提交 571459e9 编写于 作者: K kvn

6684714: Optimize EA Connection Graph build performance

Summary: switch on EA by default, optimize Connection Graph construction
Reviewed-by: rasbold, never
上级 cb80591f
......@@ -188,10 +188,6 @@ void OopMap::set_derived_oop(VMReg reg, VMReg derived_from_local_register ) {
}
}
void OopMap::set_stack_obj(VMReg reg) {
set_xxx(reg, OopMapValue::stack_obj, VMRegImpl::Bad());
}
// OopMapSet
OopMapSet::OopMapSet() {
......@@ -399,8 +395,7 @@ void OopMapSet::all_do(const frame *fr, const RegisterMap *reg_map,
if ( loc != NULL ) {
if ( omv.type() == OopMapValue::oop_value ) {
#ifdef ASSERT
if (COMPILER2_PRESENT(!DoEscapeAnalysis &&)
(((uintptr_t)loc & (sizeof(*loc)-1)) != 0) ||
if ((((uintptr_t)loc & (sizeof(*loc)-1)) != 0) ||
!Universe::heap()->is_in_or_null(*loc)) {
tty->print_cr("# Found non oop pointer. Dumping state at failure");
// try to dump out some helpful debugging information
......@@ -431,17 +426,6 @@ void OopMapSet::all_do(const frame *fr, const RegisterMap *reg_map,
}
}
}
#ifdef COMPILER2
if (DoEscapeAnalysis) {
for (OopMapStream oms(map, OopMapValue::stack_obj); !oms.is_done(); oms.next()) {
omv = oms.current();
assert(omv.is_stack_loc(), "should refer to stack location");
oop loc = (oop) fr->oopmapreg_to_location(omv.reg(),reg_map);
oop_fn->do_oop(&loc);
}
}
#endif // COMPILER2
}
......@@ -540,9 +524,6 @@ void print_register_type(OopMapValue::oop_types x, VMReg optional,
st->print("Derived_oop_" );
optional->print_on(st);
break;
case OopMapValue::stack_obj:
st->print("Stack");
break;
default:
ShouldNotReachHere();
}
......
......@@ -46,7 +46,7 @@ private:
public:
// Constants
enum { type_bits = 6,
enum { type_bits = 5,
register_bits = BitsPerShort - type_bits };
enum { type_shift = 0,
......@@ -63,8 +63,7 @@ public:
value_value = 2,
narrowoop_value = 4,
callee_saved_value = 8,
derived_oop_value= 16,
stack_obj = 32 };
derived_oop_value= 16 };
// Constructors
OopMapValue () { set_value(0); set_content_reg(VMRegImpl::Bad()); }
......@@ -93,14 +92,12 @@ public:
bool is_narrowoop() { return mask_bits(value(), type_mask_in_place) == narrowoop_value; }
bool is_callee_saved() { return mask_bits(value(), type_mask_in_place) == callee_saved_value; }
bool is_derived_oop() { return mask_bits(value(), type_mask_in_place) == derived_oop_value; }
bool is_stack_obj() { return mask_bits(value(), type_mask_in_place) == stack_obj; }
void set_oop() { set_value((value() & register_mask_in_place) | oop_value); }
void set_value() { set_value((value() & register_mask_in_place) | value_value); }
void set_narrowoop() { set_value((value() & register_mask_in_place) | narrowoop_value); }
void set_callee_saved() { set_value((value() & register_mask_in_place) | callee_saved_value); }
void set_derived_oop() { set_value((value() & register_mask_in_place) | derived_oop_value); }
void set_stack_obj() { set_value((value() & register_mask_in_place) | stack_obj); }
VMReg reg() const { return VMRegImpl::as_VMReg(mask_bits(value(), register_mask_in_place) >> register_shift); }
oop_types type() const { return (oop_types)mask_bits(value(), type_mask_in_place); }
......@@ -180,7 +177,6 @@ class OopMap: public ResourceObj {
void set_dead ( VMReg local);
void set_callee_saved( VMReg local, VMReg caller_machine_register );
void set_derived_oop ( VMReg local, VMReg derived_from_local_register );
void set_stack_obj( VMReg local);
void set_xxx(VMReg reg, OopMapValue::oop_types x, VMReg optional);
int heap_size() const;
......
......@@ -83,7 +83,7 @@ static bool is_init_with_ea(ciMethod* callee_method,
ciMethod* caller_method, Compile* C) {
// True when EA is ON and a java constructor is called or
// a super constructor is called from an inlined java constructor.
return DoEscapeAnalysis && EliminateAllocations &&
return C->do_escape_analysis() && EliminateAllocations &&
( callee_method->is_initializer() ||
(caller_method->is_initializer() &&
caller_method != C->method() &&
......
......@@ -373,7 +373,7 @@
product(intx, AutoBoxCacheMax, 128, \
"Sets max value cached by the java.lang.Integer autobox cache") \
\
product(bool, DoEscapeAnalysis, false, \
product(bool, DoEscapeAnalysis, true, \
"Perform escape analysis") \
\
notproduct(bool, PrintEscapeAnalysis, false, \
......
