提交 309e945e 编写于 作者: S stefank

Merge

......@@ -6068,6 +6068,10 @@ void CMSCollector::sweep(bool asynch) {
verify_work_stacks_empty();
verify_overflow_empty();
if (should_unload_classes()) {
ClassLoaderDataGraph::purge();
}
_intra_sweep_timer.stop();
_intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
......
......@@ -784,7 +784,7 @@ void ConcurrentMark::reset_marking_state(bool clear_overflow) {
}
}
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
void ConcurrentMark::set_concurrency(uint active_tasks) {
assert(active_tasks <= _max_worker_id, "we should not have more");
_active_tasks = active_tasks;
......@@ -793,6 +793,10 @@ void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
_terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
_first_overflow_barrier_sync.set_n_workers((int) active_tasks);
_second_overflow_barrier_sync.set_n_workers((int) active_tasks);
}
void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
set_concurrency(active_tasks);
_concurrent = concurrent;
// We propagate this to all tasks, not just the active ones.
......@@ -806,7 +810,9 @@ void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
// false before we start remark. At this point we should also be
// in a STW phase.
assert(!concurrent_marking_in_progress(), "invariant");
assert(_finger == _heap_end, "only way to get here");
assert(_finger == _heap_end,
err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
_finger, _heap_end));
update_g1_committed(true);
}
}
......@@ -974,6 +980,13 @@ void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
}
// If we're executing the concurrent phase of marking, reset the marking
// state; otherwise the marking state is reset after reference processing,
// during the remark pause.
// If we reset here as a result of an overflow during the remark we will
// see assertion failures from any subsequent set_concurrency_and_phase()
// calls.
if (concurrent()) {
// let the task associated with with worker 0 do this
if (worker_id == 0) {
// task 0 is responsible for clearing the global data structures
......@@ -981,7 +994,7 @@ void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
// not clear the overflow flag since we rely on it being true when
// we exit this method to abort the pause and restart concurent
// marking.
reset_marking_state(concurrent() /* clear_overflow */);
reset_marking_state(true /* clear_overflow */);
force_overflow()->update();
if (G1Log::fine()) {
......@@ -990,6 +1003,7 @@ void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
}
}
}
// after this, each task should reset its own data structures then
// then go into the second barrier
......@@ -1007,7 +1021,7 @@ void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
if (concurrent()) {
ConcurrentGCThread::stsJoin();
}
// at this point everything should be re-initialised and ready to go
// at this point everything should be re-initialized and ready to go
if (verbose_low()) {
gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
......@@ -1065,8 +1079,8 @@ public:
double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
the_task->do_marking_step(mark_step_duration_ms,
true /* do_stealing */,
true /* do_termination */);
true /* do_termination */,
false /* is_serial*/);
double end_time_sec = os::elapsedTime();
double end_vtime_sec = os::elapsedVTime();
......@@ -1222,8 +1236,8 @@ void ConcurrentMark::markFromRoots() {
uint active_workers = MAX2(1U, parallel_marking_threads());
// Parallel task terminator is set in "set_phase()"
set_phase(active_workers, true /* concurrent */);
// Parallel task terminator is set in "set_concurrency_and_phase()"
set_concurrency_and_phase(active_workers, true /* concurrent */);
CMConcurrentMarkingTask markingTask(this, cmThread());
if (use_parallel_marking_threads()) {
......@@ -1275,12 +1289,22 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
if (has_overflown()) {
// Oops. We overflowed. Restart concurrent marking.
_restart_for_overflow = true;
// Clear the marking state because we will be restarting
// marking due to overflowing the global mark stack.
reset_marking_state();
if (G1TraceMarkStackOverflow) {
gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
}
// Verify the heap w.r.t. the previous marking bitmap.
if (VerifyDuringGC) {
HandleMark hm; // handle scope
gclog_or_tty->print(" VerifyDuringGC:(overflow)");
Universe::heap()->prepare_for_verify();
Universe::verify(/* silent */ false,
/* option */ VerifyOption_G1UsePrevMarking);
}
// Clear the marking state because we will be restarting
// marking due to overflowing the global mark stack.
reset_marking_state();
} else {
// Aggregate the per-task counting data that we have accumulated
// while marking.
