
g1h->workers(), active_workers);
......@@ -2314,11 +2313,11 @@ private:
ConcurrentMark *_cm;
public:
void work(int worker_i) {
void work(uint worker_id) {
// Since all available tasks are actually started, we should
// only proceed if we're supposed to be actived.
if ((size_t)worker_i < _cm->active_tasks()) {
CMTask* task = _cm->task(worker_i);
if (worker_id < _cm->active_tasks()) {
CMTask* task = _cm->task(worker_id);
task->record_start_time();
do {
task->do_marking_step(1000000000.0 /* something very large */,
......@@ -2347,10 +2346,10 @@ void ConcurrentMark::checkpointRootsFinalWork() {
if (G1CollectedHeap::use_parallel_gc_threads()) {
G1CollectedHeap::StrongRootsScope srs(g1h);
// this is remark, so we'll use up all active threads
int active_workers = g1h->workers()->active_workers();
uint active_workers = g1h->workers()->active_workers();
if (active_workers == 0) {
assert(active_workers > 0, "Should have been set earlier");
active_workers = ParallelGCThreads;
active_workers = (uint) ParallelGCThreads;
g1h->workers()->set_active_workers(active_workers);
}
set_phase(active_workers, false /* concurrent */);
......@@ -2366,7 +2365,7 @@ void ConcurrentMark::checkpointRootsFinalWork() {
} else {
G1CollectedHeap::StrongRootsScope srs(g1h);
// this is remark, so we'll use up all available threads
int active_workers = 1;
uint active_workers = 1;
set_phase(active_workers, false /* concurrent */);
CMRemarkTask remarkTask(this, active_workers);
......@@ -2921,7 +2920,7 @@ class CSetMarkOopClosure: public OopClosure {
int _ms_size;
int _ms_ind;
int _array_increment;
int _worker_i;
uint _worker_id;
bool push(oop obj, int arr_ind = 0) {
if (_ms_ind == _ms_size) {
......@@ -2971,7 +2970,7 @@ class CSetMarkOopClosure: public OopClosure {
}
public:
CSetMarkOopClosure(ConcurrentMark* cm, int ms_size, int worker_i) :
CSetMarkOopClosure(ConcurrentMark* cm, int ms_size, uint worker_id) :
_g1h(G1CollectedHeap::heap()),
_cm(cm),
_bm(cm->nextMarkBitMap()),
......@@ -2979,7 +2978,7 @@ public:
_ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
_array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
_array_increment(MAX2(ms_size/8, 16)),
_worker_i(worker_i) { }
_worker_id(worker_id) { }
~CSetMarkOopClosure() {
FREE_C_HEAP_ARRAY(oop, _ms);
......@@ -3024,14 +3023,14 @@ class CSetMarkBitMapClosure: public BitMapClosure {
CMBitMap* _bitMap;
ConcurrentMark* _cm;
CSetMarkOopClosure _oop_cl;
int _worker_i;
uint _worker_id;
public:
CSetMarkBitMapClosure(ConcurrentMark* cm, int ms_size, int worker_i) :
CSetMarkBitMapClosure(ConcurrentMark* cm, int ms_size, int worker_id) :
_g1h(G1CollectedHeap::heap()),
_bitMap(cm->nextMarkBitMap()),
_oop_cl(cm, ms_size, worker_i),
_worker_i(worker_i) { }
_oop_cl(cm, ms_size, worker_id),
_worker_id(worker_id) { }
bool do_bit(size_t offset) {
// convert offset into a HeapWord*
......@@ -3056,17 +3055,17 @@ public:
class CompleteMarkingInCSetHRClosure: public HeapRegionClosure {
CMBitMap* _bm;
CSetMarkBitMapClosure _bit_cl;
int _worker_i;
uint _worker_id;
enum SomePrivateConstants {
MSSize = 1000
};
public:
CompleteMarkingInCSetHRClosure(ConcurrentMark* cm, int worker_i) :
CompleteMarkingInCSetHRClosure(ConcurrentMark* cm, int worker_id) :
_bm(cm->nextMarkBitMap()),
_bit_cl(cm, MSSize, worker_i),
_worker_i(worker_i) { }
_bit_cl(cm, MSSize, worker_id),
_worker_id(worker_id) { }
bool doHeapRegion(HeapRegion* hr) {
if (hr->claimHeapRegion(HeapRegion::CompleteMarkCSetClaimValue)) {
......@@ -3109,9 +3108,9 @@ public:
AbstractGangTask("Complete Mark in CSet"),
_g1h(g1h), _cm(cm) { }
void work(int worker_i) {
CompleteMarkingInCSetHRClosure cmplt(_cm, worker_i);
HeapRegion* hr = _g1h->start_cset_region_for_worker(worker_i);
void work(uint worker_id) {
CompleteMarkingInCSetHRClosure cmplt(_cm, worker_id);
HeapRegion* hr = _g1h->start_cset_region_for_worker(worker_id);
_g1h->collection_set_iterate_from(hr, &cmplt);
}
};
......@@ -3307,13 +3306,13 @@ void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
// the CMS bit map. Called at the first checkpoint.
// We take a break if someone is trying to stop the world.
bool ConcurrentMark::do_yield_check(int worker_i) {
bool ConcurrentMark::do_yield_check(uint worker_id) {
if (should_yield()) {
if (worker_i == 0) {
if (worker_id == 0) {
_g1h->g1_policy()->record_concurrent_pause();
}
cmThread()->yield();
if (worker_i == 0) {
if (worker_id == 0) {
_g1h->g1_policy()->record_concurrent_pause_end();
}
return true;
......