......@@ -583,18 +583,22 @@ Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr
NOT_PRODUCT( verify_graph_edges(); )
// Perform escape analysis
if (_do_escape_analysis)
_congraph = new ConnectionGraph(this);
if (_congraph != NULL) {
NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
_congraph->compute_escape();
if (failing()) return;
if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
_congraph = new(comp_arena()) ConnectionGraph(this);
bool has_non_escaping_obj = _congraph->compute_escape();
#ifndef PRODUCT
if (PrintEscapeAnalysis) {
_congraph->dump();
}
#endif
if (!has_non_escaping_obj) {
_congraph = NULL;
}
if (failing()) return;
}
// Now optimize
Optimize();
......
......@@ -25,16 +25,6 @@
#include "incls/_precompiled.incl"
#include "incls/_escape.cpp.incl"
uint PointsToNode::edge_target(uint e) const {
assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
return (_edges->at(e) >> EdgeShift);
}
PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
return (EdgeType) (_edges->at(e) & EdgeMask);
}
void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
uint v = (targIdx << EdgeShift) + ((uint) et);
if (_edges == NULL) {
......@@ -87,12 +77,13 @@ void PointsToNode::dump() const {
}
#endif
ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
_collecting = true;
this->_compile = C;
const PointsToNode &dummy = PointsToNode();
int sz = C->unique();
_nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
ConnectionGraph::ConnectionGraph(Compile * C) :
_nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
_processed(C->comp_arena()),
_collecting(true),
_compile(C),
_node_map(C->comp_arena()) {
_phantom_object = C->top()->_idx;
PointsToNode *phn = ptnode_adr(_phantom_object);
phn->_node = C->top();
......@@ -182,32 +173,36 @@ PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform
// If we are still collecting or there were no non-escaping allocations
// we don't know the answer yet
if (_collecting || !_has_allocations)
if (_collecting)
return PointsToNode::UnknownEscape;
// if the node was created after the escape computation, return
// UnknownEscape
if (idx >= (uint)_nodes->length())
if (idx >= nodes_size())
return PointsToNode::UnknownEscape;
es = _nodes->at_grow(idx).escape_state();
es = ptnode_adr(idx)->escape_state();
// if we have already computed a value, return it
if (es != PointsToNode::UnknownEscape)
return es;
// PointsTo() calls n->uncast() which can return a new ideal node.
if (n->uncast()->_idx >= nodes_size())
return PointsToNode::UnknownEscape;
// compute max escape state of anything this node could point to
VectorSet ptset(Thread::current()->resource_area());
PointsTo(ptset, n, phase);
for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
uint pt = i.elem;
PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
if (pes > es)
es = pes;
}
// cache the computed escape state
assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
_nodes->adr_at(idx)->set_escape_state(es);
ptnode_adr(idx)->set_escape_state(es);
return es;
}
......@@ -220,49 +215,51 @@ void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase
#endif
n = n->uncast();
PointsToNode npt = _nodes->at_grow(n->_idx);
PointsToNode* npt = ptnode_adr(n->_idx);
// If we have a JavaObject, return just that object
if (npt.node_type() == PointsToNode::JavaObject) {
if (npt->node_type() == PointsToNode::JavaObject) {
ptset.set(n->_idx);
return;
}
#ifdef ASSERT
if (npt._node == NULL) {
if (npt->_node == NULL) {
if (orig_n != n)
orig_n->dump();
n->dump();
assert(npt._node != NULL, "unregistered node");
assert(npt->_node != NULL, "unregistered node");
}
#endif
worklist.push(n->_idx);
while(worklist.length() > 0) {
int ni = worklist.pop();
PointsToNode pn = _nodes->at_grow(ni);
if (!visited.test_set(ni)) {
// ensure that all inputs of a Phi have been processed
assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
int edges_processed = 0;
for (uint e = 0; e < pn.edge_count(); e++) {
uint etgt = pn.edge_target(e);
PointsToNode::EdgeType et = pn.edge_type(e);
if (et == PointsToNode::PointsToEdge) {
ptset.set(etgt);
edges_processed++;
} else if (et == PointsToNode::DeferredEdge) {
worklist.push(etgt);
edges_processed++;
} else {
assert(false,"neither PointsToEdge or DeferredEdge");
}
}
if (edges_processed == 0) {
// no deferred or pointsto edges found. Assume the value was set
// outside this method. Add the phantom object to the pointsto set.
ptset.set(_phantom_object);
if (visited.test_set(ni))
continue;
PointsToNode* pn = ptnode_adr(ni);
// ensure that all inputs of a Phi have been processed
assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
int edges_processed = 0;
uint e_cnt = pn->edge_count();
for (uint e = 0; e < e_cnt; e++) {
uint etgt = pn->edge_target(e);
PointsToNode::EdgeType et = pn->edge_type(e);
if (et == PointsToNode::PointsToEdge) {
ptset.set(etgt);
edges_processed++;
} else if (et == PointsToNode::DeferredEdge) {
worklist.push(etgt);
edges_processed++;
} else {
assert(false,"neither PointsToEdge or DeferredEdge");
}
}
if (edges_processed == 0) {
// no deferred or pointsto edges found. Assume the value was set
// outside this method. Add the phantom object to the pointsto set.
