提交 39049773 编写于 作者: N never

7045514: SPARC assembly code for JSR 292 ricochet frames

Reviewed-by: kvn, jrose
上级 debdc89e
......@@ -42,6 +42,12 @@
#include "gc_implementation/g1/heapRegion.hpp"
#endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif
// Convert the raw encoding form into the form expected by the
// constructor for Address.
Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
......@@ -1072,6 +1078,12 @@ void MacroAssembler::call_VM_base(
check_and_forward_exception(Gtemp);
}
#ifdef ASSERT
set(badHeapWordVal, G3);
set(badHeapWordVal, G4);
set(badHeapWordVal, G5);
#endif
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
get_vm_result(oop_result);
......@@ -1177,6 +1189,11 @@ void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_poin
call(entry_point, relocInfo::runtime_call_type);
delayed()->nop();
restore_thread(thread_cache);
#ifdef ASSERT
set(badHeapWordVal, G3);
set(badHeapWordVal, G4);
set(badHeapWordVal, G5);
#endif
}
......@@ -1518,7 +1535,7 @@ int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
// save_frame: given number of "extra" words in frame,
// issue approp. save instruction (p 200, v8 manual)
void MacroAssembler::save_frame(int extraWords = 0) {
void MacroAssembler::save_frame(int extraWords) {
int delta = -total_frame_size_in_bytes(extraWords);
if (is_simm13(delta)) {
save(SP, delta, SP);
......@@ -1730,6 +1747,7 @@ void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * fil
if (reg == G0) return; // always NULL, which is always an oop
BLOCK_COMMENT("verify_oop {");
char buffer[64];
#ifdef COMPILER1
if (CommentedAssembly) {
......@@ -1768,6 +1786,7 @@ void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * fil
delayed()->nop();
// recover frame size
add(SP, 8*8,SP);
BLOCK_COMMENT("} verify_oop");
}
void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
......@@ -2040,7 +2059,7 @@ void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
}
else
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
assert(false, "error");
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
......@@ -3230,6 +3249,7 @@ void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
int stackElementSize = Interpreter::stackElementSize;
......@@ -3238,18 +3258,19 @@ RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
offset += arg_slot.as_constant() * stackElementSize;
return offset;
} else {
Register temp = arg_slot.as_register();
sll_ptr(temp, exact_log2(stackElementSize), temp);
assert(temp_reg != noreg, "must specify");
sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
if (offset != 0)
add(temp, offset, temp);
return temp;
add(temp_reg, offset, temp_reg);
return temp_reg;
}
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset) {
return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
}
......@@ -4906,4 +4927,3 @@ void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
// Caller should set it:
// add(G0, 1, result); // equals
}
......@@ -316,6 +316,8 @@ class Address VALUE_OBJ_CLASS_SPEC {
bool has_index() const { return _index_or_disp.is_register(); }
bool has_disp() const { return _index_or_disp.is_constant(); }
bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
const relocInfo::relocType rtype() { return _rspec.type(); }
const RelocationHolder& rspec() { return _rspec; }
......@@ -330,6 +332,10 @@ class Address VALUE_OBJ_CLASS_SPEC {
Address a(base(), disp() + plusdisp);
return a;
}
bool is_same_address(Address a) const {
// disregard _rspec
return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
}
Address after_save() const {
Address a = (*this);
......@@ -436,6 +442,10 @@ class AddressLiteral VALUE_OBJ_CLASS_SPEC {
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
......@@ -455,6 +465,21 @@ class AddressLiteral VALUE_OBJ_CLASS_SPEC {
}
};
// Convenience classes
class ExternalAddress: public AddressLiteral {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
ExternalAddress(oop* target) : AddressLiteral(target, reloc_for_target((address) target)) {}
};
inline Address RegisterImpl::address_in_saved_window() const {
return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
......@@ -855,9 +880,8 @@ class Assembler : public AbstractAssembler {
// and be sign-extended. Check the range.
static void assert_signed_range(intptr_t x, int nbits) {
assert( nbits == 32
|| -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
"value out of range");
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
}
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
......@@ -2287,7 +2311,7 @@ public:
int total_frame_size_in_bytes(int extraWords);
// used when extraWords known statically
void save_frame(int extraWords);
void save_frame(int extraWords = 0);
void save_frame_c1(int size_in_bytes);
// make a frame, and simultaneously pass up one or two register value
// into the new register window
......@@ -2456,9 +2480,11 @@ public:
// offset relative to Gargs of argument at tos[arg_slot].
// (arg_slot == 0 means the last argument, not the first).
RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset = 0);
// Address of Gargs and argument_offset.
Address argument_address(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset = 0);
// Stack overflow checking
......
......@@ -255,7 +255,11 @@ inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Regi
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
inline void Assembler::stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
relocate(a.rspec(offset));
if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index() ); }
else { stf(w, d, a.base(), a.disp() + offset); }
}
inline void Assembler::stfsr( Register s1, Register s2) { v9_dep(); emit_long( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stfsr( Register s1, int simm13a) { v9_dep(); emit_data( op(ldst_op) | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
......
......@@ -513,6 +513,8 @@ frame frame::sender(RegisterMap* map) const {
// interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
// explicitly recognized.
if (is_ricochet_frame()) return sender_for_ricochet_frame(map);
bool frame_is_interpreted = is_interpreted_frame();
if (frame_is_interpreted) {
map->make_integer_regs_unsaved();
......
......@@ -69,6 +69,459 @@ MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _mas
return me;
}
// stack walking support
frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
//RicochetFrame* f = RicochetFrame::from_frame(fr);
// Cf. is_interpreted_frame path of frame::sender
intptr_t* younger_sp = fr.sp();
intptr_t* sp = fr.sender_sp();
map->make_integer_regs_unsaved();
map->shift_window(sp, younger_sp);
bool this_frame_adjusted_stack = true; // I5_savedSP is live in this RF
return frame(sp, younger_sp, this_frame_adjusted_stack);
}
void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
ResourceMark rm;
RicochetFrame* f = RicochetFrame::from_frame(fr);
// pick up the argument type descriptor:
Thread* thread = Thread::current();
Handle cookie(thread, f->compute_saved_args_layout(true, true));
// process fixed part
blk->do_oop((oop*)f->saved_target_addr());
blk->do_oop((oop*)f->saved_args_layout_addr());
// process variable arguments:
if (cookie.is_null()) return; // no arguments to describe
// the cookie is actually the invokeExact method for my target
// his argument signature is what I'm interested in
assert(cookie->is_method(), "");
methodHandle invoker(thread, methodOop(cookie()));
assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
assert(!invoker->is_static(), "must have MH argument");
int slot_count = invoker->size_of_parameters();
assert(slot_count >= 1, "must include 'this'");
intptr_t* base = f->saved_args_base();
intptr_t* retval = NULL;
if (f->has_return_value_slot())
retval = f->return_value_slot_addr();
int slot_num = slot_count - 1;
intptr_t* loc = &base[slot_num];
//blk->do_oop((oop*) loc); // original target, which is irrelevant
int arg_num = 0;
for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
if (ss.at_return_type()) continue;
BasicType ptype = ss.type();
if (ptype == T_ARRAY) ptype = T_OBJECT; // fold all refs to T_OBJECT
assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
slot_num -= type2size[ptype];
loc = &base[slot_num];
bool is_oop = (ptype == T_OBJECT && loc != retval);
if (is_oop) blk->do_oop((oop*)loc);
arg_num += 1;
}
assert(slot_num == 0, "must have processed all the arguments");
}
// Ricochet Frames
const Register MethodHandles::RicochetFrame::L1_continuation = L1;
const Register MethodHandles::RicochetFrame::L2_saved_target = L2;
const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
const Register MethodHandles::RicochetFrame::L4_saved_args_base = L4; // cf. Gargs = G4
const Register MethodHandles::RicochetFrame::L5_conversion = L5;
#ifdef ASSERT
const Register MethodHandles::RicochetFrame::L0_magic_number_1 = L0;
#endif //ASSERT
oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
if (read_cache) {
oop cookie = saved_args_layout();
if (cookie != NULL) return cookie;
}
oop target = saved_target();
oop mtype = java_lang_invoke_MethodHandle::type(target);
oop mtform = java_lang_invoke_MethodType::form(mtype);
oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
if (write_cache) {
(*saved_args_layout_addr()) = cookie;
}
return cookie;
}
void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words) {
(*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
address start = __ pc();
#ifdef ASSERT
__ illtrap(0); __ illtrap(0); __ illtrap(0);
// here's a hint of something special:
__ set(MAGIC_NUMBER_1, G0);
__ set(MAGIC_NUMBER_2, G0);
#endif //ASSERT
__ illtrap(0); // not reached
// Return values are in registers.
// L1_continuation contains a cleanup continuation we must return
// to.
(*bounce_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.bounce");
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
trace_method_handle(_masm, "ricochet_blob.bounce");
__ JMP(L1_continuation, 0);
__ delayed()->nop();
__ illtrap(0);
DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
(*exception_offset) = __ pc() - start;
BLOCK_COMMENT("ricochet_blob.exception");
// compare this to Interpreter::rethrow_exception_entry, which is parallel code
// for example, see TemplateInterpreterGenerator::generate_throw_exception
// Live registers in:
// Oexception (O0): exception
// Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
__ verify_oop(Oexception);
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
// We are done with this activation frame; find out where to go next.
// The continuation point will be an exception handler, which expects
// the following registers set up:
//
// Oexception: exception
// Oissuing_pc: the local call that threw exception
// Other On: garbage
// In/Ln: the contents of the caller's register window
//
// We do the required restore at the last possible moment, because we
// need to preserve some state across a runtime call.
// (Remember that the caller activation is unknown--it might not be
// interpreted, so things like Lscratch are useless in the caller.)
__ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore
__ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
G2_thread, Oissuing_pc->after_save());
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ JMP(O0, 0); // return exception handler in caller
__ delayed()->restore(I5_savedSP, G0, SP);
// (same old exception object is already in Oexception; see above)
// Note that an "issuing PC" is actually the next PC after the call
}
void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register argv_reg,
address return_handler) {
// does not include the __ save()
assert(argv_reg == Gargs, "");
Address G3_mh_vmtarget( recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
// Create the RicochetFrame.
// Unlike on x86 we can store all required information in local
// registers.
BLOCK_COMMENT("push RicochetFrame {");
__ set(ExternalAddress(return_handler), L1_continuation);
__ load_heap_oop(G3_mh_vmtarget, L2_saved_target);
__ mov(G0, L3_saved_args_layout);
__ mov(Gargs, L4_saved_args_base);
__ lduw(G3_amh_conversion, L5_conversion); // 32-bit field
// I5, I6, I7 are already set up
DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1, L0_magic_number_1));
BLOCK_COMMENT("} RicochetFrame");
}
void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register new_sp_reg,
Register sender_pc_reg) {
assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
assert(sender_pc_reg == I7, "in a fixed place");
// does not include the __ ret() & __ restore()
assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
// Take down the frame.
// Cf. InterpreterMacroAssembler::remove_activation.
BLOCK_COMMENT("end_ricochet_frame {");
if (recv_reg->is_valid())
__ mov(L2_saved_target, recv_reg);
BLOCK_COMMENT("} end_ricochet_frame");
}
// Emit code to verify that FP is pointing at a valid ricochet frame.
#ifdef ASSERT
enum {
ARG_LIMIT = 255, SLOP = 35,
// use this parameter for checking for garbage stack movements:
UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
// the slop defends against false alarms due to fencepost errors
};
void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
// The stack should look like this:
// ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
// Check various invariants.
