提交 467f923e 编写于 作者: K kamg

7200776: Implement default methods in interfaces

Summary: Add generic type analysis and default method selection algorithms
Reviewed-by: coleenp, acorn
上级 30062b49
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "interpreter/bytecodes.hpp"
#include "memory/oopFactory.hpp"
#include "oops/constantPool.hpp"
#ifdef TARGET_ARCH_x86
# include "bytes_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "bytes_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "bytes_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "bytes_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "bytes_ppc.hpp"
#endif
u2 BytecodeConstantPool::find_or_add(BytecodeCPEntry const& bcpe) {
u2 index;
u2* probe = _indices.get(bcpe);
if (probe == NULL) {
index = _entries.length();
_entries.append(bcpe);
_indices.put(bcpe, index);
} else {
index = *probe;
}
return index + _orig->length();
}
ConstantPool* BytecodeConstantPool::create_constant_pool(TRAPS) const {
if (_entries.length() == 0) {
return _orig;
}
ConstantPool* cp = ConstantPool::allocate(
_orig->pool_holder()->class_loader_data(),
_orig->length() + _entries.length(), CHECK_NULL);
cp->set_pool_holder(_orig->pool_holder());
_orig->copy_cp_to(1, _orig->length() - 1, cp, 1, CHECK_NULL);
for (int i = 0; i < _entries.length(); ++i) {
BytecodeCPEntry entry = _entries.at(i);
int idx = i + _orig->length();
switch (entry._tag) {
case BytecodeCPEntry::UTF8:
cp->symbol_at_put(idx, entry._u.utf8);
entry._u.utf8->increment_refcount();
break;
case BytecodeCPEntry::KLASS:
cp->unresolved_klass_at_put(
idx, cp->symbol_at(entry._u.klass));
break;
case BytecodeCPEntry::STRING:
cp->unresolved_string_at_put(
idx, cp->symbol_at(entry._u.string));
break;
case BytecodeCPEntry::NAME_AND_TYPE:
cp->name_and_type_at_put(idx,
entry._u.name_and_type.name_index,
entry._u.name_and_type.type_index);
break;
case BytecodeCPEntry::METHODREF:
cp->method_at_put(idx,
entry._u.methodref.class_index,
entry._u.methodref.name_and_type_index);
break;
default:
ShouldNotReachHere();
}
}
return cp;
}
void BytecodeAssembler::append(u1 imm_u1) {
_code->append(imm_u1);
}
void BytecodeAssembler::append(u2 imm_u2) {
_code->append(0);
_code->append(0);
Bytes::put_Java_u2(_code->adr_at(_code->length() - 2), imm_u2);
}
void BytecodeAssembler::append(u4 imm_u4) {
_code->append(0);
_code->append(0);
_code->append(0);
_code->append(0);
Bytes::put_Java_u4(_code->adr_at(_code->length() - 4), imm_u4);
}
void BytecodeAssembler::xload(u4 index, u1 onebyteop, u1 twobyteop) {
if (index < 4) {
_code->append(onebyteop + index);
} else {
_code->append(twobyteop);
_code->append((u2)index);
}
}
void BytecodeAssembler::dup() {
_code->append(Bytecodes::_dup);
}
void BytecodeAssembler::_new(Symbol* sym) {
u2 cpool_index = _cp->klass(sym);
_code->append(Bytecodes::_new);
append(cpool_index);
}
void BytecodeAssembler::load_string(Symbol* sym) {
u2 cpool_index = _cp->string(sym);
if (cpool_index < 0x100) {
ldc(cpool_index);
} else {
ldc_w(cpool_index);
}
}
void BytecodeAssembler::ldc(u1 index) {
_code->append(Bytecodes::_ldc);
append(index);
}
void BytecodeAssembler::ldc_w(u2 index) {
_code->append(Bytecodes::_ldc_w);
append(index);
}
void BytecodeAssembler::athrow() {
_code->append(Bytecodes::_athrow);
}
void BytecodeAssembler::iload(u4 index) {
xload(index, Bytecodes::_iload_0, Bytecodes::_iload);
}
void BytecodeAssembler::lload(u4 index) {
xload(index, Bytecodes::_lload_0, Bytecodes::_lload);
}
void BytecodeAssembler::fload(u4 index) {
xload(index, Bytecodes::_fload_0, Bytecodes::_fload);
}
void BytecodeAssembler::dload(u4 index) {
xload(index, Bytecodes::_dload_0, Bytecodes::_dload);
}
void BytecodeAssembler::aload(u4 index) {
xload(index, Bytecodes::_aload_0, Bytecodes::_aload);
}
void BytecodeAssembler::load(BasicType bt, u4 index) {
switch (bt) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT: iload(index); break;
case T_FLOAT: fload(index); break;
case T_DOUBLE: dload(index); break;
case T_LONG: lload(index); break;
case T_OBJECT:
case T_ARRAY: aload(index); break;
default:
ShouldNotReachHere();
}
}
void BytecodeAssembler::checkcast(Symbol* sym) {
u2 cpool_index = _cp->klass(sym);
_code->append(Bytecodes::_checkcast);
append(cpool_index);
}
void BytecodeAssembler::invokespecial(Method* method) {
invokespecial(method->klass_name(), method->name(), method->signature());
}
void BytecodeAssembler::invokespecial(Symbol* klss, Symbol* name, Symbol* sig) {
u2 methodref_index = _cp->methodref(klss, name, sig);
_code->append(Bytecodes::_invokespecial);
append(methodref_index);
}
void BytecodeAssembler::invokevirtual(Method* method) {
invokevirtual(method->klass_name(), method->name(), method->signature());
}
void BytecodeAssembler::invokevirtual(Symbol* klss, Symbol* name, Symbol* sig) {
u2 methodref_index = _cp->methodref(klss, name, sig);
_code->append(Bytecodes::_invokevirtual);
append(methodref_index);
}
void BytecodeAssembler::ireturn() {
_code->append(Bytecodes::_ireturn);
}
void BytecodeAssembler::lreturn() {
_code->append(Bytecodes::_lreturn);
}
void BytecodeAssembler::freturn() {
_code->append(Bytecodes::_freturn);
}
void BytecodeAssembler::dreturn() {
_code->append(Bytecodes::_dreturn);
}
void BytecodeAssembler::areturn() {
_code->append(Bytecodes::_areturn);
}
void BytecodeAssembler::_return() {
_code->append(Bytecodes::_return);
}
void BytecodeAssembler::_return(BasicType bt) {
switch (bt) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT: ireturn(); break;
case T_FLOAT: freturn(); break;
case T_DOUBLE: dreturn(); break;
case T_LONG: lreturn(); break;
case T_OBJECT:
case T_ARRAY: areturn(); break;
case T_VOID: _return(); break;
default:
ShouldNotReachHere();
}
}
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_BYTECODEASSEMBLER_HPP
#define SHARE_VM_CLASSFILE_BYTECODEASSEMBLER_HPP
#include "memory/allocation.hpp"
#include "oops/method.hpp"
#include "oops/symbol.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/resourceHash.hpp"
/**
* Bytecode Assembler
*
* These classes are used to synthesize code for creating new methods from
* within the VM. This is only a partial implementation of an assembler;
* only the bytecodes that are needed by clients are implemented at this time.
* This is used during default method analysis to create overpass methods
* and add them to a call during parsing. Other uses (such as creating
* bridges) may come later. Any missing bytecodes can be implemented on an
* as-need basis.
*/
class BytecodeBuffer : public GrowableArray<u1> {
public:
BytecodeBuffer() : GrowableArray<u1>(20) {}
};
// Entries in a yet-to-be-created constant pool. Limited types for now.
class BytecodeCPEntry VALUE_OBJ_CLASS_SPEC {
public:
enum tag {
ERROR_TAG,
UTF8,
KLASS,
STRING,
NAME_AND_TYPE,
METHODREF
};
u1 _tag;
union {
Symbol* utf8;
u2 klass;
u2 string;
struct {
u2 name_index;
u2 type_index;
} name_and_type;
struct {
u2 class_index;
u2 name_and_type_index;
} methodref;
uintptr_t hash;
} _u;
BytecodeCPEntry() : _tag(ERROR_TAG) { _u.hash = 0; }
BytecodeCPEntry(u1 tag) : _tag(tag) { _u.hash = 0; }
static BytecodeCPEntry utf8(Symbol* symbol) {
BytecodeCPEntry bcpe(UTF8);
bcpe._u.utf8 = symbol;
return bcpe;
}
static BytecodeCPEntry klass(u2 index) {
BytecodeCPEntry bcpe(KLASS);
bcpe._u.klass = index;
return bcpe;
}
static BytecodeCPEntry string(u2 index) {
BytecodeCPEntry bcpe(STRING);
bcpe._u.string = index;
return bcpe;
}
static BytecodeCPEntry name_and_type(u2 name, u2 type) {
BytecodeCPEntry bcpe(NAME_AND_TYPE);
bcpe._u.name_and_type.name_index = name;
bcpe._u.name_and_type.type_index = type;
return bcpe;
}
static BytecodeCPEntry methodref(u2 class_index, u2 nat) {
BytecodeCPEntry bcpe(METHODREF);
bcpe._u.methodref.class_index = class_index;
bcpe._u.methodref.name_and_type_index = nat;
return bcpe;
}
static bool equals(BytecodeCPEntry const& e0, BytecodeCPEntry const& e1) {
return e0._tag == e1._tag && e0._u.hash == e1._u.hash;
}
static unsigned hash(BytecodeCPEntry const& e0) {
return (unsigned)(e0._tag ^ e0._u.hash);
}
};
class BytecodeConstantPool : ResourceObj {
private:
typedef ResourceHashtable<BytecodeCPEntry, u2,
&BytecodeCPEntry::hash, &BytecodeCPEntry::equals> IndexHash;
ConstantPool* _orig;
GrowableArray<BytecodeCPEntry> _entries;
IndexHash _indices;
u2 find_or_add(BytecodeCPEntry const& bcpe);
public:
BytecodeConstantPool(ConstantPool* orig) : _orig(orig) {}
BytecodeCPEntry const& at(u2 index) const { return _entries.at(index); }
InstanceKlass* pool_holder() const {
return InstanceKlass::cast(_orig->pool_holder());
}
u2 utf8(Symbol* sym) {
return find_or_add(BytecodeCPEntry::utf8(sym));
}
u2 klass(Symbol* class_name) {
return find_or_add(BytecodeCPEntry::klass(utf8(class_name)));
}
u2 string(Symbol* str) {
return find_or_add(BytecodeCPEntry::string(utf8(str)));
}
u2 name_and_type(Symbol* name, Symbol* sig) {
return find_or_add(BytecodeCPEntry::name_and_type(utf8(name), utf8(sig)));
}
u2 methodref(Symbol* class_name, Symbol* name, Symbol* sig) {
return find_or_add(BytecodeCPEntry::methodref(
klass(class_name), name_and_type(name, sig)));
}
ConstantPool* create_constant_pool(TRAPS) const;
};
// Partial bytecode assembler - only what we need for creating
// overpass methods for default methods is implemented
class BytecodeAssembler : StackObj {
private:
BytecodeBuffer* _code;
BytecodeConstantPool* _cp;
void append(u1 imm_u1);
void append(u2 imm_u2);
void append(u4 imm_u4);
void xload(u4 index, u1 quick, u1 twobyte);
public:
BytecodeAssembler(BytecodeBuffer* buffer, BytecodeConstantPool* cp)
: _code(buffer), _cp(cp) {}
void aload(u4 index);
void areturn();
void athrow();
void checkcast(Symbol* sym);
void dload(u4 index);
void dreturn();
void dup();
void fload(u4 index);
void freturn();
void iload(u4 index);
void invokespecial(Method* method);
void invokespecial(Symbol* cls, Symbol* name, Symbol* sig);
void invokevirtual(Method* method);
void invokevirtual(Symbol* cls, Symbol* name, Symbol* sig);
void ireturn();
void ldc(u1 index);
void ldc_w(u2 index);
void lload(u4 index);
void lreturn();
void _new(Symbol* sym);
void _return();
void load_string(Symbol* sym);
void load(BasicType bt, u4 index);
void _return(BasicType bt);
};
#endif // SHARE_VM_CLASSFILE_BYTECODEASSEMBLER_HPP
......@@ -27,6 +27,8 @@
#include "classfile/classLoader.hpp"
#include "classfile/classLoaderData.hpp"
#include "classfile/classLoaderData.inline.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
......@@ -84,6 +86,9 @@
// - to check NameAndType_info signatures more aggressively
#define JAVA_7_VERSION 51
// Extension method support.
#define JAVA_8_VERSION 52
void ClassFileParser::parse_constant_pool_entries(ClassLoaderData* loader_data, constantPoolHandle cp, int length, TRAPS) {
// Use a local copy of ClassFileStream. It helps the C++ compiler to optimize
......@@ -785,6 +790,7 @@ Array<Klass*>* ClassFileParser::parse_interfaces(constantPoolHandle cp,
ClassLoaderData* loader_data,
Handle protection_domain,
Symbol* class_name,
bool* has_default_methods,
TRAPS) {
ClassFileStream* cfs = stream();
assert(length > 0, "only called for length>0");
......@@ -821,6 +827,9 @@ Array<Klass*>* ClassFileParser::parse_interfaces(constantPoolHandle cp,
if (!Klass::cast(interf())->is_interface()) {
THROW_MSG_(vmSymbols::java_lang_IncompatibleClassChangeError(), "Implementing class", NULL);
}
if (InstanceKlass::cast(interf())->has_default_methods()) {
*has_default_methods = true;
}
interfaces->at_put(index, interf());
}
......@@ -1928,7 +1937,8 @@ methodHandle ClassFileParser::parse_method(ClassLoaderData* loader_data,
if (method_attribute_name == vmSymbols::tag_code()) {
// Parse Code attribute
if (_need_verify) {
guarantee_property(!access_flags.is_native() && !access_flags.is_abstract(),
guarantee_property(
!access_flags.is_native() && !access_flags.is_abstract(),
"Code attribute in native or abstract methods in class file %s",
CHECK_(nullHandle));
}
......@@ -2125,7 +2135,9 @@ methodHandle ClassFileParser::parse_method(ClassLoaderData* loader_data,
runtime_visible_annotations_length = method_attribute_length;
runtime_visible_annotations = cfs->get_u1_buffer();
assert(runtime_visible_annotations != NULL, "null visible annotations");
parse_annotations(runtime_visible_annotations, runtime_visible_annotations_length, cp, &parsed_annotations, CHECK_(nullHandle));
parse_annotations(runtime_visible_annotations,
runtime_visible_annotations_length, cp, &parsed_annotations,
CHECK_(nullHandle));
cfs->skip_u1(runtime_visible_annotations_length, CHECK_(nullHandle));
} else if (PreserveAllAnnotations && method_attribute_name == vmSymbols::tag_runtime_invisible_annotations()) {
runtime_invisible_annotations_length = method_attribute_length;
......@@ -2169,12 +2181,10 @@ methodHandle ClassFileParser::parse_method(ClassLoaderData* loader_data,
}
// All sizing information for a Method* is finally available, now create it
Method* m = Method::allocate(loader_data, code_length, access_flags,
linenumber_table_length,
total_lvt_length,
exception_table_length,
checked_exceptions_length,
CHECK_(nullHandle));
Method* m = Method::allocate(
loader_data, code_length, access_flags, linenumber_table_length,
total_lvt_length, exception_table_length, checked_exceptions_length,
ConstMethod::NORMAL, CHECK_(nullHandle));
ClassLoadingService::add_class_method_size(m->size()*HeapWordSize);
......@@ -2204,7 +2214,6 @@ methodHandle ClassFileParser::parse_method(ClassLoaderData* loader_data,
// Fill in code attribute information
m->set_max_stack(max_stack);
m->set_max_locals(max_locals);
m->constMethod()->set_stackmap_data(stackmap_data);
// Copy byte codes
......@@ -2356,6 +2365,7 @@ Array<Method*>* ClassFileParser::parse_methods(ClassLoaderData* loader_data,
Array<AnnotationArray*>** methods_annotations,
Array<AnnotationArray*>** methods_parameter_annotations,
Array<AnnotationArray*>** methods_default_annotations,
bool* has_default_methods,
TRAPS) {
ClassFileStream* cfs = stream();
AnnotationArray* method_annotations = NULL;
......@@ -2382,6 +2392,10 @@ Array<Method*>* ClassFileParser::parse_methods(ClassLoaderData* loader_data,
if (method->is_final()) {
*has_final_method = true;
}
if (is_interface && !method->is_abstract() && !method->is_static()) {
// default method
*has_default_methods = true;
}
methods->at_put(index, method());
if (*methods_annotations == NULL) {
*methods_annotations =
......@@ -2907,6 +2921,34 @@ AnnotationArray* ClassFileParser::assemble_annotations(ClassLoaderData* loader_d
}
#ifndef PRODUCT
static void parseAndPrintGenericSignatures(
instanceKlassHandle this_klass, TRAPS) {
assert(ParseAllGenericSignatures == true, "Shouldn't call otherwise");
ResourceMark rm;
if (this_klass->generic_signature() != NULL) {
using namespace generic;
ClassDescriptor* spec = ClassDescriptor::parse_generic_signature(this_klass(), CHECK);
tty->print_cr("Parsing %s", this_klass->generic_signature()->as_C_string());
spec->print_on(tty);
for (int i = 0; i < this_klass->methods()->length(); ++i) {
Method* m = this_klass->methods()->at(i);
MethodDescriptor* method_spec = MethodDescriptor::parse_generic_signature(m, spec);
Symbol* sig = m->generic_signature();
if (sig == NULL) {
sig = m->signature();
}
tty->print_cr("Parsing %s", sig->as_C_string());
method_spec->print_on(tty);
}
}
}
#endif // ndef PRODUCT
instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
Handle class_loader,
Handle protection_domain,
......@@ -2923,6 +2965,8 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
unsigned char *cached_class_file_bytes = NULL;
jint cached_class_file_length;
ClassLoaderData* loader_data = ClassLoaderData::class_loader_data(class_loader());
bool has_default_methods = false;
ResourceMark rm(THREAD);
ClassFileStream* cfs = stream();
// Timing
......@@ -3138,7 +3182,9 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
if (itfs_len == 0) {
local_interfaces = Universe::the_empty_klass_array();
} else {
local_interfaces = parse_interfaces(cp, itfs_len, loader_data, protection_domain, _class_name, CHECK_(nullHandle));
local_interfaces = parse_interfaces(
cp, itfs_len, loader_data, protection_domain, _class_name,
&has_default_methods, CHECK_(nullHandle));
}
u2 java_fields_count = 0;
......@@ -3164,6 +3210,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
&methods_annotations,
&methods_parameter_annotations,
&methods_default_annotations,
&has_default_methods,
CHECK_(nullHandle));
// Additional attributes
......@@ -3193,6 +3240,11 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
super_klass = instanceKlassHandle(THREAD, kh());
}
if (super_klass.not_null()) {
if (super_klass->has_default_methods()) {
has_default_methods = true;
}
if (super_klass->is_interface()) {
ResourceMark rm(THREAD);
Exceptions::fthrow(
......@@ -3229,14 +3281,11 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
int itable_size = 0;
int num_miranda_methods = 0;
klassVtable::compute_vtable_size_and_num_mirandas(vtable_size,
num_miranda_methods,
super_klass(),
methods,
access_flags,
class_loader,
class_name,
local_interfaces,
GrowableArray<Method*> all_mirandas(20);
klassVtable::compute_vtable_size_and_num_mirandas(
&vtable_size, &num_miranda_methods, &all_mirandas, super_klass(), methods,
access_flags, class_loader, class_name, local_interfaces,
CHECK_(nullHandle));
// Size of Java itable (in words)
......@@ -3656,6 +3705,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
this_klass->set_minor_version(minor_version);
this_klass->set_major_version(major_version);
this_klass->set_has_default_methods(has_default_methods);
// Set up Method*::intrinsic_id as soon as we know the names of methods.