ptset.set(_phantom_object);
}
}
}
......@@ -272,11 +269,11 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
deferred_edges->clear();
visited->Clear();
uint i = 0;
visited->set(ni);
PointsToNode *ptn = ptnode_adr(ni);
// Mark current edges as visited and move deferred edges to separate array.
while (i < ptn->edge_count()) {
for (uint i = 0; i < ptn->edge_count(); ) {
uint t = ptn->edge_target(i);
#ifdef ASSERT
assert(!visited->test_set(t), "expecting no duplications");
......@@ -293,24 +290,23 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
for (int next = 0; next < deferred_edges->length(); ++next) {
uint t = deferred_edges->at(next);
PointsToNode *ptt = ptnode_adr(t);
for (uint j = 0; j < ptt->edge_count(); j++) {
uint n1 = ptt->edge_target(j);
if (visited->test_set(n1))
uint e_cnt = ptt->edge_count();
for (uint e = 0; e < e_cnt; e++) {
uint etgt = ptt->edge_target(e);
if (visited->test_set(etgt))
continue;
switch(ptt->edge_type(j)) {
case PointsToNode::PointsToEdge:
add_pointsto_edge(ni, n1);
if(n1 == _phantom_object) {
// Special case - field set outside (globally escaping).
ptn->set_escape_state(PointsToNode::GlobalEscape);
}
break;
case PointsToNode::DeferredEdge:
deferred_edges->append(n1);
break;
case PointsToNode::FieldEdge:
assert(false, "invalid connection graph");
break;
PointsToNode::EdgeType et = ptt->edge_type(e);
if (et == PointsToNode::PointsToEdge) {
add_pointsto_edge(ni, etgt);
if(etgt == _phantom_object) {
// Special case - field set outside (globally escaping).
ptn->set_escape_state(PointsToNode::GlobalEscape);
}
} else if (et == PointsToNode::DeferredEdge) {
deferred_edges->append(etgt);
} else {
assert(false,"invalid connection graph");
}
}
}
......@@ -322,15 +318,15 @@ void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edg
// a pointsto edge is added if it is a JavaObject
void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
PointsToNode an = _nodes->at_grow(adr_i);
PointsToNode to = _nodes->at_grow(to_i);
bool deferred = (to.node_type() == PointsToNode::LocalVar);
for (uint fe = 0; fe < an.edge_count(); fe++) {
assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an.edge_target(fe);
PointsToNode pf = _nodes->at_grow(fi);
int po = pf.offset();
PointsToNode* an = ptnode_adr(adr_i);
PointsToNode* to = ptnode_adr(to_i);
bool deferred = (to->node_type() == PointsToNode::LocalVar);
for (uint fe = 0; fe < an->edge_count(); fe++) {
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an->edge_target(fe);
PointsToNode* pf = ptnode_adr(fi);
int po = pf->offset();
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
if (deferred)
add_deferred_edge(fi, to_i);
......@@ -343,13 +339,13 @@ void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
// Add a deferred edge from node given by "from_i" to any field of adr_i
// whose offset matches "offset".
void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
PointsToNode an = _nodes->at_grow(adr_i);
for (uint fe = 0; fe < an.edge_count(); fe++) {
assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an.edge_target(fe);
PointsToNode pf = _nodes->at_grow(fi);
int po = pf.offset();
if (pf.edge_count() == 0) {
PointsToNode* an = ptnode_adr(adr_i);
for (uint fe = 0; fe < an->edge_count(); fe++) {
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an->edge_target(fe);
PointsToNode* pf = ptnode_adr(fi);
int po = pf->offset();
if (pf->edge_count() == 0) {
// we have not seen any stores to this field, assume it was set outside this method
add_pointsto_edge(fi, _phantom_object);
}
......@@ -835,6 +831,11 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// Phase 1: Process possible allocations from alloc_worklist.
// Create instance types for the CheckCastPP for allocations where possible.
//
// (Note: don't forget to change the order of the second AddP node on
// the alloc_worklist if the order of the worklist processing is changed,
// see the comment in find_second_addp().)
//
while (alloc_worklist.length() != 0) {
Node *n = alloc_worklist.pop();
uint ni = n->_idx;
......@@ -842,7 +843,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
if (n->is_Call()) {
CallNode *alloc = n->as_Call();
// copy escape information to call node
PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
PointsToNode* ptn = ptnode_adr(alloc->_idx);
PointsToNode::EscapeState es = escape_state(alloc, igvn);
// We have an allocation or call which returns a Java object,
// see if it is unescaped.