......@@ -374,9 +374,9 @@ class ConcurrentMark: public CHeapObj {
protected:
ConcurrentMarkThread* _cmThread; // the thread doing the work
G1CollectedHeap* _g1h; // the heap.
size_t _parallel_marking_threads; // the number of marking
uint _parallel_marking_threads; // the number of marking
// threads we're use
size_t _max_parallel_marking_threads; // max number of marking
uint _max_parallel_marking_threads; // max number of marking
// threads we'll ever use
double _sleep_factor; // how much we have to sleep, with
// respect to the work we just did, to
......@@ -412,8 +412,8 @@ protected:
// last claimed region
// marking tasks
size_t _max_task_num; // maximum task number
size_t _active_tasks; // task num currently active
uint _max_task_num; // maximum task number
uint _active_tasks; // task num currently active
CMTask** _tasks; // task queue array (max_task_num len)
CMTaskQueueSet* _task_queues; // task queue set
ParallelTaskTerminator _terminator; // for termination
......@@ -492,7 +492,7 @@ protected:
// It should be called to indicate which phase we're in (concurrent
// mark or remark) and how many threads are currently active.
void set_phase(size_t active_tasks, bool concurrent);
void set_phase(uint active_tasks, bool concurrent);
// We do this after we're done with marking so that the marking data
// structures are initialised to a sensible and predictable state.
void set_non_marking_state();
......@@ -505,8 +505,8 @@ protected:
}
// accessor methods
size_t parallel_marking_threads() { return _parallel_marking_threads; }
size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
uint parallel_marking_threads() { return _parallel_marking_threads; }
uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
double sleep_factor() { return _sleep_factor; }
double marking_task_overhead() { return _marking_task_overhead;}
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
......@@ -514,7 +514,7 @@ protected:
HeapWord* finger() { return _finger; }
bool concurrent() { return _concurrent; }
size_t active_tasks() { return _active_tasks; }
uint active_tasks() { return _active_tasks; }
ParallelTaskTerminator* terminator() { return &_terminator; }
// It claims the next available region to be scanned by a marking
......@@ -715,10 +715,10 @@ public:
// Returns the number of GC threads to be used in a concurrent
// phase based on the number of GC threads being used in a STW
// phase.
size_t scale_parallel_threads(size_t n_par_threads);
uint scale_parallel_threads(uint n_par_threads);
// Calculates the number of GC threads to be used in a concurrent phase.
size_t calc_parallel_marking_threads();
uint calc_parallel_marking_threads();
// The following three are interaction between CM and
// G1CollectedHeap
......@@ -873,7 +873,7 @@ public:
return _prevMarkBitMap->isMarked(addr);
}
inline bool do_yield_check(int worker_i = 0);
inline bool do_yield_check(uint worker_i = 0);
inline bool should_yield();
// Called to abort the marking cycle after a Full GC takes palce.
......
......@@ -1165,9 +1165,9 @@ public:
_g1(g1)
{ }
void work(int i) {
RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
_g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
void work(uint worker_id) {
RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
_g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
_g1->workers()->active_workers(),
HeapRegion::RebuildRSClaimValue);
}
......@@ -1374,7 +1374,7 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
// Rebuild remembered sets of all regions.
if (G1CollectedHeap::use_parallel_gc_threads()) {
int n_workers =
uint n_workers =
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
workers()->active_workers(),
Threads::number_of_non_daemon_threads());
......@@ -2519,11 +2519,11 @@ void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
int worker,
int no_of_par_workers,
uint worker,
uint no_of_par_workers,
jint claim_value) {
const size_t regions = n_regions();
const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
no_of_par_workers :
1);
assert(UseDynamicNumberOfGCThreads ||
......@@ -2739,7 +2739,7 @@ HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
result = g1_policy()->collection_set();
if (G1CollectedHeap::use_parallel_gc_threads()) {
size_t cs_size = g1_policy()->cset_region_length();
int active_workers = workers()->active_workers();
uint active_workers = workers()->active_workers();
assert(UseDynamicNumberOfGCThreads ||
active_workers == workers()->total_workers(),
"Unless dynamic should use total workers");
......@@ -3075,10 +3075,10 @@ public:
return _failures;
}
void work(int worker_i) {
void work(uint worker_id) {
HandleMark hm;
VerifyRegionClosure blk(_allow_dirty, true, _vo);
_g1h->heap_region_par_iterate_chunked(&blk, worker_i,
_g1h->heap_region_par_iterate_chunked(&blk, worker_id,
_g1h->workers()->active_workers(),
HeapRegion::ParVerifyClaimValue);
if (blk.failures()) {
......@@ -4725,7 +4725,7 @@ protected:
G1CollectedHeap* _g1h;
RefToScanQueueSet *_queues;
ParallelTaskTerminator _terminator;
int _n_workers;
uint _n_workers;
Mutex _stats_lock;
Mutex* stats_lock() { return &_stats_lock; }
......@@ -4765,18 +4765,18 @@ public:
_n_workers = active_workers;
}
void work(int i) {
if (i >= _n_workers) return; // no work needed this round
void work(uint worker_id) {
if (worker_id >= _n_workers) return; // no work needed this round
double start_time_ms = os::elapsedTime() * 1000.0;
_g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
_g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
ResourceMark rm;
HandleMark hm;
ReferenceProcessor* rp = _g1h->ref_processor_stw();
G1ParScanThreadState pss(_g1h, i);
G1ParScanThreadState pss(_g1h, worker_id);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, rp);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, rp);
......@@ -4808,7 +4808,7 @@ public:
scan_root_cl,
&push_heap_rs_cl,
scan_perm_cl,
i);
worker_id);
pss.end_strong_roots();
{
......@@ -4817,8 +4817,8 @@ public:
evac.do_void();
double elapsed_ms = (os::elapsedTime()-start)*1000.0;
double term_ms = pss.term_time()*1000.0;
_g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
_g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
_g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
_g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
}
_g1h->g1_policy()->record_thread_age_table(pss.age_table());
_g1h->update_surviving_young_words(pss.surviving_young_words()+1);
......@@ -4828,12 +4828,12 @@ public:
if (ParallelGCVerbose) {
MutexLocker x(stats_lock());
pss.print_termination_stats(i);
pss.print_termination_stats(worker_id);
}
assert(pss.refs()->is_empty(), "should be empty");
double end_time_ms = os::elapsedTime() * 1000.0;
_g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
_g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
}
};
......@@ -5091,14 +5091,14 @@ public:
_terminator(terminator)
{}
virtual void work(int i) {
virtual void work(uint worker_id) {
// The reference processing task executed by a single worker.
ResourceMark rm;
HandleMark hm;
G1STWIsAliveClosure is_alive(_g1h);
G1ParScanThreadState pss(_g1h, i);
G1ParScanThreadState pss(_g1h, worker_id);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
......@@ -5130,7 +5130,7 @@ public:
G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
// Call the reference processing task's work routine.