// (We used to do this lazily, but now we query it in Rewriter,
......@@ -3673,19 +3723,9 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
cached_class_file_length);
}
// Miranda methods
if ((num_miranda_methods > 0) ||
// if this class introduced new miranda methods or
(super_klass.not_null() && (super_klass->has_miranda_methods()))
// super class exists and this class inherited miranda methods
) {
this_klass->set_has_miranda_methods(); // then set a flag
}
// Fill in field values obtained by parse_classfile_attributes
if (parsed_annotations.has_any_annotations()) {
if (parsed_annotations.has_any_annotations())
parsed_annotations.apply_to(this_klass);
}
// Create annotations
if (_annotations != NULL && this_klass->annotations() == NULL) {
Annotations* anno = Annotations::allocate(loader_data, CHECK_NULL);
......@@ -3693,7 +3733,15 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
}
apply_parsed_class_attributes(this_klass);
// Compute transitive closure of interfaces this class implements
// Miranda methods
if ((num_miranda_methods > 0) ||
// if this class introduced new miranda methods or
(super_klass.not_null() && (super_klass->has_miranda_methods()))
// super class exists and this class inherited miranda methods
) {
this_klass->set_has_miranda_methods(); // then set a flag
}
this_klass->set_transitive_interfaces(transitive_interfaces);
// Fill in information needed to compute superclasses.
......@@ -3702,6 +3750,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
// Initialize itable offset tables
klassItable::setup_itable_offset_table(this_klass);
// Compute transitive closure of interfaces this class implements
// Do final class setup
fill_oop_maps(this_klass, nonstatic_oop_map_count, nonstatic_oop_offsets, nonstatic_oop_counts);
......@@ -3726,6 +3775,21 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
check_illegal_static_method(this_klass, CHECK_(nullHandle));
}
#ifdef ASSERT
if (ParseAllGenericSignatures) {
parseAndPrintGenericSignatures(this_klass, CHECK_(nullHandle));
}
#endif
// Generate any default methods - default methods are interface methods
// that have a default implementation. This is new with Lambda project.
if (has_default_methods && !access_flags.is_interface() &&
local_interfaces->length() > 0) {
DefaultMethods::generate_default_methods(
this_klass(), &all_mirandas, CHECK_(nullHandle));
}
// Allocate mirror and initialize static fields
java_lang_Class::create_mirror(this_klass, CHECK_(nullHandle));
......@@ -3744,6 +3808,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
false /* not shared class */);
if (TraceClassLoading) {
ResourceMark rm;
// print in a single call to reduce interleaving of output
if (cfs->source() != NULL) {
tty->print("[Loaded %s from %s]\n", this_klass->external_name(),
......@@ -3758,13 +3823,13 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
tty->print("[Loaded %s]\n", this_klass->external_name());
}
} else {
ResourceMark rm;
tty->print("[Loaded %s from %s]\n", this_klass->external_name(),
InstanceKlass::cast(class_loader->klass())->external_name());
}
}
if (TraceClassResolution) {
ResourceMark rm;
// print out the superclass.
const char * from = Klass::cast(this_klass())->external_name();
if (this_klass->java_super() != NULL) {
......@@ -3785,6 +3850,7 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
#ifndef PRODUCT
if( PrintCompactFieldsSavings ) {
ResourceMark rm;
if( nonstatic_field_size < orig_nonstatic_field_size ) {
tty->print("[Saved %d of %d bytes in %s]\n",
(orig_nonstatic_field_size - nonstatic_field_size)*heapOopSize,
......@@ -3811,7 +3877,6 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
return this_klass;
}
unsigned int
ClassFileParser::compute_oop_map_count(instanceKlassHandle super,
unsigned int nonstatic_oop_map_count,
......@@ -4263,13 +4328,16 @@ void ClassFileParser::verify_legal_method_modifiers(
const bool is_strict = (flags & JVM_ACC_STRICT) != 0;
const bool is_synchronized = (flags & JVM_ACC_SYNCHRONIZED) != 0;
const bool major_gte_15 = _major_version >= JAVA_1_5_VERSION;
const bool major_gte_8 = _major_version >= JAVA_8_VERSION;
const bool is_initializer = (name == vmSymbols::object_initializer_name());
bool is_illegal = false;
if (is_interface) {
if (!is_abstract || !is_public || is_static || is_final ||
is_native || (major_gte_15 && (is_synchronized || is_strict))) {
if (!is_public || is_static || is_final || is_native ||
((is_synchronized || is_strict) && major_gte_15 &&
(!major_gte_8 || is_abstract)) ||
(!major_gte_8 && !is_abstract)) {
is_illegal = true;
}
} else { // not interface
......
......@@ -151,6 +151,7 @@ class ClassFileParser VALUE_OBJ_CLASS_SPEC {
ClassLoaderData* loader_data,
Handle protection_domain,
Symbol* class_name,
bool* has_default_methods,
TRAPS);
void record_defined_class_dependencies(instanceKlassHandle defined_klass, TRAPS);
......@@ -188,6 +189,7 @@ class ClassFileParser VALUE_OBJ_CLASS_SPEC {
Array<AnnotationArray*>** methods_annotations,
Array<AnnotationArray*>** methods_parameter_annotations,
Array<AnnotationArray*>** methods_default_annotations,
bool* has_default_method,
TRAPS);
Array<int>* sort_methods(ClassLoaderData* loader_data,
Array<Method*>* methods,
......
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/signature.hpp"
#include "runtime/thread.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.hpp"
#include "oops/method.hpp"
#include "utilities/accessFlags.hpp"
#include "utilities/exceptions.hpp"
#include "utilities/ostream.hpp"
#include "utilities/pair.hpp"
#include "utilities/resourceHash.hpp"
typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;
// Because we use an iterative algorithm when iterating over the type
// hierarchy, we can't use traditional scoped objects which automatically do
// cleanup in the destructor when the scope is exited. PseudoScope (and
// PseudoScopeMark) provides a similar functionality, but for when you want a
// scoped object in non-stack memory (such as in resource memory, as we do
// here). You've just got to remember to call 'destroy()' on the scope when
// leaving it (and marks have to be explicitly added).
class PseudoScopeMark : public ResourceObj {
public:
virtual void destroy() = 0;
};
class PseudoScope : public ResourceObj {
private:
GrowableArray<PseudoScopeMark*> _marks;
public:
static PseudoScope* cast(void* data) {
return static_cast<PseudoScope*>(data);
}
void add_mark(PseudoScopeMark* psm) {
_marks.append(psm);
}
void destroy() {
for (int i = 0; i < _marks.length(); ++i) {
_marks.at(i)->destroy();
}
}
};
class ContextMark : public PseudoScopeMark {
private:
generic::Context::Mark _mark;
public:
ContextMark(const generic::Context::Mark& cm) : _mark(cm) {}
virtual void destroy() { _mark.destroy(); }
};
#ifndef PRODUCT
static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
ResourceMark rm;
str->print("%s%s", name->as_C_string(), signature->as_C_string());
}
static void print_method(outputStream* str, Method* mo, bool with_class=true) {
ResourceMark rm;
if (with_class) {
str->print("%s.", mo->klass_name()->as_C_string());
}
print_slot(str, mo->name(), mo->signature());
}
#endif // ndef PRODUCT
/**
* Perform a depth-first iteration over the class hierarchy, applying
* algorithmic logic as it goes.
*
* This class is one half of the inheritance hierarchy analysis mechanism.
* It is meant to be used in conjunction with another class, the algorithm,
* which is indicated by the ALGO template parameter. This class can be
* paired with any algorithm class that provides the required methods.
*
* This class contains all the mechanics for iterating over the class hierarchy
* starting at a particular root, without recursing (thus limiting stack growth
* from this point). It visits each superclass (if present) and superinterface
* in a depth-first manner, with callbacks to the ALGO class as each class is
* encountered (visit()), The algorithm can cut-off further exploration of a
* particular branch by returning 'false' from a visit() call.
*
* The ALGO class, must provide a visit() method, which each of which will be
* called once for each node in the inheritance tree during the iteration. In
* addition, it can provide a memory block via new_node_data(InstanceKlass*),
* which it can use for node-specific storage (and access via the
* current_data() and data_at_depth(int) methods).
*
* Bare minimum needed to be an ALGO class:
* class Algo : public HierarchyVisitor<Algo> {
* void* new_node_data(InstanceKlass* cls) { return NULL; }
* void free_node_data(void* data) { return; }
* bool visit() { return true; }
* };
*/
template <class ALGO>
class HierarchyVisitor : StackObj {
private:
class Node : public ResourceObj {
public:
InstanceKlass* _class;
bool _super_was_visited;
int _interface_index;
void* _algorithm_data;
Node(InstanceKlass* cls, void* data, bool visit_super)
: _class(cls), _super_was_visited(!visit_super),
_interface_index(0), _algorithm_data(data) {}
int number_of_interfaces() { return _class->local_interfaces()->length(); }
int interface_index() { return _interface_index; }
void set_super_visited() { _super_was_visited = true; }
void increment_visited_interface() { ++_interface_index; }
void set_all_interfaces_visited() {
_interface_index = number_of_interfaces();
}
bool has_visited_super() { return _super_was_visited; }
bool has_visited_all_interfaces() {
return interface_index() >= number_of_interfaces();
}
InstanceKlass* interface_at(int index) {
return InstanceKlass::cast(_class->local_interfaces()->at(index));
}
InstanceKlass* next_super() { return _class->java_super(); }
InstanceKlass* next_interface() {
return interface_at(interface_index());
}
};
bool _cancelled;
GrowableArray<Node*> _path;
Node* current_top() const { return _path.top(); }
bool has_more_nodes() const { return !_path.is_empty(); }
void push(InstanceKlass* cls, void* data) {
assert(cls != NULL, "Requires a valid instance class");
Node* node = new Node(cls, data, has_super(cls));
_path.push(node);
}
void pop() { _path.pop(); }
void reset_iteration() {
_cancelled = false;
_path.clear();
}
bool is_cancelled() const { return _cancelled; }
static bool has_super(InstanceKlass* cls) {
return cls->super() != NULL && !cls->is_interface();
}
Node* node_at_depth(int i) const {
return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
}
protected:
// Accessors available to the algorithm
int current_depth() const { return _path.length() - 1; }
InstanceKlass* class_at_depth(int i) {
Node* n = node_at_depth(i);
return n == NULL ? NULL : n->_class;
}
InstanceKlass* current_class() { return class_at_depth(0); }
void* data_at_depth(int i) {
Node* n = node_at_depth(i);
return n == NULL ? NULL : n->_algorithm_data;
}
void* current_data() { return data_at_depth(0); }
void cancel_iteration() { _cancelled = true; }
public:
void run(InstanceKlass* root) {
ALGO* algo = static_cast<ALGO*>(this);
reset_iteration();
void* algo_data = algo->new_node_data(root);
push(root, algo_data);
bool top_needs_visit = true;
do {
Node* top = current_top();
if (top_needs_visit) {
if (algo->visit() == false) {
// algorithm does not want to continue along this path. Arrange
// it so that this state is immediately popped off the stack
top->set_super_visited();
top->set_all_interfaces_visited();
}
top_needs_visit = false;
}
if (top->has_visited_super() && top->has_visited_all_interfaces()) {
algo->free_node_data(top->_algorithm_data);
pop();
} else {
InstanceKlass* next = NULL;
if (top->has_visited_super() == false) {
next = top->next_super();
top->set_super_visited();
} else {
next = top->next_interface();
top->increment_visited_interface();
}
assert(next != NULL, "Otherwise we shouldn't be here");
algo_data = algo->new_node_data(next);
push(next, algo_data);
top_needs_visit = true;
}
} while (!is_cancelled() && has_more_nodes());
}
};
#ifndef PRODUCT
class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
public:
bool visit() {
InstanceKlass* cls = current_class();
streamIndentor si(tty, current_depth() * 2);
tty->indent().print_cr("%s", cls->name()->as_C_string());
return true;
}
void* new_node_data(InstanceKlass* cls) { return NULL; }
void free_node_data(void* data) { return; }
};
#endif // ndef PRODUCT
// Used to register InstanceKlass objects and all related metadata structures
// (Methods, ConstantPools) as "in-use" by the current thread so that they can't
// be deallocated by class redefinition while we're using them. The classes are
// de-registered when this goes out of scope.
//
// Once a class is registered, we need not bother with methodHandles or
// constantPoolHandles for it's associated metadata.
class KeepAliveRegistrar : public StackObj {
private:
Thread* _thread;
GrowableArray<ConstantPool*> _keep_alive;
public:
KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
assert(thread == Thread::current(), "Must be current thread");
}
~KeepAliveRegistrar() {
for (int i = _keep_alive.length() - 1; i >= 0; --i) {
ConstantPool* cp = _keep_alive.at(i);
int idx = _thread->metadata_handles()->find_from_end(cp);
assert(idx > 0, "Must be in the list");
_thread->metadata_handles()->remove_at(idx);
}
}
// Register a class as 'in-use' by the thread. It's fine to register a class
// multiple times (though perhaps inefficient)
void register_class(InstanceKlass* ik) {
ConstantPool* cp = ik->constants();
_keep_alive.push(cp);
_thread->metadata_handles()->push(cp);
}
};
class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
private:
KeepAliveRegistrar* _registrar;
public:
KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}
void* new_node_data(InstanceKlass* cls) { return NULL; }
void free_node_data(void* data) { return; }
bool visit() {
_registrar->register_class(current_class());
return true;
}
};
// A method family contains a set of all methods that implement a single
// language-level method. Because of erasure, these methods may have different
// signatures. As members of the set are collected while walking over the
// hierarchy, they are tagged with a qualification state. The qualification
// state for an erased method is set to disqualified if there exists a path
// from the root of hierarchy to the method that contains an interleaving
// language-equivalent method defined in an interface.
class MethodFamily : public ResourceObj {
private:
generic::MethodDescriptor* _descriptor; // language-level description
GrowableArray<Pair<Method*,QualifiedState> > _members;
ResourceHashtable<Method*, int> _member_index;
Method* _selected_target; // Filled in later, if a unique target exists
Symbol* _exception_message; // If no unique target is found
bool contains_method(Method* method) {
int* lookup = _member_index.get(method);
return lookup != NULL;
}
void add_method(Method* method, QualifiedState state) {
Pair<Method*,QualifiedState> entry(method, state);
_member_index.put(method, _members.length());
_members.append(entry);
}
void disqualify_method(Method* method) {
int* index = _member_index.get(method);
assert(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
_members.at(*index).second = DISQUALIFIED;
}
Symbol* generate_no_defaults_message(TRAPS) const;
Symbol* generate_abstract_method_message(Method* method, TRAPS) const;
Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;
public:
MethodFamily(generic::MethodDescriptor* canonical_desc)
: _descriptor(canonical_desc), _selected_target(NULL),
_exception_message(NULL) {}
generic::MethodDescriptor* descriptor() const { return _descriptor; }
bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
return descriptor()->covariant_match(md, ctx);
}
void set_target_if_empty(Method* m) {
if (_selected_target == NULL && !m->is_overpass()) {
_selected_target = m;
}
}
void record_qualified_method(Method* m) {
// If the method already exists in the set as qualified, this operation is
// redundant. If it already exists as disqualified, then we leave it as
// disqualfied. Thus we only add to the set if it's not already in the
// set.
if (!contains_method(m)) {
add_method(m, QUALIFIED);
}
}
void record_disqualified_method(Method* m) {
// If not in the set, add it as disqualified. If it's already in the set,
// then set the state to disqualified no matter what the previous state was.
