提交 2182157d 编写于 作者: A acorn

8012294: remove generic handling for default methods

Reviewed-by: kamg, coleenp
上级 13b030b0
......@@ -28,7 +28,6 @@
#include "classfile/classLoaderData.hpp"
#include "classfile/classLoaderData.inline.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
......@@ -3039,35 +3038,6 @@ AnnotationArray* ClassFileParser::assemble_annotations(u1* runtime_visible_annot
return annotations;
}
#ifdef ASSERT
static void parseAndPrintGenericSignatures(
instanceKlassHandle this_klass, TRAPS) {
assert(ParseAllGenericSignatures == true, "Shouldn't call otherwise");
ResourceMark rm;
if (this_klass->generic_signature() != NULL) {
using namespace generic;
ClassDescriptor* spec = ClassDescriptor::parse_generic_signature(this_klass(), CHECK);
tty->print_cr("Parsing %s", this_klass->generic_signature()->as_C_string());
spec->print_on(tty);
for (int i = 0; i < this_klass->methods()->length(); ++i) {
Method* m = this_klass->methods()->at(i);
MethodDescriptor* method_spec = MethodDescriptor::parse_generic_signature(m, spec);
Symbol* sig = m->generic_signature();
if (sig == NULL) {
sig = m->signature();
}
tty->print_cr("Parsing %s", sig->as_C_string());
method_spec->print_on(tty);
}
}
}
#endif // def ASSERT
instanceKlassHandle ClassFileParser::parse_super_class(int super_class_index,
TRAPS) {
instanceKlassHandle super_klass;
......@@ -4060,12 +4030,6 @@ instanceKlassHandle ClassFileParser::parseClassFile(Symbol* name,
java_lang_Class::create_mirror(this_klass, protection_domain, CHECK_(nullHandle));
#ifdef ASSERT
if (ParseAllGenericSignatures) {
parseAndPrintGenericSignatures(this_klass, CHECK_(nullHandle));
}
#endif
// Generate any default methods - default methods are interface methods
// that have a default implementation. This is new with Lambda project.
if (has_default_methods && !access_flags.is_interface() &&
......
......@@ -25,7 +25,6 @@
#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "memory/metadataFactory.hpp"
......@@ -75,14 +74,6 @@ class PseudoScope : public ResourceObj {
}
};
class ContextMark : public PseudoScopeMark {
private:
generic::Context::Mark _mark;
public:
ContextMark(const generic::Context::Mark& cm) : _mark(cm) {}
virtual void destroy() { _mark.destroy(); }
};
#ifndef PRODUCT
static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
ResourceMark rm;
......@@ -503,38 +494,6 @@ Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods
return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}
// A generic method family contains a set of all methods that implement a single
// language-level method. Because of erasure, these methods may have different
// signatures. As members of the set are collected while walking over the
// hierarchy, they are tagged with a qualification state. The qualification
// state for an erased method is set to disqualified if there exists a path
// from the root of hierarchy to the method that contains an interleaving
// language-equivalent method defined in an interface.
class GenericMethodFamily : public MethodFamily {
private:
generic::MethodDescriptor* _descriptor; // language-level description
public:
GenericMethodFamily(generic::MethodDescriptor* canonical_desc)
: _descriptor(canonical_desc) {}
generic::MethodDescriptor* descriptor() const { return _descriptor; }
bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
return descriptor()->covariant_match(md, ctx);
}
#ifndef PRODUCT
Symbol* get_generic_sig() const {
generic::Context ctx(NULL); // empty, as _descriptor already canonicalized
TempNewSymbol sig = descriptor()->reify_signature(&ctx, Thread::current());
return sig;
}
#endif // ndef PRODUCT
};
class StateRestorer;
......@@ -571,26 +530,6 @@ class StatefulMethodFamily : public ResourceObj {
StateRestorer* record_method_and_dq_further(Method* mo);
};
// StatefulGenericMethodFamily is a wrapper around GenericMethodFamily that maintains the
// qualification state during hierarchy visitation, and applies that state
// when adding members to the GenericMethodFamily.
class StatefulGenericMethodFamily : public StatefulMethodFamily {
public:
StatefulGenericMethodFamily(generic::MethodDescriptor* md, generic::Context* ctx)
: StatefulMethodFamily(new GenericMethodFamily(md->canonicalize(ctx))) {
}
GenericMethodFamily* get_method_family() {
return (GenericMethodFamily*)_method_family;
}
bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
return get_method_family()->descriptor_matches(md, ctx);
}
};
class StateRestorer : public PseudoScopeMark {
private:
StatefulMethodFamily* _method;
......@@ -616,39 +555,6 @@ StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
return mark;
}
class StatefulGenericMethodFamilies : public ResourceObj {
private:
GrowableArray<StatefulGenericMethodFamily*> _methods;
public:
StatefulGenericMethodFamily* find_matching(
generic::MethodDescriptor* md, generic::Context* ctx) {
for (int i = 0; i < _methods.length(); ++i) {
StatefulGenericMethodFamily* existing = _methods.at(i);
if (existing->descriptor_matches(md, ctx)) {
return existing;
}
}
return NULL;
}
StatefulGenericMethodFamily* find_matching_or_create(
generic::MethodDescriptor* md, generic::Context* ctx) {
StatefulGenericMethodFamily* method = find_matching(md, ctx);
if (method == NULL) {
method = new StatefulGenericMethodFamily(md, ctx);
_methods.append(method);
}
return method;
}
void extract_families_into(GrowableArray<GenericMethodFamily*>* array) {
for (int i = 0; i < _methods.length(); ++i) {
array->append(_methods.at(i)->get_method_family());
}
}
};
// Represents a location corresponding to a vtable slot for methods that
// neither the class nor any of it's ancestors provide an implementaion.
// Default methods may be present to fill this slot.
......@@ -779,146 +685,11 @@ class FindMethodsByErasedSig : public HierarchyVisitor<FindMethodsByErasedSig> {
};
// Iterates over the type hierarchy looking for all methods with a specific
// method name. The result of this is a set of method families each of
// which is populated with a set of methods that implement the same
// language-level signature.
class FindMethodsByGenericSig : public HierarchyVisitor<FindMethodsByGenericSig> {
private:
// Context data
Thread* THREAD;
generic::DescriptorCache* _cache;
Symbol* _method_name;
generic::Context* _ctx;
StatefulGenericMethodFamilies _families;
public:
FindMethodsByGenericSig(generic::DescriptorCache* cache, Symbol* name,
generic::Context* ctx, Thread* thread) :
_cache(cache), _method_name(name), _ctx(ctx), THREAD(thread) {}
void get_discovered_families(GrowableArray<GenericMethodFamily*>* methods) {
_families.extract_families_into(methods);
}
void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
void free_node_data(void* node_data) {
PseudoScope::cast(node_data)->destroy();
}
bool visit() {
PseudoScope* scope = PseudoScope::cast(current_data());
InstanceKlass* klass = current_class();
InstanceKlass* sub = current_depth() > 0 ? class_at_depth(1) : NULL;
ContextMark* cm = new ContextMark(_ctx->mark());
scope->add_mark(cm); // will restore context when scope is freed
_ctx->apply_type_arguments(sub, klass, THREAD);
int start, end = 0;
start = klass->find_method_by_name(_method_name, &end);
if (start != -1) {
for (int i = start; i < end; ++i) {
Method* m = klass->methods()->at(i);
// This gets the method's parameter list with its generic type
// parameters resolved
generic::MethodDescriptor* md = _cache->descriptor_for(m, THREAD);
// Find all methods on this hierarchy that match this method
// (name, signature). This class collects other families of this
// method name.