_proc_task.work(i, is_alive, keep_alive, drain_queue);
_proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
// Note we cannot assert that the refs array is empty here as not all
// of the processing tasks (specifically phase2 - pp2_work) execute
......@@ -5165,8 +5165,8 @@ public:
_enq_task(enq_task)
{ }
virtual void work(int i) {
_enq_task.work(i);
virtual void work(uint worker_id) {
_enq_task.work(worker_id);
}
};
......@@ -5195,7 +5195,7 @@ protected:
G1CollectedHeap* _g1h;
RefToScanQueueSet *_queues;
ParallelTaskTerminator _terminator;
int _n_workers;
uint _n_workers;
public:
G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
......@@ -5206,11 +5206,11 @@ public:
_n_workers(workers)
{ }
void work(int i) {
void work(uint worker_id) {
ResourceMark rm;
HandleMark hm;
G1ParScanThreadState pss(_g1h, i);
G1ParScanThreadState pss(_g1h, worker_id);
G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss, NULL);
......@@ -5246,17 +5246,17 @@ public:
ReferenceProcessor* rp = _g1h->ref_processor_cm();
int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
int stride = MIN2(MAX2(_n_workers, 1), limit);
uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
uint stride = MIN2(MAX2(_n_workers, 1U), limit);
// limit is set using max_num_q() - which was set using ParallelGCThreads.
// So this must be true - but assert just in case someone decides to
// change the worker ids.
assert(0 <= i && i < limit, "sanity");
assert(0 <= worker_id && worker_id < limit, "sanity");
assert(!rp->discovery_is_atomic(), "check this code");
// Select discovered lists [i, i+stride, i+2*stride,...,limit)
for (int idx = i; idx < limit; idx += stride) {
for (uint idx = worker_id; idx < limit; idx += stride) {
DiscoveredList& ref_list = rp->discovered_refs()[idx];
DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
......@@ -5310,7 +5310,7 @@ void G1CollectedHeap::process_discovered_references() {
// referents points to another object which is also referenced by an
// object discovered by the STW ref processor.
int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
workers()->active_workers() : 1);
assert(!G1CollectedHeap::use_parallel_gc_threads() ||
......@@ -5416,7 +5416,7 @@ void G1CollectedHeap::enqueue_discovered_references() {
} else {
// Parallel reference enqueuing
int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
assert(active_workers == workers()->active_workers(),
"Need to reset active_workers");
assert(rp->num_q() == active_workers, "sanity");
......@@ -5445,7 +5445,7 @@ void G1CollectedHeap::evacuate_collection_set() {
concurrent_g1_refine()->set_use_cache(false);
concurrent_g1_refine()->clear_hot_cache_claimed_index();
int n_workers;
uint n_workers;
if (G1CollectedHeap::use_parallel_gc_threads()) {
n_workers =
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
......@@ -5658,7 +5658,7 @@ public:
AbstractGangTask("G1 Par Cleanup CT Task"),
_ct_bs(ct_bs), _g1h(g1h) { }
void work(int i) {
void work(uint worker_id) {
HeapRegion* r;
while (r = _g1h->pop_dirty_cards_region()) {
clear_cards(r);
......@@ -6141,7 +6141,7 @@ void G1CollectedHeap::set_par_threads() {
// Don't change the number of workers. Use the value previously set
// in the workgroup.
assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
int n_workers = workers()->active_workers();
uint n_workers = workers()->active_workers();
assert(UseDynamicNumberOfGCThreads ||
n_workers == workers()->total_workers(),
"Otherwise should be using the total number of workers");
......
......@@ -995,7 +995,7 @@ public:
// Initialize weak reference processing.
virtual void ref_processing_init();
void set_par_threads(int t) {
void set_par_threads(uint t) {
SharedHeap::set_par_threads(t);
// Done in SharedHeap but oddly there are
// two _process_strong_tasks's in a G1CollectedHeap
......@@ -1298,8 +1298,8 @@ public:
// chunk.) For now requires that "doHeapRegion" always returns "false",
// i.e., that a closure never attempt to abort a traversal.
void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
int worker,
int no_of_par_workers,
uint worker,
uint no_of_par_workers,
jint claim_value);
// It resets all the region claim values to the default.
......
......@@ -2332,17 +2332,19 @@ public:
_g1(G1CollectedHeap::heap())
{}
void work(int i) {
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
void work(uint worker_id) {
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
_chunk_size,
worker_id);
// Back to zero for the claim value.
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
_g1->workers()->active_workers(),
HeapRegion::InitialClaimValue);
jint regions_added = parKnownGarbageCl.marked_regions_added();
_hrSorted->incNumMarkedHeapRegions(regions_added);
if (G1PrintParCleanupStats) {
gclog_or_tty->print_cr(" Thread %d called %d times, added %d regions to list.",
i, parKnownGarbageCl.invokes(), regions_added);
worker_id, parKnownGarbageCl.invokes(), regions_added);
}
}
};
......
......@@ -558,11 +558,11 @@ void G1RemSet::scrub(BitMap* region_bm, BitMap* card_bm) {
}
void G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
int worker_num, int claim_val) {
uint worker_num, int claim_val) {
ScrubRSClosure scrub_cl(region_bm, card_bm);
_g1->heap_region_par_iterate_chunked(&scrub_cl,
worker_num,
(int) n_workers(),
n_workers(),
claim_val);
}
......
......@@ -40,7 +40,7 @@ class G1RemSet: public CHeapObj {
protected:
G1CollectedHeap* _g1;
unsigned _conc_refine_cards;
size_t n_workers();
uint n_workers();
protected:
enum SomePrivateConstants {
......@@ -122,7 +122,7 @@ public:
// parallel thread id of the current thread, and "claim_val" is the
// value that should be used to claim heap regions.
void scrub_par(BitMap* region_bm, BitMap* card_bm,
int worker_num, int claim_val);
uint worker_num, int claim_val);
// Refine the card corresponding to "card_ptr". If "sts" is non-NULL,
// join and leave around parts that must be atomic wrt GC. (NULL means
......