if (!contains_method(m)) {
add_method(m, DISQUALIFIED);
} else {
disqualify_method(m);
}
}
bool has_target() const { return _selected_target != NULL; }
bool throws_exception() { return _exception_message != NULL; }
Method* get_selected_target() { return _selected_target; }
Symbol* get_exception_message() { return _exception_message; }
// Either sets the target or the exception error message
void determine_target(InstanceKlass* root, TRAPS) {
if (has_target() || throws_exception()) {
return;
}
GrowableArray<Method*> qualified_methods;
for (int i = 0; i < _members.length(); ++i) {
Pair<Method*,QualifiedState> entry = _members.at(i);
if (entry.second == QUALIFIED) {
qualified_methods.append(entry.first);
}
}
if (qualified_methods.length() == 0) {
_exception_message = generate_no_defaults_message(CHECK);
} else if (qualified_methods.length() == 1) {
Method* method = qualified_methods.at(0);
if (method->is_abstract()) {
_exception_message = generate_abstract_method_message(method, CHECK);
} else {
_selected_target = qualified_methods.at(0);
}
} else {
_exception_message = generate_conflicts_message(&qualified_methods,CHECK);
}
assert((has_target() ^ throws_exception()) == 1,
"One and only one must be true");
}
bool contains_signature(Symbol* query) {
for (int i = 0; i < _members.length(); ++i) {
if (query == _members.at(i).first->signature()) {
return true;
}
}
return false;
}
#ifndef PRODUCT
void print_on(outputStream* str) const {
print_on(str, 0);
}
void print_on(outputStream* str, int indent) const {
streamIndentor si(str, indent * 2);
generic::Context ctx(NULL); // empty, as _descriptor already canonicalized
TempNewSymbol family = descriptor()->reify_signature(&ctx, Thread::current());
str->indent().print_cr("Logical Method %s:", family->as_C_string());
streamIndentor si2(str);
for (int i = 0; i < _members.length(); ++i) {
str->indent();
print_method(str, _members.at(i).first);
if (_members.at(i).second == DISQUALIFIED) {
str->print(" (disqualified)");
}
str->print_cr("");
}
if (_selected_target != NULL) {
print_selected(str, 1);
}
}
void print_selected(outputStream* str, int indent) const {
assert(has_target(), "Should be called otherwise");
streamIndentor si(str, indent * 2);
str->indent().print("Selected method: ");
print_method(str, _selected_target);
str->print_cr("");
}
void print_exception(outputStream* str, int indent) {
assert(throws_exception(), "Should be called otherwise");
streamIndentor si(str, indent * 2);
str->indent().print_cr("%s", _exception_message->as_C_string());
}
#endif // ndef PRODUCT
};
Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
}
Symbol* MethodFamily::generate_abstract_method_message(Method* method, TRAPS) const {
Symbol* klass = method->klass_name();
Symbol* name = method->name();
Symbol* sig = method->signature();
stringStream ss;
ss.print("Method ");
ss.write((const char*)klass->bytes(), klass->utf8_length());
ss.print(".");
ss.write((const char*)name->bytes(), name->utf8_length());
ss.write((const char*)sig->bytes(), sig->utf8_length());
ss.print(" is abstract");
return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}
Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
stringStream ss;
ss.print("Conflicting default methods:");
for (int i = 0; i < methods->length(); ++i) {
Method* method = methods->at(i);
Symbol* klass = method->klass_name();
Symbol* name = method->name();
ss.print(" ");
ss.write((const char*)klass->bytes(), klass->utf8_length());
ss.print(".");
ss.write((const char*)name->bytes(), name->utf8_length());
}
return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}
class StateRestorer;
// StatefulMethodFamily is a wrapper around MethodFamily that maintains the
// qualification state during hierarchy visitation, and applies that state
// when adding members to the MethodFamily.
class StatefulMethodFamily : public ResourceObj {
friend class StateRestorer;
private:
MethodFamily* _method;
QualifiedState _qualification_state;
void set_qualification_state(QualifiedState state) {
_qualification_state = state;
}
public:
StatefulMethodFamily(generic::MethodDescriptor* md, generic::Context* ctx) {
_method = new MethodFamily(md->canonicalize(ctx));
_qualification_state = QUALIFIED;
}
void set_target_if_empty(Method* m) { _method->set_target_if_empty(m); }
MethodFamily* get_method_family() { return _method; }
bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
return _method->descriptor_matches(md, ctx);
}
StateRestorer* record_method_and_dq_further(Method* mo);
};
class StateRestorer : public PseudoScopeMark {
private:
StatefulMethodFamily* _method;
QualifiedState _state_to_restore;
public:
StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
: _method(dm), _state_to_restore(state) {}
~StateRestorer() { destroy(); }
void restore_state() { _method->set_qualification_state(_state_to_restore); }
virtual void destroy() { restore_state(); }
};
StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
StateRestorer* mark = new StateRestorer(this, _qualification_state);
if (_qualification_state == QUALIFIED) {
_method->record_qualified_method(mo);
} else {
_method->record_disqualified_method(mo);
}
// Everything found "above"??? this method in the hierarchy walk is set to
// disqualified
set_qualification_state(DISQUALIFIED);
return mark;
}
class StatefulMethodFamilies : public ResourceObj {
private:
GrowableArray<StatefulMethodFamily*> _methods;
public:
StatefulMethodFamily* find_matching(
generic::MethodDescriptor* md, generic::Context* ctx) {
for (int i = 0; i < _methods.length(); ++i) {
StatefulMethodFamily* existing = _methods.at(i);
if (existing->descriptor_matches(md, ctx)) {
return existing;
}
}
return NULL;
}
StatefulMethodFamily* find_matching_or_create(
generic::MethodDescriptor* md, generic::Context* ctx) {
StatefulMethodFamily* method = find_matching(md, ctx);
if (method == NULL) {
method = new StatefulMethodFamily(md, ctx);
_methods.append(method);
}
return method;
}
void extract_families_into(GrowableArray<MethodFamily*>* array) {
for (int i = 0; i < _methods.length(); ++i) {
array->append(_methods.at(i)->get_method_family());
}
}
};
// Represents a location corresponding to a vtable slot for methods that
// neither the class nor any of it's ancestors provide an implementaion.
// Default methods may be present to fill this slot.
class EmptyVtableSlot : public ResourceObj {
private:
Symbol* _name;
Symbol* _signature;
int _size_of_parameters;
MethodFamily* _binding;
public:
EmptyVtableSlot(Method* method)
: _name(method->name()), _signature(method->signature()),
_size_of_parameters(method->size_of_parameters()), _binding(NULL) {}
Symbol* name() const { return _name; }
Symbol* signature() const { return _signature; }
int size_of_parameters() const { return _size_of_parameters; }
void bind_family(MethodFamily* lm) { _binding = lm; }
bool is_bound() { return _binding != NULL; }
MethodFamily* get_binding() { return _binding; }
#ifndef PRODUCT
void print_on(outputStream* str) const {
print_slot(str, name(), signature());
}
#endif // ndef PRODUCT
};
static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
assert(klass != NULL, "Must be valid class");
GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();
// All miranda methods are obvious candidates
for (int i = 0; i < mirandas->length(); ++i) {
EmptyVtableSlot* slot = new EmptyVtableSlot(mirandas->at(i));
slots->append(slot);
}
// Also any overpasses in our superclasses, that we haven't implemented.
// (can't use the vtable because it is not guaranteed to be initialized yet)
InstanceKlass* super = klass->java_super();
while (super != NULL) {
for (int i = 0; i < super->methods()->length(); ++i) {
Method* m = super->methods()->at(i);
if (m->is_overpass()) {
// m is a method that would have been a miranda if not for the
// default method processing that occurred on behalf of our superclass,
// so it's a method we want to re-examine in this new context. That is,
// unless we have a real implementation of it in the current class.
Method* impl = klass->lookup_method(m->name(), m->signature());
if (impl == NULL || impl->is_overpass()) {
slots->append(new EmptyVtableSlot(m));
}
}
}
super = super->java_super();
}
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Slots that need filling:");
streamIndentor si(tty);
for (int i = 0; i < slots->length(); ++i) {
tty->indent();
slots->at(i)->print_on(tty);
tty->print_cr("");
}
}
#endif // ndef PRODUCT
return slots;
}
// Iterates over the type hierarchy looking for all methods with a specific
// method name. The result of this is a set of method families each of
// which is populated with a set of methods that implement the same
// language-level signature.
class FindMethodsByName : public HierarchyVisitor<FindMethodsByName> {
private:
// Context data
Thread* THREAD;
generic::DescriptorCache* _cache;
Symbol* _method_name;
generic::Context* _ctx;
StatefulMethodFamilies _families;
public:
FindMethodsByName(generic::DescriptorCache* cache, Symbol* name,
generic::Context* ctx, Thread* thread) :
_cache(cache), _method_name(name), _ctx(ctx), THREAD(thread) {}
void get_discovered_families(GrowableArray<MethodFamily*>* methods) {
_families.extract_families_into(methods);
}
void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
void free_node_data(void* node_data) {
PseudoScope::cast(node_data)->destroy();
}
bool visit() {
PseudoScope* scope = PseudoScope::cast(current_data());
InstanceKlass* klass = current_class();
InstanceKlass* sub = current_depth() > 0 ? class_at_depth(1) : NULL;
ContextMark* cm = new ContextMark(_ctx->mark());
scope->add_mark(cm); // will restore context when scope is freed
_ctx->apply_type_arguments(sub, klass, THREAD);
int start, end = 0;
start = klass->find_method_by_name(_method_name, &end);
if (start != -1) {
for (int i = start; i < end; ++i) {
Method* m = klass->methods()->at(i);
// This gets the method's parameter list with its generic type
// parameters resolved
generic::MethodDescriptor* md = _cache->descriptor_for(m, THREAD);
// Find all methods on this hierarchy that match this method
// (name, signature). This class collects other families of this
// method name.
StatefulMethodFamily* family =
_families.find_matching_or_create(md, _ctx);
if (klass->is_interface()) {
// ???
StateRestorer* restorer = family->record_method_and_dq_further(m);
scope->add_mark(restorer);
} else {
// This is the rule that methods in classes "win" (bad word) over
// methods in interfaces. This works because of single inheritance
family->set_target_if_empty(m);
}
}
}
return true;
}
};
#ifndef PRODUCT
static void print_families(
GrowableArray<MethodFamily*>* methods, Symbol* match) {
streamIndentor si(tty, 4);
if (methods->length() == 0) {
tty->indent();
tty->print_cr("No Logical Method found");
}
for (int i = 0; i < methods->length(); ++i) {
tty->indent();
MethodFamily* lm = methods->at(i);
if (lm->contains_signature(match)) {
tty->print_cr("<Matching>");
} else {
tty->print_cr("<Non-Matching>");
}
lm->print_on(tty, 1);
}
}
#endif // ndef PRODUCT
static void merge_in_new_methods(InstanceKlass* klass,
GrowableArray<Method*>* new_methods, TRAPS);
static void create_overpasses(
GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);
// This is the guts of the default methods implementation. This is called just
// after the classfile has been parsed if some ancestor has default methods.
//
// First if finds any name/signature slots that need any implementation (either
// because they are miranda or a superclass's implementation is an overpass
// itself). For each slot, iterate over the hierarchy, using generic signature
// information to partition any methods that match the name into method families
// where each family contains methods whose signatures are equivalent at the
// language level (i.e., their reified parameters match and return values are
// covariant). Check those sets to see if they contain a signature that matches
// the slot we're looking at (if we're lucky, there might be other empty slots
// that we can fill using the same analysis).
//
// For each slot filled, we generate an overpass method that either calls the
// unique default method candidate using invokespecial, or throws an exception
// (in the case of no default method candidates, or more than one valid
// candidate). These methods are then added to the class's method list. If
// the method set we're using contains methods (qualified or not) with a
// different runtime signature than the method we're creating, then we have to
// create bridges with those signatures too.
void DefaultMethods::generate_default_methods(
InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
// This resource mark is the bound for all memory allocation that takes
// place during default method processing. After this goes out of scope,
// all (Resource) objects' memory will be reclaimed. Be careful if adding an
// embedded resource mark under here as that memory can't be used outside
// whatever scope it's in.
ResourceMark rm(THREAD);
generic::DescriptorCache cache;
// Keep entire hierarchy alive for the duration of the computation
KeepAliveRegistrar keepAlive(THREAD);
KeepAliveVisitor loadKeepAlive(&keepAlive);
loadKeepAlive.run(klass);
#ifndef PRODUCT
if (TraceDefaultMethods) {
ResourceMark rm; // be careful with these!
tty->print_cr("Class %s requires default method processing",
klass->name()->as_klass_external_name());
PrintHierarchy printer;
printer.run(klass);
}
#endif // ndef PRODUCT
GrowableArray<EmptyVtableSlot*>* empty_slots =
find_empty_vtable_slots(klass, mirandas, CHECK);
for (int i = 0; i < empty_slots->length(); ++i) {
EmptyVtableSlot* slot = empty_slots->at(i);
#ifndef PRODUCT
if (TraceDefaultMethods) {
streamIndentor si(tty, 2);
tty->indent().print("Looking for default methods for slot ");
slot->print_on(tty);
tty->print_cr("");
}
#endif // ndef PRODUCT
if (slot->is_bound()) {
#ifndef PRODUCT
if (TraceDefaultMethods) {
streamIndentor si(tty, 4);
tty->indent().print_cr("Already bound to logical method:");
slot->get_binding()->print_on(tty, 1);
}
#endif // ndef PRODUCT
continue; // covered by previous processing
}
generic::Context ctx(&cache);
FindMethodsByName visitor(&cache, slot->name(), &ctx, CHECK);
visitor.run(klass);
GrowableArray<MethodFamily*> discovered_families;
visitor.get_discovered_families(&discovered_families);
#ifndef PRODUCT
if (TraceDefaultMethods) {
print_families(&discovered_families, slot->signature());
}
#endif // ndef PRODUCT
// Find and populate any other slots that match the discovered families
for (int j = i; j < empty_slots->length(); ++j) {
EmptyVtableSlot* open_slot = empty_slots->at(j);
if (slot->name() == open_slot->name()) {
for (int k = 0; k < discovered_families.length(); ++k) {
MethodFamily* lm = discovered_families.at(k);
if (lm->contains_signature(open_slot->signature())) {
lm->determine_target(klass, CHECK);
open_slot->bind_family(lm);
}
}
}
}
}
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Creating overpasses...");
}
#endif // ndef PRODUCT
create_overpasses(empty_slots, klass, CHECK);
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Default method processing complete");
}
#endif // ndef PRODUCT
}
/**
* Generic analysis was used upon interface '_target' and found a unique
* default method candidate with generic signature '_method_desc'. This
* method is only viable if it would also be in the set of default method
* candidates if we ran a full analysis on the current class.
*
* The only reason that the method would not be in the set of candidates for
* the current class is if that there's another covariantly matching method
* which is "more specific" than the found method -- i.e., one could find a
* path in the interface hierarchy in which the matching method appears
* before we get to '_target'.
*
* In order to determine this, we examine all of the implemented
* interfaces. If we find path that leads to the '_target' interface, then
* we examine that path to see if there are any methods that would shadow
* the selected method along that path.
*/
class ShadowChecker : public HierarchyVisitor<ShadowChecker> {
private:
generic::DescriptorCache* _cache;
Thread* THREAD;
InstanceKlass* _target;
Symbol* _method_name;
InstanceKlass* _method_holder;
generic::MethodDescriptor* _method_desc;
bool _found_shadow;
bool path_has_shadow() {
generic::Context ctx(_cache);
for (int i = current_depth() - 1; i > 0; --i) {
InstanceKlass* ik = class_at_depth(i);
InstanceKlass* sub = class_at_depth(i + 1);
ctx.apply_type_arguments(sub, ik, THREAD);
if (ik->is_interface()) {
int end;
int start = ik->find_method_by_name(_method_name, &end);
if (start != -1) {
for (int j = start; j < end; ++j) {
Method* mo = ik->methods()->at(j);
generic::MethodDescriptor* md = _cache->descriptor_for(mo, THREAD);
if (_method_desc->covariant_match(md, &ctx)) {
return true;
}
}
}
}
}
return false;
}
public:
ShadowChecker(generic::DescriptorCache* cache, Thread* thread,
Symbol* name, InstanceKlass* holder, generic::MethodDescriptor* desc,
InstanceKlass* target)
: _cache(cache), THREAD(thread), _method_name(name), _method_holder(holder),
_method_desc(desc), _target(target), _found_shadow(false) {}
void* new_node_data(InstanceKlass* cls) { return NULL; }
void free_node_data(void* data) { return; }
bool visit() {
InstanceKlass* ik = current_class();
if (ik == _target && current_depth() == 1) {
return false; // This was the specified super -- no need to search it
}
if (ik == _method_holder || ik == _target) {
// We found a path that should be examined to see if it shadows _method
if (path_has_shadow()) {
_found_shadow = true;
cancel_iteration();
}
return false; // no need to continue up hierarchy
}
return true;
}
bool found_shadow() { return _found_shadow; }
};
// This is called during linktime when we find an invokespecial call that
// refers to a direct superinterface. It indicates that we should find the
// default method in the hierarchy of that superinterface, and if that method
// would have been a candidate from the point of view of 'this' class, then we
// return that method.
Method* DefaultMethods::find_super_default(
Klass* cls, Klass* super, Symbol* method_name, Symbol* sig, TRAPS) {
ResourceMark rm(THREAD);
assert(cls != NULL && super != NULL, "Need real classes");
InstanceKlass* current_class = InstanceKlass::cast(cls);
InstanceKlass* direction = InstanceKlass::cast(super);
// Keep entire hierarchy alive for the duration of the computation
KeepAliveRegistrar keepAlive(THREAD);
KeepAliveVisitor loadKeepAlive(&keepAlive);
loadKeepAlive.run(current_class);
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Finding super default method %s.%s%s from %s",
direction->name()->as_C_string(),
method_name->as_C_string(), sig->as_C_string(),
current_class->name()->as_C_string());
}
#endif // ndef PRODUCT
if (!direction->is_interface()) {
// We should not be here
return NULL;
}
generic::DescriptorCache cache;
generic::Context ctx(&cache);
// Prime the initial generic context for current -> direction
ctx.apply_type_arguments(current_class, direction, CHECK_NULL);
FindMethodsByName visitor(&cache, method_name, &ctx, CHECK_NULL);
visitor.run(direction);
GrowableArray<MethodFamily*> families;
visitor.get_discovered_families(&families);
#ifndef PRODUCT
if (TraceDefaultMethods) {
print_families(&families, sig);
}
#endif // ndef PRODUCT
MethodFamily* selected_family = NULL;
for (int i = 0; i < families.length(); ++i) {
MethodFamily* lm = families.at(i);
if (lm->contains_signature(sig)) {
lm->determine_target(current_class, CHECK_NULL);
selected_family = lm;
}
}
if (selected_family->has_target()) {
Method* target = selected_family->get_selected_target();
InstanceKlass* holder = InstanceKlass::cast(target->method_holder());
// Verify that the identified method is valid from the context of
// the current class
ShadowChecker checker(&cache, THREAD, target->name(),
holder, selected_family->descriptor(), direction);
checker.run(current_class);
if (checker.found_shadow()) {
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr(" Only candidate found was shadowed.");
}
#endif // ndef PRODUCT
THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
"Accessible default method not found", NULL);
} else {
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print(" Returning ");
print_method(tty, target, true);
tty->print_cr("");
}
#endif // ndef PRODUCT
return target;
}
} else {
assert(selected_family->throws_exception(), "must have target or throw");
THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
selected_family->get_exception_message()->as_C_string(), NULL);
}
}
static int assemble_redirect(
BytecodeConstantPool* cp, BytecodeBuffer* buffer,
Symbol* incoming, Method* target, TRAPS) {
BytecodeAssembler assem(buffer, cp);
SignatureStream in(incoming, true);
SignatureStream out(target->signature(), true);
u2 parameter_count = 0;
assem.aload(parameter_count++); // load 'this'
while (!in.at_return_type()) {
assert(!out.at_return_type(), "Parameter counts do not match");
BasicType bt = in.type();
assert(out.type() == bt, "Parameter types are not compatible");
assem.load(bt, parameter_count);
if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
assem.checkcast(out.as_symbol(THREAD));
} else if (bt == T_LONG || bt == T_DOUBLE) {
++parameter_count; // longs and doubles use two slots
}
++parameter_count;
in.next();
out.next();
}
assert(out.at_return_type(), "Parameter counts do not match");
assert(in.type() == out.type(), "Return types are not compatible");
if (parameter_count == 1 && (in.type() == T_LONG || in.type() == T_DOUBLE)) {
++parameter_count; // need room for return value
}
if (target->method_holder()->is_interface()) {
assem.invokespecial(target);
} else {
assem.invokevirtual(target);
}
if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
assem.checkcast(in.as_symbol(THREAD));
}
assem._return(in.type());
return parameter_count;
}
static int assemble_abstract_method_error(
BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* message, TRAPS) {
Symbol* errorName = vmSymbols::java_lang_AbstractMethodError();
Symbol* init = vmSymbols::object_initializer_name();
Symbol* sig = vmSymbols::string_void_signature();
BytecodeAssembler assem(buffer, cp);
assem._new(errorName);
assem.dup();
assem.load_string(message);
assem.invokespecial(errorName, init, sig);
assem.athrow();
return 3; // max stack size: [ exception, exception, string ]
}
static Method* new_method(
BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
Symbol* sig, AccessFlags flags, int max_stack, int params,
ConstMethod::MethodType mt, TRAPS) {
address code_start = static_cast<address>(bytecodes->adr_at(0));
int code_length = bytecodes->length();
Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
code_length, flags, 0, 0, 0, 0, mt, CHECK_NULL);
m->set_constants(NULL); // This will get filled in later
m->set_name_index(cp->utf8(name));
m->set_signature_index(cp->utf8(sig));
m->set_generic_signature_index(0);
#ifdef CC_INTERP
ResultTypeFinder rtf(sig);
m->set_result_index(rtf.type());
#endif
m->set_size_of_parameters(params);
m->set_max_stack(max_stack);
m->set_max_locals(params);
m->constMethod()->set_stackmap_data(NULL);
m->set_code(code_start);
m->set_force_inline(true);
return m;
}
static void switchover_constant_pool(BytecodeConstantPool* bpool,
InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {
if (new_methods->length() > 0) {
ConstantPool* cp = bpool->create_constant_pool(CHECK);
if (cp != klass->constants()) {
klass->class_loader_data()->add_to_deallocate_list(klass->constants());
klass->set_constants(cp);
cp->set_pool_holder(klass);
for (int i = 0; i < new_methods->length(); ++i) {
new_methods->at(i)->set_constants(cp);
}
for (int i = 0; i < klass->methods()->length(); ++i) {
Method* mo = klass->methods()->at(i);
mo->set_constants(cp);
}
}
}
}
// A "bridge" is a method created by javac to bridge the gap between
// an implementation and a generically-compatible, but different, signature.