StatefulGenericMethodFamily* family =
_families.find_matching_or_create(md, _ctx);
if (klass->is_interface()) {
// ???
StateRestorer* restorer = family->record_method_and_dq_further(m);
scope->add_mark(restorer);
} else {
// This is the rule that methods in classes "win" (bad word) over
// methods in interfaces. This works because of single inheritance
family->set_target_if_empty(m);
}
}
}
return true;
}
};
#ifndef PRODUCT
static void print_generic_families(
GrowableArray<GenericMethodFamily*>* methods, Symbol* match) {
streamIndentor si(tty, 4);
if (methods->length() == 0) {
tty->indent();
tty->print_cr("No Logical Method found");
}
for (int i = 0; i < methods->length(); ++i) {
tty->indent();
GenericMethodFamily* lm = methods->at(i);
if (lm->contains_signature(match)) {
tty->print_cr("<Matching>");
} else {
tty->print_cr("<Non-Matching>");
}
lm->print_sig_on(tty, lm->get_generic_sig(), 1);
}
}
#endif // ndef PRODUCT
static void create_overpasses(
GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);
static void generate_generic_defaults(
InstanceKlass* klass, GrowableArray<EmptyVtableSlot*>* empty_slots,
EmptyVtableSlot* slot, int current_slot_index, TRAPS) {
if (slot->is_bound()) {
#ifndef PRODUCT
if (TraceDefaultMethods) {
streamIndentor si(tty, 4);
tty->indent().print_cr("Already bound to logical method:");
GenericMethodFamily* lm = (GenericMethodFamily*)(slot->get_binding());
lm->print_sig_on(tty, lm->get_generic_sig(), 1);
}
#endif // ndef PRODUCT
return; // covered by previous processing
}
generic::DescriptorCache cache;
generic::Context ctx(&cache);
FindMethodsByGenericSig visitor(&cache, slot->name(), &ctx, CHECK);
visitor.run(klass);
GrowableArray<GenericMethodFamily*> discovered_families;
visitor.get_discovered_families(&discovered_families);
#ifndef PRODUCT
if (TraceDefaultMethods) {
print_generic_families(&discovered_families, slot->signature());
}
#endif // ndef PRODUCT
// Find and populate any other slots that match the discovered families
for (int j = current_slot_index; j < empty_slots->length(); ++j) {
EmptyVtableSlot* open_slot = empty_slots->at(j);
if (slot->name() == open_slot->name()) {
for (int k = 0; k < discovered_families.length(); ++k) {
GenericMethodFamily* lm = discovered_families.at(k);
if (lm->contains_signature(open_slot->signature())) {
lm->determine_target(klass, CHECK);
open_slot->bind_family(lm);
}
}
}
}
}
static void generate_erased_defaults(
InstanceKlass* klass, GrowableArray<EmptyVtableSlot*>* empty_slots,
EmptyVtableSlot* slot, TRAPS) {
......@@ -943,21 +714,14 @@ static void merge_in_new_methods(InstanceKlass* klass,
//
// First if finds any name/signature slots that need any implementation (either
// because they are miranda or a superclass's implementation is an overpass
// itself). For each slot, iterate over the hierarchy, using generic signature
// information to partition any methods that match the name into method families
// where each family contains methods whose signatures are equivalent at the
// language level (i.e., their reified parameters match and return values are
// covariant). Check those sets to see if they contain a signature that matches
// the slot we're looking at (if we're lucky, there might be other empty slots
// that we can fill using the same analysis).
// itself). For each slot, iterate over the hierarchy, to see if they contain a
// signature that matches the slot we are looking at.
//
// For each slot filled, we generate an overpass method that either calls the
// unique default method candidate using invokespecial, or throws an exception
// (in the case of no default method candidates, or more than one valid
// candidate). These methods are then added to the class's method list. If
// the method set we're using contains methods (qualified or not) with a
// different runtime signature than the method we're creating, then we have to
// create bridges with those signatures too.
// candidate). These methods are then added to the class's method list.
// The JVM does not create bridges nor handle generic signatures here.
void DefaultMethods::generate_default_methods(
InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
......@@ -997,12 +761,8 @@ void DefaultMethods::generate_default_methods(
}
#endif // ndef PRODUCT
if (ParseGenericDefaults) {
generate_generic_defaults(klass, empty_slots, slot, i, CHECK);
} else {
generate_erased_defaults(klass, empty_slots, slot, CHECK);
}
}
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr("Creating overpasses...");
......@@ -1019,13 +779,13 @@ void DefaultMethods::generate_default_methods(
}
/**
* Generic analysis was used upon interface '_target' and found a unique
* default method candidate with generic signature '_method_desc'. This
* Interface inheritance rules were used to find a unique default method
* candidate for the resolved class. This
* method is only viable if it would also be in the set of default method
* candidates if we ran a full analysis on the current class.
*
* The only reason that the method would not be in the set of candidates for
* the current class is if that there's another covariantly matching method
* the current class is if that there's another matching method
* which is "more specific" than the found method -- i.e., one could find a
* path in the interface hierarchy in which the matching method appears
* before we get to '_target'.