......@@ -29,7 +29,7 @@
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "oops/oop.inline.hpp"
inline size_t G1RemSet::n_workers() {
inline uint G1RemSet::n_workers() {
if (_g1->workers() != NULL) {
return _g1->workers()->total_workers();
} else {
......
......@@ -56,14 +56,14 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
lowest_non_clean_base_chunk_index,
lowest_non_clean_chunk_size);
int n_strides = n_threads * ParGCStridesPerThread;
uint n_strides = n_threads * ParGCStridesPerThread;
SequentialSubTasksDone* pst = sp->par_seq_tasks();
// Sets the condition for completion of the subtask (how many threads
// need to finish in order to be done).
pst->set_n_threads(n_threads);
pst->set_n_tasks(n_strides);
int stride = 0;
uint stride = 0;
while (!pst->is_task_claimed(/* reference */ stride)) {
process_stride(sp, mr, stride, n_strides, cl, ct,
lowest_non_clean,
......
......@@ -590,7 +590,7 @@ void ParNewGenTask::set_for_termination(int active_workers) {
// called after a task is started. So "i" is based on
// first-come-first-served.
void ParNewGenTask::work(int i) {
void ParNewGenTask::work(uint worker_id) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
// Since this is being done in a separate thread, need new resource
// and handle marks.
......@@ -601,8 +601,8 @@ void ParNewGenTask::work(int i) {
Generation* old_gen = gch->next_gen(_gen);
ParScanThreadState& par_scan_state = _state_set->thread_state(i);
assert(_state_set->is_valid(i), "Should not have been called");
ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
assert(_state_set->is_valid(worker_id), "Should not have been called");
par_scan_state.set_young_old_boundary(_young_old_boundary);
......@@ -755,7 +755,7 @@ public:
ParScanThreadStateSet& state_set);
private:
virtual void work(int i);
virtual void work(uint worker_id);
virtual void set_for_termination(int active_workers) {
_state_set.terminator()->reset_for_reuse(active_workers);
}
......@@ -781,13 +781,13 @@ ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
{
}
void ParNewRefProcTaskProxy::work(int i)
void ParNewRefProcTaskProxy::work(uint worker_id)
{
ResourceMark rm;
HandleMark hm;
ParScanThreadState& par_scan_state = _state_set.thread_state(i);
ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
par_scan_state.set_young_old_boundary(_young_old_boundary);
_task.work(i, par_scan_state.is_alive_closure(),
_task.work(worker_id, par_scan_state.is_alive_closure(),
par_scan_state.keep_alive_closure(),
par_scan_state.evacuate_followers_closure());
}
......@@ -802,9 +802,9 @@ public:
_task(task)
{ }
virtual void work(int i)
virtual void work(uint worker_id)
{
_task.work(i);
_task.work(worker_id);
}
};
......
......@@ -239,7 +239,7 @@ public:
HeapWord* young_old_boundary() { return _young_old_boundary; }
void work(int i);
void work(uint worker_id);
// Reset the terminator in ParScanThreadStateSet for
// "active_workers" threads.
......
......@@ -69,7 +69,7 @@ class CollectedHeap : public CHeapObj {
MemRegion _reserved;
BarrierSet* _barrier_set;
bool _is_gc_active;
int _n_par_threads;
uint _n_par_threads;
unsigned int _total_collections; // ... started
unsigned int _total_full_collections; // ... started
......@@ -309,10 +309,10 @@ class CollectedHeap : public CHeapObj {
GCCause::Cause gc_cause() { return _gc_cause; }
// Number of threads currently working on GC tasks.
int n_par_threads() { return _n_par_threads; }
uint n_par_threads() { return _n_par_threads; }
// May be overridden to set additional parallelism.
virtual void set_par_threads(int t) { _n_par_threads = t; };
virtual void set_par_threads(uint t) { _n_par_threads = t; };
// Preload classes into the shared portion of the heap, and then dump
// that data to a file so that it can be loaded directly by another
......
......@@ -703,7 +703,7 @@ HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab)
return collector_policy()->satisfy_failed_allocation(size, is_tlab);
}
void GenCollectedHeap::set_par_threads(int t) {
void GenCollectedHeap::set_par_threads(uint t) {
SharedHeap::set_par_threads(t);
_gen_process_strong_tasks->set_n_threads(t);
}
......
......@@ -419,8 +419,7 @@ public:
// asserted to be this type.
static GenCollectedHeap* heap();
void set_par_threads(int t);
void set_par_threads(uint t);
// Invoke the "do_oop" method of one of the closures "not_older_gens"
// or "older_gens" on root locations for the generation at
......