// Bridges have actual bytecode implementation in classfiles.
// An "overpass", on the other hand, performs the same function as a bridge
// but does not occur in a classfile; the VM creates overpass itself,
// when it needs a path to get from a call site to an default method, and
// a bridge doesn't exist.
static void create_overpasses(
GrowableArray<EmptyVtableSlot*>* slots,
InstanceKlass* klass, TRAPS) {
GrowableArray<Method*> overpasses;
BytecodeConstantPool bpool(klass->constants());
for (int i = 0; i < slots->length(); ++i) {
EmptyVtableSlot* slot = slots->at(i);
if (slot->is_bound()) {
MethodFamily* method = slot->get_binding();
int max_stack = 0;
BytecodeBuffer buffer;
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print("for slot: ");
slot->print_on(tty);
tty->print_cr("");
if (method->has_target()) {
method->print_selected(tty, 1);
} else {
method->print_exception(tty, 1);
}
}
#endif // ndef PRODUCT
if (method->has_target()) {
Method* selected = method->get_selected_target();
max_stack = assemble_redirect(
&bpool, &buffer, slot->signature(), selected, CHECK);
} else if (method->throws_exception()) {
max_stack = assemble_abstract_method_error(
&bpool, &buffer, method->get_exception_message(), CHECK);
}
AccessFlags flags = accessFlags_from(
JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
flags, max_stack, slot->size_of_parameters(),
ConstMethod::OVERPASS, CHECK);
if (m != NULL) {
overpasses.push(m);
}
}
}
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Created %d overpass methods", overpasses.length());
}
#endif // ndef PRODUCT
switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
merge_in_new_methods(klass, &overpasses, CHECK);
}
static void sort_methods(GrowableArray<Method*>* methods) {
// Note that this must sort using the same key as is used for sorting
// methods in InstanceKlass.
bool sorted = true;
for (int i = methods->length() - 1; i > 0; --i) {
for (int j = 0; j < i; ++j) {
Method* m1 = methods->at(j);
Method* m2 = methods->at(j + 1);
if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
methods->at_put(j, m2);
methods->at_put(j + 1, m1);
sorted = false;
}
}
if (sorted) break;
sorted = true;
}
#ifdef ASSERT
uintptr_t prev = 0;
for (int i = 0; i < methods->length(); ++i) {
Method* mh = methods->at(i);
uintptr_t nv = (uintptr_t)mh->name();
assert(nv >= prev, "Incorrect overpass method ordering");
prev = nv;
}
#endif
}
static void merge_in_new_methods(InstanceKlass* klass,
GrowableArray<Method*>* new_methods, TRAPS) {
enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };
Array<AnnotationArray*>* original_annots[NUM_ARRAYS];
Array<Method*>* original_methods = klass->methods();
Annotations* annots = klass->annotations();
original_annots[ANNOTATIONS] = annots->methods_annotations();
original_annots[PARAMETERS] = annots->methods_parameter_annotations();
original_annots[DEFAULTS] = annots->methods_default_annotations();
Array<int>* original_ordering = klass->method_ordering();
Array<int>* merged_ordering = Universe::the_empty_int_array();
int new_size = klass->methods()->length() + new_methods->length();
Array<AnnotationArray*>* merged_annots[NUM_ARRAYS];
Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
klass->class_loader_data(), new_size, NULL, CHECK);
for (int i = 0; i < NUM_ARRAYS; ++i) {
if (original_annots[i] != NULL) {
merged_annots[i] = MetadataFactory::new_array<AnnotationArray*>(
klass->class_loader_data(), new_size, CHECK);
} else {
merged_annots[i] = NULL;
}
}
if (original_ordering != NULL && original_ordering->length() > 0) {
merged_ordering = MetadataFactory::new_array<int>(
klass->class_loader_data(), new_size, CHECK);
}
int method_order_index = klass->methods()->length();
sort_methods(new_methods);
// Perform grand merge of existing methods and new methods
int orig_idx = 0;
int new_idx = 0;
for (int i = 0; i < new_size; ++i) {
Method* orig_method = NULL;
Method* new_method = NULL;
if (orig_idx < original_methods->length()) {
orig_method = original_methods->at(orig_idx);
}
if (new_idx < new_methods->length()) {
new_method = new_methods->at(new_idx);
}
if (orig_method != NULL &&
(new_method == NULL || orig_method->name() < new_method->name())) {
merged_methods->at_put(i, orig_method);
original_methods->at_put(orig_idx, NULL);
for (int j = 0; j < NUM_ARRAYS; ++j) {
if (merged_annots[j] != NULL) {
merged_annots[j]->at_put(i, original_annots[j]->at(orig_idx));
original_annots[j]->at_put(orig_idx, NULL);
}
}
if (merged_ordering->length() > 0) {
merged_ordering->at_put(i, original_ordering->at(orig_idx));
}
++orig_idx;
} else {
merged_methods->at_put(i, new_method);
if (merged_ordering->length() > 0) {
merged_ordering->at_put(i, method_order_index++);
}
++new_idx;
}
// update idnum for new location
merged_methods->at(i)->set_method_idnum(i);
}
// Verify correct order
#ifdef ASSERT
uintptr_t prev = 0;
for (int i = 0; i < merged_methods->length(); ++i) {
Method* mo = merged_methods->at(i);
uintptr_t nv = (uintptr_t)mo->name();
assert(nv >= prev, "Incorrect method ordering");
prev = nv;
}
#endif
// Replace klass methods with new merged lists
klass->set_methods(merged_methods);
annots->set_methods_annotations(merged_annots[ANNOTATIONS]);
annots->set_methods_parameter_annotations(merged_annots[PARAMETERS]);
annots->set_methods_default_annotations(merged_annots[DEFAULTS]);
ClassLoaderData* cld = klass->class_loader_data();
MetadataFactory::free_array(cld, original_methods);
for (int i = 0; i < NUM_ARRAYS; ++i) {
MetadataFactory::free_array(cld, original_annots[i]);
}
if (original_ordering->length() > 0) {
klass->set_method_ordering(merged_ordering);
MetadataFactory::free_array(cld, original_ordering);
}
}
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_DEFAULTMETHODS_HPP
#define SHARE_VM_CLASSFILE_DEFAULTMETHODS_HPP
#include "runtime/handles.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/exceptions.hpp"
class InstanceKlass;
class Symbol;
class Method;
class DefaultMethods : AllStatic {
public:
// Analyzes class and determines which default methods are inherited
// from interfaces (and has no other implementation). For each method
// (and each different signature the method could have), create an
// "overpass" method that is an instance method that redirects to the
// default method. Overpass methods are added to the methods lists for
// the class.
static void generate_default_methods(
InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS);
// Called during linking when an invokespecial to an direct interface
// method is found. Selects and returns a method if there is a unique
// default method in the 'super_iface' part of the hierarchy which is
// also a candidate default for 'this_klass'. Otherwise throws an AME.
static Method* find_super_default(
Klass* this_klass, Klass* super_iface,
Symbol* method_name, Symbol* method_sig, TRAPS);
};
#endif // SHARE_VM_CLASSFILE_DEFAULTMETHODS_HPP
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "memory/resourceArea.hpp"
namespace generic {
// Helper class for parsing the generic signature Symbol in klass and methods
class DescriptorStream : public ResourceObj {
private:
Symbol* _symbol;
int _offset;
int _mark;
const char* _parse_error;
void set_parse_error(const char* error) {
assert(error != NULL, "Can't set NULL error string");
_parse_error = error;
}
public:
DescriptorStream(Symbol* sym)
: _symbol(sym), _offset(0), _mark(-1), _parse_error(NULL) {}
const char* parse_error() const {
return _parse_error;
}
bool at_end() { return _offset >= _symbol->utf8_length(); }
char peek() {
if (at_end()) {
set_parse_error("Peeking past end of signature");
return '\0';
} else {
return _symbol->byte_at(_offset);
}
}
char read() {
if (at_end()) {
set_parse_error("Reading past end of signature");
return '\0';
} else {
return _symbol->byte_at(_offset++);
}
}
void read(char expected) {
char c = read();
assert_char(c, expected, 0);
}
void assert_char(char c, char expected, int pos = -1) {
if (c != expected) {
const char* fmt = "Parse error at %d: expected %c but got %c";
size_t len = strlen(fmt) + 5;
char* buffer = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(buffer, len, fmt, _offset + pos, expected, c);
set_parse_error(buffer);
}
}
void push(char c) {
assert(c == _symbol->byte_at(_offset - 1), "Pushing back wrong value");
--_offset;
}
void expect_end() {
if (!at_end()) {
set_parse_error("Unexpected data trailing signature");
}
}
bool has_mark() { return _mark != -1; }
void set_mark() {
_mark = _offset;
}
Identifier* identifier_from_mark() {
assert(has_mark(), "Mark should be set");
if (!has_mark()) {
set_parse_error("Expected mark to be set");
return NULL;
} else {
Identifier* id = new Identifier(_symbol, _mark, _offset - 1);
_mark = -1;
return id;
}
}
};
#define CHECK_FOR_PARSE_ERROR() \
if (STREAM->parse_error() != NULL) { \
if (VerifyGenericSignatures) { \
fatal(STREAM->parse_error()); \
} \
return NULL; \
} 0
#define READ() STREAM->read(); CHECK_FOR_PARSE_ERROR()
#define PEEK() STREAM->peek(); CHECK_FOR_PARSE_ERROR()
#define PUSH(c) STREAM->push(c)
#define EXPECT(c) STREAM->read(c); CHECK_FOR_PARSE_ERROR()
#define EXPECTED(c, ch) STREAM->assert_char(c, ch); CHECK_FOR_PARSE_ERROR()
#define EXPECT_END() STREAM->expect_end(); CHECK_FOR_PARSE_ERROR()
#define CHECK_STREAM STREAM); CHECK_FOR_PARSE_ERROR(); (0
#ifndef PRODUCT
void Identifier::print_on(outputStream* str) const {
for (int i = _begin; i < _end; ++i) {
str->print("%c", (char)_sym->byte_at(i));
}
}
#endif // ndef PRODUCT
bool Identifier::equals(Identifier* other) {
if (_sym == other->_sym && _begin == other->_begin && _end == other->_end) {
return true;
} else if (_end - _begin != other->_end - other->_begin) {
return false;
} else {
size_t len = _end - _begin;
char* addr = ((char*)_sym->bytes()) + _begin;
char* oaddr = ((char*)other->_sym->bytes()) + other->_begin;
return strncmp(addr, oaddr, len) == 0;
}
}
bool Identifier::equals(Symbol* sym) {
Identifier id(sym, 0, sym->utf8_length());
return equals(&id);
}
/**
* A formal type parameter may be found in the the enclosing class, but it could
* also come from an enclosing method or outer class, in the case of inner-outer
* classes or anonymous classes. For example:
*
* class Outer<T,V> {
* class Inner<W> {
* void m(T t, V v, W w);
* }
* }
*
* In this case, the type variables in m()'s signature are not all found in the
* immediate enclosing class (Inner). class Inner has only type parameter W,
* but it's outer_class field will reference Outer's descriptor which contains
* T & V (no outer_method in this case).
*
* If you have an anonymous class, it has both an enclosing method *and* an
* enclosing class where type parameters can be declared:
*
* class MOuter<T> {
* <V> void bar(V v) {
* Runnable r = new Runnable() {
* public void run() {}
* public void foo(T t, V v) { ... }
* };
* }
* }
*
* In this case, foo will be a member of some class, Runnable$1, which has no
* formal parameters itself, but has an outer_method (bar()) which provides
* type parameter V, and an outer class MOuter with type parameter T.
*
* It is also possible that the outer class is itself an inner class to some
* other class (or an anonymous class with an enclosing method), so we need to
* follow the outer_class/outer_method chain to it's end when looking for a
* type parameter.