......@@ -899,7 +900,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// First, put on the worklist all Field edges from Connection Graph
// which is more accurate then putting immediate users from Ideal Graph.
for (uint e = 0; e < ptn->edge_count(); e++) {
Node *use = _nodes->adr_at(ptn->edge_target(e))->_node;
Node *use = ptnode_adr(ptn->edge_target(e))->_node;
assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
"only AddP nodes are Field edges in CG");
if (use->outcnt() > 0) { // Don't process dead nodes
......@@ -1062,7 +1063,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
}
if (mem != n->in(MemNode::Memory)) {
set_map(n->_idx, mem);
_nodes->adr_at(n->_idx)->_node = n;
ptnode_adr(n->_idx)->_node = n;
}
if (n->is_Load()) {
continue; // don't push users
......@@ -1223,10 +1224,10 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// Update the memory inputs of MemNodes with the value we computed
// in Phase 2.
for (int i = 0; i < _nodes->length(); i++) {
for (uint i = 0; i < nodes_size(); i++) {
Node *nmem = get_map(i);
if (nmem != NULL) {
Node *n = _nodes->adr_at(i)->_node;
Node *n = ptnode_adr(i)->_node;
if (n != NULL && n->is_Mem()) {
igvn->hash_delete(n);
n->set_req(MemNode::Memory, nmem);
......@@ -1237,28 +1238,48 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
}
}
void ConnectionGraph::compute_escape() {
bool ConnectionGraph::has_candidates(Compile *C) {
// EA brings benefits only when the code has allocations and/or locks which
// are represented by ideal Macro nodes.
int cnt = C->macro_count();
for( int i=0; i < cnt; i++ ) {
Node *n = C->macro_node(i);
if ( n->is_Allocate() )
return true;
if( n->is_Lock() ) {
Node* obj = n->as_Lock()->obj_node()->uncast();
if( !(obj->is_Parm() || obj->is_Con()) )
return true;
}
}
return false;
}
bool ConnectionGraph::compute_escape() {
Compile* C = _compile;
// 1. Populate Connection Graph (CG) with Ideal nodes.
Unique_Node_List worklist_init;
worklist_init.map(_compile->unique(), NULL); // preallocate space
worklist_init.map(C->unique(), NULL); // preallocate space
// Initialize worklist
if (_compile->root() != NULL) {
worklist_init.push(_compile->root());
if (C->root() != NULL) {
worklist_init.push(C->root());
}
GrowableArray<int> cg_worklist;
PhaseGVN* igvn = _compile->initial_gvn();
PhaseGVN* igvn = C->initial_gvn();
bool has_allocations = false;
// Push all useful nodes onto CG list and set their type.
for( uint next = 0; next < worklist_init.size(); ++next ) {
Node* n = worklist_init.at(next);
record_for_escape_analysis(n, igvn);
if (n->is_Call() &&
_nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
// Only allocations and java static calls results are checked
// for an escape status. See process_call_result() below.
if (n->is_Allocate() || n->is_CallStaticJava() &&
ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
has_allocations = true;
}
if(n->is_AddP())
......@@ -1269,24 +1290,23 @@ void ConnectionGraph::compute_escape() {
}
}
if (has_allocations) {
_has_allocations = true;
} else {
_has_allocations = false;
if (!has_allocations) {
_collecting = false;
return; // Nothing to do.
return false; // Nothing to do.
}
// 2. First pass to create simple CG edges (doesn't require to walk CG).
for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
uint delayed_size = _delayed_worklist.size();
for( uint next = 0; next < delayed_size; ++next ) {
Node* n = _delayed_worklist.at(next);
build_connection_graph(n, igvn);
}
// 3. Pass to create fields edges (Allocate -F-> AddP).
for( int next = 0; next < cg_worklist.length(); ++next ) {
uint cg_length = cg_worklist.length();
for( uint next = 0; next < cg_length; ++next ) {
int ni = cg_worklist.at(next);
build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
build_connection_graph(ptnode_adr(ni)->_node, igvn);
}
cg_worklist.clear();
......@@ -1294,8 +1314,8 @@ void ConnectionGraph::compute_escape() {
// 4. Build Connection Graph which need
// to walk the connection graph.
for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
PointsToNode* ptn = _nodes->adr_at(ni);
for (uint ni = 0; ni < nodes_size(); ni++) {
PointsToNode* ptn = ptnode_adr(ni);
Node *n = ptn->_node;
if (n != NULL) { // Call, AddP, LoadP, StoreP
build_connection_graph(n, igvn);
......@@ -1305,20 +1325,19 @@ void ConnectionGraph::compute_escape() {
}
VectorSet ptset(Thread::current()->resource_area());
GrowableArray<Node*> alloc_worklist;
GrowableArray<int> worklist;
GrowableArray<uint> deferred_edges;
VectorSet visited(Thread::current()->resource_area());
// remove deferred edges from the graph and collect
// information we will need for type splitting
for( int next = 0; next < cg_worklist.length(); ++next ) {
// 5. Remove deferred edges from the graph and collect
// information needed for type splitting.