......@@ -88,9 +88,9 @@ void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_re
ReferenceProcessor::ReferenceProcessor(MemRegion span,
bool mt_processing,
int mt_processing_degree,
uint mt_processing_degree,
bool mt_discovery,
int mt_discovery_degree,
uint mt_discovery_degree,
bool atomic_discovery,
BoolObjectClosure* is_alive_non_header,
bool discovered_list_needs_barrier) :
......@@ -105,7 +105,7 @@ ReferenceProcessor::ReferenceProcessor(MemRegion span,
_span = span;
_discovery_is_atomic = atomic_discovery;
_discovery_is_mt = mt_discovery;
_num_q = MAX2(1, mt_processing_degree);
_num_q = MAX2(1U, mt_processing_degree);
_max_num_q = MAX2(_num_q, mt_discovery_degree);
_discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList,
_max_num_q * number_of_subclasses_of_ref());
......@@ -118,7 +118,7 @@ ReferenceProcessor::ReferenceProcessor(MemRegion span,
_discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
// Initialize all entries to NULL
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
_discovered_refs[i].set_head(NULL);
_discovered_refs[i].set_length(0);
}
......@@ -133,7 +133,7 @@ ReferenceProcessor::ReferenceProcessor(MemRegion span,
#ifndef PRODUCT
void ReferenceProcessor::verify_no_references_recorded() {
guarantee(!_discovering_refs, "Discovering refs?");
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
guarantee(_discovered_refs[i].is_empty(),
"Found non-empty discovered list");
}
......@@ -141,7 +141,7 @@ void ReferenceProcessor::verify_no_references_recorded() {
#endif
void ReferenceProcessor::weak_oops_do(OopClosure* f) {
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
if (UseCompressedOops) {
f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
} else {
......@@ -437,7 +437,7 @@ void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr
task_executor->execute(tsk);
} else {
// Serial code: call the parent class's implementation
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
_discovered_refs[i].set_head(NULL);
_discovered_refs[i].set_length(0);
......@@ -696,7 +696,7 @@ ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
void ReferenceProcessor::abandon_partial_discovery() {
// loop over the lists
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
}
......@@ -787,7 +787,7 @@ void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
gclog_or_tty->print_cr("\nBalance ref_lists ");
}
for (int i = 0; i < _max_num_q; ++i) {
for (uint i = 0; i < _max_num_q; ++i) {
total_refs += ref_lists[i].length();
if (TraceReferenceGC && PrintGCDetails) {
gclog_or_tty->print("%d ", ref_lists[i].length());
......@@ -797,8 +797,8 @@ void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
gclog_or_tty->print_cr(" = %d", total_refs);
}
size_t avg_refs = total_refs / _num_q + 1;
int to_idx = 0;
for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
uint to_idx = 0;
for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
bool move_all = false;
if (from_idx >= _num_q) {
move_all = ref_lists[from_idx].length() > 0;
......@@ -857,7 +857,7 @@ void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
}
#ifdef ASSERT
size_t balanced_total_refs = 0;
for (int i = 0; i < _max_num_q; ++i) {
for (uint i = 0; i < _max_num_q; ++i) {
balanced_total_refs += ref_lists[i].length();
if (TraceReferenceGC && PrintGCDetails) {
gclog_or_tty->print("%d ", ref_lists[i].length());
......@@ -903,7 +903,7 @@ ReferenceProcessor::process_discovered_reflist(
}
if (PrintReferenceGC && PrintGCDetails) {
size_t total = 0;
for (int i = 0; i < _max_num_q; ++i) {
for (uint i = 0; i < _max_num_q; ++i) {
total += refs_lists[i].length();
}
gclog_or_tty->print(", %u refs", total);
......@@ -919,7 +919,7 @@ ReferenceProcessor::process_discovered_reflist(
RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
task_executor->execute(phase1);
} else {
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
process_phase1(refs_lists[i], policy,
is_alive, keep_alive, complete_gc);
}
......@@ -935,7 +935,7 @@ ReferenceProcessor::process_discovered_reflist(
RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
task_executor->execute(phase2);
} else {
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
}
}
......@@ -946,7 +946,7 @@ ReferenceProcessor::process_discovered_reflist(
RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
task_executor->execute(phase3);
} else {
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
process_phase3(refs_lists[i], clear_referent,
is_alive, keep_alive, complete_gc);
}
......@@ -955,7 +955,7 @@ ReferenceProcessor::process_discovered_reflist(
void ReferenceProcessor::clean_up_discovered_references() {
// loop over the lists
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
gclog_or_tty->print_cr(
"\nScrubbing %s discovered list of Null referents",
......@@ -1000,7 +1000,7 @@ void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list)
}
inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
int id = 0;
uint id = 0;
// Determine the queue index to use for this object.
if (_discovery_is_mt) {
// During a multi-threaded discovery phase,
......@@ -1282,7 +1282,7 @@ void ReferenceProcessor::preclean_discovered_references(
{
TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
false, gclog_or_tty);
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
if (yield->should_return()) {
return;
}
......@@ -1295,7 +1295,7 @@ void ReferenceProcessor::preclean_discovered_references(
{
TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
false, gclog_or_tty);
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
if (yield->should_return()) {
return;
}
......@@ -1308,7 +1308,7 @@ void ReferenceProcessor::preclean_discovered_references(
{
TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
false, gclog_or_tty);
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
if (yield->should_return()) {
return;
}
......@@ -1321,7 +1321,7 @@ void ReferenceProcessor::preclean_discovered_references(
{
TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
false, gclog_or_tty);
for (int i = 0; i < _max_num_q; i++) {
for (uint i = 0; i < _max_num_q; i++) {
if (yield->should_return()) {
return;
}
......@@ -1386,7 +1386,7 @@ ReferenceProcessor::preclean_discovered_reflist(DiscoveredList& refs_list,
)
}
const char* ReferenceProcessor::list_name(int i) {
const char* ReferenceProcessor::list_name(uint i) {
assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
"Out of bounds index");
......@@ -1410,7 +1410,7 @@ void ReferenceProcessor::verify_ok_to_handle_reflists() {
#ifndef PRODUCT
void ReferenceProcessor::clear_discovered_references() {
guarantee(!_discovering_refs, "Discovering refs?");
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
clear_discovered_references(_discovered_refs[i]);
}
}
......
......@@ -231,7 +231,7 @@ class ReferenceProcessor : public CHeapObj {
bool _enqueuing_is_done; // true if all weak references enqueued
bool _processing_is_mt; // true during phases when
// reference processing is MT.
int _next_id; // round-robin mod _num_q counter in
uint _next_id; // round-robin mod _num_q counter in
// support of work distribution
// For collectors that do not keep GC liveness information
......@@ -252,9 +252,9 @@ class ReferenceProcessor : public CHeapObj {
// The discovered ref lists themselves
// The active MT'ness degree of the queues below
int _num_q;
uint _num_q;
// The maximum MT'ness degree of the queues below
int _max_num_q;
uint _max_num_q;
// Master array of discovered oops
DiscoveredList* _discovered_refs;
......@@ -268,9 +268,9 @@ class ReferenceProcessor : public CHeapObj {
public:
static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
int num_q() { return _num_q; }
int max_num_q() { return _max_num_q; }
void set_active_mt_degree(int v) { _num_q = v; }
uint num_q() { return _num_q; }
uint max_num_q() { return _max_num_q; }
void set_active_mt_degree(uint v) { _num_q = v; }
DiscoveredList* discovered_refs() { return _discovered_refs; }
......@@ -368,7 +368,7 @@ class ReferenceProcessor : public CHeapObj {
// Returns the name of the discovered reference list
// occupying the i / _num_q slot.
const char* list_name(int i);
const char* list_name(uint i);
void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
......@@ -388,8 +388,8 @@ class ReferenceProcessor : public CHeapObj {
YieldClosure* yield);
// round-robin mod _num_q (not: _not_ mode _max_num_q)
int next_id() {
int id = _next_id;
uint next_id() {
uint id = _next_id;
if (++_next_id == _num_q) {
_next_id = 0;
}
......@@ -434,8 +434,8 @@ class ReferenceProcessor : public CHeapObj {
// Default parameters give you a vanilla reference processor.