*/
TypeParameter* Descriptor::find_type_parameter(Identifier* id, int* depth) {
int current_depth = 0;
MethodDescriptor* outer_method = as_method_signature();
ClassDescriptor* outer_class = as_class_signature();
if (outer_class == NULL) { // 'this' is a method signature; use the holder
outer_class = outer_method->outer_class();
}
while (outer_method != NULL || outer_class != NULL) {
if (outer_method != NULL) {
for (int i = 0; i < outer_method->type_parameters().length(); ++i) {
TypeParameter* p = outer_method->type_parameters().at(i);
if (p->identifier()->equals(id)) {
*depth = -1; // indicates this this is a method parameter
return p;
}
}
}
if (outer_class != NULL) {
for (int i = 0; i < outer_class->type_parameters().length(); ++i) {
TypeParameter* p = outer_class->type_parameters().at(i);
if (p->identifier()->equals(id)) {
*depth = current_depth;
return p;
}
}
outer_method = outer_class->outer_method();
outer_class = outer_class->outer_class();
++current_depth;
}
}
if (VerifyGenericSignatures) {
fatal("Could not resolve identifier");
}
return NULL;
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(Klass* klass, TRAPS) {
return parse_generic_signature(klass, NULL, CHECK_NULL);
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(
Klass* klass, Symbol* original_name, TRAPS) {
InstanceKlass* ik = InstanceKlass::cast(klass);
Symbol* sym = ik->generic_signature();
ClassDescriptor* spec;
if (sym == NULL || (spec = ClassDescriptor::parse_generic_signature(sym)) == NULL) {
spec = ClassDescriptor::placeholder(ik);
}
u2 outer_index = get_outer_class_index(ik, CHECK_NULL);
if (outer_index != 0) {
if (original_name == NULL) {
original_name = ik->name();
}
Handle class_loader = Handle(THREAD, ik->class_loader());
Handle protection_domain = Handle(THREAD, ik->protection_domain());
Symbol* outer_name = ik->constants()->klass_name_at(outer_index);
Klass* outer = SystemDictionary::find(
outer_name, class_loader, protection_domain, CHECK_NULL);
if (outer == NULL && !THREAD->is_Compiler_thread()) {
outer = SystemDictionary::resolve_super_or_fail(original_name,
outer_name, class_loader, protection_domain, false, CHECK_NULL);
}
InstanceKlass* outer_ik;
ClassDescriptor* outer_spec = NULL;
if (outer == NULL) {
outer_spec = ClassDescriptor::placeholder(ik);
assert(false, "Outer class not loaded and not loadable from here");
} else {
outer_ik = InstanceKlass::cast(outer);
outer_spec = parse_generic_signature(outer, original_name, CHECK_NULL);
}
spec->set_outer_class(outer_spec);
u2 encl_method_idx = ik->enclosing_method_method_index();
if (encl_method_idx != 0 && outer_ik != NULL) {
ConstantPool* cp = ik->constants();
u2 name_index = cp->name_ref_index_at(encl_method_idx);
u2 sig_index = cp->signature_ref_index_at(encl_method_idx);
Symbol* name = cp->symbol_at(name_index);
Symbol* sig = cp->symbol_at(sig_index);
Method* m = outer_ik->find_method(name, sig);
if (m != NULL) {
Symbol* gsig = m->generic_signature();
if (gsig != NULL) {
MethodDescriptor* gms = MethodDescriptor::parse_generic_signature(gsig, outer_spec);
spec->set_outer_method(gms);
}
} else if (VerifyGenericSignatures) {
ResourceMark rm;
stringStream ss;
ss.print("Could not find method %s %s in class %s",
name->as_C_string(), sig->as_C_string(), outer_name->as_C_string());
fatal(ss.as_string());
}
}
}
spec->bind_variables_to_parameters();
return spec;
}
ClassDescriptor* ClassDescriptor::placeholder(InstanceKlass* klass) {
GrowableArray<TypeParameter*> formals;
GrowableArray<ClassType*> interfaces;
ClassType* super_type = NULL;
Klass* super_klass = klass->super();
if (super_klass != NULL) {
InstanceKlass* super = InstanceKlass::cast(super_klass);
super_type = ClassType::from_symbol(super->name());
}
for (int i = 0; i < klass->local_interfaces()->length(); ++i) {
InstanceKlass* iface = InstanceKlass::cast(klass->local_interfaces()->at(i));
interfaces.append(ClassType::from_symbol(iface->name()));
}
return new ClassDescriptor(formals, super_type, interfaces);
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(Symbol* sym) {
DescriptorStream ds(sym);
DescriptorStream* STREAM = &ds;
GrowableArray<TypeParameter*> parameters(8);
char c = READ();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeParameter* ftp = TypeParameter::parse_generic_signature(CHECK_STREAM);
parameters.append(ftp);
c = READ();
}
} else {
PUSH(c);
}
EXPECT('L');
ClassType* super = ClassType::parse_generic_signature(CHECK_STREAM);
GrowableArray<ClassType*> signatures(2);
while (!STREAM->at_end()) {
EXPECT('L');
ClassType* iface = ClassType::parse_generic_signature(CHECK_STREAM);
signatures.append(iface);
}
EXPECT_END();
return new ClassDescriptor(parameters, super, signatures);
}
#ifndef PRODUCT
void ClassDescriptor::print_on(outputStream* str) const {
str->indent().print_cr("ClassDescriptor {");
{
streamIndentor si(str);
if (_type_parameters.length() > 0) {
str->indent().print_cr("Formals {");
{
streamIndentor si(str);
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_super != NULL) {
str->indent().print_cr("Superclass: ");
{
streamIndentor si(str);
_super->print_on(str);
}
}
if (_interfaces.length() > 0) {
str->indent().print_cr("SuperInterfaces: {");
{
streamIndentor si(str);
for (int i = 0; i < _interfaces.length(); ++i) {
_interfaces.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_outer_method != NULL) {
str->indent().print_cr("Outer Method: {");
{
streamIndentor si(str);
_outer_method->print_on(str);
}
str->indent().print_cr("}");
}
if (_outer_class != NULL) {
str->indent().print_cr("Outer Class: {");
{
streamIndentor si(str);
_outer_class->print_on(str);
}
str->indent().print_cr("}");
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ClassType* ClassDescriptor::interface_desc(Symbol* sym) {
for (int i = 0; i < _interfaces.length(); ++i) {
if (_interfaces.at(i)->identifier()->equals(sym)) {
return _interfaces.at(i);
}
}
if (VerifyGenericSignatures) {
fatal("Did not find expected interface");
}
return NULL;
}
void ClassDescriptor::bind_variables_to_parameters() {
if (_outer_class != NULL) {
_outer_class->bind_variables_to_parameters();
}
if (_outer_method != NULL) {
_outer_method->bind_variables_to_parameters();
}
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->bind_variables_to_parameters(this, i);
}
if (_super != NULL) {
_super->bind_variables_to_parameters(this);
}
for (int i = 0; i < _interfaces.length(); ++i) {
_interfaces.at(i)->bind_variables_to_parameters(this);
}
}
ClassDescriptor* ClassDescriptor::canonicalize(Context* ctx) {
GrowableArray<TypeParameter*> type_params(_type_parameters.length());
for (int i = 0; i < _type_parameters.length(); ++i) {
type_params.append(_type_parameters.at(i)->canonicalize(ctx, 0));
}
ClassDescriptor* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx);
ClassType* super = _super == NULL ? NULL : _super->canonicalize(ctx, 0);
GrowableArray<ClassType*> interfaces(_interfaces.length());
for (int i = 0; i < _interfaces.length(); ++i) {
interfaces.append(_interfaces.at(i)->canonicalize(ctx, 0));
}
MethodDescriptor* md = _outer_method == NULL ? NULL :
_outer_method->canonicalize(ctx);
return new ClassDescriptor(type_params, super, interfaces, outer, md);
}
u2 ClassDescriptor::get_outer_class_index(InstanceKlass* klass, TRAPS) {
int inner_index = InstanceKlass::inner_class_inner_class_info_offset;
int outer_index = InstanceKlass::inner_class_outer_class_info_offset;
int name_offset = InstanceKlass::inner_class_inner_name_offset;
int next_offset = InstanceKlass::inner_class_next_offset;
if (klass->inner_classes() == NULL || klass->inner_classes()->length() == 0) {
// No inner class info => no declaring class
return 0;
}
Array<u2>* i_icls = klass->inner_classes();
ConstantPool* i_cp = klass->constants();
int i_length = i_icls->length();
// Find inner_klass attribute
for (int i = 0; i + next_offset < i_length; i += next_offset) {
u2 ioff = i_icls->at(i + inner_index);
u2 ooff = i_icls->at(i + outer_index);
u2 noff = i_icls->at(i + name_offset);
if (ioff != 0) {
// Check to see if the name matches the class we're looking for
// before attempting to find the class.
if (i_cp->klass_name_at_matches(klass, ioff) && ooff != 0) {
return ooff;
}
}
}
// It may be anonymous; try for that.
u2 encl_method_class_idx = klass->enclosing_method_class_index();
if (encl_method_class_idx != 0) {
return encl_method_class_idx;
}
return 0;
}
MethodDescriptor* MethodDescriptor::parse_generic_signature(Method* m, ClassDescriptor* outer) {
Symbol* generic_sig = m->generic_signature();
MethodDescriptor* md = NULL;
if (generic_sig == NULL || (md = parse_generic_signature(generic_sig, outer)) == NULL) {
md = parse_generic_signature(m->signature(), outer);
}
assert(md != NULL, "Could not parse method signature");
md->bind_variables_to_parameters();
return md;
}
MethodDescriptor* MethodDescriptor::parse_generic_signature(Symbol* sym, ClassDescriptor* outer) {
DescriptorStream ds(sym);
DescriptorStream* STREAM = &ds;
GrowableArray<TypeParameter*> params(8);
char c = READ();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeParameter* ftp = TypeParameter::parse_generic_signature(CHECK_STREAM);
params.append(ftp);
c = READ();
}
} else {
PUSH(c);
}
EXPECT('(');
GrowableArray<Type*> parameters(8);
c = READ();
while (c != ')') {
PUSH(c);
Type* arg = Type::parse_generic_signature(CHECK_STREAM);
parameters.append(arg);
c = READ();
}
Type* rt = Type::parse_generic_signature(CHECK_STREAM);
GrowableArray<Type*> throws;
while (!STREAM->at_end()) {
EXPECT('^');
Type* spec = Type::parse_generic_signature(CHECK_STREAM);
throws.append(spec);
}
return new MethodDescriptor(params, outer, parameters, rt, throws);
}
void MethodDescriptor::bind_variables_to_parameters() {
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->bind_variables_to_parameters(this, i);
}
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->bind_variables_to_parameters(this);
}
_return_type->bind_variables_to_parameters(this);
for (int i = 0; i < _throws.length(); ++i) {
_throws.at(i)->bind_variables_to_parameters(this);
}
}
bool MethodDescriptor::covariant_match(MethodDescriptor* other, Context* ctx) {
if (_parameters.length() == other->_parameters.length()) {
for (int i = 0; i < _parameters.length(); ++i) {
if (!_parameters.at(i)->covariant_match(other->_parameters.at(i), ctx)) {
return false;
}
}
if (_return_type->as_primitive() != NULL) {
return _return_type->covariant_match(other->_return_type, ctx);
} else {
// return type is a reference
return other->_return_type->as_class() != NULL ||
other->_return_type->as_variable() != NULL ||
other->_return_type->as_array() != NULL;
}
} else {
return false;
}
}
MethodDescriptor* MethodDescriptor::canonicalize(Context* ctx) {
GrowableArray<TypeParameter*> type_params(_type_parameters.length());
for (int i = 0; i < _type_parameters.length(); ++i) {
type_params.append(_type_parameters.at(i)->canonicalize(ctx, 0));
}
ClassDescriptor* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx);
GrowableArray<Type*> params(_parameters.length());
for (int i = 0; i < _parameters.length(); ++i) {
params.append(_parameters.at(i)->canonicalize(ctx, 0));
}
Type* rt = _return_type->canonicalize(ctx, 0);
GrowableArray<Type*> throws(_throws.length());
for (int i = 0; i < _throws.length(); ++i) {
throws.append(_throws.at(i)->canonicalize(ctx, 0));
}
return new MethodDescriptor(type_params, outer, params, rt, throws);
}
#ifndef PRODUCT
TempNewSymbol MethodDescriptor::reify_signature(Context* ctx, TRAPS) {
stringStream ss(256);
ss.print("(");
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->reify_signature(&ss, ctx);
}
ss.print(")");
_return_type->reify_signature(&ss, ctx);
return SymbolTable::new_symbol(ss.base(), (int)ss.size(), THREAD);
}
void MethodDescriptor::print_on(outputStream* str) const {
str->indent().print_cr("MethodDescriptor {");
{
streamIndentor si(str);
if (_type_parameters.length() > 0) {
str->indent().print_cr("Formals: {");
{
streamIndentor si(str);
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
str->indent().print_cr("Parameters: {");
{
streamIndentor si(str);
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
str->indent().print_cr("Return Type: ");
{
streamIndentor si(str);
_return_type->print_on(str);
}
if (_throws.length() > 0) {
str->indent().print_cr("Throws: {");
{
streamIndentor si(str);
for (int i = 0; i < _throws.length(); ++i) {
_throws.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
TypeParameter* TypeParameter::parse_generic_signature(DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ':') {
c = READ();
}
Identifier* id = STREAM->identifier_from_mark();
ClassType* class_bound = NULL;
GrowableArray<ClassType*> interface_bounds(8);
c = READ();
if (c != '>') {
if (c != ':') {
EXPECTED(c, 'L');
class_bound = ClassType::parse_generic_signature(CHECK_STREAM);
c = READ();
}
while (c == ':') {
EXPECT('L');
ClassType* fts = ClassType::parse_generic_signature(CHECK_STREAM);
interface_bounds.append(fts);
c = READ();
}
}
PUSH(c);
return new TypeParameter(id, class_bound, interface_bounds);
}
void TypeParameter::bind_variables_to_parameters(Descriptor* sig, int position) {
if (_class_bound != NULL) {
_class_bound->bind_variables_to_parameters(sig);
}
for (int i = 0; i < _interface_bounds.length(); ++i) {
_interface_bounds.at(i)->bind_variables_to_parameters(sig);
}
_position = position;
}
Type* TypeParameter::resolve(
Context* ctx, int inner_depth, int ctx_depth) {
if (inner_depth == -1) {
// This indicates that the parameter is a method type parameter, which
// isn't resolveable using the class hierarchy context
return bound();
}
ClassType* provider = ctx->at_depth(ctx_depth);
if (provider != NULL) {
for (int i = 0; i < inner_depth && provider != NULL; ++i) {
provider = provider->outer_class();
}
if (provider != NULL) {
TypeArgument* arg = provider->type_argument_at(_position);
if (arg != NULL) {
Type* value = arg->lower_bound();
return value->canonicalize(ctx, ctx_depth + 1);
}
}
}
return bound();
}
TypeParameter* TypeParameter::canonicalize(Context* ctx, int ctx_depth) {
ClassType* bound = _class_bound == NULL ? NULL :
_class_bound->canonicalize(ctx, ctx_depth);
GrowableArray<ClassType*> ifaces(_interface_bounds.length());
for (int i = 0; i < _interface_bounds.length(); ++i) {
ifaces.append(_interface_bounds.at(i)->canonicalize(ctx, ctx_depth));
}
TypeParameter* ret = new TypeParameter(_identifier, bound, ifaces);
ret->_position = _position;
return ret;
}
ClassType* TypeParameter::bound() {
if (_class_bound != NULL) {
return _class_bound;
}
if (_interface_bounds.length() == 1) {
return _interface_bounds.at(0);
}
return ClassType::java_lang_Object(); // TODO: investigate this case
}
#ifndef PRODUCT
void TypeParameter::print_on(outputStream* str) const {
str->indent().print_cr("Formal: {");
{
streamIndentor si(str);
str->indent().print("Identifier: ");
_identifier->print_on(str);
str->print_cr("");
if (_class_bound != NULL) {
str->indent().print_cr("Class Bound: ");
streamIndentor si(str);
_class_bound->print_on(str);
}
if (_interface_bounds.length() > 0) {
str->indent().print_cr("Interface Bounds: {");
{
streamIndentor si(str);
for (int i = 0; i < _interface_bounds.length(); ++i) {
_interface_bounds.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
str->indent().print_cr("Ordinal Position: %d", _position);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
Type* Type::parse_generic_signature(DescriptorStream* STREAM) {
char c = READ();
switch (c) {
case 'L':
return ClassType::parse_generic_signature(CHECK_STREAM);
case 'T':
return TypeVariable::parse_generic_signature(CHECK_STREAM);
case '[':
return ArrayType::parse_generic_signature(CHECK_STREAM);
default:
return new PrimitiveType(c);
}
}
Identifier* ClassType::parse_generic_signature_simple(GrowableArray<TypeArgument*>* args,
bool* has_inner, DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ';' && c != '.' && c != '<') { c = READ(); }
Identifier* id = STREAM->identifier_from_mark();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeArgument* arg = TypeArgument::parse_generic_signature(CHECK_STREAM);
args->append(arg);
c = READ();
}
c = READ();
}
*has_inner = (c == '.');
if (!(*has_inner)) {
EXPECTED(c, ';');
}
return id;
}
ClassType* ClassType::parse_generic_signature(DescriptorStream* STREAM) {
return parse_generic_signature(NULL, CHECK_STREAM);
}
ClassType* ClassType::parse_generic_signature(ClassType* outer, DescriptorStream* STREAM) {
GrowableArray<TypeArgument*> args;
ClassType* gct = NULL;
bool has_inner = false;
Identifier* id = parse_generic_signature_simple(&args, &has_inner, STREAM);
if (id != NULL) {
gct = new ClassType(id, args, outer);
if (has_inner) {
gct = parse_generic_signature(gct, CHECK_STREAM);
}
}
return gct;
}
ClassType* ClassType::from_symbol(Symbol* sym) {
assert(sym != NULL, "Must not be null");
GrowableArray<TypeArgument*> args;
Identifier* id = new Identifier(sym, 0, sym->utf8_length());
return new ClassType(id, args, NULL);
}
ClassType* ClassType::java_lang_Object() {
return from_symbol(vmSymbols::java_lang_Object());
}
void ClassType::bind_variables_to_parameters(Descriptor* sig) {
for (int i = 0; i < _type_arguments.length(); ++i) {
_type_arguments.at(i)->bind_variables_to_parameters(sig);
}
if (_outer_class != NULL) {
_outer_class->bind_variables_to_parameters(sig);
}
}
TypeArgument* ClassType::type_argument_at(int i) {
if (i >= 0 && i < _type_arguments.length()) {
return _type_arguments.at(i);
} else {
return NULL;
}
}
#ifndef PRODUCT
void ClassType::reify_signature(stringStream* ss, Context* ctx) {
ss->print("L");
_identifier->print_on(ss);
ss->print(";");
}
void ClassType::print_on(outputStream* str) const {
str->indent().print_cr("Class {");
{
streamIndentor si(str);
str->indent().print("Name: ");
_identifier->print_on(str);
str->print_cr("");
if (_type_arguments.length() != 0) {
str->indent().print_cr("Type Arguments: {");
{
streamIndentor si(str);
for (int j = 0; j < _type_arguments.length(); ++j) {
_type_arguments.at(j)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_outer_class != NULL) {
str->indent().print_cr("Outer Class: ");
streamIndentor sir(str);
_outer_class->print_on(str);
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
bool ClassType::covariant_match(Type* other, Context* ctx) {
if (other == this) {
return true;
}
TypeVariable* variable = other->as_variable();
if (variable != NULL) {
other = variable->resolve(ctx, 0);
}
ClassType* outer = outer_class();
ClassType* other_class = other->as_class();
if (other_class == NULL ||
(outer == NULL) != (other_class->outer_class() == NULL)) {
return false;
}
if (!_identifier->equals(other_class->_identifier)) {
return false;
}
if (outer != NULL && !outer->covariant_match(other_class->outer_class(), ctx)) {
return false;
}
return true;
}
ClassType* ClassType::canonicalize(Context* ctx, int ctx_depth) {
GrowableArray<TypeArgument*> args(_type_arguments.length());
for (int i = 0; i < _type_arguments.length(); ++i) {
args.append(_type_arguments.at(i)->canonicalize(ctx, ctx_depth));
}
ClassType* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx, ctx_depth);
return new ClassType(_identifier, args, outer);
}
TypeVariable* TypeVariable::parse_generic_signature(DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ';') {
c = READ();
}
Identifier* id = STREAM->identifier_from_mark();
return new TypeVariable(id);
}
void TypeVariable::bind_variables_to_parameters(Descriptor* sig) {
_parameter = sig->find_type_parameter(_id, &_inner_depth);
if (VerifyGenericSignatures && _parameter == NULL) {
fatal("Could not find formal parameter");
}
}