......@@ -1110,48 +870,6 @@ class ErasedShadowChecker : public ShadowChecker {
: ShadowChecker(thread, name, holder, target) {}
};
class GenericShadowChecker : public ShadowChecker {
private:
generic::DescriptorCache* _cache;
generic::MethodDescriptor* _method_desc;
bool path_has_shadow() {
generic::Context ctx(_cache);
for (int i = current_depth() - 1; i > 0; --i) {
InstanceKlass* ik = class_at_depth(i);
InstanceKlass* sub = class_at_depth(i + 1);
ctx.apply_type_arguments(sub, ik, THREAD);
if (ik->is_interface()) {
int end;
int start = ik->find_method_by_name(_method_name, &end);
if (start != -1) {
for (int j = start; j < end; ++j) {
Method* mo = ik->methods()->at(j);
generic::MethodDescriptor* md = _cache->descriptor_for(mo, THREAD);
if (_method_desc->covariant_match(md, &ctx)) {
return true;
}
}
}
}
}
return false;
}
public:
GenericShadowChecker(generic::DescriptorCache* cache, Thread* thread,
Symbol* name, InstanceKlass* holder, generic::MethodDescriptor* desc,
InstanceKlass* target)
: ShadowChecker(thread, name, holder, target) {
_cache = cache;
_method_desc = desc;
}
};
// Find the unique qualified candidate from the perspective of the super_class
// which is the resolved_klass, which must be an immediate superinterface
......@@ -1203,66 +921,6 @@ Method* find_erased_super_default(InstanceKlass* current_class, InstanceKlass* s
}
}
// super_class is assumed to be the direct super of current_class
Method* find_generic_super_default( InstanceKlass* current_class,
InstanceKlass* super_class,
Symbol* method_name, Symbol* sig, TRAPS) {
generic::DescriptorCache cache;
generic::Context ctx(&cache);
// Prime the initial generic context for current -> super_class
ctx.apply_type_arguments(current_class, super_class, CHECK_NULL);
FindMethodsByGenericSig visitor(&cache, method_name, &ctx, CHECK_NULL);
visitor.run(super_class);
GrowableArray<GenericMethodFamily*> families;
visitor.get_discovered_families(&families);
#ifndef PRODUCT
if (TraceDefaultMethods) {
print_generic_families(&families, sig);
}
#endif // ndef PRODUCT
GenericMethodFamily* selected_family = NULL;
for (int i = 0; i < families.length(); ++i) {
GenericMethodFamily* lm = families.at(i);
if (lm->contains_signature(sig)) {
lm->determine_target(current_class, CHECK_NULL);
selected_family = lm;
}
}
if (selected_family->has_target()) {
Method* target = selected_family->get_selected_target();
InstanceKlass* holder = InstanceKlass::cast(target->method_holder());
// Verify that the identified method is valid from the context of
// the current class
GenericShadowChecker checker(&cache, THREAD, target->name(),
holder, selected_family->descriptor(), super_class);
checker.run(current_class);
if (checker.found_shadow()) {
#ifndef PRODUCT
if (TraceDefaultMethods) {
tty->print_cr(" Only candidate found was shadowed.");
}
#endif // ndef PRODUCT
THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
"Accessible default method not found", NULL);
} else {
return target;
}
} else {
assert(selected_family->throws_exception(), "must have target or throw");
THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
selected_family->get_exception_message()->as_C_string(), NULL);
}
}
// This is called during linktime when we find an invokespecial call that
// refers to a direct superinterface. It indicates that we should find the
// default method in the hierarchy of that superinterface, and if that method
......@@ -1296,13 +954,8 @@ Method* DefaultMethods::find_super_default(
assert(super_class->is_interface(), "only call for default methods");
Method* target = NULL;
if (ParseGenericDefaults) {
target = find_generic_super_default(current_class, super_class,
method_name, sig, CHECK_NULL);
} else {
target = find_erased_super_default(current_class, super_class,
method_name, sig, CHECK_NULL);
}
#ifndef PRODUCT
if (target != NULL) {
......
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "memory/resourceArea.hpp"
namespace generic {
// Helper class for parsing the generic signature Symbol in klass and methods
class DescriptorStream : public ResourceObj {
private:
Symbol* _symbol;
int _offset;
int _mark;
const char* _parse_error;
void set_parse_error(const char* error) {
assert(error != NULL, "Can't set NULL error string");
_parse_error = error;
}
public:
DescriptorStream(Symbol* sym)
: _symbol(sym), _offset(0), _mark(-1), _parse_error(NULL) {}
const char* parse_error() const {
return _parse_error;
}
bool at_end() { return _offset >= _symbol->utf8_length(); }
char peek() {
if (at_end()) {
set_parse_error("Peeking past end of signature");
return '\0';
} else {
return _symbol->byte_at(_offset);
}
}
char read() {
if (at_end()) {
set_parse_error("Reading past end of signature");
return '\0';
} else {
return _symbol->byte_at(_offset++);
}
}
void read(char expected) {
char c = read();
assert_char(c, expected, 0);
}
void assert_char(char c, char expected, int pos = -1) {
if (c != expected) {
const char* fmt = "Parse error at %d: expected %c but got %c";
size_t len = strlen(fmt) + 5;
char* buffer = NEW_RESOURCE_ARRAY(char, len);
jio_snprintf(buffer, len, fmt, _offset + pos, expected, c);
set_parse_error(buffer);
}
}
void push(char c) {
assert(c == _symbol->byte_at(_offset - 1), "Pushing back wrong value");
--_offset;
}
void expect_end() {
if (!at_end()) {
set_parse_error("Unexpected data trailing signature");
}
}
bool has_mark() { return _mark != -1; }
void set_mark() {
_mark = _offset;
}
Identifier* identifier_from_mark() {
assert(has_mark(), "Mark should be set");
if (!has_mark()) {
set_parse_error("Expected mark to be set");
return NULL;
} else {
Identifier* id = new Identifier(_symbol, _mark, _offset - 1);
_mark = -1;
return id;
}
}
};
#define CHECK_FOR_PARSE_ERROR() \
if (STREAM->parse_error() != NULL) { \
if (VerifyGenericSignatures) { \
fatal(STREAM->parse_error()); \
} \
return NULL; \
} (void)0
#define READ() STREAM->read(); CHECK_FOR_PARSE_ERROR()
#define PEEK() STREAM->peek(); CHECK_FOR_PARSE_ERROR()
#define PUSH(c) STREAM->push(c)
#define EXPECT(c) STREAM->read(c); CHECK_FOR_PARSE_ERROR()
#define EXPECTED(c, ch) STREAM->assert_char(c, ch); CHECK_FOR_PARSE_ERROR()
#define EXPECT_END() STREAM->expect_end(); CHECK_FOR_PARSE_ERROR()
#define CHECK_STREAM STREAM); CHECK_FOR_PARSE_ERROR(); ((void)0
#ifndef PRODUCT
void Identifier::print_on(outputStream* str) const {
for (int i = _begin; i < _end; ++i) {
str->print("%c", (char)_sym->byte_at(i));
}
}
#endif // ndef PRODUCT
bool Identifier::equals(Identifier* other) {
if (_sym == other->_sym && _begin == other->_begin && _end == other->_end) {
return true;
} else if (_end - _begin != other->_end - other->_begin) {
return false;
} else {
size_t len = _end - _begin;
char* addr = ((char*)_sym->bytes()) + _begin;
char* oaddr = ((char*)other->_sym->bytes()) + other->_begin;
return strncmp(addr, oaddr, len) == 0;
}
}
bool Identifier::equals(Symbol* sym) {
Identifier id(sym, 0, sym->utf8_length());
return equals(&id);
}
/**
* A formal type parameter may be found in the the enclosing class, but it could
* also come from an enclosing method or outer class, in the case of inner-outer
* classes or anonymous classes. For example:
*
* class Outer<T,V> {
* class Inner<W> {
* void m(T t, V v, W w);
* }
* }
*
* In this case, the type variables in m()'s signature are not all found in the
* immediate enclosing class (Inner). class Inner has only type parameter W,
* but it's outer_class field will reference Outer's descriptor which contains
* T & V (no outer_method in this case).
*
* If you have an anonymous class, it has both an enclosing method *and* an
* enclosing class where type parameters can be declared:
*
* class MOuter<T> {
* <V> void bar(V v) {
* Runnable r = new Runnable() {
* public void run() {}
* public void foo(T t, V v) { ... }
* };
* }
* }
*
* In this case, foo will be a member of some class, Runnable$1, which has no
* formal parameters itself, but has an outer_method (bar()) which provides
* type parameter V, and an outer class MOuter with type parameter T.