......@@ -2188,10 +2212,13 @@ class G1CMKeepAliveAndDrainClosure: public OopClosure {
CMTask* _task;
int _ref_counter_limit;
int _ref_counter;
bool _is_serial;
public:
G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
_cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval) {
G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
_cm(cm), _task(task), _is_serial(is_serial),
_ref_counter_limit(G1RefProcDrainInterval) {
assert(_ref_counter_limit > 0, "sanity");
assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
_ref_counter = _ref_counter_limit;
}
......@@ -2230,8 +2257,8 @@ class G1CMKeepAliveAndDrainClosure: public OopClosure {
do {
double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
_task->do_marking_step(mark_step_duration_ms,
false /* do_stealing */,
false /* do_termination */);
false /* do_termination */,
_is_serial);
} while (_task->has_aborted() && !_cm->has_overflown());
_ref_counter = _ref_counter_limit;
}
......@@ -2253,27 +2280,18 @@ class G1CMKeepAliveAndDrainClosure: public OopClosure {
class G1CMDrainMarkingStackClosure: public VoidClosure {
ConcurrentMark* _cm;
CMTask* _task;
bool _do_stealing;
bool _do_termination;
bool _is_serial;
public:
G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_par) :
_cm(cm), _task(task) {
assert(is_par || _task->worker_id() == 0,
"Only task for worker 0 should be used if ref processing is single threaded");
// We only allow stealing and only enter the termination protocol
// in CMTask::do_marking_step() if this closure is being instantiated
// for parallel reference processing.
_do_stealing = _do_termination = is_par;
G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
_cm(cm), _task(task), _is_serial(is_serial) {
assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
}
void do_void() {
do {
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - "
"stealing: %s, termination: %s",
_task->worker_id(),
BOOL_TO_STR(_do_stealing),
BOOL_TO_STR(_do_termination));
gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
_task->worker_id(), BOOL_TO_STR(_is_serial));
}
// We call CMTask::do_marking_step() to completely drain the local
......@@ -2294,8 +2312,8 @@ class G1CMDrainMarkingStackClosure: public VoidClosure {
// has_aborted() flag that the marking step has completed.
_task->do_marking_step(1000000000.0 /* something very large */,
_do_stealing,
_do_termination);
true /* do_termination */,
_is_serial);
} while (_task->has_aborted() && !_cm->has_overflown());
}
};
......@@ -2328,7 +2346,6 @@ class G1CMRefProcTaskProxy: public AbstractGangTask {
ProcessTask& _proc_task;
G1CollectedHeap* _g1h;
ConcurrentMark* _cm;
bool _processing_is_mt;
public:
G1CMRefProcTaskProxy(ProcessTask& proc_task,
......@@ -2337,14 +2354,14 @@ public:
AbstractGangTask("Process reference objects in parallel"),
_proc_task(proc_task), _g1h(g1h), _cm(cm) {
ReferenceProcessor* rp = _g1h->ref_processor_cm();
_processing_is_mt = rp->processing_is_mt();
assert(rp->processing_is_mt(), "shouldn't be here otherwise");
}
virtual void work(uint worker_id) {
CMTask* marking_task = _cm->task(worker_id);
CMTask* task = _cm->task(worker_id);
G1CMIsAliveClosure g1_is_alive(_g1h);
G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
G1CMDrainMarkingStackClosure g1_par_drain(_cm, marking_task, _processing_is_mt);
G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
_proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
}
......@@ -2356,9 +2373,11 @@ void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
// We need to reset the phase for each task execution so that
// the termination protocol of CMTask::do_marking_step works.
_cm->set_phase(_active_workers, false /* concurrent */);
// We need to reset the concurrency level before each
// proxy task execution, so that the termination protocol
// and overflow handling in CMTask::do_marking_step() knows
// how many workers to wait for.
_cm->set_concurrency(_active_workers);
_g1h->set_par_threads(_active_workers);
_workers->run_task(&proc_task_proxy);
_g1h->set_par_threads(0);
......@@ -2384,12 +2403,29 @@ void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
// Not strictly necessary but...
//
// We need to reset the concurrency level before each
// proxy task execution, so that the termination protocol
// and overflow handling in CMTask::do_marking_step() knows
// how many workers to wait for.
_cm->set_concurrency(_active_workers);
_g1h->set_par_threads(_active_workers);
_workers->run_task(&enq_task_proxy);
_g1h->set_par_threads(0);
}
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
if (has_overflown()) {
// Skip processing the discovered references if we have
// overflown the global marking stack. Reference objects
// only get discovered once so it is OK to not
// de-populate the discovered reference lists. We could have,
// but the only benefit would be that, when marking restarts,
// less reference objects are discovered.
return;
}
ResourceMark rm;
HandleMark hm;
......@@ -2415,26 +2451,39 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
rp->setup_policy(clear_all_soft_refs);
assert(_markStack.isEmpty(), "mark stack should be empty");
// Non-MT instances 'Keep Alive' and 'Complete GC' oop closures.