Register O7_temp = O7, O5_temp = O5;
Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
BLOCK_COMMENT("verify_clean {");
// Magic numbers must check out:
__ set((int32_t) MAGIC_NUMBER_1, O7_temp);
__ cmp(O7_temp, L0_magic_number_1);
__ br(Assembler::equal, false, Assembler::pt, L_ok_1);
__ delayed()->nop();
__ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
__ BIND(L_ok_1);
// Arguments pointer must look reasonable:
#ifdef _LP64
Register FP_temp = O5_temp;
__ add(FP, STACK_BIAS, FP_temp);
#else
Register FP_temp = FP;
#endif
__ cmp(L4_saved_args_base, FP_temp);
__ br(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok_2);
__ delayed()->nop();
__ stop("damaged ricochet frame: L4 < FP");
__ BIND(L_ok_2);
__ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
__ cmp(O7_temp, FP_temp);
__ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
__ delayed()->nop();
__ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
__ BIND(L_ok_3);
extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
__ cmp(O7_temp, T_VOID);
__ br(Assembler::equal, false, Assembler::pt, L_ok_4);
__ delayed()->nop();
extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
__ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
assert(__ is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
__ cmp(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER);
__ brx(Assembler::equal, false, Assembler::pt, L_ok_4);
__ delayed()->nop();
__ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
__ BIND(L_ok_4);
BLOCK_COMMENT("} verify_clean");
}
#endif //ASSERT
void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
if (VerifyMethodHandles)
verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
"AMH argument is a Class");
__ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
}
void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
__ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
}
void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
}
void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
__ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
__ and3(reg, 0x0F, reg);
}
void MethodHandles::load_stack_move(MacroAssembler* _masm,
Address G3_amh_conversion,
Register stack_move_reg) {
BLOCK_COMMENT("load_stack_move {");
__ ldsw(G3_amh_conversion, stack_move_reg);
__ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
if (VerifyMethodHandles) {
Label L_ok, L_bad;
int32_t stack_move_limit = 0x0800; // extra-large
__ cmp(stack_move_reg, stack_move_limit);
__ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(stack_move_reg, -stack_move_limit);
__ br(Assembler::greater, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
BLOCK_COMMENT("} load_stack_move");
}
#ifdef ASSERT
void MethodHandles::RicochetFrame::verify() const {
assert(magic_number_1() == MAGIC_NUMBER_1, "");
if (!Universe::heap()->is_gc_active()) {
if (saved_args_layout() != NULL) {
assert(saved_args_layout()->is_method(), "must be valid oop");
}
if (saved_target() != NULL) {
assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
}
}
int conv_op = adapter_conversion_op(conversion());
assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
"must be a sane conversion");
if (has_return_value_slot()) {
assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
}
}
void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
// Verify that argslot lies within (Gargs, FP].
Label L_ok, L_bad;
BLOCK_COMMENT("verify_argslot {");
__ add(FP, STACK_BIAS, temp_reg); // STACK_BIAS is zero on !_LP64
__ cmp(argslot_reg, temp_reg);
__ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(Gargs, argslot_reg);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslot");
}
void MethodHandles::verify_argslots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register arg_slot_base_reg,
Register temp_reg,
Register temp2_reg,
bool negate_argslots,
const char* error_message) {
// Verify that [argslot..argslot+size) lies within (Gargs, FP).
Label L_ok, L_bad;
BLOCK_COMMENT("verify_argslots {");
if (negate_argslots) {
if (arg_slots.is_constant()) {
arg_slots = -1 * arg_slots.as_constant();
} else {
__ neg(arg_slots.as_register(), temp_reg);
arg_slots = temp_reg;
}
}
__ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
__ add(FP, STACK_BIAS, temp2_reg); // STACK_BIAS is zero on !_LP64
__ cmp(temp_reg, temp2_reg);
__ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
__ delayed()->nop();
// Gargs points to the first word so adjust by BytesPerWord
__ add(arg_slot_base_reg, BytesPerWord, temp_reg);
__ cmp(Gargs, temp_reg);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_argslots");
}
// Make sure that arg_slots has the same sign as the given direction.
// If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
void MethodHandles::verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots, int direction) {
enum { UNREASONABLE_STACK_MOVE = 256 * 4 }; // limit of 255 arguments
bool allow_zero = arg_slots.is_constant();
if (direction == 0) { direction = +1; allow_zero = true; }
assert(stack_move_unit() == -1, "else add extra checks here");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
BLOCK_COMMENT("verify_stack_move {");
// __ btst(-stack_move_unit() - 1, arg_slots.as_register()); // no need
// __ br(Assembler::notZero, false, Assembler::pn, L_bad);
// __ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
if (direction > 0) {
__ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
__ br(Assembler::less, false, Assembler::pn, L_ok);
__ delayed()->nop();
} else {
__ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
__ br(Assembler::greater, false, Assembler::pn, L_ok);
__ delayed()->nop();
}
__ BIND(L_bad);
if (direction > 0)
__ stop("assert arg_slots > 0");
else
__ stop("assert arg_slots < 0");
__ BIND(L_ok);
BLOCK_COMMENT("} verify_stack_move");
} else {
intptr_t size = arg_slots.as_constant();
if (direction < 0) size = -size;
assert(size >= 0, "correct direction of constant move");
assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
}
}
void MethodHandles::verify_klass(MacroAssembler* _masm,
Register obj_reg, KlassHandle klass,
Register temp_reg, Register temp2_reg,
const char* error_message) {
oop* klass_addr = klass.raw_value();
assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
"must be one of the SystemDictionaryHandles");
Label L_ok, L_bad;
BLOCK_COMMENT("verify_klass {");
__ verify_oop(obj_reg);
__ br_null(obj_reg, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ load_klass(obj_reg, temp_reg);
__ set(ExternalAddress(klass_addr), temp2_reg);
__ ld_ptr(Address(temp2_reg, 0), temp2_reg);
__ cmp(temp_reg, temp2_reg);
__ brx(Assembler::equal, false, Assembler::pt, L_ok);
__ delayed()->nop();
intptr_t super_check_offset = klass->super_check_offset();
__ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
__ set(ExternalAddress(klass_addr), temp2_reg);
__ ld_ptr(Address(temp2_reg, 0), temp2_reg);
__ cmp(temp_reg, temp2_reg);
__ brx(Assembler::equal, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop(error_message);
__ BIND(L_ok);
BLOCK_COMMENT("} verify_klass");
}
#endif // ASSERT
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
......@@ -103,6 +556,9 @@ address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler*
address entry_point = __ pc();
// fetch the MethodType from the method handle
// FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
// This would simplify several touchy bits of code.
// See 6984712: JSR 292 method handle calls need a clean argument base pointer
{
Register tem = G5_method;
for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
......@@ -114,19 +570,25 @@ address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler*
// given the MethodType, find out where the MH argument is buried
__ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, O1_scratch)), O4_argslot);
__ ldsw( Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
__ add(Gargs, __ argument_offset(O4_argslot, 1), O4_argbase);
__ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
// Note: argument_address uses its input as a scratch register!
__ ld_ptr(Address(O4_argbase, -Interpreter::stackElementSize), G3_method_handle);
Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
__ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
trace_method_handle(_masm, "invokeExact");
__ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
// Nobody uses the MH receiver slot after this. Make sure.
DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// for invokeGeneric (only), apply argument and result conversions on the fly
__ bind(invoke_generic_slow_path);
#ifdef ASSERT
{ Label L;
if (VerifyMethodHandles) {
Label L;
__ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
__ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
__ brx(Assembler::equal, false, Assembler::pt, L);
......@@ -137,7 +599,7 @@ address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler*
#endif //ASSERT
// make room on the stack for another pointer:
insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK, O4_argbase, O1_scratch, O2_scratch, O3_scratch);
insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
// load up an adapter from the calling type (Java weaves this)
Register O2_form = O2_scratch;
Register O3_adapter = O3_scratch;
......@@ -157,74 +619,88 @@ address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler*
return entry_point;
}
// Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
static RegisterOrConstant constant(int value) {
return RegisterOrConstant(value);
}
static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
__ ldsw(vmargslot_addr, result);
}
static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register temp_reg, Register temp2_reg) {
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
if (arg_slots.is_constant()) {
const int offset = arg_slots.as_constant() << LogBytesPerWord;
const int masked_offset = round_to(offset, 2 * BytesPerWord);
const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
assert(masked_offset == masked_offset2, "must agree");
__ sub(Gargs, offset, Gargs);
__ sub(SP, masked_offset, SP );
return offset;
} else {
#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
// Verify that argslot lies within (Gargs, FP].
Label L_ok, L_bad;
BLOCK_COMMENT("{ verify_argslot");
#ifdef _LP64
__ add(FP, STACK_BIAS, temp_reg);
__ cmp(argslot_reg, temp_reg);
#else
__ cmp(argslot_reg, FP);
#endif
__ brx(Assembler::greaterUnsigned, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ cmp(Gargs, argslot_reg);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
{
Label L_ok;
__ cmp(arg_slots.as_register(), 0);
__ br(Assembler::greaterEqual, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop(error_message);
__ stop("negative arg_slots");
__ bind(L_ok);
BLOCK_COMMENT("} verify_argslot");
}
}
#endif
__ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
__ add( temp_reg, 1*BytesPerWord, temp2_reg);
__ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
__ sub(Gargs, temp_reg, Gargs);
__ sub(SP, temp2_reg, SP );
return temp_reg;
}
}
static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register temp_reg, Register temp2_reg) {
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
if (arg_slots.is_constant()) {
const int offset = arg_slots.as_constant() << LogBytesPerWord;
const int masked_offset = offset & ~TwoWordAlignmentMask;
__ add(Gargs, offset, Gargs);
__ add(SP, masked_offset, SP );
return offset;
} else {
__ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
__ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
__ add(Gargs, temp_reg, Gargs);
__ add(SP, temp2_reg, SP );
return temp_reg;
}
}
// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
// arg_slots must be a multiple of stack_move_unit() and < 0
// argslot_reg is decremented to point to the new (shifted) location of the argslot
// But, temp_reg ends up holding the original value of argslot_reg.
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int arg_mask,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
assert(temp3_reg != noreg, "temp3 required");
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
#ifdef ASSERT
BLOCK_COMMENT("insert_arg_slots {");
if (VerifyMethodHandles)
verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
__ br(Assembler::greater, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ btst(-stack_move_unit() - 1, arg_slots.as_register());
__ br(Assembler::zero, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop("assert arg_slots <= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() <= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif // ASSERT
#ifdef _LP64
if (arg_slots.is_register()) {
// Was arg_slots register loaded as signed int?
Label L_ok;
__ sll(arg_slots.as_register(), BitsPerInt, temp_reg);
__ sra(temp_reg, BitsPerInt, temp_reg);
__ cmp(arg_slots.as_register(), temp_reg);
__ br(Assembler::equal, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("arg_slots register not loaded as signed int");
__ bind(L_ok);
}
#endif
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, -1);
// Make space on the stack for the inserted argument(s).
// Then pull down everything shallower than argslot_reg.
......@@ -234,26 +710,20 @@ void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
// for (temp = sp + size; temp < argslot; temp++)
// temp[-size] = temp[0]
// argslot -= size;
BLOCK_COMMENT("insert_arg_slots {");
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
__ add(SP, masked_offset, SP);
__ mov(Gargs, temp_reg); // source pointer for copy
__ add(Gargs, offset, Gargs);
// offset is temp3_reg in case of arg_slots being a register.
RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
__ sub(Gargs, offset, temp_reg); // source pointer for copy
{
Label loop;
__ BIND(loop);
// pull one word down each time through the loop
__ ld_ptr(Address(temp_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset));
__ ld_ptr( Address(temp_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset) );
__ add(temp_reg, wordSize, temp_reg);
__ cmp(temp_reg, argslot_reg);
__ brx(Assembler::less, false, Assembler::pt, loop);
__ brx(Assembler::lessUnsigned, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
}
......@@ -264,39 +734,24 @@ void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
// arg_slots must be a multiple of stack_move_unit() and > 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg) {
assert(temp3_reg != noreg, "temp3 required");
// allow constant zero
if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
(!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
#ifdef ASSERT
// Verify that [argslot..argslot+size) lies within (Gargs, FP).