*
* It is also possible that the outer class is itself an inner class to some
* other class (or an anonymous class with an enclosing method), so we need to
* follow the outer_class/outer_method chain to it's end when looking for a
* type parameter.
*/
TypeParameter* Descriptor::find_type_parameter(Identifier* id, int* depth) {
int current_depth = 0;
MethodDescriptor* outer_method = as_method_signature();
ClassDescriptor* outer_class = as_class_signature();
if (outer_class == NULL) { // 'this' is a method signature; use the holder
outer_class = outer_method->outer_class();
}
while (outer_method != NULL || outer_class != NULL) {
if (outer_method != NULL) {
for (int i = 0; i < outer_method->type_parameters().length(); ++i) {
TypeParameter* p = outer_method->type_parameters().at(i);
if (p->identifier()->equals(id)) {
*depth = -1; // indicates this this is a method parameter
return p;
}
}
}
if (outer_class != NULL) {
for (int i = 0; i < outer_class->type_parameters().length(); ++i) {
TypeParameter* p = outer_class->type_parameters().at(i);
if (p->identifier()->equals(id)) {
*depth = current_depth;
return p;
}
}
outer_method = outer_class->outer_method();
outer_class = outer_class->outer_class();
++current_depth;
}
}
if (VerifyGenericSignatures) {
fatal("Could not resolve identifier");
}
return NULL;
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(Klass* klass, TRAPS) {
return parse_generic_signature(klass, NULL, CHECK_NULL);
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(
Klass* klass, Symbol* original_name, TRAPS) {
InstanceKlass* ik = InstanceKlass::cast(klass);
Symbol* sym = ik->generic_signature();
ClassDescriptor* spec;
if (sym == NULL || (spec = ClassDescriptor::parse_generic_signature(sym)) == NULL) {
spec = ClassDescriptor::placeholder(ik);
}
u2 outer_index = get_outer_class_index(ik, CHECK_NULL);
if (outer_index != 0) {
if (original_name == NULL) {
original_name = ik->name();
}
Handle class_loader = Handle(THREAD, ik->class_loader());
Handle protection_domain = Handle(THREAD, ik->protection_domain());
Symbol* outer_name = ik->constants()->klass_name_at(outer_index);
Klass* outer = SystemDictionary::find(
outer_name, class_loader, protection_domain, CHECK_NULL);
if (outer == NULL && !THREAD->is_Compiler_thread()) {
if (outer_name == ik->super()->name()) {
outer = SystemDictionary::resolve_super_or_fail(original_name, outer_name,
class_loader, protection_domain,
false, CHECK_NULL);
}
else {
outer = SystemDictionary::resolve_or_fail(outer_name, class_loader,
protection_domain, false, CHECK_NULL);
}
}
InstanceKlass* outer_ik;
ClassDescriptor* outer_spec = NULL;
if (outer == NULL) {
outer_spec = ClassDescriptor::placeholder(ik);
assert(false, "Outer class not loaded and not loadable from here");
} else {
outer_ik = InstanceKlass::cast(outer);
outer_spec = parse_generic_signature(outer, original_name, CHECK_NULL);
}
spec->set_outer_class(outer_spec);
u2 encl_method_idx = ik->enclosing_method_method_index();
if (encl_method_idx != 0 && outer_ik != NULL) {
ConstantPool* cp = ik->constants();
u2 name_index = cp->name_ref_index_at(encl_method_idx);
u2 sig_index = cp->signature_ref_index_at(encl_method_idx);
Symbol* name = cp->symbol_at(name_index);
Symbol* sig = cp->symbol_at(sig_index);
Method* m = outer_ik->find_method(name, sig);
if (m != NULL) {
Symbol* gsig = m->generic_signature();
if (gsig != NULL) {
MethodDescriptor* gms = MethodDescriptor::parse_generic_signature(gsig, outer_spec);
spec->set_outer_method(gms);
}
} else if (VerifyGenericSignatures) {
ResourceMark rm;
stringStream ss;
ss.print("Could not find method %s %s in class %s",
name->as_C_string(), sig->as_C_string(), outer_name->as_C_string());
fatal(ss.as_string());
}
}
}
spec->bind_variables_to_parameters();
return spec;
}
ClassDescriptor* ClassDescriptor::placeholder(InstanceKlass* klass) {
GrowableArray<TypeParameter*> formals;
GrowableArray<ClassType*> interfaces;
ClassType* super_type = NULL;
Klass* super_klass = klass->super();
if (super_klass != NULL) {
InstanceKlass* super = InstanceKlass::cast(super_klass);
super_type = ClassType::from_symbol(super->name());
}
for (int i = 0; i < klass->local_interfaces()->length(); ++i) {
InstanceKlass* iface = InstanceKlass::cast(klass->local_interfaces()->at(i));
interfaces.append(ClassType::from_symbol(iface->name()));
}
return new ClassDescriptor(formals, super_type, interfaces);
}
ClassDescriptor* ClassDescriptor::parse_generic_signature(Symbol* sym) {
DescriptorStream ds(sym);
DescriptorStream* STREAM = &ds;
GrowableArray<TypeParameter*> parameters(8);
char c = READ();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeParameter* ftp = TypeParameter::parse_generic_signature(CHECK_STREAM);
parameters.append(ftp);
c = READ();
}
} else {
PUSH(c);
}
EXPECT('L');
ClassType* super = ClassType::parse_generic_signature(CHECK_STREAM);
GrowableArray<ClassType*> signatures(2);
while (!STREAM->at_end()) {
EXPECT('L');
ClassType* iface = ClassType::parse_generic_signature(CHECK_STREAM);
signatures.append(iface);
}
EXPECT_END();
return new ClassDescriptor(parameters, super, signatures);
}
#ifndef PRODUCT
void ClassDescriptor::print_on(outputStream* str) const {
str->indent().print_cr("ClassDescriptor {");
{
streamIndentor si(str);
if (_type_parameters.length() > 0) {
str->indent().print_cr("Formals {");
{
streamIndentor si(str);
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_super != NULL) {
str->indent().print_cr("Superclass: ");
{
streamIndentor si(str);
_super->print_on(str);
}
}
if (_interfaces.length() > 0) {
str->indent().print_cr("SuperInterfaces: {");
{
streamIndentor si(str);
for (int i = 0; i < _interfaces.length(); ++i) {
_interfaces.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_outer_method != NULL) {
str->indent().print_cr("Outer Method: {");
{
streamIndentor si(str);
_outer_method->print_on(str);
}
str->indent().print_cr("}");
}
if (_outer_class != NULL) {
str->indent().print_cr("Outer Class: {");
{
streamIndentor si(str);
_outer_class->print_on(str);
}
str->indent().print_cr("}");
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ClassType* ClassDescriptor::interface_desc(Symbol* sym) {
for (int i = 0; i < _interfaces.length(); ++i) {
if (_interfaces.at(i)->identifier()->equals(sym)) {
return _interfaces.at(i);
}
}
if (VerifyGenericSignatures) {
fatal("Did not find expected interface");
}
return NULL;
}
void ClassDescriptor::bind_variables_to_parameters() {
if (_outer_class != NULL) {