ReferenceProcessor(MemRegion span,
bool mt_processing = false, int mt_processing_degree = 1,
bool mt_discovery = false, int mt_discovery_degree = 1,
bool mt_processing = false, uint mt_processing_degree = 1,
bool mt_discovery = false, uint mt_discovery_degree = 1,
bool atomic_discovery = true,
BoolObjectClosure* is_alive_non_header = NULL,
bool discovered_list_needs_barrier = false);
......
......@@ -94,7 +94,7 @@ bool SharedHeap::heap_lock_held_for_gc() {
&& _thread_holds_heap_lock_for_gc);
}
void SharedHeap::set_par_threads(int t) {
void SharedHeap::set_par_threads(uint t) {
assert(t == 0 || !UseSerialGC, "Cannot have parallel threads");
_n_par_threads = t;
_process_strong_tasks->set_n_threads(t);
......
......@@ -287,7 +287,7 @@ public:
// Sets the number of parallel threads that will be doing tasks
// (such as process strong roots) subsequently.
virtual void set_par_threads(int t);
virtual void set_par_threads(uint t);
int n_termination();
void set_n_termination(int t);
......
......@@ -1551,7 +1551,7 @@ class CommandLineFlags {
product(uintx, ParGCDesiredObjsFromOverflowList, 20, \
"The desired number of objects to claim from the overflow list") \
\
diagnostic(intx, ParGCStridesPerThread, 2, \
diagnostic(uintx, ParGCStridesPerThread, 2, \
"The number of strides per worker thread that we divide up the " \
"card table scanning work into") \
\
......
......@@ -53,14 +53,14 @@ AbstractWorkGang::AbstractWorkGang(const char* name,
}
WorkGang::WorkGang(const char* name,
int workers,
uint workers,
bool are_GC_task_threads,
bool are_ConcurrentGC_threads) :
AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) {
_total_workers = workers;
}
GangWorker* WorkGang::allocate_worker(int which) {
GangWorker* WorkGang::allocate_worker(uint which) {
GangWorker* new_worker = new GangWorker(this, which);
return new_worker;
}
......@@ -88,7 +88,7 @@ bool WorkGang::initialize_workers() {
} else {
worker_type = os::pgc_thread;
}
for (int worker = 0; worker < total_workers(); worker += 1) {
for (uint worker = 0; worker < total_workers(); worker += 1) {
GangWorker* new_worker = allocate_worker(worker);
assert(new_worker != NULL, "Failed to allocate GangWorker");
_gang_workers[worker] = new_worker;
......@@ -108,14 +108,14 @@ AbstractWorkGang::~AbstractWorkGang() {
tty->print_cr("Destructing work gang %s", name());
}
stop(); // stop all the workers
for (int worker = 0; worker < total_workers(); worker += 1) {
for (uint worker = 0; worker < total_workers(); worker += 1) {
delete gang_worker(worker);
}
delete gang_workers();
delete monitor();
}
GangWorker* AbstractWorkGang::gang_worker(int i) const {
GangWorker* AbstractWorkGang::gang_worker(uint i) const {
// Array index bounds checking.
GangWorker* result = NULL;
assert(gang_workers() != NULL, "No workers for indexing");
......@@ -148,7 +148,7 @@ void WorkGang::run_task(AbstractGangTask* task, uint no_of_parallel_workers) {
// Tell the workers to get to work.
monitor()->notify_all();
// Wait for them to be finished
while (finished_workers() < (int) no_of_parallel_workers) {
while (finished_workers() < no_of_parallel_workers) {
if (TraceWorkGang) {
tty->print_cr("Waiting in work gang %s: %d/%d finished sequence %d",
name(), finished_workers(), no_of_parallel_workers,
......@@ -377,12 +377,12 @@ WorkGangBarrierSync::WorkGangBarrierSync()
_n_workers(0), _n_completed(0), _should_reset(false) {
}
WorkGangBarrierSync::WorkGangBarrierSync(int n_workers, const char* name)
WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
: _monitor(Mutex::safepoint, name, true),
_n_workers(n_workers), _n_completed(0), _should_reset(false) {
}
void WorkGangBarrierSync::set_n_workers(int n_workers) {
void WorkGangBarrierSync::set_n_workers(uint n_workers) {
_n_workers = n_workers;
_n_completed = 0;
_should_reset = false;
......@@ -419,9 +419,9 @@ void WorkGangBarrierSync::enter() {
// SubTasksDone functions.
SubTasksDone::SubTasksDone(int n) :
SubTasksDone::SubTasksDone(uint n) :
_n_tasks(n), _n_threads(1), _tasks(NULL) {
_tasks = NEW_C_HEAP_ARRAY(jint, n);
_tasks = NEW_C_HEAP_ARRAY(uint, n);
guarantee(_tasks != NULL, "alloc failure");
clear();
}
......@@ -430,14 +430,14 @@ bool SubTasksDone::valid() {
return _tasks != NULL;
}
void SubTasksDone::set_n_threads(int t) {
void SubTasksDone::set_n_threads(uint t) {
assert(_claimed == 0 || _threads_completed == _n_threads,
"should not be called while tasks are being processed!");
_n_threads = (t == 0 ? 1 : t);
}
void SubTasksDone::clear() {
for (int i = 0; i < _n_tasks; i++) {
for (uint i = 0; i < _n_tasks; i++) {
_tasks[i] = 0;
}
_threads_completed = 0;
......@@ -446,9 +446,9 @@ void SubTasksDone::clear() {
#endif
}
bool SubTasksDone::is_task_claimed(int t) {
bool SubTasksDone::is_task_claimed(uint t) {
assert(0 <= t && t < _n_tasks, "bad task id.");
jint old = _tasks[t];
uint old = _tasks[t];
if (old == 0) {
old = Atomic::cmpxchg(1, &_tasks[t], 0);
}
......@@ -457,7 +457,7 @@ bool SubTasksDone::is_task_claimed(int t) {
#ifdef ASSERT
if (!res) {
assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
Atomic::inc(&_claimed);
Atomic::inc((volatile jint*) &_claimed);
}
#endif
return res;
......@@ -471,7 +471,7 @@ void SubTasksDone::all_tasks_completed() {
observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
} while (observed != old);
// If this was the last thread checking in, clear the tasks.