__ add(argslot_reg, offset, temp2_reg);
verify_argslot(_masm, temp2_reg, temp_reg, "deleted argument(s) must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
__ br(Assembler::less, false, Assembler::pn, L_bad);
__ delayed()->nop();
__ btst(-stack_move_unit() - 1, arg_slots.as_register());
__ br(Assembler::zero, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ bind(L_bad);
__ stop("assert arg_slots >= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() >= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif // ASSERT
BLOCK_COMMENT("remove_arg_slots {");
if (VerifyMethodHandles)
verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
"deleted argument(s) must fall within current frame");
if (VerifyMethodHandles)
verify_stack_move(_masm, arg_slots, +1);
// Pull up everything shallower than argslot.
// Then remove the excess space on the stack.
// The stacked return address gets pulled up with everything else.
......@@ -305,38 +760,270 @@ void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
// temp[size] = temp[0]
// argslot += size;
// sp += size;
RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
__ sub(argslot_reg, wordSize, temp_reg); // source pointer for copy
{
Label loop;
__ BIND(loop);
Label L_loop;
__ BIND(L_loop);
// pull one word up each time through the loop
__ ld_ptr(Address(temp_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset));
__ ld_ptr( Address(temp_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(temp_reg, offset) );
__ sub(temp_reg, wordSize, temp_reg);
__ cmp(temp_reg, Gargs);
__ brx(Assembler::greaterEqual, false, Assembler::pt, loop);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_loop);
__ delayed()->nop(); // FILLME
}
// Now move the argslot up, to point to the just-copied block.
__ add(Gargs, offset, Gargs);
// And adjust the argslot address to point at the deletion point.
__ add(argslot_reg, offset, argslot_reg);
// Keep the stack pointer 2*wordSize aligned.
const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
RegisterOrConstant masked_offset = __ regcon_andn_ptr(offset, TwoWordAlignmentMask, temp_reg);
__ add(SP, masked_offset, SP);
// We don't need the offset at this point anymore, just adjust SP and Gargs.
(void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
BLOCK_COMMENT("} remove_arg_slots");
}
// Helper to copy argument slots to the top of the stack.
// The sequence starts with argslot_reg and is counted by slot_count
// slot_count must be a multiple of stack_move_unit() and >= 0
// This function blows the temps but does not change argslot_reg.
void MethodHandles::push_arg_slots(MacroAssembler* _masm,
Register argslot_reg,
RegisterOrConstant slot_count,
Register temp_reg, Register temp2_reg) {
// allow constant zero
if (slot_count.is_constant() && slot_count.as_constant() == 0)
return;
assert_different_registers(argslot_reg, temp_reg, temp2_reg,
(!slot_count.is_register() ? Gargs : slot_count.as_register()),
SP);
assert(Interpreter::stackElementSize == wordSize, "else change this code");
BLOCK_COMMENT("push_arg_slots {");
if (VerifyMethodHandles)
verify_stack_move(_masm, slot_count, 0);
RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
if (slot_count.is_constant()) {
for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
__ ld_ptr( Address(argslot_reg, i * wordSize), temp_reg);
__ st_ptr(temp_reg, Address(Gargs, i * wordSize));
}
} else {
Label L_plural, L_loop, L_break;
// Emit code to dynamically check for the common cases, zero and one slot.
__ cmp(slot_count.as_register(), (int32_t) 1);
__ br(Assembler::greater, false, Assembler::pn, L_plural);
__ delayed()->nop();
__ br(Assembler::less, false, Assembler::pn, L_break);
__ delayed()->nop();
__ ld_ptr( Address(argslot_reg, 0), temp_reg);
__ st_ptr(temp_reg, Address(Gargs, 0));
__ ba(false, L_break);
__ delayed()->nop(); // FILLME
__ BIND(L_plural);
// Loop for 2 or more:
// top = &argslot[slot_count]
// while (top > argslot) *(--Gargs) = *(--top)
Register top_reg = temp_reg;
__ add(argslot_reg, offset, top_reg);
__ add(Gargs, offset, Gargs ); // move back up again so we can go down
__ BIND(L_loop);
__ sub(top_reg, wordSize, top_reg);
__ sub(Gargs, wordSize, Gargs );
__ ld_ptr( Address(top_reg, 0), temp2_reg);
__ st_ptr(temp2_reg, Address(Gargs, 0));
__ cmp(top_reg, argslot_reg);
__ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
__ delayed()->nop(); // FILLME
__ BIND(L_break);
}
BLOCK_COMMENT("} push_arg_slots");
}
// in-place movement; no change to Gargs
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
Register bottom_reg, // invariant
Address top_addr, // can use temp_reg
RegisterOrConstant positive_distance_in_slots, // destroyed if register
Register temp_reg, Register temp2_reg) {
assert_different_registers(bottom_reg,
temp_reg, temp2_reg,
positive_distance_in_slots.register_or_noreg());
BLOCK_COMMENT("move_arg_slots_up {");
Label L_loop, L_break;
Register top_reg = temp_reg;
if (!top_addr.is_same_address(Address(top_reg, 0))) {
__ add(top_addr, top_reg);
}
// Detect empty (or broken) loop:
#ifdef ASSERT
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (positive_distance_in_slots.is_register()) {
__ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
__ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
}
__ cmp(bottom_reg, top_reg);
__ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop("valid bounds (copy up)");
__ BIND(L_ok);
}
#endif
__ cmp(bottom_reg, top_reg);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
__ delayed()->nop();
// work top down to bottom, copying contiguous data upwards
// In pseudo-code:
// while (--top >= bottom) *(top + distance) = *(top + 0);
RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
__ BIND(L_loop);
__ sub(top_reg, wordSize, top_reg);
__ ld_ptr( Address(top_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(top_reg, offset) );
__ cmp(top_reg, bottom_reg);
__ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
__ delayed()->nop(); // FILLME
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ BIND(L_break);
BLOCK_COMMENT("} move_arg_slots_up");
}
// in-place movement; no change to rsp
// blows temp_reg, temp2_reg
void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use temp_reg
Register top_reg, // invariant
RegisterOrConstant negative_distance_in_slots, // destroyed if register
Register temp_reg, Register temp2_reg) {
assert_different_registers(top_reg,
negative_distance_in_slots.register_or_noreg(),
temp_reg, temp2_reg);
BLOCK_COMMENT("move_arg_slots_down {");
Label L_loop, L_break;
Register bottom_reg = temp_reg;
if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
__ add(bottom_addr, bottom_reg);
}
// Detect empty (or broken) loop:
#ifdef ASSERT
assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
if (VerifyMethodHandles) {
// Verify that &bottom < &top (non-empty interval)
Label L_ok, L_bad;
if (negative_distance_in_slots.is_register()) {
__ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
__ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
__ delayed()->nop();
}
__ cmp(bottom_reg, top_reg);
__ brx(Assembler::lessUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ BIND(L_bad);
__ stop("valid bounds (copy down)");
__ BIND(L_ok);
}
#endif
__ cmp(bottom_reg, top_reg);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pn, L_break);
__ delayed()->nop();
// work bottom up to top, copying contiguous data downwards
// In pseudo-code:
// while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
__ BIND(L_loop);
__ ld_ptr( Address(bottom_reg, 0 ), temp2_reg);
__ st_ptr(temp2_reg, Address(bottom_reg, offset) );
__ add(bottom_reg, wordSize, bottom_reg);
__ cmp(bottom_reg, top_reg);
__ brx(Assembler::lessUnsigned, false, Assembler::pt, L_loop);
__ delayed()->nop(); // FILLME
assert(Interpreter::stackElementSize == wordSize, "else change loop");
__ BIND(L_break);
BLOCK_COMMENT("} move_arg_slots_down");
}
// Copy from a field or array element to a stacked argument slot.
// is_element (ignored) says whether caller is loading an array element instead of an instance field.
void MethodHandles::move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address value_src, Address slot_dest,
Register temp_reg) {
assert(!slot_dest.uses(temp_reg), "must be different register");
BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
if (type == T_OBJECT || type == T_ARRAY) {
__ load_heap_oop(value_src, temp_reg);
__ verify_oop(temp_reg);
__ st_ptr(temp_reg, slot_dest);
} else if (type != T_VOID) {
int arg_size = type2aelembytes(type);
bool arg_is_signed = is_signed_subword_type(type);
int slot_size = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size; // store int sub-words as int
__ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
__ store_sized_value(temp_reg, slot_dest, slot_size );
}
BLOCK_COMMENT("} move_typed_arg");
}
// Cf. TemplateInterpreterGenerator::generate_return_entry_for and
// InterpreterMacroAssembler::save_return_value
void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot) {
BLOCK_COMMENT("move_return_value {");
// Look at the type and pull the value out of the corresponding register.
if (type == T_VOID) {
// nothing to do
} else if (type == T_OBJECT) {
__ verify_oop(O0);
__ st_ptr(O0, return_slot);
} else if (type == T_INT || is_subword_type(type)) {
int type_size = type2aelembytes(T_INT);
__ store_sized_value(O0, return_slot, type_size);
} else if (type == T_LONG) {
// store the value by parts
// Note: We assume longs are continguous (if misaligned) on the interpreter stack.
#if !defined(_LP64) && defined(COMPILER2)
__ stx(G1, return_slot);
#else
#ifdef _LP64
__ stx(O0, return_slot);
#else
if (return_slot.has_disp()) {
// The displacement is a constant
__ st(O0, return_slot);
__ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
} else {
__ std(O0, return_slot);
}
#endif
#endif
} else if (type == T_FLOAT) {
__ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
} else if (type == T_DOUBLE) {
__ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
} else {
ShouldNotReachHere();
}
BLOCK_COMMENT("} move_return_value");
}
#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
oopDesc* mh,
intptr_t* saved_sp) {
bool has_mh = (strstr(adaptername, "return/") == NULL); // return adapters don't have mh
tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
if (has_mh)
print_method_handle(mh);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
......@@ -367,13 +1054,21 @@ int MethodHandles::adapter_conversion_ops_supported_mask() {
|(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
// OP_PRIM_TO_REF is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
//|(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
// OP_COLLECT_ARGS is below...
|(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
|(!UseRicochetFrames ? 0 :
java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
|(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
)
)
);
// FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}
//------------------------------------------------------------------------------
......@@ -382,19 +1077,25 @@ int MethodHandles::adapter_conversion_ops_supported_mask() {
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
// Here is the register state during an interpreted call,
// as set up by generate_method_handle_interpreter_entry():
// - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
// - G3: receiver method handle
// - O5_savedSP: sender SP (must preserve)
const Register O0_argslot = O0;
const Register O0_scratch = O0;
const Register O1_scratch = O1;
const Register O2_scratch = O2;
const Register O3_scratch = O3;
const Register G5_index = G5;
const Register O4_scratch = O4;
const Register G5_scratch = G5;
// Often used names:
const Register O0_argslot = O0;
// Argument registers for _raise_exception.
// Argument registers for _raise_exception:
const Register O0_code = O0;
const Register O1_actual = O1;
const Register O2_required = O2;
......@@ -427,6 +1128,8 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
trace_method_handle(_masm, entry_name(ek));
BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
switch ((int) ek) {
case _raise_exception:
{
......@@ -472,7 +1175,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
}
......@@ -488,10 +1191,11 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
// Pick out the vtable index and receiver offset from the MH,
// and then we can discard it:
Register O2_index = O2_scratch;
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
__ ldsw(G3_dmh_vmindex, G5_index);
__ ldsw(G3_dmh_vmindex, O2_index);
// Note: The verifier allows us to ignore G3_mh_vmtarget.
