Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openanolis
dragonwell8_hotspot
提交
b4020a8b
D
dragonwell8_hotspot
项目概览
openanolis
/
dragonwell8_hotspot
通知
2
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
dragonwell8_hotspot
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b4020a8b
编写于
3月 04, 2016
作者:
V
vkempik
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
8130150: Implement BigInteger.montgomeryMultiply intrinsic
Reviewed-by: kvn, mdoerr
上级
c5837c06
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
775 addition
and
9 deletion
+775
-9
src/cpu/x86/vm/sharedRuntime_x86_64.cpp
src/cpu/x86/vm/sharedRuntime_x86_64.cpp
+253
-0
src/cpu/x86/vm/stubGenerator_x86_64.cpp
src/cpu/x86/vm/stubGenerator_x86_64.cpp
+12
-1
src/cpu/x86/vm/vm_version_x86.cpp
src/cpu/x86/vm/vm_version_x86.cpp
+18
-0
src/share/vm/classfile/vmSymbols.hpp
src/share/vm/classfile/vmSymbols.hpp
+9
-1
src/share/vm/opto/c2_globals.hpp
src/share/vm/opto/c2_globals.hpp
+6
-0
src/share/vm/opto/escape.cpp
src/share/vm/opto/escape.cpp
+4
-2
src/share/vm/opto/library_call.cpp
src/share/vm/opto/library_call.cpp
+135
-5
src/share/vm/opto/runtime.cpp
src/share/vm/opto/runtime.cpp
+46
-0
src/share/vm/opto/runtime.hpp
src/share/vm/opto/runtime.hpp
+2
-0
src/share/vm/runtime/sharedRuntime.hpp
src/share/vm/runtime/sharedRuntime.hpp
+6
-0
src/share/vm/runtime/stubRoutines.cpp
src/share/vm/runtime/stubRoutines.cpp
+2
-0
src/share/vm/runtime/stubRoutines.hpp
src/share/vm/runtime/stubRoutines.hpp
+4
-0
test/compiler/intrinsics/montgomerymultiply/MontgomeryMultiplyTest.java
...intrinsics/montgomerymultiply/MontgomeryMultiplyTest.java
+278
-0
未找到文件。
src/cpu/x86/vm/sharedRuntime_x86_64.cpp
浏览文件 @
b4020a8b
...
...
@@ -23,6 +23,9 @@
*/
#include "precompiled.hpp"
#ifndef _WINDOWS
#include "alloca.h"
#endif
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
...
...
@@ -3966,6 +3969,256 @@ RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const cha
}
//------------------------------Montgomery multiplication------------------------
//
#ifndef _WINDOWS
#define ASM_SUBTRACT
#ifdef ASM_SUBTRACT
// Subtract 0:b from carry:a. Return carry.
static
unsigned
long
sub
(
unsigned
long
a
[],
unsigned
long
b
[],
unsigned
long
carry
,
long
len
)
{
long
i
=
0
,
cnt
=
len
;
unsigned
long
tmp
;
asm
volatile
(
"clc; "
"0: ; "
"mov (%[b], %[i], 8), %[tmp]; "
"sbb %[tmp], (%[a], %[i], 8); "
"inc %[i]; dec %[cnt]; "
"jne 0b; "
"mov %[carry], %[tmp]; sbb $0, %[tmp]; "
:
[
i
]
"+r"
(
i
),
[
cnt
]
"+r"
(
cnt
),
[
tmp
]
"=&r"
(
tmp
)
:
[
a
]
"r"
(
a
),
[
b
]
"r"
(
b
),
[
carry
]
"r"
(
carry
)
:
"memory"
);
return
tmp
;
}
#else // ASM_SUBTRACT
typedef
int
__attribute__
((
mode
(
TI
)))
int128
;
// Subtract 0:b from carry:a. Return carry.
static
unsigned
long
sub
(
unsigned
long
a
[],
unsigned
long
b
[],
unsigned
long
carry
,
int
len
)
{
int128
tmp
=
0
;
int
i
;
for
(
i
=
0
;
i
<
len
;
i
++
)
{
tmp
+=
a
[
i
];
tmp
-=
b
[
i
];
a
[
i
]
=
tmp
;
tmp
>>=
64
;
assert
(
-
1
<=
tmp
&&
tmp
<=
0
,
"invariant"
);
}
return
tmp
+
carry
;
}
#endif // ! ASM_SUBTRACT
// Multiply (unsigned) Long A by Long B, accumulating the double-
// length result into the accumulator formed of T0, T1, and T2.
#define MACC(A, B, T0, T1, T2) \
do { \
unsigned long hi, lo; \
asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
: "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
: "r"(A), "a"(B) : "cc"); \
} while(0)
// As above, but add twice the double-length result into the
// accumulator.