cg_length = cg_worklist.length();
for( uint next = 0; next < cg_length; ++next ) {
int ni = cg_worklist.at(next);
PointsToNode* ptn = _nodes->adr_at(ni);
PointsToNode* ptn = ptnode_adr(ni);
PointsToNode::NodeType nt = ptn->node_type();
Node *n = ptn->_node;
if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
remove_deferred(ni, &deferred_edges, &visited);
Node *n = ptn->_node;
if (n->is_AddP()) {
// If this AddP computes an address which may point to more that one
// object or more then one field (array's element), nothing the address
......@@ -1329,116 +1348,123 @@ void ConnectionGraph::compute_escape() {
if (ptset.Size() > 1 ||
(ptset.Size() != 0 && ptn->offset() == Type::OffsetBot)) {
for( VectorSetI j(&ptset); j.test(); ++j ) {
uint pt = j.elem;
ptnode_adr(pt)->_scalar_replaceable = false;
ptnode_adr(j.elem)->_scalar_replaceable = false;
}
}
}
} else if (nt == PointsToNode::JavaObject && n->is_Call()) {
// Push call on alloc_worlist (alocations are calls)
// for processing by split_unique_types().
alloc_worklist.append(n);
}
}
// 6. Propagate escape states.
GrowableArray<int> worklist;
bool has_non_escaping_obj = false;
// push all GlobalEscape nodes on the worklist
for( int next = 0; next < cg_worklist.length(); ++next ) {
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
worklist.append(nk);
if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
worklist.push(nk);
}
// mark all node reachable from GlobalEscape nodes
// mark all nodes reachable from GlobalEscape nodes
while(worklist.length() > 0) {
PointsToNode n = _nodes->at(worklist.pop());
for (uint ei = 0; ei < n.edge_count(); ei++) {
uint npi = n.edge_target(ei);
PointsToNode* ptn = ptnode_adr(worklist.pop());
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::GlobalEscape) {
np->set_escape_state(PointsToNode::GlobalEscape);
worklist.append_if_missing(npi);
worklist.push(npi);
}
}
}
// push all ArgEscape nodes on the worklist
for( int next = 0; next < cg_worklist.length(); ++next ) {
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
worklist.push(nk);
}
// mark all node reachable from ArgEscape nodes
// mark all nodes reachable from ArgEscape nodes
while(worklist.length() > 0) {
PointsToNode n = _nodes->at(worklist.pop());
for (uint ei = 0; ei < n.edge_count(); ei++) {
uint npi = n.edge_target(ei);
PointsToNode* ptn = ptnode_adr(worklist.pop());
if (ptn->node_type() == PointsToNode::JavaObject)
has_non_escaping_obj = true; // Non GlobalEscape
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::ArgEscape) {
np->set_escape_state(PointsToNode::ArgEscape);
worklist.append_if_missing(npi);
worklist.push(npi);
}
}
}
GrowableArray<Node*> alloc_worklist;
// push all NoEscape nodes on the worklist
for( int next = 0; next < cg_worklist.length(); ++next ) {
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
worklist.push(nk);
}
// mark all node reachable from NoEscape nodes
// mark all nodes reachable from NoEscape nodes
while(worklist.length() > 0) {
PointsToNode n = _nodes->at(worklist.pop());
for (uint ei = 0; ei < n.edge_count(); ei++) {
uint npi = n.edge_target(ei);
PointsToNode* ptn = ptnode_adr(worklist.pop());
if (ptn->node_type() == PointsToNode::JavaObject)
has_non_escaping_obj = true; // Non GlobalEscape
Node* n = ptn->_node;
if (n->is_Allocate() && ptn->_scalar_replaceable ) {
// Push scalar replaceable alocations on alloc_worklist
// for processing in split_unique_types().
alloc_worklist.append(n);
}
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::NoEscape) {
np->set_escape_state(PointsToNode::NoEscape);
worklist.append_if_missing(npi);
worklist.push(npi);
}
}
}
_collecting = false;
assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
has_allocations = false; // Are there scalar replaceable allocations?
for( int next = 0; next < alloc_worklist.length(); ++next ) {
Node* n = alloc_worklist.at(next);
uint ni = n->_idx;
PointsToNode* ptn = _nodes->adr_at(ni);
PointsToNode::EscapeState es = ptn->escape_state();
if (ptn->escape_state() == PointsToNode::NoEscape &&
ptn->_scalar_replaceable) {
has_allocations = true;
break;
}
}
if (!has_allocations) {
return; // Nothing to do.
}
bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
if ( has_scalar_replaceable_candidates &&
C->AliasLevel() >= 3 && EliminateAllocations ) {
if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
// Now use the escape information to create unique types for
// unescaped objects
// scalar replaceable objects.
split_unique_types(alloc_worklist);
if (_compile->failing()) return;
if (C->failing()) return false;
// Clean up after split unique types.