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
......@@ -503,8 +1207,8 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
__ sll_ptr(G5_index, LogBytesPerWord, G5_index);
__ add(O0_klass, G5_index, O0_klass);
__ sll_ptr(O2_index, LogBytesPerWord, O2_index);
__ add(O0_klass, O2_index, O0_klass);
Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
__ ld_ptr(vtable_entry_addr, G5_method);
......@@ -520,9 +1224,10 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
// minus the CP setup and profiling:
__ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
Register O1_intf = O1_scratch;
Register G5_index = G5_scratch;
__ load_heap_oop(G3_mh_vmtarget, O1_intf);
__ ldsw(G3_dmh_vmindex, G5_index);
__ ld_ptr(__ argument_address(O0_argslot, -1), G3_method_handle);
__ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
__ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
// Get receiver klass:
......@@ -563,16 +1268,14 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _bound_long_direct_mh:
{
const bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = T_ILLEGAL;
int arg_mask = _INSERT_NO_MASK;
int arg_slots = -1;
get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
BasicType arg_type = ek_bound_mh_arg_type(ek);
int arg_slots = type2size[arg_type];
// Make room for the new argument:
__ ldsw(G3_bmh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, O0_argslot, O1_scratch, O2_scratch, G5_index);
insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
// Store bound argument into the new stack slot:
__ load_heap_oop(G3_bmh_argument, O1_scratch);
......@@ -580,9 +1283,10 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
__ st_ptr(O1_scratch, Address(O0_argslot, 0));
} else {
Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
const int arg_size = type2aelembytes(arg_type);
__ load_sized_value(prim_value_addr, O2_scratch, arg_size, is_signed_subword_type(arg_type));
__ store_sized_value(O2_scratch, Address(O0_argslot, 0), arg_size); // long store uses O2/O3 on !_LP64
move_typed_arg(_masm, arg_type, false,
prim_value_addr,
Address(O0_argslot, 0),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
}
if (direct_to_method) {
......@@ -602,6 +1306,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_retype_raw:
// Immediately jump to the next MH layer:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ verify_oop(G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
// This is OK when all parameter types widen.
// It is also OK when a return type narrows.
......@@ -609,30 +1314,28 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_check_cast:
{
// Temps:
Register G5_klass = G5_index; // Interesting AMH data.
// Check a reference argument before jumping to the next layer of MH:
__ ldsw(G3_amh_vmargslot, O0_argslot);
Address vmarg = __ argument_address(O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
Address vmarg = __ argument_address(O0_argslot, O0_argslot);
// What class are we casting to?
__ load_heap_oop(G3_amh_argument, G5_klass); // This is a Class object!
__ load_heap_oop(Address(G5_klass, java_lang_Class::klass_offset_in_bytes()), G5_klass);
Label done;
__ ld_ptr(vmarg, O1_scratch);
__ tst(O1_scratch);
__ brx(Assembler::zero, false, Assembler::pn, done); // No cast if null.
Register O1_klass = O1_scratch; // Interesting AMH data.
__ load_heap_oop(G3_amh_argument, O1_klass); // This is a Class object!
load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
Label L_done;
__ ld_ptr(vmarg, O2_scratch);
__ tst(O2_scratch);
__ brx(Assembler::zero, false, Assembler::pn, L_done); // No cast if null.
__ delayed()->nop();
__ load_klass(O1_scratch, O1_scratch);
__ load_klass(O2_scratch, O2_scratch);
// Live at this point:
// - G5_klass : klass required by the target method
// - O0_argslot : argslot index in vmarg; may be required in the failing path
// - O1_scratch : argument klass to test
// - O1_klass : klass required by the target method
// - O2_scratch : argument klass to test
// - G3_method_handle: adapter method handle
__ check_klass_subtype(O1_scratch, G5_klass, O2_scratch, O3_scratch, done);
__ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
// If we get here, the type check failed!
__ load_heap_oop(G3_amh_argument, O2_required); // required class
......@@ -640,7 +1343,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_checkcast, O0_code); // who is complaining?
__ bind(done);
__ BIND(L_done);
// Get the new MH:
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
......@@ -659,14 +1362,14 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place conversion to int or an int subword.
__ ldsw(G3_amh_vmargslot, O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
Address value;
Address vmarg = __ argument_address(O0_argslot);
Address vmarg;
bool value_left_justified = false;
switch (ek) {
case _adapter_opt_i2i:
value = vmarg;
value = vmarg = __ argument_address(O0_argslot, O0_argslot);
break;
case _adapter_opt_l2i:
{
......@@ -675,13 +1378,13 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
// In V9, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
// Keep the second slot.
__ add(Gargs, __ argument_offset(O0_argslot, -1), O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 4); // Get least-significant 32-bit of 64-bit value.
vmarg = Address(O0_argslot, Interpreter::stackElementSize);
#else
// Keep the first slot.
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
value = Address(O0_argslot, 0);
vmarg = value;
......@@ -690,6 +1393,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
break;
case _adapter_opt_unboxi:
{
vmarg = __ argument_address(O0_argslot, O0_argslot);
// Load the value up from the heap.
__ ld_ptr(vmarg, O1_scratch);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
......@@ -712,7 +1416,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
}
// This check is required on _BIG_ENDIAN
Register G5_vminfo = G5_index;
Register G5_vminfo = G5_scratch;
__ ldsw(G3_amh_conversion, G5_vminfo);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
......@@ -748,13 +1452,13 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
{
// Perform an in-place int-to-long or ref-to-long conversion.
__ ldsw(G3_amh_vmargslot, O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
// On big-endian machine we duplicate the slot and store the MSW
// in the first slot.
__ add(Gargs, __ argument_offset(O0_argslot, 1), O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, O0_argslot, O1_scratch, O2_scratch, G5_index);
insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
Address arg_lsw(O0_argslot, 0);
Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
......@@ -816,102 +1520,80 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
{
int swap_bytes = 0, rotate = 0;
get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
int swap_slots = ek_adapter_opt_swap_slots(ek);
int rotate = ek_adapter_opt_swap_mode(ek);
// 'argslot' is the position of the first argument to swap.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
if (VerifyMethodHandles)
verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
// 'vminfo' is the second.
Register O1_destslot = O1_scratch;
__ ldsw(G3_amh_conversion, O1_destslot);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ and3(O1_destslot, CONV_VMINFO_MASK, O1_destslot);
__ add(Gargs, __ argument_offset(O1_destslot), O1_destslot);
load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
__ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
if (VerifyMethodHandles)
verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
if (!rotate) {
for (int i = 0; i < swap_bytes; i += wordSize) {
__ ld_ptr(Address(O0_argslot, i), O2_scratch);
__ ld_ptr(Address(O1_destslot, i), O3_scratch);
__ st_ptr(O3_scratch, Address(O0_argslot, i));
__ st_ptr(O2_scratch, Address(O1_destslot, i));
// simple swap
for (int i = 0; i < swap_slots; i++) {
__ ld_ptr( Address(O0_argslot, i * wordSize), O2_scratch);
__ ld_ptr( Address(O1_destslot, i * wordSize), O3_scratch);
__ st_ptr(O3_scratch, Address(O0_argslot, i * wordSize));
__ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
}
} else {
// Save the first chunk, which is going to get overwritten.
switch (swap_bytes) {
case 4 : __ lduw(Address(O0_argslot, 0), O2_scratch); break;
case 16: __ ldx( Address(O0_argslot, 8), O3_scratch); //fall-thru
case 8 : __ ldx( Address(O0_argslot, 0), O2_scratch); break;
// A rotate is actually pair of moves, with an "odd slot" (or pair)
// changing place with a series of other slots.
// First, push the "odd slot", which is going to get overwritten
switch (swap_slots) {
case 2 : __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
case 1 : __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
default: ShouldNotReachHere();
}
if (rotate > 0) {
// Rorate upward.
__ sub(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
{
// Verify that argslot > destslot, by at least swap_bytes.
Label L_ok;
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("source must be above destination (upward rotation)");
__ bind(L_ok);
}
#endif
// Work argslot down to destslot, copying contiguous data upwards.
// Pseudo-code:
// Here is rotate > 0:
// (low mem) (high mem)
// | dest: more_slots... | arg: odd_slot :arg+1 |
// =>
// | dest: odd_slot | dest+1: more_slots... :arg+1 |
// work argslot down to destslot, copying contiguous data upwards
// pseudo-code:
// argslot = src_addr - swap_bytes
// destslot = dest_addr
// while (argslot >= destslot) {
// *(argslot + swap_bytes) = *(argslot + 0);
// argslot--;
// }
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), G5_index);
__ st_ptr(G5_index, Address(O0_argslot, swap_bytes));
__ sub(O0_argslot, wordSize, O0_argslot);
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
// while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
move_arg_slots_up(_masm,
O1_destslot,
Address(O0_argslot, 0),
swap_slots,
O0_argslot, O2_scratch);
} else {
__ add(O0_argslot, swap_bytes, O0_argslot);
#if ASSERT
{
// Verify that argslot < destslot, by at least swap_bytes.
Label L_ok;
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("source must be above destination (upward rotation)");
__ bind(L_ok);
}
#endif
// Work argslot up to destslot, copying contiguous data downwards.
// Pseudo-code:
// Here is the other direction, rotate < 0:
// (low mem) (high mem)
// | arg: odd_slot | arg+1: more_slots... :dest+1 |
// =>
// | arg: more_slots... | dest: odd_slot :dest+1 |
// work argslot up to destslot, copying contiguous data downwards
// pseudo-code:
// argslot = src_addr + swap_bytes
// destslot = dest_addr
// while (argslot >= destslot) {
// *(argslot - swap_bytes) = *(argslot + 0);
// argslot++;
// }
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), G5_index);
__ st_ptr(G5_index, Address(O0_argslot, -swap_bytes));
__ add(O0_argslot, wordSize, O0_argslot);
__ cmp(O0_argslot, O1_destslot);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
// while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
__ add(O1_destslot, wordSize, O1_destslot);
move_arg_slots_down(_masm,
Address(O0_argslot, swap_slots * wordSize),
O1_destslot,
-swap_slots,
O0_argslot, O2_scratch);
__ sub(O1_destslot, wordSize, O1_destslot);
}
// Store the original first chunk into the destination slot, now free.
switch (swap_bytes) {
case 4 : __ stw(O2_scratch, Address(O1_destslot, 0)); break;
case 16: __ stx(O3_scratch, Address(O1_destslot, 8)); // fall-thru
case 8 : __ stx(O2_scratch, Address(O1_destslot, 0)); break;
// pop the original first chunk into the destination slot, now free
switch (swap_slots) {
case 2 : __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
case 1 : __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
default: ShouldNotReachHere();
}
}
......@@ -924,41 +1606,21 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_dup_args:
{
// 'argslot' is the position of the first argument to duplicate.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// 'stack_move' is negative number of words to duplicate.
Register G5_stack_move = G5_index;
__ ldsw(G3_amh_conversion, G5_stack_move);
__ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);
// Remember the old Gargs (argslot[0]).
Register O1_oldarg = O1_scratch;
__ mov(Gargs, O1_oldarg);
// Move Gargs down to make room for dups.
__ sll_ptr(G5_stack_move, LogBytesPerWord, G5_stack_move);
__ add(Gargs, G5_stack_move, Gargs);
// Compute the new Gargs (argslot[0]).
Register O2_newarg = O2_scratch;
__ mov(Gargs, O2_newarg);
// Copy from oldarg[0...] down to newarg[0...]
// Pseude-code:
// O1_oldarg = old-Gargs
// O2_newarg = new-Gargs
// O0_argslot = argslot
// while (O2_newarg < O1_oldarg) *O2_newarg = *O0_argslot++
Label loop;
__ bind(loop);
__ ld_ptr(Address(O0_argslot, 0), O3_scratch);
__ st_ptr(O3_scratch, Address(O2_newarg, 0));
__ add(O0_argslot, wordSize, O0_argslot);
__ add(O2_newarg, wordSize, O2_newarg);
__ cmp(O2_newarg, O1_oldarg);
__ brx(Assembler::less, false, Assembler::pt, loop);
__ delayed()->nop(); // FILLME
Register O1_stack_move = O1_scratch;
load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
if (VerifyMethodHandles) {
verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
"copied argument(s) must fall within current frame");
}
// insert location is always the bottom of the argument list:
__ neg(O1_stack_move);
push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
......@@ -968,15 +1630,14 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _adapter_drop_args:
{
// 'argslot' is the position of the first argument to nuke.