#define MACC2(A, B, T0, T1, T2) \
do { \
unsigned long hi, lo; \
asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;" \
"add %%rax, %2; adc %%rdx, %3; adc $0, %4" \
: "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \
: "r"(A), "a"(B) : "cc"); \
} while(0)
// Fast Montgomery multiplication. The derivation of the algorithm is
// in A Cryptographic Library for the Motorola DSP56000,
// Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
static
void
__attribute__
((
noinline
))
montgomery_multiply
(
unsigned
long
a
[],
unsigned
long
b
[],
unsigned
long
n
[],
unsigned
long
m
[],
unsigned
long
inv
,
int
len
)
{
unsigned
long
t0
=
0
,
t1
=
0
,
t2
=
0
;
// Triple-precision accumulator
int
i
;
assert
(
inv
*
n
[
0
]
==
-
1UL
,
"broken inverse in Montgomery multiply"
);
for
(
i
=
0
;
i
<
len
;
i
++
)
{
int
j
;
for
(
j
=
0
;
j
<
i
;
j
++
)
{
MACC
(
a
[
j
],
b
[
i
-
j
],
t0
,
t1
,
t2
);
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
MACC
(
a
[
i
],
b
[
0
],
t0
,
t1
,
t2
);
m
[
i
]
=
t0
*
inv
;
MACC
(
m
[
i
],
n
[
0
],
t0
,
t1
,
t2
);
assert
(
t0
==
0
,
"broken Montgomery multiply"
);
t0
=
t1
;
t1
=
t2
;
t2
=
0
;
}
for
(
i
=
len
;
i
<
2
*
len
;
i
++
)
{
int
j
;
for
(
j
=
i
-
len
+
1
;
j
<
len
;
j
++
)
{
MACC
(
a
[
j
],
b
[
i
-
j
],
t0
,
t1
,
t2
);
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
m
[
i
-
len
]
=
t0
;
t0
=
t1
;
t1
=
t2
;
t2
=
0
;
}
while
(
t0
)
t0
=
sub
(
m
,
n
,
t0
,
len
);
}
// Fast Montgomery squaring. This uses asymptotically 25% fewer
// multiplies so it should be up to 25% faster than Montgomery
// multiplication. However, its loop control is more complex and it
// may actually run slower on some machines.
static
void
__attribute__
((
noinline
))
montgomery_square
(
unsigned
long
a
[],
unsigned
long
n
[],
unsigned
long
m
[],
unsigned
long
inv
,
int
len
)
{
unsigned
long
t0
=
0
,
t1
=
0
,
t2
=
0
;
// Triple-precision accumulator
int
i
;
assert
(
inv
*
n
[
0
]
==
-
1UL
,
"broken inverse in Montgomery multiply"
);
for
(
i
=
0
;
i
<
len
;
i
++
)
{
int
j
;
int
end
=
(
i
+
1
)
/
2
;
for
(
j
=
0
;
j
<
end
;
j
++
)
{
MACC2
(
a
[
j
],
a
[
i
-
j
],
t0
,
t1
,
t2
);
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
if
((
i
&
1
)
==
0
)
{
MACC
(
a
[
j
],
a
[
j
],
t0
,
t1
,
t2
);
}
for
(;
j
<
i
;
j
++
)
{
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
m
[
i
]
=
t0
*
inv
;
MACC
(
m
[
i
],
n
[
0
],
t0
,
t1
,
t2
);
assert
(
t0
==
0
,
"broken Montgomery square"
);
t0
=
t1
;
t1
=
t2
;
t2
=
0
;
}
for
(
i
=
len
;
i
<
2
*
len
;
i
++
)
{
int
start
=
i
-
len
+
1
;
int
end
=
start
+
(
len
-
start
)
/
2
;
int
j
;
for
(
j
=
start
;
j
<
end
;
j
++
)
{
MACC2
(
a
[
j
],
a
[
i
-
j
],
t0
,
t1
,
t2
);
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
if
((
i
&
1
)
==
0
)
{
MACC
(
a
[
j
],
a
[
j
],
t0
,
t1
,
t2
);
}
for
(;
j
<
len
;
j
++
)
{
MACC
(
m
[
j
],
n
[
i
-
j
],
t0
,
t1
,
t2
);
}
m
[
i
-
len
]
=
t0
;
t0
=
t1
;
t1
=
t2
;
t2
=
0
;
}
while
(
t0
)
t0
=
sub
(
m
,
n
,
t0
,
len
);
}
// Swap words in a longword.
static
unsigned
long
swap
(
unsigned
long
x
)
{
return
(
x
<<
32
)
|
(
x
>>
32
);
}
// Copy len longwords from s to d, word-swapping as we go. The
// destination array is reversed.
static
void
reverse_words
(
unsigned
long
*
s
,
unsigned
long
*
d
,
int
len
)
{
d
+=
len
;
while
(
len
--
>
0
)
{
d
--
;
*
d
=
swap
(
*
s
);
s
++
;
}
}
// The threshold at which squaring is advantageous was determined
// experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
#define MONTGOMERY_SQUARING_THRESHOLD 64
void
SharedRuntime
::
montgomery_multiply
(
jint
*
a_ints
,
jint
*
b_ints
,
jint
*
n_ints
,
jint
len
,
jlong
inv
,
jint
*
m_ints
)
{
assert
(
len
%
2
==
0
,
"array length in montgomery_multiply must be even"
);
int
longwords
=
len
/
2
;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 8k bytes of stack space.
int
total_allocation
=
longwords
*
sizeof
(
unsigned
long
)
*
4
;
guarantee
(
total_allocation
<=
8192
,
"must be"
);
unsigned
long
*
scratch
=
(
unsigned
long
*
)
alloca
(
total_allocation
);
// Local scratch arrays
unsigned
long
*
a
=
scratch
+
0
*
longwords
,
*
b
=
scratch
+
1
*
longwords
,
*
n
=
scratch
+
2
*
longwords
,
*
m
=
scratch
+
3
*
longwords
;
reverse_words
((
unsigned
long
*
)
a_ints
,
a
,
longwords
);
reverse_words
((
unsigned
long
*
)
b_ints
,
b
,
longwords
);
reverse_words
((
unsigned
long
*
)
n_ints
,
n
,
longwords
);
::
montgomery_multiply
(
a
,
b
,
n
,
m
,
(
unsigned
long
)
inv
,
longwords
);
reverse_words
(
m
,
(
unsigned
long
*
)
m_ints
,
longwords
);
}
void
SharedRuntime
::
montgomery_square
(
jint
*
a_ints
,
jint
*
n_ints
,
jint
len
,
jlong
inv
,
jint
*
m_ints
)
{
assert
(
len
%
2
==
0
,
"array length in montgomery_square must be even"
);
int
longwords
=
len
/
2
;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 6k bytes of stack space.