Type* TypeVariable::resolve(Context* ctx, int ctx_depth) {
if (parameter() != NULL) {
return parameter()->resolve(ctx, inner_depth(), ctx_depth);
} else {
if (VerifyGenericSignatures) {
fatal("Type variable matches no parameter");
}
return NULL;
}
}
bool TypeVariable::covariant_match(Type* other, Context* ctx) {
if (other == this) {
return true;
}
Context my_context(NULL); // empty, results in erasure
Type* my_type = resolve(&my_context, 0);
if (my_type == NULL) {
return false;
}
return my_type->covariant_match(other, ctx);
}
Type* TypeVariable::canonicalize(Context* ctx, int ctx_depth) {
return resolve(ctx, ctx_depth);
}
#ifndef PRODUCT
void TypeVariable::reify_signature(stringStream* ss, Context* ctx) {
Type* type = resolve(ctx, 0);
if (type != NULL) {
type->reify_signature(ss, ctx);
}
}
void TypeVariable::print_on(outputStream* str) const {
str->indent().print_cr("Type Variable {");
{
streamIndentor si(str);
str->indent().print("Name: ");
_id->print_on(str);
str->print_cr("");
str->indent().print_cr("Inner depth: %d", _inner_depth);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ArrayType* ArrayType::parse_generic_signature(DescriptorStream* STREAM) {
Type* base = Type::parse_generic_signature(CHECK_STREAM);
return new ArrayType(base);
}
void ArrayType::bind_variables_to_parameters(Descriptor* sig) {
assert(_base != NULL, "Invalid base");
_base->bind_variables_to_parameters(sig);
}
bool ArrayType::covariant_match(Type* other, Context* ctx) {
assert(_base != NULL, "Invalid base");
if (other == this) {
return true;
}
ArrayType* other_array = other->as_array();
return (other_array != NULL && _base->covariant_match(other_array->_base, ctx));
}
ArrayType* ArrayType::canonicalize(Context* ctx, int ctx_depth) {
assert(_base != NULL, "Invalid base");
return new ArrayType(_base->canonicalize(ctx, ctx_depth));
}
#ifndef PRODUCT
void ArrayType::reify_signature(stringStream* ss, Context* ctx) {
assert(_base != NULL, "Invalid base");
ss->print("[");
_base->reify_signature(ss, ctx);
}
void ArrayType::print_on(outputStream* str) const {
str->indent().print_cr("Array {");
{
streamIndentor si(str);
_base->print_on(str);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
bool PrimitiveType::covariant_match(Type* other, Context* ctx) {
PrimitiveType* other_prim = other->as_primitive();
return (other_prim != NULL && _type == other_prim->_type);
}
PrimitiveType* PrimitiveType::canonicalize(Context* ctx, int ctxd) {
return this;
}
#ifndef PRODUCT
void PrimitiveType::reify_signature(stringStream* ss, Context* ctx) {
ss->print("%c", _type);
}
void PrimitiveType::print_on(outputStream* str) const {
str->indent().print_cr("Primitive: '%c'", _type);
}
#endif // ndef PRODUCT
void PrimitiveType::bind_variables_to_parameters(Descriptor* sig) {
}
TypeArgument* TypeArgument::parse_generic_signature(DescriptorStream* STREAM) {
char c = READ();
Type* type = NULL;
switch (c) {
case '*':
return new TypeArgument(ClassType::java_lang_Object(), NULL);
break;
default:
PUSH(c);
// fall-through
case '+':
case '-':
type = Type::parse_generic_signature(CHECK_STREAM);
if (c == '+') {
return new TypeArgument(type, NULL);
} else if (c == '-') {
return new TypeArgument(ClassType::java_lang_Object(), type);
} else {
return new TypeArgument(type, type);
}
}
}
void TypeArgument::bind_variables_to_parameters(Descriptor* sig) {
assert(_lower_bound != NULL, "Invalid lower bound");
_lower_bound->bind_variables_to_parameters(sig);
if (_upper_bound != NULL && _upper_bound != _lower_bound) {
_upper_bound->bind_variables_to_parameters(sig);
}
}
bool TypeArgument::covariant_match(TypeArgument* other, Context* ctx) {
assert(_lower_bound != NULL, "Invalid lower bound");
if (other == this) {
return true;
}
if (!_lower_bound->covariant_match(other->lower_bound(), ctx)) {
return false;
}
return true;
}
TypeArgument* TypeArgument::canonicalize(Context* ctx, int ctx_depth) {
assert(_lower_bound != NULL, "Invalid lower bound");
Type* lower = _lower_bound->canonicalize(ctx, ctx_depth);
Type* upper = NULL;
if (_upper_bound == _lower_bound) {
upper = lower;
} else if (_upper_bound != NULL) {
upper = _upper_bound->canonicalize(ctx, ctx_depth);
}
return new TypeArgument(lower, upper);
}
#ifndef PRODUCT
void TypeArgument::print_on(outputStream* str) const {
str->indent().print_cr("TypeArgument {");
{
streamIndentor si(str);
if (_lower_bound != NULL) {
str->indent().print("Lower bound: ");
_lower_bound->print_on(str);
}
if (_upper_bound != NULL) {
str->indent().print("Upper bound: ");
_upper_bound->print_on(str);
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
void Context::Mark::destroy() {
if (is_active()) {
_context->reset_to_mark(_marked_size);
}
deactivate();
}
void Context::apply_type_arguments(
InstanceKlass* current, InstanceKlass* super, TRAPS) {
assert(_cache != NULL, "Cannot use an empty context");
ClassType* spec = NULL;
if (current != NULL) {
ClassDescriptor* descriptor = _cache->descriptor_for(current, CHECK);
if (super == current->super()) {
spec = descriptor->super();
} else {
spec = descriptor->interface_desc(super->name());
}
if (spec != NULL) {
_type_arguments.push(spec);
}
}
}
void Context::reset_to_mark(int size) {
_type_arguments.trunc_to(size);
}
ClassType* Context::at_depth(int i) const {
if (i < _type_arguments.length()) {
return _type_arguments.at(_type_arguments.length() - 1 - i);
}
return NULL;
}
#ifndef PRODUCT
void Context::print_on(outputStream* str) const {
str->indent().print_cr("Context {");
for (int i = 0; i < _type_arguments.length(); ++i) {
streamIndentor si(str);
str->indent().print("leval %d: ", i);
ClassType* ct = at_depth(i);
if (ct == NULL) {
str->print_cr("<empty>");
continue;
} else {
str->print_cr("{");
}
for (int j = 0; j < ct->type_arguments_length(); ++j) {
streamIndentor si(str);
TypeArgument* ta = ct->type_argument_at(j);
Type* bound = ta->lower_bound();
bound->print_on(str);
}
str->indent().print_cr("}");
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ClassDescriptor* DescriptorCache::descriptor_for(InstanceKlass* ik, TRAPS) {
ClassDescriptor** existing = _class_descriptors.get(ik);
if (existing == NULL) {
ClassDescriptor* cd = ClassDescriptor::parse_generic_signature(ik, CHECK_NULL);
_class_descriptors.put(ik, cd);
return cd;
} else {
return *existing;
}
}
MethodDescriptor* DescriptorCache::descriptor_for(
Method* mh, ClassDescriptor* cd, TRAPS) {
assert(mh != NULL && cd != NULL, "Should not be NULL");
MethodDescriptor** existing = _method_descriptors.get(mh);
if (existing == NULL) {
MethodDescriptor* md = MethodDescriptor::parse_generic_signature(mh, cd);
_method_descriptors.put(mh, md);
return md;
} else {
return *existing;
}
}
MethodDescriptor* DescriptorCache::descriptor_for(Method* mh, TRAPS) {
ClassDescriptor* cd = descriptor_for(
InstanceKlass::cast(mh->method_holder()), CHECK_NULL);
return descriptor_for(mh, cd, THREAD);
}
} // namespace generic
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
#define SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "runtime/signature.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/resourceHash.hpp"
class stringStream;
namespace generic {
class Identifier;
class ClassDescriptor;
class MethodDescriptor;
class TypeParameter; // a formal type parameter declared in generic signatures
class TypeArgument; // The "type value" passed to fill parameters in supertypes
class TypeVariable; // A usage of a type parameter as a value
/**
* Example:
*
* <T, V> class Foo extends Bar<String> { int m(V v) {} }
* ^^^^^^ ^^^^^^ ^^
* type parameters type argument type variable
*
* Note that a type variable could be passed as an argument too:
* <T, V> class Foo extends Bar<T> { int m(V v) {} }
* ^^^
* type argument's value is a type variable
*/
class Type;
class ClassType;
class ArrayType;
class PrimitiveType;
class Context;
class DescriptorCache;
class DescriptorStream;
class Identifier : public ResourceObj {
private:
Symbol* _sym;
int _begin;
int _end;
public:
Identifier(Symbol* sym, int begin, int end) :
_sym(sym), _begin(begin), _end(end) {}
bool equals(Identifier* other);
bool equals(Symbol* sym);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif // ndef PRODUCT
};
class Descriptor : public ResourceObj {
protected:
GrowableArray<TypeParameter*> _type_parameters;
ClassDescriptor* _outer_class;
Descriptor(GrowableArray<TypeParameter*>& params,
ClassDescriptor* outer)
: _type_parameters(params), _outer_class(outer) {}
public:
ClassDescriptor* outer_class() { return _outer_class; }
void set_outer_class(ClassDescriptor* sig) { _outer_class = sig; }
virtual ClassDescriptor* as_class_signature() { return NULL; }
virtual MethodDescriptor* as_method_signature() { return NULL; }
bool is_class_signature() { return as_class_signature() != NULL; }
bool is_method_signature() { return as_method_signature() != NULL; }
GrowableArray<TypeParameter*>& type_parameters() {
return _type_parameters;
}
TypeParameter* find_type_parameter(Identifier* id, int* param_depth);
virtual void bind_variables_to_parameters() = 0;
#ifndef PRODUCT
virtual void print_on(outputStream* str) const = 0;
#endif
};
class ClassDescriptor : public Descriptor {
private:
ClassType* _super;
GrowableArray<ClassType*> _interfaces;
MethodDescriptor* _outer_method;
ClassDescriptor(GrowableArray<TypeParameter*>& ftp, ClassType* scs,
GrowableArray<ClassType*>& sis, ClassDescriptor* outer_class = NULL,
MethodDescriptor* outer_method = NULL)
: Descriptor(ftp, outer_class), _super(scs), _interfaces(sis),
_outer_method(outer_method) {}
static u2 get_outer_class_index(InstanceKlass* k, TRAPS);
static ClassDescriptor* parse_generic_signature(Klass* k, Symbol* original_name, TRAPS);
public:
virtual ClassDescriptor* as_class_signature() { return this; }
MethodDescriptor* outer_method() { return _outer_method; }
void set_outer_method(MethodDescriptor* m) { _outer_method = m; }
ClassType* super() { return _super; }
ClassType* interface_desc(Symbol* sym);
static ClassDescriptor* parse_generic_signature(Klass* k, TRAPS);
static ClassDescriptor* parse_generic_signature(Symbol* sym);
// For use in superclass chains in positions where this is no generic info
static ClassDescriptor* placeholder(InstanceKlass* klass);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
ClassDescriptor* canonicalize(Context* ctx);
// Linking sets the position index in any contained TypeVariable type
// to correspond to the location of that identifier in the formal type
// parameters.
void bind_variables_to_parameters();
};
class MethodDescriptor : public Descriptor {
private:
GrowableArray<Type*> _parameters;
Type* _return_type;
GrowableArray<Type*> _throws;
MethodDescriptor(GrowableArray<TypeParameter*>& ftp, ClassDescriptor* outer,
GrowableArray<Type*>& sigs, Type* rt, GrowableArray<Type*>& throws)
: Descriptor(ftp, outer), _parameters(sigs), _return_type(rt),
_throws(throws) {}
public:
static MethodDescriptor* parse_generic_signature(Method* m, ClassDescriptor* outer);
static MethodDescriptor* parse_generic_signature(Symbol* sym, ClassDescriptor* outer);
MethodDescriptor* as_method_signature() { return this; }
// Performs generic analysis on the method parameters to determine
// if both methods refer to the same argument types.
bool covariant_match(MethodDescriptor* other, Context* ctx);
// Returns a new method descriptor with all generic variables
// removed and replaced with whatever is indicated using the Context.
MethodDescriptor* canonicalize(Context* ctx);
void bind_variables_to_parameters();
#ifndef PRODUCT
TempNewSymbol reify_signature(Context* ctx, TRAPS);
void print_on(outputStream* str) const;
#endif
};
class TypeParameter : public ResourceObj {
private:
Identifier* _identifier;
ClassType* _class_bound;
GrowableArray<ClassType*> _interface_bounds;
// The position is the ordinal location of the parameter within the
// formal parameter list (excluding outer classes). It is only set for
// formal type parameters that are associated with a class -- method
// type parameters are left as -1. When resolving a generic variable to
// find the actual type, this index is used to access the generic type
// argument in the provided context object.
int _position; // Assigned during variable linking
TypeParameter(Identifier* id, ClassType* class_bound,
GrowableArray<ClassType*>& interface_bounds) :
_identifier(id), _class_bound(class_bound),
_interface_bounds(interface_bounds), _position(-1) {}
public:
static TypeParameter* parse_generic_signature(DescriptorStream* str);
ClassType* bound();
int position() { return _position; }
void bind_variables_to_parameters(Descriptor* sig, int position);
Identifier* identifier() { return _identifier; }
Type* resolve(Context* ctx, int inner_depth, int ctx_depth);
TypeParameter* canonicalize(Context* ctx, int ctx_depth);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
class Type : public ResourceObj {
public:
static Type* parse_generic_signature(DescriptorStream* str);
virtual ClassType* as_class() { return NULL; }
virtual TypeVariable* as_variable() { return NULL; }
virtual ArrayType* as_array() { return NULL; }
virtual PrimitiveType* as_primitive() { return NULL; }
virtual bool covariant_match(Type* gt, Context* ctx) = 0;
virtual Type* canonicalize(Context* ctx, int ctx_depth) = 0;
virtual void bind_variables_to_parameters(Descriptor* sig) = 0;
#ifndef PRODUCT
virtual void reify_signature(stringStream* ss, Context* ctx) = 0;
virtual void print_on(outputStream* str) const = 0;
#endif
};
class ClassType : public Type {
friend class ClassDescriptor;
protected:
Identifier* _identifier;
GrowableArray<TypeArgument*> _type_arguments;
ClassType* _outer_class;
ClassType(Identifier* identifier,
GrowableArray<TypeArgument*>& args,
ClassType* outer)
: _identifier(identifier), _type_arguments(args), _outer_class(outer) {}
// Returns true if there are inner classes to read
static Identifier* parse_generic_signature_simple(
GrowableArray<TypeArgument*>* args,
bool* has_inner, DescriptorStream* str);
static ClassType* parse_generic_signature(ClassType* outer,
DescriptorStream* str);
static ClassType* from_symbol(Symbol* sym);
public:
ClassType* as_class() { return this; }
static ClassType* parse_generic_signature(DescriptorStream* str);
static ClassType* java_lang_Object();
Identifier* identifier() { return _identifier; }
int type_arguments_length() { return _type_arguments.length(); }
TypeArgument* type_argument_at(int i);
virtual ClassType* outer_class() { return _outer_class; }
bool covariant_match(Type* gt, Context* ctx);
ClassType* canonicalize(Context* ctx, int context_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class TypeVariable : public Type {
private:
Identifier* _id;
TypeParameter* _parameter; // assigned during linking
// how many steps "out" from inner classes, -1 if method
int _inner_depth;
TypeVariable(Identifier* id)
: _id(id), _parameter(NULL), _inner_depth(0) {}
public:
TypeVariable* as_variable() { return this; }
static TypeVariable* parse_generic_signature(DescriptorStream* str);
Identifier* identifier() { return _id; }
TypeParameter* parameter() { return _parameter; }
int inner_depth() { return _inner_depth; }
void bind_variables_to_parameters(Descriptor* sig);
Type* resolve(Context* ctx, int ctx_depth);
bool covariant_match(Type* gt, Context* ctx);
Type* canonicalize(Context* ctx, int ctx_depth);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class ArrayType : public Type {
private:
Type* _base;
ArrayType(Type* base) : _base(base) {}
public:
ArrayType* as_array() { return this; }
static ArrayType* parse_generic_signature(DescriptorStream* str);
bool covariant_match(Type* gt, Context* ctx);
ArrayType* canonicalize(Context* ctx, int ctx_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class PrimitiveType : public Type {
friend class Type;
private:
char _type; // includes V for void
PrimitiveType(char& type) : _type(type) {}
public:
PrimitiveType* as_primitive() { return this; }
bool covariant_match(Type* gt, Context* ctx);
PrimitiveType* canonicalize(Context* ctx, int ctx_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class TypeArgument : public ResourceObj {
private:
Type* _lower_bound;
Type* _upper_bound; // may be null or == _lower_bound
TypeArgument(Type* lower_bound, Type* upper_bound)
: _lower_bound(lower_bound), _upper_bound(upper_bound) {}
public:
static TypeArgument* parse_generic_signature(DescriptorStream* str);
Type* lower_bound() { return _lower_bound; }
Type* upper_bound() { return _upper_bound; }
void bind_variables_to_parameters(Descriptor* sig);
TypeArgument* canonicalize(Context* ctx, int ctx_depth);
bool covariant_match(TypeArgument* a, Context* ctx);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
class Context : public ResourceObj {
private:
DescriptorCache* _cache;
GrowableArray<ClassType*> _type_arguments;
void reset_to_mark(int size);
public:
// When this object goes out of scope or 'destroy' is
// called, then the application of the type to the
// context is wound-back (unless it's been deactivated).
class Mark : public StackObj {
private:
mutable Context* _context;
int _marked_size;
bool is_active() const { return _context != NULL; }
void deactivate() const { _context = NULL; }
public:
Mark() : _context(NULL), _marked_size(0) {}
Mark(Context* ctx, int sz) : _context(ctx), _marked_size(sz) {}
Mark(const Mark& m) : _context(m._context), _marked_size(m._marked_size) {
m.deactivate(); // Ownership is transferred
}
Mark& operator=(const Mark& cm) {
destroy();
_context = cm._context;
_marked_size = cm._marked_size;
cm.deactivate();
return *this;
}
void destroy();
~Mark() { destroy(); }
};
Context(DescriptorCache* cache) : _cache(cache) {}
Mark mark() { return Mark(this, _type_arguments.length()); }
void apply_type_arguments(InstanceKlass* current, InstanceKlass* super,TRAPS);
ClassType* at_depth(int i) const;
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
/**
* Contains a cache of descriptors for classes and methods so they can be
* looked-up instead of reparsing each time they are needed.
*/
class DescriptorCache : public ResourceObj {
private:
ResourceHashtable<InstanceKlass*, ClassDescriptor*> _class_descriptors;
ResourceHashtable<Method*, MethodDescriptor*> _method_descriptors;
public:
ClassDescriptor* descriptor_for(InstanceKlass* ikh, TRAPS);
MethodDescriptor* descriptor_for(Method* mh, ClassDescriptor* cd, TRAPS);
// Class descriptor derived from method holder
MethodDescriptor* descriptor_for(Method* mh, TRAPS);
};
} // namespace generic
#endif // SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
......@@ -137,6 +137,7 @@ class SymbolPropertyTable;
/* NOTE: needed too early in bootstrapping process to have checks based on JDK version */ \
/* Universe::is_gte_jdk14x_version() is not set up by this point. */ \
/* It's okay if this turns out to be NULL in non-1.4 JDKs. */ \
do_klass(lambda_MagicLambdaImpl_klass, java_lang_invoke_MagicLambdaImpl, Opt ) \
do_klass(reflect_MagicAccessorImpl_klass, sun_reflect_MagicAccessorImpl, Opt ) \
do_klass(reflect_MethodAccessorImpl_klass, sun_reflect_MethodAccessorImpl, Opt_Only_JDK14NewRef) \
do_klass(reflect_ConstructorAccessorImpl_klass, sun_reflect_ConstructorAccessorImpl, Opt_Only_JDK14NewRef) \
......
......@@ -555,9 +555,10 @@ void ClassVerifier::verify_class(TRAPS) {
if (was_recursively_verified()) return;
Method* m = methods->at(index);
if (m->is_native() || m->is_abstract()) {
if (m->is_native() || m->is_abstract() || m->is_overpass()) {
// If m is native or abstract, skip it. It is checked in class file
// parser that methods do not override a final method.