__ ldsw(G3_amh_vmargslot, O0_argslot);
__ add(Gargs, __ argument_offset(O0_argslot), O0_argslot);
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// 'stack_move' is number of words to drop.
Register G5_stack_move = G5_index;
__ ldsw(G3_amh_conversion, G5_stack_move);
__ sra(G5_stack_move, CONV_STACK_MOVE_SHIFT, G5_stack_move);
Register O1_stack_move = O1_scratch;
load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
remove_arg_slots(_masm, G5_stack_move, O0_argslot, O1_scratch, O2_scratch, O3_scratch);
remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
......@@ -984,31 +1645,686 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
break;
case _adapter_collect_args:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_fold_args:
case _adapter_spread_args:
// Handled completely by optimized cases.
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_collect_ref:
case _adapter_opt_collect_int:
case _adapter_opt_collect_long:
case _adapter_opt_collect_float:
case _adapter_opt_collect_double:
case _adapter_opt_collect_void:
case _adapter_opt_collect_0_ref:
case _adapter_opt_collect_1_ref:
case _adapter_opt_collect_2_ref:
case _adapter_opt_collect_3_ref:
case _adapter_opt_collect_4_ref:
case _adapter_opt_collect_5_ref:
case _adapter_opt_filter_S0_ref:
case _adapter_opt_filter_S1_ref:
case _adapter_opt_filter_S2_ref:
case _adapter_opt_filter_S3_ref:
case _adapter_opt_filter_S4_ref:
case _adapter_opt_filter_S5_ref:
case _adapter_opt_collect_2_S0_ref:
case _adapter_opt_collect_2_S1_ref:
case _adapter_opt_collect_2_S2_ref:
case _adapter_opt_collect_2_S3_ref:
case _adapter_opt_collect_2_S4_ref:
case _adapter_opt_collect_2_S5_ref:
case _adapter_opt_fold_ref:
case _adapter_opt_fold_int:
case _adapter_opt_fold_long:
case _adapter_opt_fold_float:
case _adapter_opt_fold_double:
case _adapter_opt_fold_void:
case _adapter_opt_fold_1_ref:
case _adapter_opt_fold_2_ref:
case _adapter_opt_fold_3_ref:
case _adapter_opt_fold_4_ref:
case _adapter_opt_fold_5_ref:
{
// Given a fresh incoming stack frame, build a new ricochet frame.
// On entry, TOS points at a return PC, and FP is the callers frame ptr.
// RSI/R13 has the caller's exact stack pointer, which we must also preserve.
// RCX contains an AdapterMethodHandle of the indicated kind.
// Relevant AMH fields:
// amh.vmargslot:
// points to the trailing edge of the arguments
// to filter, collect, or fold. For a boxing operation,
// it points just after the single primitive value.
// amh.argument:
// recursively called MH, on |collect| arguments
// amh.vmtarget:
// final destination MH, on return value, etc.
// amh.conversion.dest:
// tells what is the type of the return value
// (not needed here, since dest is also derived from ek)
// amh.conversion.vminfo:
// points to the trailing edge of the return value
// when the vmtarget is to be called; this is
// equal to vmargslot + (retained ? |collect| : 0)
// Pass 0 or more argument slots to the recursive target.
int collect_count_constant = ek_adapter_opt_collect_count(ek);
// The collected arguments are copied from the saved argument list:
int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
assert(ek_orig == _adapter_collect_args ||
ek_orig == _adapter_fold_args, "");
bool retain_original_args = (ek_orig == _adapter_fold_args);
// The return value is replaced (or inserted) at the 'vminfo' argslot.
// Sometimes we can compute this statically.
int dest_slot_constant = -1;
if (!retain_original_args)
dest_slot_constant = collect_slot_constant;
else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
// We are preserving all the arguments, and the return value is prepended,
// so the return slot is to the left (above) the |collect| sequence.
dest_slot_constant = collect_slot_constant + collect_count_constant;
// Replace all those slots by the result of the recursive call.
// The result type can be one of ref, int, long, float, double, void.
// In the case of void, nothing is pushed on the stack after return.
BasicType dest = ek_adapter_opt_collect_type(ek);
assert(dest == type2wfield[dest], "dest is a stack slot type");
int dest_count = type2size[dest];
assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
// Choose a return continuation.
EntryKind ek_ret = _adapter_opt_return_any;
if (dest != T_CONFLICT && OptimizeMethodHandles) {
switch (dest) {
case T_INT : ek_ret = _adapter_opt_return_int; break;
case T_LONG : ek_ret = _adapter_opt_return_long; break;
case T_FLOAT : ek_ret = _adapter_opt_return_float; break;
case T_DOUBLE : ek_ret = _adapter_opt_return_double; break;
case T_OBJECT : ek_ret = _adapter_opt_return_ref; break;
case T_VOID : ek_ret = _adapter_opt_return_void; break;
default : ShouldNotReachHere();
}
if (dest == T_OBJECT && dest_slot_constant >= 0) {
EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
if (ek_try <= _adapter_opt_return_LAST &&
ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
ek_ret = ek_try;
}
}
assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
}
// Already pushed: ... keep1 | collect | keep2 |
// Push a few extra argument words, if we need them to store the return value.
{
int extra_slots = 0;
if (retain_original_args) {
extra_slots = dest_count;
} else if (collect_count_constant == -1) {
extra_slots = dest_count; // collect_count might be zero; be generous
} else if (dest_count > collect_count_constant) {
extra_slots = (dest_count - collect_count_constant);
} else {
// else we know we have enough dead space in |collect| to repurpose for return values
}
if (extra_slots != 0) {
__ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
}
}
// Set up Ricochet Frame.
__ mov(SP, O5_savedSP); // record SP for the callee
// One extra (empty) slot for outgoing target MH (see Gargs computation below).
__ save_frame(2); // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
// Note: Gargs is live throughout the following, until we make our recursive call.
// And the RF saves a copy in L4_saved_args_base.
RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
entry(ek_ret)->from_interpreted_entry());
// Compute argument base:
// Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
__ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
// Now pushed: ... keep1 | collect | keep2 | extra | [RF]
#ifdef ASSERT
if (VerifyMethodHandles && dest != T_CONFLICT) {
BLOCK_COMMENT("verify AMH.conv.dest {");
extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
Label L_dest_ok;
__ cmp(O1_scratch, (int) dest);
__ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
__ delayed()->nop();
if (dest == T_INT) {
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt))) {
__ cmp(O1_scratch, (int) bt);
__ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
__ delayed()->nop();
}
}
}
__ stop("bad dest in AMH.conv");
__ BIND(L_dest_ok);
BLOCK_COMMENT("} verify AMH.conv.dest");
}
#endif //ASSERT
// Find out where the original copy of the recursive argument sequence begins.
Register O0_coll = O0_scratch;
{
RegisterOrConstant collect_slot = collect_slot_constant;
if (collect_slot_constant == -1) {
load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
collect_slot = O1_scratch;
}
// collect_slot might be 0, but we need the move anyway.
__ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
// O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
}
// Replace the old AMH with the recursive MH. (No going back now.)
// In the case of a boxing call, the recursive call is to a 'boxer' method,
// such as Integer.valueOf or Long.valueOf. In the case of a filter
// or collect call, it will take one or more arguments, transform them,
// and return some result, to store back into argument_base[vminfo].
__ load_heap_oop(G3_amh_argument, G3_method_handle);
if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
// Calculate |collect|, the number of arguments we are collecting.
Register O1_collect_count = O1_scratch;
RegisterOrConstant collect_count;
if (collect_count_constant < 0) {
__ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
collect_count = O1_collect_count;
} else {
collect_count = collect_count_constant;
#ifdef ASSERT
if (VerifyMethodHandles) {
BLOCK_COMMENT("verify collect_count_constant {");
__ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
Label L_count_ok;
__ cmp(O3_scratch, collect_count_constant);
__ br(Assembler::equal, false, Assembler::pt, L_count_ok);
__ delayed()->nop();
__ stop("bad vminfo in AMH.conv");
__ BIND(L_count_ok);
BLOCK_COMMENT("} verify collect_count_constant");
}
#endif //ASSERT
}
// copy |collect| slots directly to TOS:
push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
// Now pushed: ... keep1 | collect | keep2 | RF... | collect |
// O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
// If necessary, adjust the saved arguments to make room for the eventual return value.
// Normal adjustment: ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
// If retaining args: ... keep1 | +dest+ | collect | keep2 | RF... | collect |
// In the non-retaining case, this might move keep2 either up or down.
// We don't have to copy the whole | RF... collect | complex,
// but we must adjust RF.saved_args_base.
// Also, from now on, we will forget about the original copy of |collect|.
// If we are retaining it, we will treat it as part of |keep2|.
// For clarity we will define |keep3| = |collect|keep2| or |keep2|.
BLOCK_COMMENT("adjust trailing arguments {");
// Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
int open_count = dest_count;
RegisterOrConstant close_count = collect_count_constant;
Register O1_close_count = O1_collect_count;
if (retain_original_args) {
close_count = constant(0);
} else if (collect_count_constant == -1) {
close_count = O1_collect_count;
}
// How many slots need moving? This is simply dest_slot (0 => no |keep3|).
RegisterOrConstant keep3_count;
Register O2_keep3_count = O2_scratch;
if (dest_slot_constant < 0) {
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
keep3_count = O2_keep3_count;
} else {
keep3_count = dest_slot_constant;
#ifdef ASSERT
if (VerifyMethodHandles && dest_slot_constant < 0) {
BLOCK_COMMENT("verify dest_slot_constant {");
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
Label L_vminfo_ok;
__ cmp(O3_scratch, dest_slot_constant);
__ br(Assembler::equal, false, Assembler::pt, L_vminfo_ok);
__ delayed()->nop();
__ stop("bad vminfo in AMH.conv");
__ BIND(L_vminfo_ok);
BLOCK_COMMENT("} verify dest_slot_constant");
}
#endif //ASSERT
}
// tasks remaining:
bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
// Old and new argument locations (based at slot 0).
// Net shift (&new_argv - &old_argv) is (close_count - open_count).
bool zero_open_count = (open_count == 0); // remember this bit of info
if (move_keep3 && fix_arg_base) {
// It will be easier to have everything in one register:
if (close_count.is_register()) {
// Deduct open_count from close_count register to get a clean +/- value.
__ sub(close_count.as_register(), open_count, close_count.as_register());
} else {
close_count = close_count.as_constant() - open_count;
}
open_count = 0;
}
Register L4_old_argv = RicochetFrame::L4_saved_args_base;
Register O3_new_argv = O3_scratch;
if (fix_arg_base) {
__ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
-(open_count * Interpreter::stackElementSize));
}
// First decide if any actual data are to be moved.
// We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
// (As it happens, all movements involve an argument list size change.)
// If there are variable parameters, use dynamic checks to skip around the whole mess.
Label L_done;
if (keep3_count.is_register()) {
__ tst(keep3_count.as_register());
__ br(Assembler::zero, false, Assembler::pn, L_done);
__ delayed()->nop();
}
if (close_count.is_register()) {
__ cmp(close_count.as_register(), open_count);
__ br(Assembler::equal, false, Assembler::pn, L_done);
__ delayed()->nop();
}
if (move_keep3 && fix_arg_base) {
bool emit_move_down = false, emit_move_up = false, emit_guard = false;
if (!close_count.is_constant()) {
emit_move_down = emit_guard = !zero_open_count;
emit_move_up = true;
} else if (open_count != close_count.as_constant()) {
emit_move_down = (open_count > close_count.as_constant());
emit_move_up = !emit_move_down;
}
Label L_move_up;
if (emit_guard) {
__ cmp(close_count.as_register(), open_count);
__ br(Assembler::greater, false, Assembler::pn, L_move_up);
__ delayed()->nop();
}
if (emit_move_down) {
// Move arguments down if |+dest+| > |-collect-|
// (This is rare, except when arguments are retained.)