int
total_allocation
=
longwords
*
sizeof
(
unsigned
long
)
*
3
;
guarantee
(
total_allocation
<=
8192
,
"must be"
);
unsigned
long
*
scratch
=
(
unsigned
long
*
)
alloca
(
total_allocation
);
// Local scratch arrays
unsigned
long
*
a
=
scratch
+
0
*
longwords
,
*
n
=
scratch
+
1
*
longwords
,
*
m
=
scratch
+
2
*
longwords
;
reverse_words
((
unsigned
long
*
)
a_ints
,
a
,
longwords
);
reverse_words
((
unsigned
long
*
)
n_ints
,
n
,
longwords
);
//montgomery_square fails to pass BigIntegerTest on solaris amd64
//on jdk7 and jdk8.
#ifndef SOLARIS
if
(
len
>=
MONTGOMERY_SQUARING_THRESHOLD
)
{
#else
if
(
0
)
{
#endif
::
montgomery_square
(
a
,
n
,
m
,
(
unsigned
long
)
inv
,
longwords
);
}
else
{
::
montgomery_multiply
(
a
,
a
,
n
,
m
,
(
unsigned
long
)
inv
,
longwords
);
}
reverse_words
(
m
,
(
unsigned
long
*
)
m_ints
,
longwords
);
}
#endif // WINDOWS
#ifdef COMPILER2
// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
//
...
...
src/cpu/x86/vm/stubGenerator_x86_64.cpp
浏览文件 @
b4020a8b
...
...
@@ -4094,7 +4094,18 @@ class StubGenerator: public StubCodeGenerator {
if
(
UseMulAddIntrinsic
)
{
StubRoutines
::
_mulAdd
=
generate_mulAdd
();
}
#endif
#ifndef _WINDOWS
if
(
UseMontgomeryMultiplyIntrinsic
)
{
StubRoutines
::
_montgomeryMultiply
=
CAST_FROM_FN_PTR
(
address
,
SharedRuntime
::
montgomery_multiply
);
}
if
(
UseMontgomerySquareIntrinsic
)
{
StubRoutines
::
_montgomerySquare
=
CAST_FROM_FN_PTR
(
address
,
SharedRuntime
::
montgomery_square
);
}
#endif // WINDOWS
#endif // COMPILER2
}
public:
...
...
src/cpu/x86/vm/vm_version_x86.cpp
浏览文件 @
b4020a8b
...
...
@@ -709,6 +709,12 @@ void VM_Version::get_processor_features() {
if
(
FLAG_IS_DEFAULT
(
UseMulAddIntrinsic
))
{
UseMulAddIntrinsic
=
true
;
}
if
(
FLAG_IS_DEFAULT
(
UseMontgomeryMultiplyIntrinsic
))
{
UseMontgomeryMultiplyIntrinsic
=
true
;
}
if
(
FLAG_IS_DEFAULT
(
UseMontgomerySquareIntrinsic
))
{
UseMontgomerySquareIntrinsic
=
true
;
}
#else
if
(
UseMultiplyToLenIntrinsic
)
{
if
(
!
FLAG_IS_DEFAULT
(
UseMultiplyToLenIntrinsic
))
{
...
...
@@ -728,6 +734,18 @@ void VM_Version::get_processor_features() {
}
FLAG_SET_DEFAULT
(
UseMulAddIntrinsic
,
false
);
}
if
(
UseMontgomeryMultiplyIntrinsic
)
{
if
(
!
FLAG_IS_DEFAULT
(
UseMontgomeryMultiplyIntrinsic
))
{
warning
(
"montgomeryMultiply intrinsic is not available in 32-bit VM"
);
}
FLAG_SET_DEFAULT
(
UseMontgomeryMultiplyIntrinsic
,
false
);
}
if
(
UseMontgomerySquareIntrinsic
)
{
if
(
!
FLAG_IS_DEFAULT
(
UseMontgomerySquareIntrinsic
))
{
warning
(
"montgomerySquare intrinsic is not available in 32-bit VM"
);
}
FLAG_SET_DEFAULT
(
UseMontgomerySquareIntrinsic
,
false
);
}
#endif
#endif // COMPILER2
...
...
src/share/vm/classfile/vmSymbols.hpp
浏览文件 @
b4020a8b
...
...
@@ -789,7 +789,7 @@
do_signature(encodeISOArray_signature, "([CI[BII)I") \
\
do_class(java_math_BigInteger, "java/math/BigInteger") \
do_intrinsic(_multiplyToLen, java_math_BigInteger, multiplyToLen_name, multiplyToLen_signature, F_
R
) \
do_intrinsic(_multiplyToLen, java_math_BigInteger, multiplyToLen_name, multiplyToLen_signature, F_
S
) \
do_name( multiplyToLen_name, "multiplyToLen") \
do_signature(multiplyToLen_signature, "([II[II[I)[I") \
\
...
...
@@ -801,6 +801,14 @@
do_name( mulAdd_name, "implMulAdd") \
do_signature(mulAdd_signature, "([I[IIII)I") \
\
do_intrinsic(_montgomeryMultiply, java_math_BigInteger, montgomeryMultiply_name, montgomeryMultiply_signature, F_S) \
do_name( montgomeryMultiply_name, "implMontgomeryMultiply") \
do_signature(montgomeryMultiply_signature, "([I[I[IIJ[I)[I") \
\
do_intrinsic(_montgomerySquare, java_math_BigInteger, montgomerySquare_name, montgomerySquare_signature, F_S) \
do_name( montgomerySquare_name, "implMontgomerySquare") \
do_signature(montgomerySquare_signature, "([I[IIJ[I)[I") \
\
/* java/lang/ref/Reference */
\
do_intrinsic(_Reference_get, java_lang_ref_Reference, get_name, void_object_signature, F_R) \
\
...