G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0));
G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), false);
// We need at least one active thread. If reference processing is
// not multi-threaded we use the current (ConcurrentMarkThread) thread,
// otherwise we use the work gang from the G1CollectedHeap and we
// utilize all the worker threads we can.
uint active_workers = (rp->processing_is_mt() && g1h->workers() != NULL
? g1h->workers()->active_workers()
: 1U);
// Instances of the 'Keep Alive' and 'Complete GC' closures used
// in serial reference processing. Note these closures are also
// used for serially processing (by the the current thread) the
// JNI references during parallel reference processing.
//
// These closures do not need to synchronize with the worker
// threads involved in parallel reference processing as these
// instances are executed serially by the current thread (e.g.
// reference processing is not multi-threaded and is thus
// performed by the current thread instead of a gang worker).
//
// The gang tasks involved in parallel reference procssing create
// their own instances of these closures, which do their own
// synchronization among themselves.
G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
// We need at least one active thread. If reference processing
// is not multi-threaded we use the current (VMThread) thread,
// otherwise we use the work gang from the G1CollectedHeap and
// we utilize all the worker threads we can.
bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
// Parallel processing task executor.
G1CMRefProcTaskExecutor par_task_executor(g1h, this,
g1h->workers(), active_workers);
AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
AbstractRefProcTaskExecutor* executor = (rp->processing_is_mt()
? &par_task_executor
: NULL);
// Set the concurrency level. The phase was already set prior to
// executing the remark task.
set_concurrency(active_workers);
// Set the degree of MT processing here. If the discovery was done MT,
// the number of threads involved during discovery could differ from
......@@ -2454,6 +2503,7 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
assert(_markStack.overflow() || _markStack.isEmpty(),
"mark stack should be empty (unless it overflowed)");
if (_markStack.overflow()) {
// This should have been done already when we tried to push an
// entry on to the global mark stack. But let's do it again.
......@@ -2482,8 +2532,8 @@ void ConcurrentMark::swapMarkBitMaps() {
class CMRemarkTask: public AbstractGangTask {
private:
ConcurrentMark *_cm;
ConcurrentMark* _cm;
bool _is_serial;
public:
void work(uint worker_id) {
// Since all available tasks are actually started, we should
......@@ -2493,8 +2543,8 @@ public:
task->record_start_time();
do {
task->do_marking_step(1000000000.0 /* something very large */,
true /* do_stealing */,
true /* do_termination */);
true /* do_termination */,
_is_serial);
} while (task->has_aborted() && !_cm->has_overflown());
// If we overflow, then we do not want to restart. We instead
// want to abort remark and do concurrent marking again.
......@@ -2502,8 +2552,8 @@ public:
}
}
CMRemarkTask(ConcurrentMark* cm, int active_workers) :
AbstractGangTask("Par Remark"), _cm(cm) {
CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
_cm->terminator()->reset_for_reuse(active_workers);
}
};
......@@ -2524,30 +2574,40 @@ void ConcurrentMark::checkpointRootsFinalWork() {
active_workers = (uint) ParallelGCThreads;
g1h->workers()->set_active_workers(active_workers);
}
set_phase(active_workers, false /* concurrent */);
set_concurrency_and_phase(active_workers, false /* concurrent */);
// Leave _parallel_marking_threads at it's
// value originally calculated in the ConcurrentMark
// constructor and pass values of the active workers
// through the gang in the task.
CMRemarkTask remarkTask(this, active_workers);
CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
// We will start all available threads, even if we decide that the
// active_workers will be fewer. The extra ones will just bail out
// immediately.
g1h->set_par_threads(active_workers);
g1h->workers()->run_task(&remarkTask);
g1h->set_par_threads(0);
} else {
G1CollectedHeap::StrongRootsScope srs(g1h);
// this is remark, so we'll use up all available threads
uint active_workers = 1;
set_phase(active_workers, false /* concurrent */);
CMRemarkTask remarkTask(this, active_workers);
// We will start all available threads, even if we decide that the
// active_workers will be fewer. The extra ones will just bail out
// immediately.
set_concurrency_and_phase(active_workers, false /* concurrent */);
// Note - if there's no work gang then the VMThread will be
// the thread to execute the remark - serially. We have
// to pass true for the is_serial parameter so that
// CMTask::do_marking_step() doesn't enter the sync
// barriers in the event of an overflow. Doing so will
// cause an assert that the current thread is not a
// concurrent GC thread.
CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
remarkTask.work(0);
}
SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
guarantee(has_overflown() ||
satb_mq_set.completed_buffers_num() == 0,
err_msg("Invariant: has_overflown = %s, num buffers = %d",
BOOL_TO_STR(has_overflown()),
satb_mq_set.completed_buffers_num()));
print_stats();
}
......@@ -3854,8 +3914,8 @@ void CMTask::print_stats() {
/*****************************************************************************
The do_marking_step(time_target_ms) method is the building block
of the parallel marking framework. It can be called in parallel
The do_marking_step(time_target_ms, ...) method is the building
block of the parallel marking framework. It can be called in parallel
with other invocations of do_marking_step() on different tasks
(but only one per task, obviously) and concurrently with the
mutator threads, or during remark, hence it eliminates the need
......@@ -3865,7 +3925,7 @@ void CMTask::print_stats() {
pauses too, since do_marking_step() ensures that it aborts before
it needs to yield.
The data structures that is uses to do marking work are the
The data structures that it uses to do marking work are the
following:
(1) Marking Bitmap. If there are gray objects that appear only
......@@ -3914,7 +3974,7 @@ void CMTask::print_stats() {
(2) When a global overflow (on the global stack) has been
triggered. Before the task aborts, it will actually sync up with
the other tasks to ensure that all the marking data structures
(local queues, stacks, fingers etc.) are re-initialised so that
(local queues, stacks, fingers etc.) are re-initialized so that
when do_marking_step() completes, the marking phase can
immediately restart.
......@@ -3951,11 +4011,25 @@ void CMTask::print_stats() {
place, it was natural to piggy-back all the other conditions on it
too and not constantly check them throughout the code.
If do_termination is true then do_marking_step will enter its
termination protocol.
The value of is_serial must be true when do_marking_step is being
called serially (i.e. by the VMThread) and do_marking_step should
skip any synchronization in the termination and overflow code.
Examples include the serial remark code and the serial reference
processing closures.
The value of is_serial must be false when do_marking_step is
being called by any of the worker threads in a work gang.
Examples include the concurrent marking code (CMMarkingTask),
the MT remark code, and the MT reference processing closures.
*****************************************************************************/
void CMTask::do_marking_step(double time_target_ms,
bool do_stealing,
bool do_termination) {
bool do_termination,
bool is_serial) {
assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
assert(concurrent() == _cm->concurrent(), "they should be the same");
......@@ -3976,6 +4050,12 @@ void CMTask::do_marking_step(double time_target_ms,
_start_time_ms = os::elapsedVTime() * 1000.0;
statsOnly( _interval_start_time_ms = _start_time_ms );
// If do_stealing is true then do_marking_step will attempt to
// steal work from the other CMTasks. It only makes sense to
// enable stealing when the termination protocol is enabled
// and do_marking_step() is not being called serially.
bool do_stealing = do_termination && !is_serial;
double diff_prediction_ms =
g1_policy->get_new_prediction(&_marking_step_diffs_ms);
_time_target_ms = time_target_ms - diff_prediction_ms;
......@@ -4237,10 +4317,12 @@ void CMTask::do_marking_step(double time_target_ms,
}
_termination_start_time_ms = os::elapsedVTime() * 1000.0;
// The CMTask class also extends the TerminatorTerminator class,
// hence its should_exit_termination() method will also decide
// whether to exit the termination protocol or not.
bool finished = _cm->terminator()->offer_termination(this);
bool finished = (is_serial ||
_cm->terminator()->offer_termination(this));
double termination_end_time_ms = os::elapsedVTime() * 1000.0;
_termination_time_ms +=
termination_end_time_ms - _termination_start_time_ms;
......@@ -4320,20 +4402,28 @@ void CMTask::do_marking_step(double time_target_ms,
gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
}
if (!is_serial) {
// We only need to enter the sync barrier if being called
// from a parallel context
_cm->enter_first_sync_barrier(_worker_id);
// When we exit this sync barrier we know that all tasks have
// stopped doing marking work. So, it's now safe to
// re-initialise our data structures. At the end of this method,
// task 0 will clear the global data structures.
}
statsOnly( ++_aborted_overflow );
// We clear the local state of this task...
clear_region_fields();
if (!is_serial) {
// ...and enter the second barrier.