if (observed+1 == _n_threads) clear();
if (observed+1 == (jint)_n_threads) clear();
}
......@@ -490,12 +490,12 @@ bool SequentialSubTasksDone::valid() {
return _n_threads > 0;
}
bool SequentialSubTasksDone::is_task_claimed(int& t) {
jint* n_claimed_ptr = &_n_claimed;
bool SequentialSubTasksDone::is_task_claimed(uint& t) {
uint* n_claimed_ptr = &_n_claimed;
t = *n_claimed_ptr;
while (t < _n_tasks) {
jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t);
if (res == t) {
if (res == (jint)t) {
return false;
}
t = *n_claimed_ptr;
......@@ -504,10 +504,10 @@ bool SequentialSubTasksDone::is_task_claimed(int& t) {
}
bool SequentialSubTasksDone::all_tasks_completed() {
jint* n_completed_ptr = &_n_completed;
jint complete = *n_completed_ptr;
uint* n_completed_ptr = &_n_completed;
uint complete = *n_completed_ptr;
while (true) {
jint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
if (res == complete) {
break;
}
......
......@@ -68,7 +68,7 @@ class AbstractGangTask VALUE_OBJ_CLASS_SPEC {
public:
// The abstract work method.
// The argument tells you which member of the gang you are.
virtual void work(int i) = 0;
virtual void work(uint worker_id) = 0;
// This method configures the task for proper termination.
// Some tasks do not have any requirements on termination
......@@ -149,7 +149,7 @@ protected:
// and notifies of changes in it.
Monitor* _monitor;
// The count of the number of workers in the gang.
int _total_workers;
uint _total_workers;
// Whether the workers should terminate.
bool _terminate;
// The array of worker threads for this gang.
......@@ -160,18 +160,18 @@ protected:
// A sequence number for the current task.
int _sequence_number;
// The number of started workers.
int _started_workers;
uint _started_workers;
// The number of finished workers.
int _finished_workers;
uint _finished_workers;
public:
// Accessors for fields
Monitor* monitor() const {
return _monitor;
}
int total_workers() const {
uint total_workers() const {
return _total_workers;
}
virtual int active_workers() const {
virtual uint active_workers() const {
return _total_workers;
}
bool terminate() const {
......@@ -186,10 +186,10 @@ public:
int sequence_number() const {
return _sequence_number;
}
int started_workers() const {
uint started_workers() const {
return _started_workers;
}
int finished_workers() const {
uint finished_workers() const {
return _finished_workers;
}
bool are_GC_task_threads() const {
......@@ -203,7 +203,7 @@ public:
return (task() == NULL);
}
// Return the Ith gang worker.
GangWorker* gang_worker(int i) const;
GangWorker* gang_worker(uint i) const;
void threads_do(ThreadClosure* tc) const;
......@@ -255,13 +255,13 @@ public:
class WorkGang: public AbstractWorkGang {
public:
// Constructor
WorkGang(const char* name, int workers,
WorkGang(const char* name, uint workers,
bool are_GC_task_threads, bool are_ConcurrentGC_threads);
// Run a task, returns when the task is done (or terminated).
virtual void run_task(AbstractGangTask* task);
void run_task(AbstractGangTask* task, uint no_of_parallel_workers);
// Allocate a worker and return a pointer to it.
virtual GangWorker* allocate_worker(int which);
virtual GangWorker* allocate_worker(uint which);
// Initialize workers in the gang. Return true if initialization
// succeeded. The type of the worker can be overridden in a derived
// class with the appropriate implementation of allocate_worker().
......@@ -323,25 +323,25 @@ class FlexibleWorkGang: public WorkGang {
// determine completion.
protected:
int _active_workers;
uint _active_workers;
public:
// Constructor and destructor.
// Initialize active_workers to a minimum value. Setting it to
// the parameter "workers" will initialize it to a maximum
// value which is not desirable.
FlexibleWorkGang(const char* name, int workers,
FlexibleWorkGang(const char* name, uint workers,
bool are_GC_task_threads,
bool are_ConcurrentGC_threads) :
WorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
_active_workers(UseDynamicNumberOfGCThreads ? 1 : ParallelGCThreads) {};
_active_workers(UseDynamicNumberOfGCThreads ? 1U : ParallelGCThreads) {}
// Accessors for fields
virtual int active_workers() const { return _active_workers; }
void set_active_workers(int v) {
virtual uint active_workers() const { return _active_workers; }
void set_active_workers(uint v) {
assert(v <= _total_workers,
"Trying to set more workers active than there are");
_active_workers = MIN2(v, _total_workers);
assert(v != 0, "Trying to set active workers to 0");
_active_workers = MAX2(1, _active_workers);
_active_workers = MAX2(1U, _active_workers);
assert(UseDynamicNumberOfGCThreads || _active_workers == _total_workers,
"Unless dynamic should use total workers");
}
......@@ -370,13 +370,13 @@ class FlexibleWorkGang: public WorkGang {
class WorkGangBarrierSync : public StackObj {
protected:
Monitor _monitor;
int _n_workers;
int _n_completed;
uint _n_workers;
uint _n_completed;
bool _should_reset;
Monitor* monitor() { return &_monitor; }
int n_workers() { return _n_workers; }
int n_completed() { return _n_completed; }
uint n_workers() { return _n_workers; }
uint n_completed() { return _n_completed; }
bool should_reset() { return _should_reset; }
void zero_completed() { _n_completed = 0; }
......@@ -386,11 +386,11 @@ protected:
public:
WorkGangBarrierSync();
WorkGangBarrierSync(int n_workers, const char* name);
WorkGangBarrierSync(uint n_workers, const char* name);
// Set the number of workers that will use the barrier.