// parser that methods do not override a final method. Overpass methods
// are trusted since the VM generates them.
continue;
}
verify_method(methodHandle(THREAD, m), CHECK_VERIFY(this));
......@@ -2304,11 +2305,21 @@ void ClassVerifier::verify_invoke_instructions(
// Make sure the constant pool item is the right type
u2 index = bcs->get_index_u2();
Bytecodes::Code opcode = bcs->raw_code();
unsigned int types = (opcode == Bytecodes::_invokeinterface
? 1 << JVM_CONSTANT_InterfaceMethodref
: opcode == Bytecodes::_invokedynamic
? 1 << JVM_CONSTANT_InvokeDynamic
: 1 << JVM_CONSTANT_Methodref);
unsigned int types;
switch (opcode) {
case Bytecodes::_invokeinterface:
types = 1 << JVM_CONSTANT_InterfaceMethodref;
break;
case Bytecodes::_invokedynamic:
types = 1 << JVM_CONSTANT_InvokeDynamic;
break;
case Bytecodes::_invokespecial:
types = (1 << JVM_CONSTANT_InterfaceMethodref) |
(1 << JVM_CONSTANT_Methodref);
break;
default:
types = 1 << JVM_CONSTANT_Methodref;
}
verify_cp_type(bcs->bci(), index, cp, types, CHECK_VERIFY(this));
// Get method name and signature
......
......@@ -258,6 +258,7 @@
template(java_lang_invoke_DontInline_signature, "Ljava/lang/invoke/DontInline;") \
template(java_lang_invoke_LambdaForm_Compiled_signature, "Ljava/lang/invoke/LambdaForm$Compiled;") \
template(java_lang_invoke_LambdaForm_Hidden_signature, "Ljava/lang/invoke/LambdaForm$Hidden;") \
template(java_lang_invoke_MagicLambdaImpl, "java/lang/invoke/MagicLambdaImpl") \
/* internal up-calls made only by the JVM, via class sun.invoke.MethodHandleNatives: */ \
template(findMethodHandleType_name, "findMethodHandleType") \
template(findMethodHandleType_signature, "(Ljava/lang/Class;[Ljava/lang/Class;)Ljava/lang/invoke/MethodType;") \
......
......@@ -1160,7 +1160,11 @@ bool Dependencies::is_concrete_method(Method* m) {
// We could also return false if m does not yet appear to be
// executed, if the VM version supports this distinction also.
return !m->is_abstract();
return !m->is_abstract() &&
!InstanceKlass::cast(m->method_holder())->is_interface();
// TODO: investigate whether default methods should be
// considered as "concrete" in this situation. For now they
// are not.
}
......
......@@ -23,6 +23,7 @@
*/
#include "precompiled.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileBroker.hpp"
......@@ -404,21 +405,13 @@ void LinkResolver::resolve_method(methodHandle& resolved_method, KlassHandle res
Symbol* method_name, Symbol* method_signature,
KlassHandle current_klass, bool check_access, TRAPS) {
// 1. check if klass is not interface
if (resolved_klass->is_interface()) {
ResourceMark rm(THREAD);
char buf[200];
jio_snprintf(buf, sizeof(buf), "Found interface %s, but class was expected", Klass::cast(resolved_klass())->external_name());
THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
}
Handle nested_exception;
// 2. lookup method in resolved klass and its super klasses
// 1. lookup method in resolved klass and its super klasses
lookup_method_in_klasses(resolved_method, resolved_klass, method_name, method_signature, CHECK);
if (resolved_method.is_null()) { // not found in the class hierarchy
// 3. lookup method in all the interfaces implemented by the resolved klass
// 2. lookup method in all the interfaces implemented by the resolved klass
lookup_method_in_interfaces(resolved_method, resolved_klass, method_name, method_signature, CHECK);
if (resolved_method.is_null()) {
......@@ -432,7 +425,7 @@ void LinkResolver::resolve_method(methodHandle& resolved_method, KlassHandle res
}
if (resolved_method.is_null()) {
// 4. method lookup failed
// 3. method lookup failed
ResourceMark rm(THREAD);
THROW_MSG_CAUSE(vmSymbols::java_lang_NoSuchMethodError(),
Method::name_and_sig_as_C_string(Klass::cast(resolved_klass()),
......@@ -442,6 +435,15 @@ void LinkResolver::resolve_method(methodHandle& resolved_method, KlassHandle res
}
}
// 4. check if klass is not interface
if (resolved_klass->is_interface() && resolved_method->is_abstract()) {
ResourceMark rm(THREAD);
char buf[200];
jio_snprintf(buf, sizeof(buf), "Found interface %s, but class was expected",
resolved_klass()->external_name());
THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
}
// 5. check if method is concrete
if (resolved_method->is_abstract() && !resolved_klass->is_abstract()) {
ResourceMark rm(THREAD);
......@@ -743,6 +745,27 @@ void LinkResolver::linktime_resolve_special_method(methodHandle& resolved_method
Symbol* method_name, Symbol* method_signature,
KlassHandle current_klass, bool check_access, TRAPS) {
if (resolved_klass->is_interface() && current_klass() != NULL) {
// If the target class is a direct interface, treat this as a "super"
// default call.
//
// If the current method is an overpass that happens to call a direct
// super-interface's method, then we'll end up rerunning the default method
// analysis even though we don't need to, but that's ok since it will end
// up with the same answer.
InstanceKlass* ik = InstanceKlass::cast(current_klass());
Array<Klass*>* interfaces = ik->local_interfaces();
int num_interfaces = interfaces->length();
for (int index = 0; index < num_interfaces; index++) {
if (interfaces->at(index) == resolved_klass()) {
Method* method = DefaultMethods::find_super_default(current_klass(),
resolved_klass(), method_name, method_signature, CHECK);
resolved_method = methodHandle(THREAD, method);
return;
}
}
}
resolve_method(resolved_method, resolved_klass, method_name, method_signature, current_klass, check_access, CHECK);
// check if method name is <init>, that it is found in same klass as static type
......@@ -784,11 +807,17 @@ void LinkResolver::runtime_resolve_special_method(CallInfo& result, methodHandle
{ KlassHandle method_klass = KlassHandle(THREAD,
resolved_method->method_holder());
if (check_access &&
const bool direct_calling_default_method =
resolved_klass() != NULL && resolved_method() != NULL &&
resolved_klass->is_interface() && !resolved_method->is_abstract();
if (!direct_calling_default_method &&
check_access &&
// a) check if ACC_SUPER flag is set for the current class
current_klass->is_super() &&
// b) check if the method class is a superclass of the current class (superclass relation is not reflexive!)
current_klass->is_subtype_of(method_klass()) && current_klass() != method_klass() &&
current_klass->is_subtype_of(method_klass()) &&
current_klass() != method_klass() &&
// c) check if the method is not <init>
resolved_method->name() != vmSymbols::object_initializer_name()) {
// Lookup super method
......
......@@ -34,29 +34,30 @@ const u2 ConstMethod::MAX_IDNUM = 0xFFFE;
const u2 ConstMethod::UNSET_IDNUM = 0xFFFF;
ConstMethod* ConstMethod::allocate(ClassLoaderData* loader_data,
int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
TRAPS) {
int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
MethodType method_type,
TRAPS) {
int size = ConstMethod::size(byte_code_size,
compressed_line_number_size,
localvariable_table_length,
exception_table_length,
checked_exceptions_length);
return new (loader_data, size, true, THREAD) ConstMethod(
byte_code_size, compressed_line_number_size,
localvariable_table_length, exception_table_length,
checked_exceptions_length, size);
byte_code_size, compressed_line_number_size, localvariable_table_length,
exception_table_length, checked_exceptions_length, method_type, size);
}
ConstMethod::ConstMethod(int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
int size) {
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
MethodType method_type,
int size) {
No_Safepoint_Verifier no_safepoint;
set_interpreter_kind(Interpreter::invalid);
......@@ -69,6 +70,7 @@ ConstMethod::ConstMethod(int byte_code_size,
compressed_line_number_size,
localvariable_table_length,
exception_table_length);
set_method_type(method_type);
assert(this->size() == size, "wrong size for object");
}
......
......@@ -108,12 +108,17 @@ class ExceptionTableElement VALUE_OBJ_CLASS_SPEC {
class ConstMethod : public MetaspaceObj {
friend class VMStructs;
public:
typedef enum { NORMAL, OVERPASS } MethodType;
private:
enum {
_has_linenumber_table = 1,
_has_checked_exceptions = 2,
_has_localvariable_table = 4,
_has_exception_table = 8
_has_exception_table = 8,
_is_overpass = 16
};
// Bit vector of signature
......@@ -145,19 +150,22 @@ private:
// Constructor
ConstMethod(int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
int size);
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
MethodType is_overpass,
int size);
public:
static ConstMethod* allocate(ClassLoaderData* loader_data,
int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
TRAPS);
int byte_code_size,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
MethodType mt,
TRAPS);
bool is_constMethod() const { return true; }
......@@ -179,6 +187,19 @@ public:
bool has_exception_handler() const
{ return (_flags & _has_exception_table) != 0; }
MethodType method_type() const {
return ((_flags & _is_overpass) == 0) ? NORMAL : OVERPASS;
}
void set_method_type(MethodType mt) {
if (mt == NORMAL) {
_flags &= ~(_is_overpass);
} else {
_flags |= _is_overpass;
}
}
void set_interpreter_kind(int kind) { _interpreter_kind = kind; }
int interpreter_kind(void) const { return _interpreter_kind; }
......
......@@ -1143,16 +1143,21 @@ void ConstantPool::copy_cp_to_impl(constantPoolHandle from_cp, int start_i, int
int from_oplen = operand_array_length(from_cp->operands());
int old_oplen = operand_array_length(to_cp->operands());
if (from_oplen != 0) {
ClassLoaderData* loader_data = to_cp->pool_holder()->class_loader_data();
// append my operands to the target's operands array
if (old_oplen == 0) {
to_cp->set_operands(from_cp->operands()); // reuse; do not merge
// Can't just reuse from_cp's operand list because of deallocation issues
int len = from_cp->operands()->length();
Array<u2>* new_ops = MetadataFactory::new_array<u2>(loader_data, len, CHECK);
Copy::conjoint_memory_atomic(
from_cp->operands()->adr_at(0), new_ops->adr_at(0), len * sizeof(u2));
to_cp->set_operands(new_ops);
} else {
int old_len = to_cp->operands()->length();
int from_len = from_cp->operands()->length();
int old_off = old_oplen * sizeof(u2);
int from_off = from_oplen * sizeof(u2);
// Use the metaspace for the destination constant pool
ClassLoaderData* loader_data = to_cp->pool_holder()->class_loader_data();
Array<u2>* new_operands = MetadataFactory::new_array<u2>(loader_data, old_len + from_len, CHECK);
int fillp = 0, len = 0;
// first part of dest
......
......@@ -743,6 +743,35 @@ void InstanceKlass::initialize_impl(instanceKlassHandle this_oop, TRAPS) {
}
}
if (this_oop->has_default_methods()) {
// Step 7.5: initialize any interfaces which have default methods
for (int i = 0; i < this_oop->local_interfaces()->length(); ++i) {
Klass* iface = this_oop->local_interfaces()->at(i);
InstanceKlass* ik = InstanceKlass::cast(iface);
if (ik->has_default_methods() && ik->should_be_initialized()) {
ik->initialize(THREAD);
if (HAS_PENDING_EXCEPTION) {
Handle e(THREAD, PENDING_EXCEPTION);
CLEAR_PENDING_EXCEPTION;
{
EXCEPTION_MARK;
// Locks object, set state, and notify all waiting threads
this_oop->set_initialization_state_and_notify(
initialization_error, THREAD);
// ignore any exception thrown, superclass initialization error is
// thrown below
CLEAR_PENDING_EXCEPTION;
}
DTRACE_CLASSINIT_PROBE_WAIT(
super__failed, InstanceKlass::cast(this_oop()), -1, wait);
THROW_OOP(e());
}
}
}
}
// Step 8
{
assert(THREAD->is_Java_thread(), "non-JavaThread in initialize_impl");
......@@ -1252,11 +1281,7 @@ static int linear_search(Array<Method*>* methods, Symbol* name, Symbol* signatur
}
#endif
Method* InstanceKlass::find_method(Symbol* name, Symbol* signature) const {
return InstanceKlass::find_method(methods(), name, signature);
}
Method* InstanceKlass::find_method(Array<Method*>* methods, Symbol* name, Symbol* signature) {
static int binary_search(Array<Method*>* methods, Symbol* name) {
int len = methods->length();
// methods are sorted, so do binary search
int l = 0;
......@@ -1267,43 +1292,70 @@ Method* InstanceKlass::find_method(Array<Method*>* methods, Symbol* name, Symbol
assert(m->is_method(), "must be method");
int res = m->name()->fast_compare(name);
if (res == 0) {
// found matching name; do linear search to find matching signature
// first, quick check for common case
if (m->signature() == signature) return m;
// search downwards through overloaded methods
int i;
for (i = mid - 1; i >= l; i--) {
return mid;
} else if (res < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
return -1;
}
Method* InstanceKlass::find_method(Symbol* name, Symbol* signature) const {
return InstanceKlass::find_method(methods(), name, signature);
}
Method* InstanceKlass::find_method(
Array<Method*>* methods, Symbol* name, Symbol* signature) {
int hit = binary_search(methods, name);
if (hit != -1) {
Method* m = methods->at(hit);
// Do linear search to find matching signature. First, quick check
// for common case
if (m->signature() == signature) return m;
// search downwards through overloaded methods
int i;
for (i = hit - 1; i >= 0; --i) {
Method* m = methods->at(i);
assert(m->is_method(), "must be method");
if (m->name() != name) break;
if (m->signature() == signature) return m;
}
// search upwards
for (i = mid + 1; i <= h; i++) {
}
// search upwards
for (i = hit + 1; i < methods->length(); ++i) {
Method* m = methods->at(i);
assert(m->is_method(), "must be method");
if (m->name() != name) break;
if (m->signature() == signature) return m;
}
// not found
#ifdef ASSERT
int index = linear_search(methods, name, signature);
assert(index == -1, err_msg("binary search should have found entry %d", index));
#endif
return NULL;
} else if (res < 0) {
l = mid + 1;
} else {
h = mid - 1;
}
}
// not found
#ifdef ASSERT
int index = linear_search(methods, name, signature);
assert(index == -1, err_msg("binary search should have found entry %d", index));
int index = linear_search(methods, name, signature);
assert(index == -1, err_msg("binary search should have found entry %d", index));
#endif
}
return NULL;
}
int InstanceKlass::find_method_by_name(Symbol* name, int* end) {
return find_method_by_name(methods(), name, end);
}
int InstanceKlass::find_method_by_name(
Array<Method*>* methods, Symbol* name, int* end_ptr) {
assert(end_ptr != NULL, "just checking");
int start = binary_search(methods, name);
int end = start + 1;
if (start != -1) {
while (start - 1 >= 0 && (methods->at(start - 1))->name() == name) --start;
while (end < methods->length() && (methods->at(end))->name() == name) ++end;
*end_ptr = end;
return start;
}
return -1;
}
Method* InstanceKlass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
Klass* klass = const_cast<InstanceKlass*>(this);
while (klass != NULL) {
......
......@@ -245,6 +245,10 @@ class InstanceKlass: public Klass {
unsigned char * _cached_class_file_bytes; // JVMTI: cached class file, before retransformable agent modified it in CFLH
jint _cached_class_file_len; // JVMTI: length of above
JvmtiCachedClassFieldMap* _jvmti_cached_class_field_map; // JVMTI: used during heap iteration
// true if class, superclass, or implemented interfaces have default methods
bool _has_default_methods;
volatile u2 _idnum_allocated_count; // JNI/JVMTI: increments with the addition of methods, old ids don't change
// Method array.
Array<Method*>* _methods;
......@@ -492,6 +496,13 @@ class InstanceKlass: public Klass {
// (returns NULL if not found)
Method* lookup_method_in_all_interfaces(Symbol* name, Symbol* signature) const;
// Find method indices by name. If a method with the specified name is
// found the index to the first method is returned, and 'end' is filled in
// with the index of first non-name-matching method. If no method is found
// -1 is returned.
int find_method_by_name(Symbol* name, int* end);
static int find_method_by_name(Array<Method*>* methods, Symbol* name, int* end);
// constant pool
ConstantPool* constants() const { return _constants; }
void set_constants(ConstantPool* c) { _constants = c; }
......@@ -592,6 +603,9 @@ class InstanceKlass: public Klass {
return _jvmti_cached_class_field_map;
}
bool has_default_methods() const { return _has_default_methods; }
void set_has_default_methods(bool b) { _has_default_methods = b; }
// for adding methods, ConstMethod::UNSET_IDNUM means no more ids available
inline u2 next_method_idnum();
void set_initial_method_idnum(u2 value) { _idnum_allocated_count = value; }
......@@ -728,7 +742,6 @@ class InstanceKlass: public Klass {
GrowableArray<Klass*>* compute_secondary_supers(int num_extra_slots);
bool compute_is_subtype_of(Klass* k);
bool can_be_primary_super_slow() const;
Klass* java_super() const { return super(); }
int oop_size(oop obj) const { return size_helper(); }
bool oop_is_instance_slow() const { return true; }
......@@ -750,6 +763,10 @@ class InstanceKlass: public Klass {
return (InstanceKlass*) k;
}
InstanceKlass* java_super() const {
return (super() == NULL) ? NULL : cast(super());
}
// Sizing (in words)
static int header_size() { return align_object_offset(sizeof(InstanceKlass)/HeapWordSize); }
static int size(int vtable_length, int itable_length,
......