...
src/share/vm/opto/c2_globals.hpp
浏览文件 @
b4020a8b
...
...
@@ -665,6 +665,12 @@
product(bool, UseMulAddIntrinsic, false, \
"Enables intrinsification of BigInteger.mulAdd()") \
\
product(bool, UseMontgomeryMultiplyIntrinsic, false, \
"Enables intrinsification of BigInteger.montgomeryMultiply()") \
\
product(bool, UseMontgomerySquareIntrinsic, false, \
"Enables intrinsification of BigInteger.montgomerySquare()") \
\
product(bool, UseTypeSpeculation, true, \
"Speculatively propagate types from profiles") \
\
...
...
src/share/vm/opto/escape.cpp
浏览文件 @
b4020a8b
...
...
@@ -960,7 +960,9 @@ void ConnectionGraph::process_call_arguments(CallNode *call) {
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"sha512_implCompressMB"
)
==
0
||
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"multiplyToLen"
)
==
0
||
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"squareToLen"
)
==
0
||
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"mulAdd"
)
==
0
)
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"mulAdd"
)
==
0
||
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"montgomery_multiply"
)
==
0
||
strcmp
(
call
->
as_CallLeaf
()
->
_name
,
"montgomery_square"
)
==
0
)
)))
{
call
->
dump
();
fatal
(
err_msg_res
(
"EA unexpected CallLeaf %s"
,
call
->
as_CallLeaf
()
->
_name
));
...
...
src/share/vm/opto/library_call.cpp
浏览文件 @
b4020a8b
...
...
@@ -326,6 +326,8 @@ class LibraryCallKit : public GraphKit {
bool
inline_multiplyToLen
();
bool
inline_squareToLen
();
bool
inline_mulAdd
();
bool
inline_montgomeryMultiply
();
bool
inline_montgomerySquare
();
bool
inline_profileBoolean
();
};
...
...
@@ -537,6 +539,13 @@ CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
if
(
!
UseMulAddIntrinsic
)
return
NULL
;
break
;
case
vmIntrinsics
::
_montgomeryMultiply
:
if
(
!
UseMontgomeryMultiplyIntrinsic
)
return
NULL
;
break
;
case
vmIntrinsics
::
_montgomerySquare
:
if
(
!
UseMontgomerySquareIntrinsic
)
return
NULL
;
break
;
case
vmIntrinsics
::
_cipherBlockChaining_encryptAESCrypt
:
case
vmIntrinsics
::
_cipherBlockChaining_decryptAESCrypt
:
if
(
!
UseAESIntrinsics
)
return
NULL
;
...
...
@@ -943,6 +952,11 @@ bool LibraryCallKit::try_to_inline(int predicate) {
case
vmIntrinsics
::
_mulAdd
:
return
inline_mulAdd
();
case
vmIntrinsics
::
_montgomeryMultiply
:
return
inline_montgomeryMultiply
();
case
vmIntrinsics
::
_montgomerySquare
:
return
inline_montgomerySquare
();
case
vmIntrinsics
::
_encodeISOArray
:
return
inline_encodeISOArray
();
...
...
@@ -5783,11 +5797,12 @@ bool LibraryCallKit::inline_multiplyToLen() {
assert
(
callee
()
->
signature
()
->
size
()
==
5
,
"multiplyToLen has 5 parameters"
);
Node
*
x
=
argument
(
1
);
Node
*
xlen
=
argument
(
2
);
Node
*
y
=
argument
(
3
);
Node
*
ylen
=
argument
(
4
);
Node
*
z
=
argument
(
5
);
// no receiver because it is a static method
Node
*
x
=
argument
(
0
);
Node
*
xlen
=
argument
(
1
);
Node
*
y
=
argument
(
2
);
Node
*
ylen
=
argument
(
3
);
Node
*
z
=
argument
(
4
);
const
Type
*
x_type
=
x
->
Value
(
&
_gvn
);
const
Type
*
y_type
=
y
->
Value
(
&
_gvn
);
...
...