// This opens space for the return value.
if (keep3_count.is_constant()) {
for (int i = 0; i < keep3_count.as_constant(); i++) {
__ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
__ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) );
}
} else {
// Live: O1_close_count, O2_keep3_count, O3_new_argv
Register argv_top = O0_scratch;
__ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
move_arg_slots_down(_masm,
Address(L4_old_argv, 0), // beginning of old argv
argv_top, // end of old argv
close_count, // distance to move down (must be negative)
O4_scratch, G5_scratch);
}
}
if (emit_guard) {
__ ba(false, L_done); // assumes emit_move_up is true also
__ delayed()->nop();
__ BIND(L_move_up);
}
if (emit_move_up) {
// Move arguments up if |+dest+| < |-collect-|
// (This is usual, except when |keep3| is empty.)
// This closes up the space occupied by the now-deleted collect values.
if (keep3_count.is_constant()) {
for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
__ ld_ptr( Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
__ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize) );
}
} else {
Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
// Live: O1_close_count, O2_keep3_count, O3_new_argv
move_arg_slots_up(_masm,
L4_old_argv, // beginning of old argv
argv_top, // end of old argv
close_count, // distance to move up (must be positive)
O4_scratch, G5_scratch);
}
}
}
__ BIND(L_done);
if (fix_arg_base) {
// adjust RF.saved_args_base
__ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
}
if (stomp_dest) {
// Stomp the return slot, so it doesn't hold garbage.
// This isn't strictly necessary, but it may help detect bugs.
__ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
__ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
__ argument_offset(keep3_count, keep3_count.register_or_noreg()))); // uses O2_keep3_count
}
BLOCK_COMMENT("} adjust trailing arguments");
BLOCK_COMMENT("do_recursive_call");
__ mov(SP, O5_savedSP); // record SP for the callee
__ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
// The globally unique bounce address has two purposes:
// 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
// 2. When returned to, it cuts back the stack and redirects control flow
// to the return handler.
// The return handler will further cut back the stack when it takes
// down the RF. Perhaps there is a way to streamline this further.
// State during recursive call:
// ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
}
break;
case _adapter_opt_return_ref:
case _adapter_opt_return_int:
case _adapter_opt_return_long:
case _adapter_opt_return_float:
case _adapter_opt_return_double:
case _adapter_opt_return_void:
case _adapter_opt_return_S0_ref:
case _adapter_opt_return_S1_ref:
case _adapter_opt_return_S2_ref:
case _adapter_opt_return_S3_ref:
case _adapter_opt_return_S4_ref:
case _adapter_opt_return_S5_ref:
{
BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
int dest_slot_constant = ek_adapter_opt_return_slot(ek);
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
if (dest_slot_constant == -1) {
// The current stub is a general handler for this dest_type.
// It can be called from _adapter_opt_return_any below.
// Stash the address in a little table.
assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
address return_handler = __ pc();
_adapter_return_handlers[dest_type_constant] = return_handler;
if (dest_type_constant == T_INT) {
// do the subword types too
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)) &&
_adapter_return_handlers[bt] == NULL) {
_adapter_return_handlers[bt] = return_handler;
}
}
}
}
// On entry to this continuation handler, make Gargs live again.
__ mov(RicochetFrame::L4_saved_args_base, Gargs);
Register O7_temp = O7;
Register O5_vminfo = O5;
RegisterOrConstant dest_slot = dest_slot_constant;
if (dest_slot_constant == -1) {
extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
dest_slot = O5_vminfo;
}
// Store the result back into the argslot.
// This code uses the interpreter calling sequence, in which the return value
// is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
// There are certain irregularities with floating point values, which can be seen
// in TemplateInterpreterGenerator::generate_return_entry_for.
move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
// Load the final target and go.
if (VerifyMethodHandles) verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
__ restore(I5_savedSP, G0, SP);
__ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
__ illtrap(0);
}
break;
case _adapter_opt_return_any:
{
Register O7_temp = O7;
Register O5_dest_type = O5;
if (VerifyMethodHandles) RicochetFrame::verify_clean(_masm);
extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
__ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
__ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
__ ld_ptr(O7_temp, O5_dest_type, O7_temp);
#ifdef ASSERT
{ Label L_ok;
__ br_notnull(O7_temp, false, Assembler::pt, L_ok);
__ delayed()->nop();
__ stop("bad method handle return");
__ BIND(L_ok);
}
#endif //ASSERT
__ JMP(O7_temp, 0);
__ delayed()->nop();
}
break;
case _adapter_opt_spread_0:
case _adapter_opt_spread_1:
case _adapter_opt_spread_more:
case _adapter_opt_spread_1_ref:
case _adapter_opt_spread_2_ref:
case _adapter_opt_spread_3_ref:
case _adapter_opt_spread_4_ref:
case _adapter_opt_spread_5_ref:
case _adapter_opt_spread_ref:
case _adapter_opt_spread_byte:
case _adapter_opt_spread_char:
case _adapter_opt_spread_short:
case _adapter_opt_spread_int:
case _adapter_opt_spread_long:
case _adapter_opt_spread_float:
case _adapter_opt_spread_double:
{
// spread an array out into a group of arguments
__ unimplemented(entry_name(ek));
int length_constant = ek_adapter_opt_spread_count(ek);
bool length_can_be_zero = (length_constant == 0);
if (length_constant < 0) {
// some adapters with variable length must handle the zero case
if (!OptimizeMethodHandles ||
ek_adapter_opt_spread_type(ek) != T_OBJECT)
length_can_be_zero = true;
}
break;
case _adapter_flyby:
case _adapter_ricochet:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
// find the address of the array argument
load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
__ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
// O0_argslot points both to the array and to the first output arg
Address vmarg = Address(O0_argslot, 0);
// Get the array value.
Register O1_array = O1_scratch;
Register O2_array_klass = O2_scratch;
BasicType elem_type = ek_adapter_opt_spread_type(ek);
int elem_slots = type2size[elem_type]; // 1 or 2
int array_slots = 1; // array is always a T_OBJECT
int length_offset = arrayOopDesc::length_offset_in_bytes();
int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type);
__ ld_ptr(vmarg, O1_array);
Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
if (length_can_be_zero) {
// handle the null pointer case, if zero is allowed
Label L_skip;
if (length_constant < 0) {
load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
__ br_zero(Assembler::notZero, false, Assembler::pn, O3_scratch, L_skip);
__ delayed()->nop();
}
__ br_null(O1_array, false, Assembler::pn, L_array_is_empty);
__ delayed()->nop();
__ BIND(L_skip);
}
__ null_check(O1_array, oopDesc::klass_offset_in_bytes());
__ load_klass(O1_array, O2_array_klass);
// Check the array type.
Register O3_klass = O3_scratch;
__ load_heap_oop(G3_amh_argument, O3_klass); // this is a Class object!
load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
__ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
// If we get here, the type check failed!
__ ba(false, L_bad_array_klass);
__ delayed()->nop();
__ BIND(L_ok_array_klass);
// Check length.
if (length_constant >= 0) {
__ ldsw(Address(O1_array, length_offset), O4_scratch);
__ cmp(O4_scratch, length_constant);
} else {
Register O3_vminfo = O3_scratch;
load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
__ ldsw(Address(O1_array, length_offset), O4_scratch);
__ cmp(O3_vminfo, O4_scratch);
}
__ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
__ delayed()->nop();
Register O2_argslot_limit = O2_scratch;
// Array length checks out. Now insert any required stack slots.
if (length_constant == -1) {
// Form a pointer to the end of the affected region.
__ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
// 'stack_move' is negative number of words to insert
// This number already accounts for elem_slots.
Register O3_stack_move = O3_scratch;
load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
__ cmp(O3_stack_move, 0);
assert(stack_move_unit() < 0, "else change this comparison");
__ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
__ delayed()->nop();
__ br(Assembler::equal, false, Assembler::pn, L_copy_args);
__ delayed()->nop();
// single argument case, with no array movement
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
O0_argslot, O1_scratch, O2_scratch, O3_scratch);
__ ba(false, L_args_done); // no spreading to do
__ delayed()->nop();
__ BIND(L_insert_arg_space);
// come here in the usual case, stack_move < 0 (2 or more spread arguments)
// Live: O1_array, O2_argslot_limit, O3_stack_move
insert_arg_slots(_masm, O3_stack_move,
O0_argslot, O4_scratch, G5_scratch, O1_scratch);
// reload from rdx_argslot_limit since rax_argslot is now decremented
__ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
} else if (length_constant >= 1) {
int new_slots = (length_constant * elem_slots) - array_slots;
insert_arg_slots(_masm, new_slots * stack_move_unit(),
O0_argslot, O2_scratch, O3_scratch, O4_scratch);
} else if (length_constant == 0) {
__ BIND(L_array_is_empty);
remove_arg_slots(_masm, -stack_move_unit() * array_slots,
O0_argslot, O1_scratch, O2_scratch, O3_scratch);
} else {
ShouldNotReachHere();
}
// Copy from the array to the new slots.
// Note: Stack change code preserves integrity of O0_argslot pointer.
// So even after slot insertions, O0_argslot still points to first argument.
// Beware: Arguments that are shallow on the stack are deep in the array,
// and vice versa. So a downward-growing stack (the usual) has to be copied
// elementwise in reverse order from the source array.
__ BIND(L_copy_args);
if (length_constant == -1) {
// [O0_argslot, O2_argslot_limit) is the area we are inserting into.
// Array element [0] goes at O0_argslot_limit[-wordSize].
Register O1_source = O1_array;
__ add(Address(O1_array, elem0_offset), O1_source);
Register O4_fill_ptr = O4_scratch;
__ mov(O2_argslot_limit, O4_fill_ptr);
Label L_loop;
__ BIND(L_loop);
__ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
move_typed_arg(_masm, elem_type, true,
Address(O1_source, 0), Address(O4_fill_ptr, 0),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
__ add(O1_source, type2aelembytes(elem_type), O1_source);
__ cmp(O4_fill_ptr, O0_argslot);
__ brx(Assembler::greaterUnsigned, false, Assembler::pt, L_loop);
__ delayed()->nop(); // FILLME
} else if (length_constant == 0) {
// nothing to copy
} else {
int elem_offset = elem0_offset;
int slot_offset = length_constant * Interpreter::stackElementSize;
for (int index = 0; index < length_constant; index++) {
slot_offset -= Interpreter::stackElementSize * elem_slots; // fill backward
move_typed_arg(_masm, elem_type, true,
Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
O2_scratch); // must be an even register for !_LP64 long moves (uses O2/O3)
elem_offset += type2aelembytes(elem_type);
}
}
__ BIND(L_args_done);
// Arguments are spread. Move to next method handle.
__ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
__ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
__ BIND(L_bad_array_klass);
assert(!vmarg.uses(O2_required), "must be different registers");
__ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required); // required class
__ ld_ptr( vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_aaload, O0_code); // who is complaining?
__ bind(L_bad_array_length);
assert(!vmarg.uses(O2_required), "must be different registers");
__ mov( G3_method_handle, O2_required); // required class
__ ld_ptr(vmarg, O1_actual); // bad object
__ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
__ delayed()->mov(Bytecodes::_arraylength, O0_code); // who is complaining?
}
break;
default:
DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
ShouldNotReachHere();
}
BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
......
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// Platform-specific definitions for method handles.
// These definitions are inlined into class MethodHandles.