ResourceMark rm;
PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
C->print_method("After Escape Analysis", 2);
#ifdef ASSERT
} else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
} else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
tty->print("=== No allocations eliminated for ");
C()->method()->print_short_name();
C->method()->print_short_name();
if(!EliminateAllocations) {
tty->print(" since EliminateAllocations is off ===");
} else if(_compile->AliasLevel() < 3) {
} else if(!has_scalar_replaceable_candidates) {
tty->print(" since there are no scalar replaceable candidates ===");
} else if(C->AliasLevel() < 3) {
tty->print(" since AliasLevel < 3 ===");
}
tty->cr();
#endif
}
return has_non_escaping_obj;
}
void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
......@@ -1538,7 +1564,7 @@ void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *pha
}
}
if (copy_dependencies)
call_analyzer->copy_dependencies(C()->dependencies());
call_analyzer->copy_dependencies(_compile->dependencies());
break;
}
}
......@@ -1561,7 +1587,6 @@ void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *pha
for( VectorSetI j(&ptset); j.test(); ++j ) {
uint pt = j.elem;
set_escape_state(pt, PointsToNode::GlobalEscape);
PointsToNode *ptadr = ptnode_adr(pt);
}
}
}
......@@ -1569,9 +1594,10 @@ void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *pha
}
}
void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
PointsToNode *ptadr = ptnode_adr(resproj->_idx);
CallNode *call = resproj->in(0)->as_Call();
uint call_idx = call->_idx;
uint resproj_idx = resproj->_idx;
CallNode *call = resproj->in(0)->as_Call();
switch (call->Opcode()) {
case Op_Allocate:
{
......@@ -1587,7 +1613,6 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
ciKlass* cik = kt->klass();
ciInstanceKlass* ciik = cik->as_instance_klass();
PointsToNode *ptadr = ptnode_adr(call->_idx);
PointsToNode::EscapeState es;
uint edge_to;
if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
......@@ -1595,25 +1620,24 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
edge_to = _phantom_object; // Could not be worse
} else {
es = PointsToNode::NoEscape;
edge_to = call->_idx;
edge_to = call_idx;
}
set_escape_state(call->_idx, es);
add_pointsto_edge(resproj->_idx, edge_to);
_processed.set(resproj->_idx);
set_escape_state(call_idx, es);
add_pointsto_edge(resproj_idx, edge_to);
_processed.set(resproj_idx);
break;
}
case Op_AllocateArray:
{
PointsToNode *ptadr = ptnode_adr(call->_idx);
int length = call->in(AllocateNode::ALength)->find_int_con(-1);
if (length < 0 || length > EliminateAllocationArraySizeLimit) {
// Not scalar replaceable if the length is not constant or too big.
ptadr->_scalar_replaceable = false;
ptnode_adr(call_idx)->_scalar_replaceable = false;
}
set_escape_state(call->_idx, PointsToNode::NoEscape);
add_pointsto_edge(resproj->_idx, call->_idx);
_processed.set(resproj->_idx);
set_escape_state(call_idx, PointsToNode::NoEscape);
add_pointsto_edge(resproj_idx, call_idx);
_processed.set(resproj_idx);
break;
}
......@@ -1631,19 +1655,17 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
// Note: we use isa_ptr() instead of isa_oopptr() here because the
// _multianewarray functions return a TypeRawPtr.
if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
_processed.set(resproj->_idx);
_processed.set(resproj_idx);
break; // doesn't return a pointer type
}
ciMethod *meth = call->as_CallJava()->method();
const TypeTuple * d = call->tf()->domain();
if (meth == NULL) {
// not a Java method, assume global escape
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object);
} else {
BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
VectorSet ptset(Thread::current()->resource_area());
bool copy_dependencies = false;
if (call_analyzer->is_return_allocated()) {
......@@ -1651,13 +1673,12 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
// update dependency information.
// Mark it as NoEscape so that objects referenced by
// it's fields will be marked as NoEscape at least.
set_escape_state(call->_idx, PointsToNode::NoEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, call->_idx);
set_escape_state(call_idx, PointsToNode::NoEscape);
add_pointsto_edge(resproj_idx, call_idx);
copy_dependencies = true;
} else if (call_analyzer->is_return_local() && resproj != NULL) {
} else if (call_analyzer->is_return_local()) {
// determine whether any arguments are returned
set_escape_state(call->_idx, PointsToNode::NoEscape);
set_escape_state(call_idx, PointsToNode::NoEscape);
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
......@@ -1665,36 +1686,35 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
Node *arg = call->in(i)->uncast();
if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
if (arg_esp->node_type() == PointsToNode::UnknownType)
done = false;
else if (arg_esp->node_type() == PointsToNode::JavaObject)
add_pointsto_edge(resproj->_idx, arg->_idx);
add_pointsto_edge(resproj_idx, arg->_idx);
else
add_deferred_edge(resproj->_idx, arg->_idx);
add_deferred_edge(resproj_idx, arg->_idx);
arg_esp->_hidden_alias = true;
}
}
}
copy_dependencies = true;
} else {
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object);
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
if (at->isa_oopptr() != NULL) {
Node *arg = call->in(i)->uncast();
PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
arg_esp->_hidden_alias = true;
}
}
}
if (copy_dependencies)
call_analyzer->copy_dependencies(C()->dependencies());
call_analyzer->copy_dependencies(_compile->dependencies());
}
if (done)
_processed.set(resproj->_idx);
_processed.set(resproj_idx);
break;
}
......@@ -1709,13 +1729,11 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
// Note: we use isa_ptr() instead of isa_oopptr() here because the
// _multianewarray functions return a TypeRawPtr.