// Must be called before any of the workers start running.
void set_n_workers(int n_workers);
void set_n_workers(uint n_workers);
// Enter the barrier. A worker that enters the barrier will
// not be allowed to leave until all other threads have
......@@ -402,18 +402,18 @@ public:
// subtasks will be identified by integer indices, usually elements of an
// enumeration type.
class SubTasksDone: public CHeapObj {
jint* _tasks;
int _n_tasks;
class SubTasksDone : public CHeapObj {
uint* _tasks;
uint _n_tasks;
// _n_threads is used to determine when a sub task is done.
// It does not control how many threads will execute the subtask
// but must be initialized to the number that do execute the task
// in order to correctly decide when the subtask is done (all the
// threads working on the task have finished).
int _n_threads;
jint _threads_completed;
uint _n_threads;
uint _threads_completed;
#ifdef ASSERT
volatile jint _claimed;
volatile uint _claimed;
#endif
// Set all tasks to unclaimed.
......@@ -423,19 +423,19 @@ public:
// Initializes "this" to a state in which there are "n" tasks to be
// processed, none of the which are originally claimed. The number of
// threads doing the tasks is initialized 1.
SubTasksDone(int n);
SubTasksDone(uint n);
// True iff the object is in a valid state.
bool valid();
// Get/set the number of parallel threads doing the tasks to "t". Can only
// be called before tasks start or after they are complete.
int n_threads() { return _n_threads; }
void set_n_threads(int t);
uint n_threads() { return _n_threads; }
void set_n_threads(uint t);
// Returns "false" if the task "t" is unclaimed, and ensures that task is
// claimed. The task "t" is required to be within the range of "this".
bool is_task_claimed(int t);
bool is_task_claimed(uint t);
// The calling thread asserts that it has attempted to claim all the
// tasks that it will try to claim. Every thread in the parallel task
......@@ -456,12 +456,12 @@ public:
class SequentialSubTasksDone : public StackObj {
protected:
jint _n_tasks; // Total number of tasks available.
jint _n_claimed; // Number of tasks claimed.
uint _n_tasks; // Total number of tasks available.
uint _n_claimed; // Number of tasks claimed.
// _n_threads is used to determine when a sub task is done.
// See comments on SubTasksDone::_n_threads
jint _n_threads; // Total number of parallel threads.
jint _n_completed; // Number of completed threads.
uint _n_threads; // Total number of parallel threads.
uint _n_completed; // Number of completed threads.
void clear();
......@@ -475,26 +475,26 @@ public:
bool valid();
// number of tasks
jint n_tasks() const { return _n_tasks; }
uint n_tasks() const { return _n_tasks; }
// Get/set the number of parallel threads doing the tasks to t.
// Should be called before the task starts but it is safe
// to call this once a task is running provided that all
// threads agree on the number of threads.
int n_threads() { return _n_threads; }
void set_n_threads(int t) { _n_threads = t; }
uint n_threads() { return _n_threads; }
void set_n_threads(uint t) { _n_threads = t; }
// Set the number of tasks to be claimed to t. As above,
// should be called before the tasks start but it is safe
// to call this once a task is running provided all threads
// agree on the number of tasks.
void set_n_tasks(int t) { _n_tasks = t; }
void set_n_tasks(uint t) { _n_tasks = t; }
// Returns false if the next task in the sequence is unclaimed,
// and ensures that it is claimed. Will set t to be the index
// of the claimed task in the sequence. Will return true if
// the task cannot be claimed and there are none left to claim.
bool is_task_claimed(int& t);
bool is_task_claimed(uint& t);
// The calling thread asserts that it has attempted to claim
// all the tasks it possibly can in the sequence. Every thread
......
......@@ -33,11 +33,11 @@ class GangWorker;
class WorkData;
YieldingFlexibleWorkGang::YieldingFlexibleWorkGang(
const char* name, int workers, bool are_GC_task_threads) :
const char* name, uint workers, bool are_GC_task_threads) :
FlexibleWorkGang(name, workers, are_GC_task_threads, false),
_yielded_workers(0) {}
GangWorker* YieldingFlexibleWorkGang::allocate_worker(int which) {
GangWorker* YieldingFlexibleWorkGang::allocate_worker(uint which) {
YieldingFlexibleGangWorker* new_member =
new YieldingFlexibleGangWorker(this, which);
return (YieldingFlexibleGangWorker*) new_member;
......@@ -120,7 +120,7 @@ void YieldingFlexibleWorkGang::start_task(YieldingFlexibleGangTask* new_task) {
new_task->set_gang(this); // Establish 2-way binding to support yielding
_sequence_number++;
int requested_size = new_task->requested_size();
uint requested_size = new_task->requested_size();
assert(requested_size >= 0, "Should be non-negative");
if (requested_size != 0) {
_active_workers = MIN2(requested_size, total_workers());
......
......@@ -71,7 +71,7 @@ public:
// The abstract work method.
// The argument tells you which member of the gang you are.
virtual void work(int i) = 0;
virtual void work(uint worker_id) = 0;
int requested_size() const { return _requested_size; }
int actual_size() const { return _actual_size; }
......@@ -128,7 +128,7 @@ protected:
public:
// The abstract work method.
// The argument tells you which member of the gang you are.
virtual void work(int i) = 0;
virtual void work(uint worker_id) = 0;
// Subclasses should call the parent's yield() method
// after having done any work specific to the subclass.
......@@ -159,7 +159,7 @@ class YieldingFlexibleWorkGang: public FlexibleWorkGang {
// Here's the public interface to this class.
public:
// Constructor and destructor.
YieldingFlexibleWorkGang(const char* name, int workers,
YieldingFlexibleWorkGang(const char* name, uint workers,
bool are_GC_task_threads);
YieldingFlexibleGangTask* yielding_task() const {
......@@ -168,7 +168,7 @@ public:
return (YieldingFlexibleGangTask*)task();
}
// Allocate a worker and return a pointer to it.
GangWorker* allocate_worker(int which);
GangWorker* allocate_worker(uint which);
// Run a task; returns when the task is done, or the workers yield,
// or the task is aborted, or the work gang is terminated via stop().
......@@ -199,12 +199,12 @@ public:
void abort();
private:
int _yielded_workers;
uint _yielded_workers;
void wait_for_gang();
public:
// Accessors for fields
int yielded_workers() const {
uint yielded_workers() const {
return _yielded_workers;
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册