// Adapters
enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(22000 DEBUG_ONLY(+ 40000)) LP64_ONLY(32000 DEBUG_ONLY(+ 80000))
};
public:
class RicochetFrame : public ResourceObj {
friend class MethodHandles;
private:
/*
RF field x86 SPARC
sender_pc *(rsp+0) I7-0x8
sender_link rbp I6+BIAS
exact_sender_sp rsi/r13 I5_savedSP
conversion *(rcx+&amh_conv) L5_conv
saved_args_base rax L4_sab (cf. Gargs = G4)
saved_args_layout #NULL L3_sal
saved_target *(rcx+&mh_vmtgt) L2_stgt
continuation #STUB_CON L1_cont
*/
static const Register L1_continuation ; // what to do when control gets back here
static const Register L2_saved_target ; // target method handle to invoke on saved_args
static const Register L3_saved_args_layout; // caching point for MethodTypeForm.vmlayout cookie
static const Register L4_saved_args_base ; // base of pushed arguments (slot 0, arg N) (-3)
static const Register L5_conversion ; // misc. information from original AdapterMethodHandle (-2)
frame _fr;
RicochetFrame(const frame& fr) : _fr(fr) { }
intptr_t* register_addr(Register reg) const {
assert((_fr.sp() + reg->sp_offset_in_saved_window()) == _fr.register_addr(reg), "must agree");
return _fr.register_addr(reg);
}
intptr_t register_value(Register reg) const { return *register_addr(reg); }
public:
intptr_t* continuation() const { return (intptr_t*) register_value(L1_continuation); }
oop saved_target() const { return (oop) register_value(L2_saved_target); }
oop saved_args_layout() const { return (oop) register_value(L3_saved_args_layout); }
intptr_t* saved_args_base() const { return (intptr_t*) register_value(L4_saved_args_base); }
intptr_t conversion() const { return register_value(L5_conversion); }
intptr_t* exact_sender_sp() const { return (intptr_t*) register_value(I5_savedSP); }
intptr_t* sender_link() const { return _fr.sender_sp(); } // XXX
address sender_pc() const { return _fr.sender_pc(); }
// This value is not used for much, but it apparently must be nonzero.
static int frame_size_in_bytes() { return wordSize * 4; }
intptr_t* extended_sender_sp() const { return saved_args_base(); }
intptr_t return_value_slot_number() const {
return adapter_conversion_vminfo(conversion());
}
BasicType return_value_type() const {
return adapter_conversion_dest_type(conversion());
}
bool has_return_value_slot() const {
return return_value_type() != T_VOID;
}
intptr_t* return_value_slot_addr() const {
assert(has_return_value_slot(), "");
return saved_arg_slot_addr(return_value_slot_number());
}
intptr_t* saved_target_slot_addr() const {
return saved_arg_slot_addr(saved_args_length());
}
intptr_t* saved_arg_slot_addr(int slot) const {
assert(slot >= 0, "");
return (intptr_t*)( (address)saved_args_base() + (slot * Interpreter::stackElementSize) );
}
jint saved_args_length() const;
jint saved_arg_offset(int arg) const;
// GC interface
oop* saved_target_addr() { return (oop*)register_addr(L2_saved_target); }
oop* saved_args_layout_addr() { return (oop*)register_addr(L3_saved_args_layout); }
oop compute_saved_args_layout(bool read_cache, bool write_cache);
#ifdef ASSERT
// The magic number is supposed to help find ricochet frames within the bytes of stack dumps.
enum { MAGIC_NUMBER_1 = 0xFEED03E, MAGIC_NUMBER_2 = 0xBEEF03E };
static const Register L0_magic_number_1 ; // cookie for debugging, at start of RSA
static Address magic_number_2_addr() { return Address(L4_saved_args_base, -wordSize); }
intptr_t magic_number_1() const { return register_value(L0_magic_number_1); }
intptr_t magic_number_2() const { return saved_args_base()[-1]; }
#endif //ASSERT
public:
enum { RETURN_VALUE_PLACEHOLDER = (NOT_DEBUG(0) DEBUG_ONLY(42)) };
void verify() const NOT_DEBUG_RETURN; // check for MAGIC_NUMBER, etc.
static void generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words);
static void enter_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register argv_reg,
address return_handler);
static void leave_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register new_sp_reg,
Register sender_pc_reg);
static RicochetFrame* from_frame(const frame& fr) {
RicochetFrame* rf = new RicochetFrame(fr);
rf->verify();
return rf;
}
static void verify_clean(MacroAssembler* _masm) NOT_DEBUG_RETURN;
};
// Additional helper methods for MethodHandles code generation:
public:
static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg);
static void load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg);
static void extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg);
static void extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg);
static void load_stack_move(MacroAssembler* _masm,
Address G3_amh_conversion,
Register G5_stack_move);
static void insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg);
static void remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg);
static void push_arg_slots(MacroAssembler* _masm,
Register argslot_reg,
RegisterOrConstant slot_count,
Register temp_reg, Register temp2_reg);
static void move_arg_slots_up(MacroAssembler* _masm,
Register bottom_reg, // invariant
Address top_addr, // can use temp_reg
RegisterOrConstant positive_distance_in_slots,
Register temp_reg, Register temp2_reg);
static void move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use temp_reg
Register top_reg, // invariant
RegisterOrConstant negative_distance_in_slots,
Register temp_reg, Register temp2_reg);
static void move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address value_src, Address slot_dest,
Register temp_reg);
static void move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot);
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
Register temp_reg,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_argslots(MacroAssembler* _masm,
RegisterOrConstant argslot_count,
Register argslot_reg,
Register temp_reg,
Register temp2_reg,
bool negate_argslot,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int direction) NOT_DEBUG_RETURN;
static void verify_klass(MacroAssembler* _masm,
Register obj_reg, KlassHandle klass,
Register temp_reg, Register temp2_reg,
const char* error_message = "wrong klass") NOT_DEBUG_RETURN;
static void verify_method_handle(MacroAssembler* _masm, Register mh_reg,
Register temp_reg, Register temp2_reg) {
verify_klass(_masm, mh_reg, SystemDictionaryHandles::MethodHandle_klass(),
temp_reg, temp2_reg,
"reference is a MH");
}
static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN;
/*
* Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -27,6 +27,7 @@
// machine-dependent implemention for register maps
friend class frame;
friend class MethodHandles;
private:
intptr_t* _window; // register window save area (for L and I regs)
......
/*
* Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -42,8 +42,6 @@
#define __ masm->
ExceptionBlob *OptoRuntime::_exception_blob;
//------------------------------ generate_exception_blob ---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
......
......@@ -47,18 +47,6 @@
#define __ masm->
#ifdef COMPILER2
UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
#endif // COMPILER2
DeoptimizationBlob* SharedRuntime::_deopt_blob;
SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
class RegisterSaver {
......@@ -3492,7 +3480,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
// Tricky, tricky, tricky...
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
......@@ -3587,7 +3575,7 @@ static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return)
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
......@@ -3677,35 +3665,3 @@ static RuntimeStub* generate_resolve_blob(address destination, const char* name)
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
}
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
"wrong_method_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
"ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
"resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
"resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
"resolve_static_call");
_polling_page_safepoint_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), false);
_polling_page_return_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), true);
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -44,11 +44,6 @@ enum /* platform_dependent_constants */ {
code_size2 = 20000 // simply increase if too small (assembler will crash if too small)
};
// MethodHandles adapters
enum method_handles_platform_dependent_constants {
method_handles_adapters_code_size = 15000
};
class Sparc {
friend class StubGenerator;
......
......@@ -1712,7 +1712,7 @@ int AbstractInterpreter::layout_activation(methodOop method,
int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
*interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
} else {
assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
assert(caller->is_compiled_frame() || caller->is_entry_frame() || caller->is_ricochet_frame(), "only possible cases");
// Don't have Lesp available; lay out locals block in the caller
// adjacent to the register window save area.
//
......
......@@ -5090,7 +5090,7 @@ void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rd
} else {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
assert(false, "DEBUG MESSAGE");
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
}
......@@ -5653,6 +5653,7 @@ void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
ttyLocker ttyl;
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
msg);
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
}
}
......
......@@ -139,9 +139,9 @@ oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, boo
void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* frame_size_in_words,
int* bounce_offset,
int* exception_offset) {
int* exception_offset,
int* frame_size_in_words) {
(*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
address start = __ pc();
......@@ -366,7 +366,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
Register rdi_stack_move,
Register rcx_amh,
bool might_be_negative) {
BLOCK_COMMENT("load_stack_move");
BLOCK_COMMENT("load_stack_move {");
Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
__ movl(rdi_stack_move, rcx_amh_conversion);
__ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
......@@ -387,6 +387,7 @@ void MethodHandles::load_stack_move(MacroAssembler* _masm,
__ stop("load_stack_move of garbage value");
__ BIND(L_ok);
}
BLOCK_COMMENT("} load_stack_move");
}
#ifdef ASSERT
......@@ -1147,7 +1148,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
trace_method_handle(_masm, entry_name(ek));
BLOCK_COMMENT(entry_name(ek));
BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
switch ((int) ek) {
case _raise_exception:
......@@ -1292,7 +1293,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
case _bound_int_direct_mh:
case _bound_long_direct_mh:
{
bool direct_to_method = (ek >= _bound_ref_direct_mh);
const bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = ek_bound_mh_arg_type(ek);
int arg_slots = type2size[arg_type];
......@@ -1929,7 +1930,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
// In the non-retaining case, this might move keep2 either up or down.
// We don't have to copy the whole | RF... collect | complex,
// but we must adjust RF.saved_args_base.
// Also, from now on, we will forget about the origial copy of |collect|.
// Also, from now on, we will forget about the original copy of |collect|.
// If we are retaining it, we will treat it as part of |keep2|.
// For clarity we will define |keep3| = |collect|keep2| or |keep2|.
......@@ -1986,7 +1987,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
// Net shift (&new_argv - &old_argv) is (close_count - open_count).
bool zero_open_count = (open_count == 0); // remember this bit of info
if (move_keep3 && fix_arg_base) {
// It will be easier t have everything in one register:
// It will be easier to have everything in one register:
if (close_count.is_register()) {
// Deduct open_count from close_count register to get a clean +/- value.
__ subptr(close_count.as_register(), open_count);
......@@ -2396,6 +2397,7 @@ void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHan
__ nop();
return;
}
BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
__ hlt();
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
......
......@@ -25,6 +25,11 @@
// Platform-specific definitions for method handles.
// These definitions are inlined into class MethodHandles.
// Adapters
enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(30000 DEBUG_ONLY(+ 10000)) LP64_ONLY(80000 DEBUG_ONLY(+ 120000))
};
public:
// The stack just after the recursive call from a ricochet frame
......@@ -188,7 +193,9 @@ class RicochetFrame {
static void generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* frame_size_in_words, int* bounce_offset, int* exception_offset);
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words);
static void enter_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
......
/*
* Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -42,8 +42,6 @@
#define __ masm->
ExceptionBlob* OptoRuntime::_exception_blob;
//------------------------------generate_exception_blob---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
......
......@@ -42,18 +42,6 @@
#endif
#define __ masm->
#ifdef COMPILER2
UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
#endif // COMPILER2
DeoptimizationBlob *SharedRuntime::_deopt_blob;
SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
......@@ -2253,31 +2241,6 @@ uint SharedRuntime::out_preserve_stack_slots() {
return 0;
}
//----------------------------generate_ricochet_blob---------------------------
void SharedRuntime::generate_ricochet_blob() {
if (!EnableInvokeDynamic) return; // leave it as a null
// allocate space for the code
ResourceMark rm;
// setup code generation tools
CodeBuffer buffer("ricochet_blob", 256, 256);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_words = -1, bounce_offset = -1, exception_offset = -1;
MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &frame_size_in_words, &bounce_offset, &exception_offset);
// -------------
// make sure all code is generated
masm->flush();
// failed to generate?
if (frame_size_in_words < 0 || bounce_offset < 0 || exception_offset < 0) {
assert(false, "bad ricochet blob");
return;
}
_ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
......@@ -2816,7 +2779,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
// setup oopmap, and calls safepoint code to stop the compiled code for
// a safepoint.