@@ -5966,6 +5981,121 @@ bool LibraryCallKit::inline_mulAdd() {
return
true
;
}
//-------------inline_montgomeryMultiply-----------------------------------
bool
LibraryCallKit
::
inline_montgomeryMultiply
()
{
address
stubAddr
=
StubRoutines
::
montgomeryMultiply
();
if
(
stubAddr
==
NULL
)
{
return
false
;
// Intrinsic's stub is not implemented on this platform
}
assert
(
UseMontgomeryMultiplyIntrinsic
,
"not implemented on this platform"
);
const
char
*
stubName
=
"montgomery_square"
;
assert
(
callee
()
->
signature
()
->
size
()
==
7
,
"montgomeryMultiply has 7 parameters"
);
Node
*
a
=
argument
(
0
);
Node
*
b
=
argument
(
1
);
Node
*
n
=
argument
(
2
);
Node
*
len
=
argument
(
3
);
Node
*
inv
=
argument
(
4
);
Node
*
m
=
argument
(
6
);
const
Type
*
a_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_a
=
a_type
->
isa_aryptr
();
const
Type
*
b_type
=
b
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_b
=
b_type
->
isa_aryptr
();
const
Type
*
n_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_n
=
n_type
->
isa_aryptr
();
const
Type
*
m_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_m
=
m_type
->
isa_aryptr
();
if
(
top_a
==
NULL
||
top_a
->
klass
()
==
NULL
||
top_b
==
NULL
||
top_b
->
klass
()
==
NULL
||
top_n
==
NULL
||
top_n
->
klass
()
==
NULL
||
top_m
==
NULL
||
top_m
->
klass
()
==
NULL
)
{
// failed array check
return
false
;
}
BasicType
a_elem
=
a_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
BasicType
b_elem
=
b_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
BasicType
n_elem
=
n_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
BasicType
m_elem
=
m_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
if
(
a_elem
!=
T_INT
||
b_elem
!=
T_INT
||
n_elem
!=
T_INT
||
m_elem
!=
T_INT
)
{
return
false
;
}
// Make the call
{
Node
*
a_start
=
array_element_address
(
a
,
intcon
(
0
),
a_elem
);
Node
*
b_start
=
array_element_address
(
b
,
intcon
(
0
),
b_elem
);
Node
*
n_start
=
array_element_address
(
n
,
intcon
(
0
),
n_elem
);
Node
*
m_start
=
array_element_address
(
m
,
intcon
(
0
),
m_elem
);
Node
*
call
=
make_runtime_call
(
RC_LEAF
,
OptoRuntime
::
montgomeryMultiply_Type
(),
stubAddr
,
stubName
,
TypePtr
::
BOTTOM
,
a_start
,
b_start
,
n_start
,
len
,
inv
,
top
(),
m_start
);
set_result
(
m
);
}
return
true
;
}
bool
LibraryCallKit
::
inline_montgomerySquare
()
{
address
stubAddr
=
StubRoutines
::
montgomerySquare
();
if
(
stubAddr
==
NULL
)
{
return
false
;
// Intrinsic's stub is not implemented on this platform
}
assert
(
UseMontgomerySquareIntrinsic
,
"not implemented on this platform"
);
const
char
*
stubName
=
"montgomery_square"
;
assert
(
callee
()
->
signature
()
->
size
()
==
6
,
"montgomerySquare has 6 parameters"
);
Node
*
a
=
argument
(
0
);
Node
*
n
=
argument
(
1
);
Node
*
len
=
argument
(
2
);
Node
*
inv
=
argument
(
3
);
Node
*
m
=
argument
(
5
);
const
Type
*
a_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_a
=
a_type
->
isa_aryptr
();
const
Type
*
n_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_n
=
n_type
->
isa_aryptr
();
const
Type
*
m_type
=
a
->
Value
(
&
_gvn
);
const
TypeAryPtr
*
top_m
=
m_type
->
isa_aryptr
();
if
(
top_a
==
NULL
||
top_a
->
klass
()
==
NULL
||
top_n
==
NULL
||
top_n
->
klass
()
==
NULL
||
top_m
==
NULL
||
top_m
->
klass
()
==
NULL
)
{
// failed array check
return
false
;
}
BasicType
a_elem
=
a_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
BasicType
n_elem
=
n_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
BasicType
m_elem
=
m_type
->
isa_aryptr
()
->
klass
()
->
as_array_klass
()
->
element_type
()
->
basic_type
();
if
(
a_elem
!=
T_INT
||
n_elem
!=
T_INT
||
m_elem
!=
T_INT
)
{
return
false
;
}
// Make the call
{
Node
*
a_start
=
array_element_address
(
a
,
intcon
(
0
),
a_elem
);
Node
*
n_start
=
array_element_address
(
n
,
intcon
(
0
),
n_elem
);
Node
*
m_start
=
array_element_address
(
m
,
intcon
(
0
),
m_elem
);
Node
*
call
=
make_runtime_call
(
RC_LEAF
,
OptoRuntime
::
montgomerySquare_Type
(),
stubAddr
,
stubName
,
TypePtr
::
BOTTOM
,
a_start
,
n_start
,
len
,
inv
,
top
(),
m_start
);
set_result
(
m
);
}
return
true
;
}
/**
* Calculate CRC32 for byte.
...
...
src/share/vm/opto/runtime.cpp
浏览文件 @
b4020a8b
...
...
@@ -998,6 +998,52 @@ const TypeFunc* OptoRuntime::mulAdd_Type() {
return
TypeFunc
::
make
(
domain
,
range
);
}
const
TypeFunc
*
OptoRuntime
::
montgomeryMultiply_Type
()
{
// create input type (domain)
int
num_args
=
7
;
int
argcnt
=
num_args
;
const
Type
**
fields
=
TypeTuple
::
fields
(
argcnt
);
int
argp
=
TypeFunc
::
Parms
;
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// a
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// b
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// n
fields
[
argp
++
]
=
TypeInt
::
INT
;
// len
fields
[
argp
++
]
=
TypeLong
::
LONG
;
// inv
fields
[
argp
++
]
=
Type
::
HALF
;
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// result
assert
(
argp
==
TypeFunc
::
Parms
+
argcnt
,
"correct decoding"
);
const
TypeTuple
*
domain
=
TypeTuple
::
make
(
TypeFunc
::
Parms
+
argcnt
,
fields
);
// result type needed
fields
=
TypeTuple
::
fields
(
1
);
fields
[
TypeFunc
::
Parms
+
0
]
=
TypePtr
::
NOTNULL
;
const
TypeTuple
*
range
=
TypeTuple
::
make
(
TypeFunc
::
Parms
,
fields
);
return
TypeFunc
::
make
(
domain
,
range
);
}
const
TypeFunc
*
OptoRuntime
::
montgomerySquare_Type
()
{
// create input type (domain)
int
num_args
=
6
;
int
argcnt
=
num_args
;
const
Type
**
fields
=
TypeTuple
::
fields
(
argcnt
);
int
argp
=
TypeFunc
::
Parms
;
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// a
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// n
fields
[
argp
++
]
=
TypeInt
::
INT
;
// len
fields
[
argp
++
]
=
TypeLong
::
LONG
;
// inv
fields
[
argp
++
]
=
Type
::
HALF
;
fields
[
argp
++
]
=
TypePtr
::
NOTNULL
;
// result
assert
(
argp
==
TypeFunc
::
Parms
+
argcnt
,
"correct decoding"
);
const
TypeTuple
*
domain
=
TypeTuple
::
make
(
TypeFunc
::
Parms
+
argcnt
,
fields
);
// result type needed
fields
=
TypeTuple
::
fields
(
1
);
fields
[
TypeFunc
::
Parms
+
0
]
=
TypePtr
::
NOTNULL
;
const
TypeTuple
*
range
=
TypeTuple
::
make
(
TypeFunc
::
Parms
,
fields
);
return
TypeFunc
::
make
(
domain
,
range
);
}
//------------- Interpreter state access for on stack replacement
...