_outer_class->bind_variables_to_parameters();
}
if (_outer_method != NULL) {
_outer_method->bind_variables_to_parameters();
}
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->bind_variables_to_parameters(this, i);
}
if (_super != NULL) {
_super->bind_variables_to_parameters(this);
}
for (int i = 0; i < _interfaces.length(); ++i) {
_interfaces.at(i)->bind_variables_to_parameters(this);
}
}
ClassDescriptor* ClassDescriptor::canonicalize(Context* ctx) {
GrowableArray<TypeParameter*> type_params(_type_parameters.length());
for (int i = 0; i < _type_parameters.length(); ++i) {
type_params.append(_type_parameters.at(i)->canonicalize(ctx, 0));
}
ClassDescriptor* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx);
ClassType* super = _super == NULL ? NULL : _super->canonicalize(ctx, 0);
GrowableArray<ClassType*> interfaces(_interfaces.length());
for (int i = 0; i < _interfaces.length(); ++i) {
interfaces.append(_interfaces.at(i)->canonicalize(ctx, 0));
}
MethodDescriptor* md = _outer_method == NULL ? NULL :
_outer_method->canonicalize(ctx);
return new ClassDescriptor(type_params, super, interfaces, outer, md);
}
u2 ClassDescriptor::get_outer_class_index(InstanceKlass* klass, TRAPS) {
int inner_index = InstanceKlass::inner_class_inner_class_info_offset;
int outer_index = InstanceKlass::inner_class_outer_class_info_offset;
int name_offset = InstanceKlass::inner_class_inner_name_offset;
int next_offset = InstanceKlass::inner_class_next_offset;
if (klass->inner_classes() == NULL || klass->inner_classes()->length() == 0) {
// No inner class info => no declaring class
return 0;
}
Array<u2>* i_icls = klass->inner_classes();
ConstantPool* i_cp = klass->constants();
int i_length = i_icls->length();
// Find inner_klass attribute
for (int i = 0; i + next_offset < i_length; i += next_offset) {
u2 ioff = i_icls->at(i + inner_index);
u2 ooff = i_icls->at(i + outer_index);
u2 noff = i_icls->at(i + name_offset);
if (ioff != 0) {
// Check to see if the name matches the class we're looking for
// before attempting to find the class.
if (i_cp->klass_name_at_matches(klass, ioff) && ooff != 0) {
return ooff;
}
}
}
// It may be anonymous; try for that.
u2 encl_method_class_idx = klass->enclosing_method_class_index();
if (encl_method_class_idx != 0) {
return encl_method_class_idx;
}
return 0;
}
MethodDescriptor* MethodDescriptor::parse_generic_signature(Method* m, ClassDescriptor* outer) {
Symbol* generic_sig = m->generic_signature();
MethodDescriptor* md = NULL;
if (generic_sig == NULL || (md = parse_generic_signature(generic_sig, outer)) == NULL) {
md = parse_generic_signature(m->signature(), outer);
}
assert(md != NULL, "Could not parse method signature");
md->bind_variables_to_parameters();
return md;
}
MethodDescriptor* MethodDescriptor::parse_generic_signature(Symbol* sym, ClassDescriptor* outer) {
DescriptorStream ds(sym);
DescriptorStream* STREAM = &ds;
GrowableArray<TypeParameter*> params(8);
char c = READ();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeParameter* ftp = TypeParameter::parse_generic_signature(CHECK_STREAM);
params.append(ftp);
c = READ();
}
} else {
PUSH(c);
}
EXPECT('(');
GrowableArray<Type*> parameters(8);
c = READ();
while (c != ')') {
PUSH(c);
Type* arg = Type::parse_generic_signature(CHECK_STREAM);
parameters.append(arg);
c = READ();
}
Type* rt = Type::parse_generic_signature(CHECK_STREAM);
GrowableArray<Type*> throws;
while (!STREAM->at_end()) {
EXPECT('^');
Type* spec = Type::parse_generic_signature(CHECK_STREAM);
throws.append(spec);
}
return new MethodDescriptor(params, outer, parameters, rt, throws);
}
void MethodDescriptor::bind_variables_to_parameters() {
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->bind_variables_to_parameters(this, i);
}
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->bind_variables_to_parameters(this);
}
_return_type->bind_variables_to_parameters(this);
for (int i = 0; i < _throws.length(); ++i) {
_throws.at(i)->bind_variables_to_parameters(this);
}
}
bool MethodDescriptor::covariant_match(MethodDescriptor* other, Context* ctx) {
if (_parameters.length() == other->_parameters.length()) {
for (int i = 0; i < _parameters.length(); ++i) {
if (!_parameters.at(i)->covariant_match(other->_parameters.at(i), ctx)) {
return false;
}
}
if (_return_type->as_primitive() != NULL) {
return _return_type->covariant_match(other->_return_type, ctx);
} else {
// return type is a reference
return other->_return_type->as_class() != NULL ||
other->_return_type->as_variable() != NULL ||
other->_return_type->as_array() != NULL;
}
} else {
return false;
}
}
MethodDescriptor* MethodDescriptor::canonicalize(Context* ctx) {
GrowableArray<TypeParameter*> type_params(_type_parameters.length());
for (int i = 0; i < _type_parameters.length(); ++i) {
type_params.append(_type_parameters.at(i)->canonicalize(ctx, 0));
}
ClassDescriptor* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx);
GrowableArray<Type*> params(_parameters.length());
for (int i = 0; i < _parameters.length(); ++i) {
params.append(_parameters.at(i)->canonicalize(ctx, 0));
}
Type* rt = _return_type->canonicalize(ctx, 0);
GrowableArray<Type*> throws(_throws.length());
for (int i = 0; i < _throws.length(); ++i) {
throws.append(_throws.at(i)->canonicalize(ctx, 0));
}
return new MethodDescriptor(type_params, outer, params, rt, throws);
}
#ifndef PRODUCT
TempNewSymbol MethodDescriptor::reify_signature(Context* ctx, TRAPS) {
stringStream ss(256);
ss.print("(");
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->reify_signature(&ss, ctx);
}
ss.print(")");
_return_type->reify_signature(&ss, ctx);
return SymbolTable::new_symbol(ss.base(), (int)ss.size(), THREAD);
}
void MethodDescriptor::print_on(outputStream* str) const {
str->indent().print_cr("MethodDescriptor {");
{
streamIndentor si(str);
if (_type_parameters.length() > 0) {
str->indent().print_cr("Formals: {");
{
streamIndentor si(str);
for (int i = 0; i < _type_parameters.length(); ++i) {
_type_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
str->indent().print_cr("Parameters: {");
{
streamIndentor si(str);
for (int i = 0; i < _parameters.length(); ++i) {
_parameters.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
str->indent().print_cr("Return Type: ");
{
streamIndentor si(str);
_return_type->print_on(str);
}
if (_throws.length() > 0) {
str->indent().print_cr("Throws: {");
{
streamIndentor si(str);
for (int i = 0; i < _throws.length(); ++i) {
_throws.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