......@@ -54,22 +54,16 @@ inline InstanceKlass* klassVtable::ik() const {
// the same name and signature as m), then m is a Miranda method which is
// entered as a public abstract method in C's vtable. From then on it should
// treated as any other public method in C for method over-ride purposes.
void klassVtable::compute_vtable_size_and_num_mirandas(int &vtable_length,
int &num_miranda_methods,
Klass* super,
Array<Method*>* methods,
AccessFlags class_flags,
Handle classloader,
Symbol* classname,
Array<Klass*>* local_interfaces,
TRAPS
) {
void klassVtable::compute_vtable_size_and_num_mirandas(
int* vtable_length_ret, int* num_new_mirandas,
GrowableArray<Method*>* all_mirandas, Klass* super,
Array<Method*>* methods, AccessFlags class_flags,
Handle classloader, Symbol* classname, Array<Klass*>* local_interfaces,
TRAPS) {
No_Safepoint_Verifier nsv;
// set up default result values
vtable_length = 0;
num_miranda_methods = 0;
int vtable_length = 0;
// start off with super's vtable length
InstanceKlass* sk = (InstanceKlass*)super;
......@@ -86,9 +80,12 @@ void klassVtable::compute_vtable_size_and_num_mirandas(int &vtable_length,
}
}
GrowableArray<Method*> new_mirandas(20);
// compute the number of mirandas methods that must be added to the end
num_miranda_methods = get_num_mirandas(super, methods, local_interfaces);
vtable_length += (num_miranda_methods * vtableEntry::size());
get_mirandas(&new_mirandas, all_mirandas, super, methods, local_interfaces);
*num_new_mirandas = new_mirandas.length();
vtable_length += *num_new_mirandas * vtableEntry::size();
if (Universe::is_bootstrapping() && vtable_length == 0) {
// array classes don't have their superclass set correctly during
......@@ -109,6 +106,8 @@ void klassVtable::compute_vtable_size_and_num_mirandas(int &vtable_length,
"bad vtable size for class Object");
assert(vtable_length % vtableEntry::size() == 0, "bad vtable length");
assert(vtable_length >= Universe::base_vtable_size(), "vtable too small");
*vtable_length_ret = vtable_length;
}
int klassVtable::index_of(Method* m, int len) const {
......@@ -191,7 +190,7 @@ void klassVtable::initialize_vtable(bool checkconstraints, TRAPS) {
}
// add miranda methods; it will also update the value of initialized
fill_in_mirandas(initialized);
fill_in_mirandas(&initialized);
// In class hierarchies where the accessibility is not increasing (i.e., going from private ->
// package_private -> publicprotected), the vtable might actually be smaller than our initial
......@@ -249,6 +248,11 @@ InstanceKlass* klassVtable::find_transitive_override(InstanceKlass* initialsuper
return superk;
}
// Methods that are "effectively" final don't need vtable entries.
bool method_is_effectively_final(
AccessFlags klass_flags, methodHandle target) {
return target->is_final() || klass_flags.is_final() && !target->is_overpass();
}
// Update child's copy of super vtable for overrides
// OR return true if a new vtable entry is required
......@@ -269,7 +273,7 @@ bool klassVtable::update_inherited_vtable(InstanceKlass* klass, methodHandle tar
return false;
}
if (klass->is_final() || target_method()->is_final()) {
if (method_is_effectively_final(klass->access_flags(), target_method)) {
// a final method never needs a new entry; final methods can be statically
// resolved and they have to be present in the vtable only if they override
// a super's method, in which case they re-use its entry
......@@ -406,7 +410,8 @@ bool klassVtable::needs_new_vtable_entry(methodHandle target_method,
Symbol* classname,
AccessFlags class_flags,
TRAPS) {
if ((class_flags.is_final() || target_method()->is_final()) ||
if (method_is_effectively_final(class_flags, target_method) ||
// a final method never needs a new entry; final methods can be statically
// resolved and they have to be present in the vtable only if they override
// a super's method, in which case they re-use its entry
......@@ -502,7 +507,7 @@ bool klassVtable::is_miranda_entry_at(int i) {
// miranda methods are interface methods in a class's vtable
if (mhk->is_interface()) {
assert(m->is_public() && m->is_abstract(), "should be public and abstract");
assert(m->is_public(), "should be public");
assert(ik()->implements_interface(method_holder) , "this class should implement the interface");
assert(is_miranda(m, ik()->methods(), ik()->super()), "should be a miranda_method");
return true;
......@@ -532,19 +537,19 @@ bool klassVtable::is_miranda(Method* m, Array<Method*>* class_methods, Klass* su
return false;
}
void klassVtable::add_new_mirandas_to_list(GrowableArray<Method*>* list_of_current_mirandas,
Array<Method*>* current_interface_methods,
Array<Method*>* class_methods,
Klass* super) {
void klassVtable::add_new_mirandas_to_lists(
GrowableArray<Method*>* new_mirandas, GrowableArray<Method*>* all_mirandas,
Array<Method*>* current_interface_methods, Array<Method*>* class_methods,
Klass* super) {
// iterate thru the current interface's method to see if it a miranda
int num_methods = current_interface_methods->length();
for (int i = 0; i < num_methods; i++) {
Method* im = current_interface_methods->at(i);
bool is_duplicate = false;
int num_of_current_mirandas = list_of_current_mirandas->length();
int num_of_current_mirandas = new_mirandas->length();
// check for duplicate mirandas in different interfaces we implement
for (int j = 0; j < num_of_current_mirandas; j++) {
Method* miranda = list_of_current_mirandas->at(j);
Method* miranda = new_mirandas->at(j);
if ((im->name() == miranda->name()) &&
(im->signature() == miranda->signature())) {
is_duplicate = true;
......@@ -557,51 +562,47 @@ void klassVtable::add_new_mirandas_to_list(GrowableArray<Method*>* list_of_curre
InstanceKlass *sk = InstanceKlass::cast(super);
// check if it is a duplicate of a super's miranda
if (sk->lookup_method_in_all_interfaces(im->name(), im->signature()) == NULL) {
list_of_current_mirandas->append(im);
new_mirandas->append(im);
}
if (all_mirandas != NULL) {
all_mirandas->append(im);
}
}
}
}
}
void klassVtable::get_mirandas(GrowableArray<Method*>* mirandas,
void klassVtable::get_mirandas(GrowableArray<Method*>* new_mirandas,
GrowableArray<Method*>* all_mirandas,
Klass* super, Array<Method*>* class_methods,
Array<Klass*>* local_interfaces) {
assert((mirandas->length() == 0) , "current mirandas must be 0");
assert((new_mirandas->length() == 0) , "current mirandas must be 0");
// iterate thru the local interfaces looking for a miranda
int num_local_ifs = local_interfaces->length();
for (int i = 0; i < num_local_ifs; i++) {
InstanceKlass *ik = InstanceKlass::cast(local_interfaces->at(i));
add_new_mirandas_to_list(mirandas, ik->methods(), class_methods, super);
add_new_mirandas_to_lists(new_mirandas, all_mirandas,
ik->methods(), class_methods, super);
// iterate thru each local's super interfaces
Array<Klass*>* super_ifs = ik->transitive_interfaces();
int num_super_ifs = super_ifs->length();
for (int j = 0; j < num_super_ifs; j++) {
InstanceKlass *sik = InstanceKlass::cast(super_ifs->at(j));
add_new_mirandas_to_list(mirandas, sik->methods(), class_methods, super);
add_new_mirandas_to_lists(new_mirandas, all_mirandas,
sik->methods(), class_methods, super);
}
}
}
// get number of mirandas
int klassVtable::get_num_mirandas(Klass* super, Array<Method*>* class_methods, Array<Klass*>* local_interfaces) {
ResourceMark rm;
GrowableArray<Method*>* mirandas = new GrowableArray<Method*>(20);
get_mirandas(mirandas, super, class_methods, local_interfaces);
return mirandas->length();
}
// fill in mirandas
void klassVtable::fill_in_mirandas(int& initialized) {
ResourceMark rm;
GrowableArray<Method*>* mirandas = new GrowableArray<Method*>(20);
InstanceKlass *this_ik = ik();
get_mirandas(mirandas, this_ik->super(), this_ik->methods(), this_ik->local_interfaces());
int num_mirandas = mirandas->length();
for (int i = 0; i < num_mirandas; i++) {
put_method_at(mirandas->at(i), initialized);
initialized++;
void klassVtable::fill_in_mirandas(int* initialized) {
GrowableArray<Method*> mirandas(20);
get_mirandas(&mirandas, NULL, ik()->super(), ik()->methods(),
ik()->local_interfaces());
for (int i = 0; i < mirandas.length(); i++) {
put_method_at(mirandas.at(i), *initialized);
++(*initialized);
}
}
......
......@@ -84,11 +84,11 @@ class klassVtable : public ResourceObj {
bool is_initialized();
// computes vtable length (in words) and the number of miranda methods
static void compute_vtable_size_and_num_mirandas(int &vtable_length, int &num_miranda_methods,
Klass* super, Array<Method*>* methods,
AccessFlags class_flags, Handle classloader,
Symbol* classname, Array<Klass*>* local_interfaces,
TRAPS);
static void compute_vtable_size_and_num_mirandas(
int* vtable_length, int* num_new_mirandas,
GrowableArray<Method*>* all_mirandas, Klass* super,
Array<Method*>* methods, AccessFlags class_flags, Handle classloader,
Symbol* classname, Array<Klass*>* local_interfaces, TRAPS);
// RedefineClasses() API support:
// If any entry of this vtable points to any of old_methods,
......@@ -125,12 +125,17 @@ class klassVtable : public ResourceObj {
// support for miranda methods
bool is_miranda_entry_at(int i);
void fill_in_mirandas(int& initialized);
void fill_in_mirandas(int* initialized);
static bool is_miranda(Method* m, Array<Method*>* class_methods, Klass* super);
static void add_new_mirandas_to_list(GrowableArray<Method*>* list_of_current_mirandas, Array<Method*>* current_interface_methods, Array<Method*>* class_methods, Klass* super);
static void get_mirandas(GrowableArray<Method*>* mirandas, Klass* super, Array<Method*>* class_methods, Array<Klass*>* local_interfaces);
static int get_num_mirandas(Klass* super, Array<Method*>* class_methods, Array<Klass*>* local_interfaces);
static void add_new_mirandas_to_lists(
GrowableArray<Method*>* new_mirandas,
GrowableArray<Method*>* all_mirandas,
Array<Method*>* current_interface_methods, Array<Method*>* class_methods,
Klass* super);
static void get_mirandas(
GrowableArray<Method*>* new_mirandas,
GrowableArray<Method*>* all_mirandas, Klass* super,
Array<Method*>* class_methods, Array<Klass*>* local_interfaces);
void verify_against(outputStream* st, klassVtable* vt, int index);
inline InstanceKlass* ik() const;
......
......@@ -35,6 +35,7 @@
#include "memory/generation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "oops/constMethod.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
......@@ -57,22 +58,24 @@
// Implementation of Method
Method* Method::allocate(ClassLoaderData* loader_data,
int byte_code_size,
AccessFlags access_flags,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
TRAPS) {
int byte_code_size,
AccessFlags access_flags,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
ConstMethod::MethodType method_type,
TRAPS) {
assert(!access_flags.is_native() || byte_code_size == 0,
"native methods should not contain byte codes");
ConstMethod* cm = ConstMethod::allocate(loader_data,
byte_code_size,
compressed_line_number_size,
localvariable_table_length,
exception_table_length,
checked_exceptions_length,
CHECK_NULL);
byte_code_size,
compressed_line_number_size,
localvariable_table_length,
exception_table_length,
checked_exceptions_length,
method_type,
CHECK_NULL);
int size = Method::size(access_flags.is_native());
......@@ -1031,7 +1034,7 @@ methodHandle Method::make_method_handle_intrinsic(vmIntrinsics::ID iid,
methodHandle m;
{
Method* m_oop = Method::allocate(loader_data, 0, accessFlags_from(flags_bits),
0, 0, 0, 0, CHECK_(empty));
0, 0, 0, 0, ConstMethod::NORMAL, CHECK_(empty));
m = methodHandle(THREAD, m_oop);
}
m->set_constants(cp());
......@@ -1083,15 +1086,16 @@ methodHandle Method::clone_with_new_data(methodHandle m, u_char* new_code, int n
int localvariable_len = m->localvariable_table_length();
int exception_table_len = m->exception_table_length();
ClassLoaderData* loader_data = m()->method_holder()->class_loader_data();
ClassLoaderData* loader_data = m->method_holder()->class_loader_data();
Method* newm_oop = Method::allocate(loader_data,
new_code_length,
flags,
new_compressed_linenumber_size,
localvariable_len,
exception_table_len,
checked_exceptions_len,
CHECK_(methodHandle()));
new_code_length,
flags,
new_compressed_linenumber_size,
localvariable_len,
exception_table_len,
checked_exceptions_len,
m->method_type(),
CHECK_(methodHandle()));
methodHandle newm (THREAD, newm_oop);
int new_method_size = newm->method_size();
......
......@@ -30,7 +30,6 @@
#include "compiler/oopMap.hpp"
#include "interpreter/invocationCounter.hpp"
#include "oops/annotations.hpp"
#include "oops/constMethod.hpp"
#include "oops/constantPool.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/oop.hpp"
......@@ -104,6 +103,7 @@ class CheckedExceptionElement;
class LocalVariableTableElement;
class AdapterHandlerEntry;
class MethodData;
class ConstMethod;
class Method : public Metadata {
friend class VMStructs;
......@@ -158,14 +158,16 @@ class Method : public Metadata {
// Constructor
Method(ConstMethod* xconst, AccessFlags access_flags, int size);
public:
static Method* allocate(ClassLoaderData* loader_data,
int byte_code_size,
AccessFlags access_flags,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
TRAPS);
int byte_code_size,
AccessFlags access_flags,
int compressed_line_number_size,
int localvariable_table_length,
int exception_table_length,
int checked_exceptions_length,
ConstMethod::MethodType method_type,
TRAPS);
Method() { assert(DumpSharedSpaces || UseSharedSpaces, "only for CDS"); }
......@@ -725,6 +727,10 @@ class Method : public Metadata {
void set_dont_inline(bool x) { _dont_inline = x; }
bool is_hidden() { return _hidden; }
void set_hidden(bool x) { _hidden = x; }
ConstMethod::MethodType method_type() const {
return _constMethod->method_type();
}
bool is_overpass() const { return method_type() == ConstMethod::OVERPASS; }
// On-stack replacement support
bool has_osr_nmethod(int level, bool match_level) {
......
......@@ -3590,6 +3590,15 @@ class CommandLineFlags {
product(uintx, StringTableSize, 1009, \
"Number of buckets in the interned String table") \
\
develop(bool, TraceDefaultMethods, false, \
"Trace the default method processing steps") \
\
develop(bool, ParseAllGenericSignatures, false, \
"Parse all generic signatures while classloading") \
\
develop(bool, VerifyGenericSignatures, false, \
"Abort VM on erroneous or inconsistent generic signatures") \
\
product(bool, UseVMInterruptibleIO, false, \
"(Unstable, Solaris-specific) Thread interrupt before or with " \
"EINTR for I/O operations results in OS_INTRPT. The default value"\
......
......@@ -472,6 +472,12 @@ bool Reflection::verify_class_access(Klass* current_class, Klass* new_class, boo
return true;
}
// Also allow all accesses from
// java/lang/invoke/MagicLambdaImpl subclasses to succeed trivially.
if (current_class->is_subclass_of(SystemDictionary::lambda_MagicLambdaImpl_klass())) {
return true;
}
return can_relax_access_check_for(current_class, new_class, classloader_only);
}
......@@ -564,6 +570,12 @@ bool Reflection::verify_field_access(Klass* current_class,
return true;
}
// Also allow all accesses from
// java/lang/invoke/MagicLambdaImpl subclasses to succeed trivially.
if (current_class->is_subclass_of(SystemDictionary::lambda_MagicLambdaImpl_klass())) {
return true;
}
return can_relax_access_check_for(
current_class, field_class, classloader_only);
}
......
......@@ -217,7 +217,12 @@ template<class E> class GrowableArray : public GenericGrowableArray {
return missed;
}
E at(int i) const {
E& at(int i) {
assert(0 <= i && i < _len, "illegal index");
return _data[i];
}
E const& at(int i) const {
assert(0 <= i && i < _len, "illegal index");
return _data[i];
}
......
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_PAIR_HPP
#define SHARE_VM_UTILITIES_PAIR_HPP
#include "memory/allocation.hpp"
#include "utilities/top.hpp"
template<typename T, typename V, typename ALLOC_BASE = ResourceObj>
class Pair : public ALLOC_BASE {
public:
T first;
V second;
Pair() {}
Pair(T t, V v) : first(t), second(v) {}
};
#endif // SHARE_VM_UTILITIES_PAIR_HPP
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_RESOURCEHASH_HPP
#define SHARE_VM_UTILITIES_RESOURCEHASH_HPP
#include "memory/allocation.hpp"
#include "utilities/top.hpp"
template<typename K> struct ResourceHashtableFns {
typedef unsigned (*hash_fn)(K const&);
typedef bool (*equals_fn)(K const&, K const&);
};
template<typename K> unsigned primitive_hash(const K& k) {
unsigned hash = (unsigned)((uintptr_t)k);
return hash ^ (hash > 3); // just in case we're dealing with aligned ptrs
}
template<typename K> bool primitive_equals(const K& k0, const K& k1) {
return k0 == k1;
}
template<
typename K, typename V,
typename ResourceHashtableFns<K>::hash_fn HASH = primitive_hash<K>,
typename ResourceHashtableFns<K>::equals_fn EQUALS = primitive_equals<K>,
unsigned SIZE = 256
>
class ResourceHashtable : public ResourceObj {
private:
class Node : public ResourceObj {
public:
unsigned _hash;
K _key;
V _value;
Node* _next;
Node(unsigned hash, K const& key, V const& value) :
_hash(hash), _key(key), _value(value), _next(NULL) {}
};
Node* _table[SIZE];
// Returns a pointer to where the node where the value would reside if
// it's in the table.
Node** lookup_node(unsigned hash, K const& key) {
unsigned index = hash % SIZE;
Node** ptr = &_table[index];
while (*ptr != NULL) {
Node* node = *ptr;
if (node->_hash == hash && EQUALS(key, node->_key)) {
break;
}
ptr = &(node->_next);
}
return ptr;
}
Node const** lookup_node(unsigned hash, K const& key) const {
return const_cast<Node const**>(
const_cast<ResourceHashtable*>(this)->lookup_node(hash, key));
}
public:
ResourceHashtable() { memset(_table, 0, SIZE * sizeof(Node*)); }
bool contains(K const& key) const {
return get(key) != NULL;
}
V* get(K const& key) const {
unsigned hv = HASH(key);
Node const** ptr = lookup_node(hv, key);
if (*ptr != NULL) {
return const_cast<V*>(&(*ptr)->_value);
} else {
return NULL;
}
}
// Inserts or replaces a value in the table
void put(K const& key, V const& value) {
unsigned hv = HASH(key);
Node** ptr = lookup_node(hv, key);
if (*ptr != NULL) {
(*ptr)->_value = value;
} else {
*ptr = new Node(hv, key, value);
}
}
// ITER contains bool do_entry(K const&, V const&), which will be
// called for each entry in the table. If do_entry() returns false,
// the iteration is cancelled.
template<class ITER>
void iterate(ITER* iter) const {
Node* const* bucket = _table;
while (bucket < &_table[SIZE]) {
Node* node = *bucket;
while (node != NULL) {
bool cont = iter->do_entry(node->_key, node->_value);
if (!cont) { return; }
node = node->_next;
}
++bucket;
}
}
};
#endif // SHARE_VM_UTILITIES_RESOURCEHASH_HPP
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册