...
src/share/vm/opto/runtime.hpp
浏览文件 @
b4020a8b
...
...
@@ -308,6 +308,8 @@ private:
static
const
TypeFunc
*
squareToLen_Type
();
static
const
TypeFunc
*
mulAdd_Type
();
static
const
TypeFunc
*
montgomeryMultiply_Type
();
static
const
TypeFunc
*
montgomerySquare_Type
();
static
const
TypeFunc
*
updateBytesCRC32_Type
();
...
...
src/share/vm/runtime/sharedRuntime.hpp
浏览文件 @
b4020a8b
...
...
@@ -145,6 +145,12 @@ class SharedRuntime: AllStatic {
static
double
dsqrt
(
double
f
);
#endif
// Montgomery multiplication
static
void
montgomery_multiply
(
jint
*
a_ints
,
jint
*
b_ints
,
jint
*
n_ints
,
jint
len
,
jlong
inv
,
jint
*
m_ints
);
static
void
montgomery_square
(
jint
*
a_ints
,
jint
*
n_ints
,
jint
len
,
jlong
inv
,
jint
*
m_ints
);
#ifdef __SOFTFP__
// C++ compiler generates soft float instructions as well as passing
// float and double in registers.
...
...
src/share/vm/runtime/stubRoutines.cpp
浏览文件 @
b4020a8b
...
...
@@ -138,6 +138,8 @@ address StubRoutines::_crc_table_adr = NULL;
address
StubRoutines
::
_multiplyToLen
=
NULL
;
address
StubRoutines
::
_squareToLen
=
NULL
;
address
StubRoutines
::
_mulAdd
=
NULL
;
address
StubRoutines
::
_montgomeryMultiply
=
NULL
;
address
StubRoutines
::
_montgomerySquare
=
NULL
;
double
(
*
StubRoutines
::
_intrinsic_log
)(
double
)
=
NULL
;
double
(
*
StubRoutines
::
_intrinsic_log10
)(
double
)
=
NULL
;
...
...
src/share/vm/runtime/stubRoutines.hpp
浏览文件 @
b4020a8b
...
...
@@ -211,6 +211,8 @@ class StubRoutines: AllStatic {
static
address
_multiplyToLen
;
static
address
_squareToLen
;
static
address
_mulAdd
;
static
address
_montgomeryMultiply
;
static
address
_montgomerySquare
;
// These are versions of the java.lang.Math methods which perform
// the same operations as the intrinsic version. They are used for
...
...
@@ -371,6 +373,8 @@ class StubRoutines: AllStatic {
static
address
multiplyToLen
()
{
return
_multiplyToLen
;
}
static
address
squareToLen
()
{
return
_squareToLen
;
}
static
address
mulAdd
()
{
return
_mulAdd
;
}
static
address
montgomeryMultiply
()
{
return
_montgomeryMultiply
;
}
static
address
montgomerySquare
()
{
return
_montgomerySquare
;
}
static
address
select_fill_function
(
BasicType
t
,
bool
aligned
,
const
char
*
&
name
);
...
...
test/compiler/intrinsics/montgomerymultiply/MontgomeryMultiplyTest.java
0 → 100644
浏览文件 @
b4020a8b
//
// Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2015, Red Hat Inc. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
import
java.lang.invoke.MethodHandle
;
import
java.lang.invoke.MethodHandles
;
import
java.lang.invoke.MethodType
;
import
java.lang.reflect.Constructor
;
import
java.lang.reflect.Field
;
import
java.lang.reflect.Method
;
import
java.math.BigInteger
;
import
java.util.Arrays
;
import
java.util.Random
;
/**
* @test
* @bug 8130150
* @library /testlibrary
* @requires (os.simpleArch == "x64") & (os.family != "windows")
* @summary Verify that the Montgomery multiply intrinsic works and correctly checks its arguments.
*/
public
class
MontgomeryMultiplyTest
{
static
final
MethodHandles
.