TypeParameter* TypeParameter::parse_generic_signature(DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ':') {
c = READ();
}
Identifier* id = STREAM->identifier_from_mark();
ClassType* class_bound = NULL;
GrowableArray<ClassType*> interface_bounds(8);
c = READ();
if (c != '>') {
if (c != ':') {
EXPECTED(c, 'L');
class_bound = ClassType::parse_generic_signature(CHECK_STREAM);
c = READ();
}
while (c == ':') {
EXPECT('L');
ClassType* fts = ClassType::parse_generic_signature(CHECK_STREAM);
interface_bounds.append(fts);
c = READ();
}
}
PUSH(c);
return new TypeParameter(id, class_bound, interface_bounds);
}
void TypeParameter::bind_variables_to_parameters(Descriptor* sig, int position) {
if (_class_bound != NULL) {
_class_bound->bind_variables_to_parameters(sig);
}
for (int i = 0; i < _interface_bounds.length(); ++i) {
_interface_bounds.at(i)->bind_variables_to_parameters(sig);
}
_position = position;
}
Type* TypeParameter::resolve(
Context* ctx, int inner_depth, int ctx_depth) {
if (inner_depth == -1) {
// This indicates that the parameter is a method type parameter, which
// isn't resolveable using the class hierarchy context
return bound();
}
ClassType* provider = ctx->at_depth(ctx_depth);
if (provider != NULL) {
for (int i = 0; i < inner_depth && provider != NULL; ++i) {
provider = provider->outer_class();
}
if (provider != NULL) {
TypeArgument* arg = provider->type_argument_at(_position);
if (arg != NULL) {
Type* value = arg->lower_bound();
return value->canonicalize(ctx, ctx_depth + 1);
}
}
}
return bound();
}
TypeParameter* TypeParameter::canonicalize(Context* ctx, int ctx_depth) {
ClassType* bound = _class_bound == NULL ? NULL :
_class_bound->canonicalize(ctx, ctx_depth);
GrowableArray<ClassType*> ifaces(_interface_bounds.length());
for (int i = 0; i < _interface_bounds.length(); ++i) {
ifaces.append(_interface_bounds.at(i)->canonicalize(ctx, ctx_depth));
}
TypeParameter* ret = new TypeParameter(_identifier, bound, ifaces);
ret->_position = _position;
return ret;
}
ClassType* TypeParameter::bound() {
if (_class_bound != NULL) {
return _class_bound;
}
if (_interface_bounds.length() == 1) {
return _interface_bounds.at(0);
}
return ClassType::java_lang_Object(); // TODO: investigate this case
}
#ifndef PRODUCT
void TypeParameter::print_on(outputStream* str) const {
str->indent().print_cr("Formal: {");
{
streamIndentor si(str);
str->indent().print("Identifier: ");
_identifier->print_on(str);
str->print_cr("");
if (_class_bound != NULL) {
str->indent().print_cr("Class Bound: ");
streamIndentor si(str);
_class_bound->print_on(str);
}
if (_interface_bounds.length() > 0) {
str->indent().print_cr("Interface Bounds: {");
{
streamIndentor si(str);
for (int i = 0; i < _interface_bounds.length(); ++i) {
_interface_bounds.at(i)->print_on(str);
}
}
str->indent().print_cr("}");
}
str->indent().print_cr("Ordinal Position: %d", _position);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
Type* Type::parse_generic_signature(DescriptorStream* STREAM) {
char c = READ();
switch (c) {
case 'L':
return ClassType::parse_generic_signature(CHECK_STREAM);
case 'T':
return TypeVariable::parse_generic_signature(CHECK_STREAM);
case '[':
return ArrayType::parse_generic_signature(CHECK_STREAM);
default:
return new PrimitiveType(c);
}
}
Identifier* ClassType::parse_generic_signature_simple(GrowableArray<TypeArgument*>* args,
bool* has_inner, DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ';' && c != '.' && c != '<') { c = READ(); }
Identifier* id = STREAM->identifier_from_mark();
if (c == '<') {
c = READ();
while (c != '>') {
PUSH(c);
TypeArgument* arg = TypeArgument::parse_generic_signature(CHECK_STREAM);
args->append(arg);
c = READ();
}
c = READ();
}
*has_inner = (c == '.');
if (!(*has_inner)) {
EXPECTED(c, ';');
}
return id;
}
ClassType* ClassType::parse_generic_signature(DescriptorStream* STREAM) {
return parse_generic_signature(NULL, CHECK_STREAM);
}
ClassType* ClassType::parse_generic_signature(ClassType* outer, DescriptorStream* STREAM) {
GrowableArray<TypeArgument*> args;
ClassType* gct = NULL;
bool has_inner = false;
Identifier* id = parse_generic_signature_simple(&args, &has_inner, STREAM);
if (id != NULL) {
gct = new ClassType(id, args, outer);
if (has_inner) {
gct = parse_generic_signature(gct, CHECK_STREAM);
}
}
return gct;
}
ClassType* ClassType::from_symbol(Symbol* sym) {
assert(sym != NULL, "Must not be null");
GrowableArray<TypeArgument*> args;
Identifier* id = new Identifier(sym, 0, sym->utf8_length());
return new ClassType(id, args, NULL);
}
ClassType* ClassType::java_lang_Object() {
return from_symbol(vmSymbols::java_lang_Object());
}
void ClassType::bind_variables_to_parameters(Descriptor* sig) {
for (int i = 0; i < _type_arguments.length(); ++i) {
_type_arguments.at(i)->bind_variables_to_parameters(sig);
}
if (_outer_class != NULL) {
_outer_class->bind_variables_to_parameters(sig);
}
}
TypeArgument* ClassType::type_argument_at(int i) {
if (i >= 0 && i < _type_arguments.length()) {
return _type_arguments.at(i);
} else {
return NULL;
}
}
#ifndef PRODUCT
void ClassType::reify_signature(stringStream* ss, Context* ctx) {
ss->print("L");
_identifier->print_on(ss);
ss->print(";");
}
void ClassType::print_on(outputStream* str) const {
str->indent().print_cr("Class {");
{
streamIndentor si(str);
str->indent().print("Name: ");
_identifier->print_on(str);
str->print_cr("");
if (_type_arguments.length() != 0) {
str->indent().print_cr("Type Arguments: {");
{
streamIndentor si(str);
for (int j = 0; j < _type_arguments.length(); ++j) {
_type_arguments.at(j)->print_on(str);
}
}
str->indent().print_cr("}");
}
if (_outer_class != NULL) {
str->indent().print_cr("Outer Class: ");
streamIndentor sir(str);
_outer_class->print_on(str);
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
bool ClassType::covariant_match(Type* other, Context* ctx) {
if (other == this) {
return true;
}
TypeVariable* variable = other->as_variable();
if (variable != NULL) {
other = variable->resolve(ctx, 0);
}
ClassType* outer = outer_class();
ClassType* other_class = other->as_class();
if (other_class == NULL ||
(outer == NULL) != (other_class->outer_class() == NULL)) {
return false;
}
if (!_identifier->equals(other_class->_identifier)) {
return false;
}
if (outer != NULL && !outer->covariant_match(other_class->outer_class(), ctx)) {
return false;
}
return true;
}
ClassType* ClassType::canonicalize(Context* ctx, int ctx_depth) {
GrowableArray<TypeArgument*> args(_type_arguments.length());