//
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
// Account for thread arg in our frame
const int additional_words = 1;
......@@ -2913,7 +2876,7 @@ static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return)
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
......@@ -2995,36 +2958,3 @@ static RuntimeStub* generate_resolve_blob(address destination, const char* name)
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
}
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
"wrong_method_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
"ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
"resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
"resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
"resolve_static_call");
_polling_page_safepoint_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), false);
_polling_page_return_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), true);
generate_ricochet_blob();
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}
......@@ -41,24 +41,10 @@
#include "opto/runtime.hpp"
#endif
DeoptimizationBlob *SharedRuntime::_deopt_blob;
#ifdef COMPILER2
UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
ExceptionBlob *OptoRuntime::_exception_blob;
#endif // COMPILER2
SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
#define __ masm->
const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
#define __ masm->
class SimpleRuntimeFrame {
public:
......@@ -2530,32 +2516,6 @@ uint SharedRuntime::out_preserve_stack_slots() {
}
//----------------------------generate_ricochet_blob---------------------------
void SharedRuntime::generate_ricochet_blob() {
if (!EnableInvokeDynamic) return; // leave it as a null
// allocate space for the code
ResourceMark rm;
// setup code generation tools
CodeBuffer buffer("ricochet_blob", 512, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_in_words = -1, bounce_offset = -1, exception_offset = -1;
MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &frame_size_in_words, &bounce_offset, &exception_offset);
// -------------
// make sure all code is generated
masm->flush();
// failed to generate?
if (frame_size_in_words < 0 || bounce_offset < 0 || exception_offset < 0) {
assert(false, "bad ricochet blob");
return;
}
_ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
// Allocate space for the code
......@@ -3046,7 +3006,7 @@ void SharedRuntime::generate_uncommon_trap_blob() {
// Generate a special Compile2Runtime blob that saves all registers,
// and setup oopmap.
//
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
assert(StubRoutines::forward_exception_entry() != NULL,
"must be generated before");
......@@ -3132,7 +3092,7 @@ static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return)
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
......@@ -3209,38 +3169,6 @@ static RuntimeStub* generate_resolve_blob(address destination, const char* name)
}
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
"wrong_method_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
"ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
"resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
"resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
"resolve_static_call");
_polling_page_safepoint_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), false);
_polling_page_return_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), true);
generate_ricochet_blob();
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}
#ifdef COMPILER2
// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
//
......
......@@ -34,11 +34,6 @@ enum platform_dependent_constants {
code_size2 = 22000 // simply increase if too small (assembler will crash if too small)
};
// MethodHandles adapters
enum method_handles_platform_dependent_constants {
method_handles_adapters_code_size = 30000 DEBUG_ONLY(+ 10000)
};
class x86 {
friend class StubGenerator;
friend class VMStructs;
......
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -36,11 +36,6 @@ enum platform_dependent_constants {
code_size2 = 22000 // simply increase if too small (assembler will crash if too small)
};
// MethodHandles adapters
enum method_handles_platform_dependent_constants {
method_handles_adapters_code_size = 80000 DEBUG_ONLY(+ 120000)
};
class x86 {
friend class StubGenerator;
......
......@@ -638,7 +638,9 @@ void DerivedPointerTable::add(oop *derived_loc, oop *base_loc) {
assert(*derived_loc != (oop)base_loc, "location already added");
assert(_list != NULL, "list must exist");
intptr_t offset = value_of_loc(derived_loc) - value_of_loc(base_loc);
assert(offset >= -1000000, "wrong derived pointer info");
// This assert is invalid because derived pointers can be
// arbitrarily far away from their base.
// assert(offset >= -1000000, "wrong derived pointer info");
if (TraceDerivedPointers) {
tty->print_cr(
......
......@@ -120,6 +120,7 @@ address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
address OptoRuntime::_zap_dead_native_locals_Java = NULL;
# endif
ExceptionBlob* OptoRuntime::_exception_blob;
// This should be called in an assertion at the start of OptoRuntime routines
// which are entered from compiled code (all of them)
......
......@@ -178,6 +178,12 @@ static const char* adapter_op_to_string(int op) {
return "unknown_op";
}
void MethodHandleChain::print(oopDesc* m) {
HandleMark hm;
ResourceMark rm;
Handle mh(m);
print(mh);
}
void MethodHandleChain::print(Handle mh) {
EXCEPTION_MARK;
......@@ -414,8 +420,7 @@ MethodHandleWalker::walk(TRAPS) {
assert(dest == T_OBJECT, "");
ArgToken arg = _outgoing.at(arg_slot);
assert(dest == arg.basic_type(), "");
ArgToken new_arg = make_conversion(T_OBJECT, dest_klass, Bytecodes::_checkcast, arg, CHECK_(empty));
assert(!arg.has_index() || arg.index() == new_arg.index(), "should be the same index");
arg = make_conversion(T_OBJECT, dest_klass, Bytecodes::_checkcast, arg, CHECK_(empty));
debug_only(dest_klass = (klassOop)badOop);
break;
}
......@@ -1248,7 +1253,8 @@ MethodHandleCompiler::make_conversion(BasicType type, klassOop tk, Bytecodes::Co
index = src.index();
}
emit_bc(op, cpool_klass_put(tk));
if (index == -1)
// Allocate a new local for the type so that we don't hide the
// previous type from the verifier.
index = new_local_index(type);
emit_store(srctype, index);
break;
......
......@@ -110,6 +110,7 @@ public:
// slot order to make it easier to understand.
void print();
static void print(Handle mh);
static void print(oopDesc* mh);
#endif
};
......@@ -273,7 +274,7 @@ private:
static jvalue one_jvalue;
// Fake constant pool entry.
class ConstantValue {
class ConstantValue : public ResourceObj {
private:
int _tag; // Constant pool tag type.
JavaValue _value;
......
......@@ -161,7 +161,6 @@ const char* MethodHandles::_entry_names[_EK_LIMIT+1] = {
// Adapters.
MethodHandlesAdapterBlob* MethodHandles::_adapter_code = NULL;
int MethodHandles::_adapter_code_size = StubRoutines::method_handles_adapters_code_size;
jobject MethodHandles::_raise_exception_method;
......@@ -200,12 +199,15 @@ void MethodHandles::generate_adapters() {
ResourceMark rm;
TraceTime timer("MethodHandles adapters generation", TraceStartupTime);
_adapter_code = MethodHandlesAdapterBlob::create(_adapter_code_size);
_adapter_code = MethodHandlesAdapterBlob::create(adapter_code_size);
if (_adapter_code == NULL)
vm_exit_out_of_memory(_adapter_code_size, "CodeCache: no room for MethodHandles adapters");
vm_exit_out_of_memory(adapter_code_size, "CodeCache: no room for MethodHandles adapters");
CodeBuffer code(_adapter_code);
MethodHandlesAdapterGenerator g(&code);
g.generate();
// Transfer code comments
_adapter_code->set_comments(code.comments());
}
//------------------------------------------------------------------------------
......@@ -1721,6 +1723,7 @@ void MethodHandles::init_BoundMethodHandle_with_receiver(Handle mh,
void MethodHandles::verify_BoundMethodHandle(Handle mh, Handle target, int argnum,
bool direct_to_method, TRAPS) {
ResourceMark rm;
Handle ptype_handle(THREAD,
java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum));
KlassHandle ptype_klass;
......@@ -1884,6 +1887,7 @@ static void throw_InternalError_for_bad_conversion(int conversion, const char* e
}
void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) {
ResourceMark rm;
jint conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh());
int argslot = java_lang_invoke_AdapterMethodHandle::vmargslot(mh());
......@@ -1987,7 +1991,7 @@ void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) {
bool rotate_up = (src_slot > dest_slot); // upward rotation
int src_arg = argnum;
int dest_arg = argument_slot_to_argnum(dst_mtype(), dest_slot);
verify_vmargslot(mh, dest_arg, dest_slot, CHECK);
verify_vmargslot(target, dest_arg, dest_slot, CHECK);
if (!(dest_slot >= src_slot + swap_size) &&
!(src_slot >= dest_slot + swap_size)) {
err = "source, destination slots must be distinct";
......@@ -2563,7 +2567,7 @@ void MethodHandles::init_AdapterMethodHandle(Handle mh, Handle target, int argnu
}
if (err != NULL) {
throw_InternalError_for_bad_conversion(conversion, err, THREAD);
throw_InternalError_for_bad_conversion(conversion, err_msg("%s: conv_op %d ek_opt %d", err, conv_op, ek_opt), THREAD);
return;
}
......
......@@ -217,7 +217,6 @@ class MethodHandles: AllStatic {
// Adapters.
static MethodHandlesAdapterBlob* _adapter_code;
static int _adapter_code_size;
static bool ek_valid(EntryKind ek) { return (uint)ek < (uint)_EK_LIMIT; }
static bool conv_op_valid(int op) { return (uint)op < (uint)CONV_OP_LIMIT; }
......@@ -716,12 +715,10 @@ public:
# include "methodHandles_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
#define TARGET_ARCH_NYI_6939861 1 //FIXME
//# include "methodHandles_sparc.hpp"
# include "methodHandles_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
#define TARGET_ARCH_NYI_6939861 1 //FIXME
//# include "methodHandles_zero.hpp"
# include "methodHandles_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "methodHandles_arm.hpp"
......
......@@ -80,6 +80,72 @@
#include "c1/c1_Runtime1.hpp"
#endif
// Shared stub locations
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
DeoptimizationBlob* SharedRuntime::_deopt_blob;
RicochetBlob* SharedRuntime::_ricochet_blob;
SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
#ifdef COMPILER2
UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
#endif // COMPILER2
//----------------------------generate_stubs-----------------------------------
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
_polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
_polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
generate_ricochet_blob();
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}
//----------------------------generate_ricochet_blob---------------------------
void SharedRuntime::generate_ricochet_blob() {
if (!EnableInvokeDynamic) return; // leave it as a null
#ifndef TARGET_ARCH_NYI_6939861
// allocate space for the code
ResourceMark rm;
// setup code generation tools
CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512
MacroAssembler* masm = new MacroAssembler(&buffer);
int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
// -------------
// make sure all code is generated
masm->flush();
// failed to generate?
if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
assert(false, "bad ricochet blob");
return;
}
_ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
#endif
}
#include <math.h>
HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
......@@ -88,8 +154,6 @@ HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
char*, int, char*, int, char*, int);
RicochetBlob* SharedRuntime::_ricochet_blob = NULL;
// Implementation of SharedRuntime
#ifndef PRODUCT
......@@ -143,6 +207,7 @@ int SharedRuntime::_ICmiss_index = 0;
int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
void SharedRuntime::trace_ic_miss(address at) {
for (int i = 0; i < _ICmiss_index; i++) {
if (_ICmiss_at[i] == at) {
......
......@@ -58,22 +58,27 @@ class SharedRuntime: AllStatic {
static RuntimeStub* _resolve_virtual_call_blob;
static RuntimeStub* _resolve_static_call_blob;
static DeoptimizationBlob* _deopt_blob;
static RicochetBlob* _ricochet_blob;
static SafepointBlob* _polling_page_safepoint_handler_blob;
static SafepointBlob* _polling_page_return_handler_blob;
#ifdef COMPILER2
static ExceptionBlob* _exception_blob;
static UncommonTrapBlob* _uncommon_trap_blob;
#endif // COMPILER2
#ifndef PRODUCT
// Counters
static int _nof_megamorphic_calls; // total # of megamorphic calls (through vtable)
#endif // !PRODUCT
private:
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return);
static RuntimeStub* generate_resolve_blob(address destination, const char* name);
public:
static void generate_stubs(void);
// max bytes for each dtrace string parameter
enum { max_dtrace_string_size = 256 };
......@@ -326,12 +331,9 @@ class SharedRuntime: AllStatic {
bool is_virtual,
bool is_optimized, TRAPS);
static void generate_stubs(void);
private:
// deopt blob
static void generate_deopt_blob(void);
static DeoptimizationBlob* _deopt_blob;
public:
static DeoptimizationBlob* deopt_blob(void) { return _deopt_blob; }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册