Lookup
lookup
=
MethodHandles
.
lookup
();
static
final
MethodHandle
montgomeryMultiplyHandle
,
montgomerySquareHandle
;
static
final
MethodHandle
bigIntegerConstructorHandle
;
static
final
Field
bigIntegerMagField
;
static
{
// Use reflection to gain access to the methods we want to test.
try
{
Method
m
=
BigInteger
.
class
.
getDeclaredMethod
(
"montgomeryMultiply"
,
/*a*/
int
[].
class
,
/*b*/
int
[].
class
,
/*n*/
int
[].
class
,
/*len*/
int
.
class
,
/*inv*/
long
.
class
,
/*product*/
int
[].
class
);
m
.
setAccessible
(
true
);
montgomeryMultiplyHandle
=
lookup
.
unreflect
(
m
);
m
=
BigInteger
.
class
.
getDeclaredMethod
(
"montgomerySquare"
,
/*a*/
int
[].
class
,
/*n*/
int
[].
class
,
/*len*/
int
.
class
,
/*inv*/
long
.
class
,
/*product*/
int
[].
class
);
m
.
setAccessible
(
true
);
montgomerySquareHandle
=
lookup
.
unreflect
(
m
);
Constructor
c
=
BigInteger
.
class
.
getDeclaredConstructor
(
int
.
class
,
int
[].
class
);
c
.
setAccessible
(
true
);
bigIntegerConstructorHandle
=
lookup
.
unreflectConstructor
(
c
);
bigIntegerMagField
=
BigInteger
.
class
.
getDeclaredField
(
"mag"
);
bigIntegerMagField
.
setAccessible
(
true
);
}
catch
(
Throwable
ex
)
{
throw
new
RuntimeException
(
ex
);
}
}
// Invoke either BigInteger.montgomeryMultiply or BigInteger.montgomerySquare.
int
[]
montgomeryMultiply
(
int
[]
a
,
int
[]
b
,
int
[]
n
,
int
len
,
long
inv
,
int
[]
product
)
throws
Throwable
{
int
[]
result
=
(
a
==
b
)
?
(
int
[])
montgomerySquareHandle
.
invokeExact
(
a
,
n
,
len
,
inv
,
product
)
:
(
int
[])
montgomeryMultiplyHandle
.
invokeExact
(
a
,
b
,
n
,
len
,
inv
,
product
);
return
Arrays
.
copyOf
(
result
,
len
);
}
// Invoke the private constructor BigInteger(int[]).
BigInteger
newBigInteger
(
int
[]
val
)
throws
Throwable
{
return
(
BigInteger
)
bigIntegerConstructorHandle
.
invokeExact
(
1
,
val
);
}
// Get the private field BigInteger.mag
int
[]
mag
(
BigInteger
n
)
{
try
{
return
(
int
[])
bigIntegerMagField
.
get
(
n
);
}
catch
(
Exception
ex
)
{
throw
new
RuntimeException
(
ex
);
}
}
// Montgomery multiplication
// Calculate a * b * r^-1 mod n)
//
// R is a power of the word size
// N' = R^-1 mod N
//
// T := ab
// m := (T mod R)N' mod R [so 0 <= m < R]
// t := (T + mN)/R
// if t >= N then return t - N else return t
//
BigInteger
montgomeryMultiply
(
BigInteger
a
,
BigInteger
b
,
BigInteger
N
,
int
len
,
BigInteger
n_prime
)
throws
Throwable
{
BigInteger
T
=
a
.
multiply
(
b
);
BigInteger
R
=
BigInteger
.
ONE
.
shiftLeft
(
len
*
32
);
BigInteger
mask
=
R
.
subtract
(
BigInteger
.
ONE
);
BigInteger
m
=
(
T
.
and
(
mask
)).
multiply
(
n_prime
);
m
=
m
.
and
(
mask
);
// i.e. m.mod(R)
T
=
T
.
add
(
m
.
multiply
(
N
));
T
=
T
.
shiftRight
(
len
*
32
);
// i.e. T.divide(R)
if
(
T
.
compareTo
(
N
)
>
0
)
{
T
=
T
.
subtract
(
N
);
}
return
T
;
}
// Call the Montgomery multiply intrinsic.
BigInteger
montgomeryMultiply
(
int
[]
a_words
,
int
[]
b_words
,
int
[]
n_words
,
int
len
,
BigInteger
inv
)
throws
Throwable
{
BigInteger
t
=
montgomeryMultiply
(
newBigInteger
(
a_words
),
newBigInteger
(
b_words
),
newBigInteger
(
n_words
),
len
,
inv
);
return
t
;
}
// Check that the Montgomery multiply intrinsic returns the same
// result as the longhand calculation.
void
check
(
int
[]
a_words
,
int
[]
b_words
,
int
[]
n_words
,
int
len
,
BigInteger
inv
)
throws
Throwable
{
BigInteger
n
=
newBigInteger
(
n_words
);
BigInteger
slow
=
montgomeryMultiply
(
a_words
,
b_words
,
n_words
,
len
,
inv
);
BigInteger
fast
=
newBigInteger
(
montgomeryMultiply
(
a_words
,
b_words
,
n_words
,
len
,
inv
.
longValue
(),
null
));
// The intrinsic may not return the same value as the longhand
// calculation but they must have the same residue mod N.
if
(!
slow
.
mod
(
n
).
equals
(
fast
.
mod
(
n
)))
{
throw
new
RuntimeException
();
}
}
Random
rnd
=
new
Random
(
0
);
// Return a random value of length <= bits in an array of even length
int
[]
random_val
(
int
bits
)
{
int
len
=
(
bits
+
63
)/
64
;
// i.e. length in longs
int
[]
val
=
new
int
[
len
*
2
];
for
(
int
i
=
0
;
i
<
val
.
length
;
i
++)
val
[
i
]
=
rnd
.
nextInt
();
int
leadingZeros
=
64
-
(
bits
&
64
);
if
(
leadingZeros
>=
32
)
{
val
[
0
]
=
0
;
val
[
1
]
&=
~(-
1
l
<<
(
leadingZeros
&
31
));
}
else
{
val
[
0
]
&=
~(-
1
l
<<
leadingZeros
);
}
return
val
;
}
void
testOneLength
(
int
lenInBits
,
int
lenInInts
)
throws
Throwable
{
BigInteger
mod
=
new
BigInteger
(
lenInBits
,
2
,
rnd
);
BigInteger
r
=
BigInteger
.