for (int i = 0; i < _type_arguments.length(); ++i) {
args.append(_type_arguments.at(i)->canonicalize(ctx, ctx_depth));
}
ClassType* outer = _outer_class == NULL ? NULL :
_outer_class->canonicalize(ctx, ctx_depth);
return new ClassType(_identifier, args, outer);
}
TypeVariable* TypeVariable::parse_generic_signature(DescriptorStream* STREAM) {
STREAM->set_mark();
char c = READ();
while (c != ';') {
c = READ();
}
Identifier* id = STREAM->identifier_from_mark();
return new TypeVariable(id);
}
void TypeVariable::bind_variables_to_parameters(Descriptor* sig) {
_parameter = sig->find_type_parameter(_id, &_inner_depth);
if (VerifyGenericSignatures && _parameter == NULL) {
fatal("Could not find formal parameter");
}
}
Type* TypeVariable::resolve(Context* ctx, int ctx_depth) {
if (parameter() != NULL) {
return parameter()->resolve(ctx, inner_depth(), ctx_depth);
} else {
if (VerifyGenericSignatures) {
fatal("Type variable matches no parameter");
}
return NULL;
}
}
bool TypeVariable::covariant_match(Type* other, Context* ctx) {
if (other == this) {
return true;
}
Context my_context(NULL); // empty, results in erasure
Type* my_type = resolve(&my_context, 0);
if (my_type == NULL) {
return false;
}
return my_type->covariant_match(other, ctx);
}
Type* TypeVariable::canonicalize(Context* ctx, int ctx_depth) {
return resolve(ctx, ctx_depth);
}
#ifndef PRODUCT
void TypeVariable::reify_signature(stringStream* ss, Context* ctx) {
Type* type = resolve(ctx, 0);
if (type != NULL) {
type->reify_signature(ss, ctx);
}
}
void TypeVariable::print_on(outputStream* str) const {
str->indent().print_cr("Type Variable {");
{
streamIndentor si(str);
str->indent().print("Name: ");
_id->print_on(str);
str->print_cr("");
str->indent().print_cr("Inner depth: %d", _inner_depth);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ArrayType* ArrayType::parse_generic_signature(DescriptorStream* STREAM) {
Type* base = Type::parse_generic_signature(CHECK_STREAM);
return new ArrayType(base);
}
void ArrayType::bind_variables_to_parameters(Descriptor* sig) {
assert(_base != NULL, "Invalid base");
_base->bind_variables_to_parameters(sig);
}
bool ArrayType::covariant_match(Type* other, Context* ctx) {
assert(_base != NULL, "Invalid base");
if (other == this) {
return true;
}
ArrayType* other_array = other->as_array();
return (other_array != NULL && _base->covariant_match(other_array->_base, ctx));
}
ArrayType* ArrayType::canonicalize(Context* ctx, int ctx_depth) {
assert(_base != NULL, "Invalid base");
return new ArrayType(_base->canonicalize(ctx, ctx_depth));
}
#ifndef PRODUCT
void ArrayType::reify_signature(stringStream* ss, Context* ctx) {
assert(_base != NULL, "Invalid base");
ss->print("[");
_base->reify_signature(ss, ctx);
}
void ArrayType::print_on(outputStream* str) const {
str->indent().print_cr("Array {");
{
streamIndentor si(str);
_base->print_on(str);
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
bool PrimitiveType::covariant_match(Type* other, Context* ctx) {
PrimitiveType* other_prim = other->as_primitive();
return (other_prim != NULL && _type == other_prim->_type);
}
PrimitiveType* PrimitiveType::canonicalize(Context* ctx, int ctxd) {
return this;
}
#ifndef PRODUCT
void PrimitiveType::reify_signature(stringStream* ss, Context* ctx) {
ss->print("%c", _type);
}
void PrimitiveType::print_on(outputStream* str) const {
str->indent().print_cr("Primitive: '%c'", _type);
}
#endif // ndef PRODUCT
void PrimitiveType::bind_variables_to_parameters(Descriptor* sig) {
}
TypeArgument* TypeArgument::parse_generic_signature(DescriptorStream* STREAM) {
char c = READ();
Type* type = NULL;
switch (c) {
case '*':
return new TypeArgument(ClassType::java_lang_Object(), NULL);
break;
default:
PUSH(c);
// fall-through
case '+':
case '-':
type = Type::parse_generic_signature(CHECK_STREAM);
if (c == '+') {
return new TypeArgument(type, NULL);
} else if (c == '-') {
return new TypeArgument(ClassType::java_lang_Object(), type);
} else {
return new TypeArgument(type, type);
}
}
}
void TypeArgument::bind_variables_to_parameters(Descriptor* sig) {
assert(_lower_bound != NULL, "Invalid lower bound");
_lower_bound->bind_variables_to_parameters(sig);
if (_upper_bound != NULL && _upper_bound != _lower_bound) {
_upper_bound->bind_variables_to_parameters(sig);
}
}
bool TypeArgument::covariant_match(TypeArgument* other, Context* ctx) {
assert(_lower_bound != NULL, "Invalid lower bound");
if (other == this) {
return true;
}
if (!_lower_bound->covariant_match(other->lower_bound(), ctx)) {
return false;
}
return true;
}
TypeArgument* TypeArgument::canonicalize(Context* ctx, int ctx_depth) {
assert(_lower_bound != NULL, "Invalid lower bound");
Type* lower = _lower_bound->canonicalize(ctx, ctx_depth);
Type* upper = NULL;
if (_upper_bound == _lower_bound) {
upper = lower;
} else if (_upper_bound != NULL) {
upper = _upper_bound->canonicalize(ctx, ctx_depth);
}
return new TypeArgument(lower, upper);
}
#ifndef PRODUCT
void TypeArgument::print_on(outputStream* str) const {
str->indent().print_cr("TypeArgument {");
{
streamIndentor si(str);
if (_lower_bound != NULL) {
str->indent().print("Lower bound: ");
_lower_bound->print_on(str);
}
if (_upper_bound != NULL) {
str->indent().print("Upper bound: ");
_upper_bound->print_on(str);
}
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
void Context::Mark::destroy() {
if (is_active()) {
_context->reset_to_mark(_marked_size);
}
deactivate();
}
void Context::apply_type_arguments(
InstanceKlass* current, InstanceKlass* super, TRAPS) {
assert(_cache != NULL, "Cannot use an empty context");
ClassType* spec = NULL;
if (current != NULL) {
ClassDescriptor* descriptor = _cache->descriptor_for(current, CHECK);
if (super == current->super()) {
spec = descriptor->super();
} else {
spec = descriptor->interface_desc(super->name());
}
if (spec != NULL) {
_type_arguments.push(spec);
}
}
}
void Context::reset_to_mark(int size) {
_type_arguments.trunc_to(size);
}
ClassType* Context::at_depth(int i) const {
if (i < _type_arguments.length()) {
return _type_arguments.at(_type_arguments.length() - 1 - i);
}
return NULL;
}
#ifndef PRODUCT
void Context::print_on(outputStream* str) const {
str->indent().print_cr("Context {");
for (int i = 0; i < _type_arguments.length(); ++i) {
streamIndentor si(str);
str->indent().print("leval %d: ", i);
ClassType* ct = at_depth(i);
if (ct == NULL) {
str->print_cr("<empty>");
continue;
} else {
str->print_cr("{");
}