if (ret_type->isa_ptr() != NULL) {
PointsToNode *ptadr = ptnode_adr(call->_idx);
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object);
}
}
_processed.set(resproj->_idx);
_processed.set(resproj_idx);
}
}
}
......@@ -1743,7 +1761,7 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
// Check if a call returns an object.
const TypeTuple *r = n->as_Call()->tf()->range();
if (r->cnt() > TypeFunc::Parms &&
if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
// Note: use isa_ptr() instead of isa_oopptr() here because
// the _multianewarray functions return a TypeRawPtr.
......@@ -1776,7 +1794,7 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
{
add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
int ti = n->in(1)->_idx;
PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
if (nt == PointsToNode::UnknownType) {
_delayed_worklist.push(n); // Process it later.
break;
......@@ -1866,7 +1884,7 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
if (in->is_top() || in == n)
continue; // ignore top or inputs which go back this node
int ti = in->_idx;
PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
if (nt == PointsToNode::UnknownType) {
break;
} else if (nt == PointsToNode::JavaObject) {
......@@ -1904,7 +1922,7 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
// Treat Return value as LocalVar with GlobalEscape escape state.
add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
int ti = n->in(TypeFunc::Parms)->_idx;
PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
if (nt == PointsToNode::UnknownType) {
_delayed_worklist.push(n); // Process it later.
break;
......@@ -1968,17 +1986,17 @@ void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase)
}
void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
uint n_idx = n->_idx;
// Don't set processed bit for AddP, LoadP, StoreP since
// they may need more then one pass to process.
if (_processed.test(n->_idx))
if (_processed.test(n_idx))
return; // No need to redefine node's state.
PointsToNode *ptadr = ptnode_adr(n->_idx);
if (n->is_Call()) {
CallNode *call = n->as_Call();
process_call_arguments(call, phase);
_processed.set(n->_idx);
_processed.set(n_idx);
return;
}
......@@ -1991,7 +2009,7 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
PointsTo(ptset, base, phase);
for( VectorSetI i(&ptset); i.test(); ++i ) {
uint pt = i.elem;
add_field_edge(pt, n->_idx, address_offset(n, phase));
add_field_edge(pt, n_idx, address_offset(n, phase));
}
break;
}
......@@ -2006,12 +2024,12 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
case Op_DecodeN:
{
int ti = n->in(1)->_idx;
if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n->_idx, ti);
if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n_idx, ti);
} else {
add_deferred_edge(n->_idx, ti);
add_deferred_edge(n_idx, ti);
}
_processed.set(n->_idx);
_processed.set(n_idx);
break;
}
case Op_ConP:
......@@ -2060,7 +2078,7 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
int offset = address_offset(adr, phase);
for( VectorSetI i(&ptset); i.test(); ++i ) {
uint pt = i.elem;
add_deferred_edge_to_fields(n->_idx, pt, offset);
add_deferred_edge_to_fields(n_idx, pt, offset);
}
break;
}
......@@ -2083,13 +2101,13 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
if (in->is_top() || in == n)
continue; // ignore top or inputs which go back this node
int ti = in->_idx;
if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n->_idx, ti);
if (ptnode_adr(in->_idx)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n_idx, ti);
} else {
add_deferred_edge(n->_idx, ti);
add_deferred_edge(n_idx, ti);
}
}
_processed.set(n->_idx);
_processed.set(n_idx);
break;
}
case Op_Proj:
......@@ -2097,7 +2115,7 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
// we are only interested in the result projection from a call
if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
process_call_result(n->as_Proj(), phase);
assert(_processed.test(n->_idx), "all call results should be processed");
assert(_processed.test(n_idx), "all call results should be processed");
} else {
assert(false, "Op_Proj");
}
......@@ -2112,12 +2130,12 @@ void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
}
#endif
int ti = n->in(TypeFunc::Parms)->_idx;
if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n->_idx, ti);
if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n_idx, ti);
} else {
add_deferred_edge(n->_idx, ti);
add_deferred_edge(n_idx, ti);
}
_processed.set(n->_idx);
_processed.set(n_idx);
break;
}
case Op_StoreP:
......@@ -2162,9 +2180,9 @@ void ConnectionGraph::dump() {
PhaseGVN *igvn = _compile->initial_gvn();
bool first = true;
uint size = (uint)_nodes->length();
uint size = nodes_size();
for (uint ni = 0; ni < size; ni++) {
PointsToNode *ptn = _nodes->adr_at(ni);
PointsToNode *ptn = ptnode_adr(ni);
PointsToNode::NodeType ptn_type = ptn->node_type();
if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
......@@ -2174,7 +2192,7 @@ void ConnectionGraph::dump() {
if (first) {
tty->cr();
tty->print("======== Connection graph for ");
C()->method()->print_short_name();
_compile->method()->print_short_name();
tty->cr();
first = false;
}
......@@ -2182,12 +2200,12 @@ void ConnectionGraph::dump() {
ptn->dump();
// Print all locals which reference this allocation
for (uint li = ni; li < size; li++) {
PointsToNode *ptn_loc = _nodes->adr_at(li);
PointsToNode *ptn_loc = ptnode_adr(li);
PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
tty->print("%6d LocalVar [[%d]]", li, ni);
_nodes->adr_at(li)->_node->dump();
ptnode_adr(li)->_node->dump();
}
}
if (Verbose) {
......@@ -2195,7 +2213,7 @@ void ConnectionGraph::dump() {
for (uint i = 0; i < ptn->edge_count(); i++) {
uint ei = ptn->edge_target(i);
tty->print("%6d Field [[%d]]", ei, ni);
_nodes->adr_at(ei)->_node->dump();
ptnode_adr(ei)->_node->dump();
}
}
tty->cr();
......