ONE
.
shiftLeft
(
lenInInts
*
32
);
BigInteger
n_prime
=
mod
.
modInverse
(
r
).
negate
();
// Make n.length even, padding with a zero if necessary
int
[]
n
=
mag
(
mod
);
if
(
n
.
length
<
lenInInts
)
{
int
[]
x
=
new
int
[
lenInInts
];
System
.
arraycopy
(
n
,
0
,
x
,
lenInInts
-
n
.
length
,
n
.
length
);
n
=
x
;
}
for
(
int
i
=
0
;
i
<
10000
;
i
++)
{
// multiply
check
(
random_val
(
lenInBits
),
random_val
(
lenInBits
),
n
,
lenInInts
,
n_prime
);
// square
int
[]
tmp
=
random_val
(
lenInBits
);
check
(
tmp
,
tmp
,
n
,
lenInInts
,
n_prime
);
}
}
// Test the Montgomery multiply intrinsic with a bunch of random
// values of varying lengths. Do this for long enough that the
// caller of the intrinsic is C2-compiled.
void
testResultValues
()
throws
Throwable
{
// Test a couple of interesting edge cases.
testOneLength
(
1024
,
32
);
testOneLength
(
1025
,
34
);
for
(
int
j
=
10
;
j
>
0
;
j
--)
{
// Construct a random prime whose length in words is even
int
lenInBits
=
rnd
.
nextInt
(
2048
)
+
64
;
int
lenInInts
=
(
lenInBits
+
63
)/
64
*
2
;
testOneLength
(
lenInBits
,
lenInInts
);
}
}
// Range checks
void
testOneMontgomeryMultiplyCheck
(
int
[]
a
,
int
[]
b
,
int
[]
n
,
int
len
,
long
inv
,
int
[]
product
,
Class
klass
)
{
try
{
montgomeryMultiply
(
a
,
b
,
n
,
len
,
inv
,
product
);
}
catch
(
Throwable
ex
)
{
if
(
klass
.
isAssignableFrom
(
ex
.
getClass
()))
return
;
throw
new
RuntimeException
(
klass
+
" expected, "
+
ex
+
" was thrown"
);
}
throw
new
RuntimeException
(
klass
+
" expected, was not thrown"
);
}
void
testOneMontgomeryMultiplyCheck
(
int
[]
a
,
int
[]
b
,
BigInteger
n
,
int
len
,
BigInteger
inv
,
Class
klass
)
{
testOneMontgomeryMultiplyCheck
(
a
,
b
,
mag
(
n
),
len
,
inv
.
longValue
(),
null
,
klass
);
}
void
testOneMontgomeryMultiplyCheck
(
int
[]
a
,
int
[]
b
,
BigInteger
n
,
int
len
,
BigInteger
inv
,
int
[]
product
,
Class
klass
)
{
testOneMontgomeryMultiplyCheck
(
a
,
b
,
mag
(
n
),
len
,
inv
.
longValue
(),
product
,
klass
);
}
void
testMontgomeryMultiplyChecks
()
{
int
[]
blah
=
random_val
(
40
);
int
[]
small
=
random_val
(
39
);
BigInteger
mod
=
new
BigInteger
(
40
*
32
,
2
,
rnd
);
BigInteger
r
=
BigInteger
.
ONE
.
shiftLeft
(
40
*
32
);
BigInteger
n_prime
=
mod
.
modInverse
(
r
).
negate
();
// Length out of range: square
testOneMontgomeryMultiplyCheck
(
blah
,
blah
,
mod
,
41
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
,
mod
,
0
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
,
mod
,
-
1
,
n_prime
,
IllegalArgumentException
.
class
);
// As above, but for multiply
testOneMontgomeryMultiplyCheck
(
blah
,
blah
.
clone
(),
mod
,
41
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
.
clone
(),
mod
,
0
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
.
clone
(),
mod
,
0
,
n_prime
,
IllegalArgumentException
.
class
);
// Length odd
testOneMontgomeryMultiplyCheck
(
small
,
small
,
mod
,
39
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
small
,
mod
,
0
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
small
,
mod
,
-
1
,
n_prime
,
IllegalArgumentException
.
class
);
// As above, but for multiply
testOneMontgomeryMultiplyCheck
(
small
,
small
.
clone
(),
mod
,
39
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
small
.
clone
(),
mod
,
0
,
n_prime
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
small
.
clone
(),
mod
,
-
1
,
n_prime
,
IllegalArgumentException
.
class
);
// array too small
testOneMontgomeryMultiplyCheck
(
blah
,
blah
,
mod
,
40
,
n_prime
,
small
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
.
clone
(),
mod
,
40
,
n_prime
,
small
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
blah
,
mod
,
40
,
n_prime
,
blah
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
small
,
mod
,
40
,
n_prime
,
blah
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
blah
,
blah
,
mod
,
40
,
n_prime
,
small
,
IllegalArgumentException
.
class
);
testOneMontgomeryMultiplyCheck
(
small
,
small
,
mod
,
40
,
n_prime
,
blah
,
IllegalArgumentException
.
class
);
}
public
static
void
main
(
String
args
[])
{
try
{
new
MontgomeryMultiplyTest
().
testMontgomeryMultiplyChecks
();
new
MontgomeryMultiplyTest
().
testResultValues
();
}
catch
(
Throwable
ex
)
{
throw
new
RuntimeException
(
ex
);
}
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录