_cm->enter_second_sync_barrier(_worker_id);
// At this point everything has bee re-initialised and we're
}
// At this point, if we're during the concurrent phase of
// marking, everything has been re-initialized and we're
// ready to restart.
}
......
......@@ -491,9 +491,12 @@ protected:
// structures are initialised to a sensible and predictable state.
void set_non_marking_state();
// Called to indicate how many threads are currently active.
void set_concurrency(uint active_tasks);
// It should be called to indicate which phase we're in (concurrent
// mark or remark) and how many threads are currently active.
void set_phase(uint active_tasks, bool concurrent);
void set_concurrency_and_phase(uint active_tasks, bool concurrent);
// prints all gathered CM-related statistics
void print_stats();
......@@ -1146,7 +1149,9 @@ public:
// trying not to exceed the given duration. However, it might exit
// prematurely, according to some conditions (i.e. SATB buffers are
// available for processing).
void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
void do_marking_step(double target_ms,
bool do_termination,
bool is_serial);
// These two calls start and stop the timer
void record_start_time() {
......
......@@ -656,7 +656,7 @@ void ParallelScavengeHeap::print_tracing_info() const {
tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
}
if (TraceGen1Time) {
double time = PSMarkSweep::accumulated_time()->seconds();
double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
}
}
......
......@@ -554,6 +554,8 @@ void GenCollectedHeap::do_collection(bool full,
}
if (complete) {
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
ClassLoaderDataGraph::purge();
// Resize the metaspace capacity after full collections
MetaspaceGC::compute_new_size();
update_full_collections_completed();
......@@ -564,11 +566,6 @@ void GenCollectedHeap::do_collection(bool full,
gc_epilogue(complete);
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
if (complete) {
ClassLoaderDataGraph::purge();
}
if (must_restore_marks_for_biased_locking) {
BiasedLocking::restore_marks();
}
......
......@@ -1103,25 +1103,24 @@ size_t MetaspaceGC::delta_capacity_until_GC(size_t word_size) {
}
bool MetaspaceGC::should_expand(VirtualSpaceList* vsl, size_t word_size) {
// Class virtual space should always be expanded. Call GC for the other
// metadata virtual space.
if (vsl == Metaspace::class_space_list()) return true;
// If the user wants a limit, impose one.
size_t max_metaspace_size_words = MaxMetaspaceSize / BytesPerWord;
size_t metaspace_size_words = MetaspaceSize / BytesPerWord;
if (!FLAG_IS_DEFAULT(MaxMetaspaceSize) &&
vsl->capacity_words_sum() >= max_metaspace_size_words) {
MetaspaceAux::reserved_in_bytes() >= MaxMetaspaceSize) {
return false;
}
// Class virtual space should always be expanded. Call GC for the other
// metadata virtual space.
if (vsl == Metaspace::class_space_list()) return true;
// If this is part of an allocation after a GC, expand
// unconditionally.
if(MetaspaceGC::expand_after_GC()) {
return true;
}
size_t metaspace_size_words = MetaspaceSize / BytesPerWord;
// If the capacity is below the minimum capacity, allow the
// expansion. Also set the high-water-mark (capacity_until_GC)
// to that minimum capacity so that a GC will not be induced
......@@ -1311,8 +1310,7 @@ void MetaspaceGC::compute_new_size() {
gclog_or_tty->print_cr(" metaspace HWM: %.1fK", new_capacity_until_GC / (double) K);
}
}
assert(vsl->used_bytes_sum() == used_after_gc &&
used_after_gc <= vsl->capacity_bytes_sum(),
assert(used_after_gc <= vsl->capacity_bytes_sum(),
"sanity check");
}
......@@ -1972,6 +1970,9 @@ void SpaceManager::initialize() {
}
SpaceManager::~SpaceManager() {
// This call this->_lock which can't be done while holding expand_lock()
const size_t in_use_before = sum_capacity_in_chunks_in_use();
MutexLockerEx fcl(SpaceManager::expand_lock(),
Mutex::_no_safepoint_check_flag);
......@@ -1989,7 +1990,7 @@ SpaceManager::~SpaceManager() {
// Have to update before the chunks_in_use lists are emptied
// below.
chunk_manager->inc_free_chunks_total(sum_capacity_in_chunks_in_use(),
chunk_manager->inc_free_chunks_total(in_use_before,
sum_count_in_chunks_in_use());
// Add all the chunks in use by this space manager
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册