......@@ -178,14 +178,24 @@ public:
// count of outgoing edges
uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
// node index of target of outgoing edge "e"
uint edge_target(uint e) const;
uint edge_target(uint e) const {
assert(_edges != NULL, "valid edge index");
return (_edges->at(e) >> EdgeShift);
}
// type of outgoing edge "e"
EdgeType edge_type(uint e) const;
EdgeType edge_type(uint e) const {
assert(_edges != NULL, "valid edge index");
return (EdgeType) (_edges->at(e) & EdgeMask);
}
// add a edge of the specified type pointing to the specified target
void add_edge(uint targIdx, EdgeType et);
// remove an edge of the specified type pointing to the specified target
void remove_edge(uint targIdx, EdgeType et);
#ifndef PRODUCT
void dump() const;
#endif
......@@ -194,7 +204,7 @@ public:
class ConnectionGraph: public ResourceObj {
private:
GrowableArray<PointsToNode>* _nodes; // Connection graph nodes indexed
GrowableArray<PointsToNode> _nodes; // Connection graph nodes indexed
// by ideal node index.
Unique_Node_List _delayed_worklist; // Nodes to be processed before
......@@ -207,9 +217,6 @@ private:
// is still being collected. If false,
// no new nodes will be processed.
bool _has_allocations; // Indicates whether method has any
// non-escaping allocations.
uint _phantom_object; // Index of globally escaping object
// that pointer values loaded from
// a field which has not been set
......@@ -217,14 +224,13 @@ private:
Compile * _compile; // Compile object for current compilation
// address of an element in _nodes. Used when the element is to be modified
PointsToNode *ptnode_adr(uint idx) {
if ((uint)_nodes->length() <= idx) {
// expand _nodes array
PointsToNode dummy = _nodes->at_grow(idx);
}
return _nodes->adr_at(idx);
// Address of an element in _nodes. Used when the element is to be modified
PointsToNode *ptnode_adr(uint idx) const {
// There should be no new ideal nodes during ConnectionGraph build,
// growableArray::adr_at() will throw assert otherwise.
return _nodes.adr_at(idx);
}
uint nodes_size() const { return _nodes.length(); }
// Add node to ConnectionGraph.
void add_node(Node *n, PointsToNode::NodeType nt, PointsToNode::EscapeState es, bool done);
......@@ -307,30 +313,30 @@ private:
// Set the escape state of a node
void set_escape_state(uint ni, PointsToNode::EscapeState es);
// Get Compile object for current compilation.
Compile *C() const { return _compile; }
public:
ConnectionGraph(Compile *C);
// Check for non-escaping candidates
static bool has_candidates(Compile *C);
// Compute the escape information
void compute_escape();
bool compute_escape();
// escape state of a node
PointsToNode::EscapeState escape_state(Node *n, PhaseTransform *phase);
// other information we have collected
bool is_scalar_replaceable(Node *n) {
if (_collecting)
if (_collecting || (n->_idx >= nodes_size()))
return false;
PointsToNode ptn = _nodes->at_grow(n->_idx);
return ptn.escape_state() == PointsToNode::NoEscape && ptn._scalar_replaceable;
PointsToNode* ptn = ptnode_adr(n->_idx);
return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
}
bool hidden_alias(Node *n) {
if (_collecting)
if (_collecting || (n->_idx >= nodes_size()))
return true;
PointsToNode ptn = _nodes->at_grow(n->_idx);
return (ptn.escape_state() != PointsToNode::NoEscape) || ptn._hidden_alias;
PointsToNode* ptn = ptnode_adr(n->_idx);
return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
}
#ifndef PRODUCT
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册