for (int j = 0; j < ct->type_arguments_length(); ++j) {
streamIndentor si(str);
TypeArgument* ta = ct->type_argument_at(j);
Type* bound = ta->lower_bound();
bound->print_on(str);
}
str->indent().print_cr("}");
}
str->indent().print_cr("}");
}
#endif // ndef PRODUCT
ClassDescriptor* DescriptorCache::descriptor_for(InstanceKlass* ik, TRAPS) {
ClassDescriptor** existing = _class_descriptors.get(ik);
if (existing == NULL) {
ClassDescriptor* cd = ClassDescriptor::parse_generic_signature(ik, CHECK_NULL);
_class_descriptors.put(ik, cd);
return cd;
} else {
return *existing;
}
}
MethodDescriptor* DescriptorCache::descriptor_for(
Method* mh, ClassDescriptor* cd, TRAPS) {
assert(mh != NULL && cd != NULL, "Should not be NULL");
MethodDescriptor** existing = _method_descriptors.get(mh);
if (existing == NULL) {
MethodDescriptor* md = MethodDescriptor::parse_generic_signature(mh, cd);
_method_descriptors.put(mh, md);
return md;
} else {
return *existing;
}
}
MethodDescriptor* DescriptorCache::descriptor_for(Method* mh, TRAPS) {
ClassDescriptor* cd = descriptor_for(
InstanceKlass::cast(mh->method_holder()), CHECK_NULL);
return descriptor_for(mh, cd, THREAD);
}
} // namespace generic
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
#define SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "runtime/signature.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/resourceHash.hpp"
class stringStream;
namespace generic {
class Identifier;
class ClassDescriptor;
class MethodDescriptor;
class TypeParameter; // a formal type parameter declared in generic signatures
class TypeArgument; // The "type value" passed to fill parameters in supertypes
class TypeVariable; // A usage of a type parameter as a value
/**
* Example:
*
* <T, V> class Foo extends Bar<String> { int m(V v) {} }
* ^^^^^^ ^^^^^^ ^^
* type parameters type argument type variable
*
* Note that a type variable could be passed as an argument too:
* <T, V> class Foo extends Bar<T> { int m(V v) {} }
* ^^^
* type argument's value is a type variable
*/
class Type;
class ClassType;
class ArrayType;
class PrimitiveType;
class Context;
class DescriptorCache;
class DescriptorStream;
class Identifier : public ResourceObj {
private:
Symbol* _sym;
int _begin;
int _end;
public:
Identifier(Symbol* sym, int begin, int end) :
_sym(sym), _begin(begin), _end(end) {}
bool equals(Identifier* other);
bool equals(Symbol* sym);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif // ndef PRODUCT
};
class Descriptor : public ResourceObj {
protected:
GrowableArray<TypeParameter*> _type_parameters;
ClassDescriptor* _outer_class;
Descriptor(GrowableArray<TypeParameter*>& params,
ClassDescriptor* outer)
: _type_parameters(params), _outer_class(outer) {}
public:
ClassDescriptor* outer_class() { return _outer_class; }
void set_outer_class(ClassDescriptor* sig) { _outer_class = sig; }
virtual ClassDescriptor* as_class_signature() { return NULL; }
virtual MethodDescriptor* as_method_signature() { return NULL; }
bool is_class_signature() { return as_class_signature() != NULL; }
bool is_method_signature() { return as_method_signature() != NULL; }
GrowableArray<TypeParameter*>& type_parameters() {
return _type_parameters;
}
TypeParameter* find_type_parameter(Identifier* id, int* param_depth);
virtual void bind_variables_to_parameters() = 0;
#ifndef PRODUCT
virtual void print_on(outputStream* str) const = 0;
#endif
};
class ClassDescriptor : public Descriptor {
private:
ClassType* _super;
GrowableArray<ClassType*> _interfaces;
MethodDescriptor* _outer_method;
ClassDescriptor(GrowableArray<TypeParameter*>& ftp, ClassType* scs,
GrowableArray<ClassType*>& sis, ClassDescriptor* outer_class = NULL,
MethodDescriptor* outer_method = NULL)
: Descriptor(ftp, outer_class), _super(scs), _interfaces(sis),
_outer_method(outer_method) {}
static u2 get_outer_class_index(InstanceKlass* k, TRAPS);
static ClassDescriptor* parse_generic_signature(Klass* k, Symbol* original_name, TRAPS);
public:
virtual ClassDescriptor* as_class_signature() { return this; }
MethodDescriptor* outer_method() { return _outer_method; }
void set_outer_method(MethodDescriptor* m) { _outer_method = m; }
ClassType* super() { return _super; }
ClassType* interface_desc(Symbol* sym);
static ClassDescriptor* parse_generic_signature(Klass* k, TRAPS);
static ClassDescriptor* parse_generic_signature(Symbol* sym);
// For use in superclass chains in positions where this is no generic info
static ClassDescriptor* placeholder(InstanceKlass* klass);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
ClassDescriptor* canonicalize(Context* ctx);
// Linking sets the position index in any contained TypeVariable type
// to correspond to the location of that identifier in the formal type
// parameters.
void bind_variables_to_parameters();
};
class MethodDescriptor : public Descriptor {
private:
GrowableArray<Type*> _parameters;
Type* _return_type;
GrowableArray<Type*> _throws;
MethodDescriptor(GrowableArray<TypeParameter*>& ftp, ClassDescriptor* outer,
GrowableArray<Type*>& sigs, Type* rt, GrowableArray<Type*>& throws)
: Descriptor(ftp, outer), _parameters(sigs), _return_type(rt),
_throws(throws) {}
public:
static MethodDescriptor* parse_generic_signature(Method* m, ClassDescriptor* outer);
static MethodDescriptor* parse_generic_signature(Symbol* sym, ClassDescriptor* outer);
MethodDescriptor* as_method_signature() { return this; }
// Performs generic analysis on the method parameters to determine
// if both methods refer to the same argument types.
bool covariant_match(MethodDescriptor* other, Context* ctx);
// Returns a new method descriptor with all generic variables
// removed and replaced with whatever is indicated using the Context.
MethodDescriptor* canonicalize(Context* ctx);
void bind_variables_to_parameters();
#ifndef PRODUCT
TempNewSymbol reify_signature(Context* ctx, TRAPS);
void print_on(outputStream* str) const;
#endif
};
class TypeParameter : public ResourceObj {
private:
Identifier* _identifier;
ClassType* _class_bound;
GrowableArray<ClassType*> _interface_bounds;
// The position is the ordinal location of the parameter within the
// formal parameter list (excluding outer classes). It is only set for
// formal type parameters that are associated with a class -- method
// type parameters are left as -1. When resolving a generic variable to
// find the actual type, this index is used to access the generic type
// argument in the provided context object.
int _position; // Assigned during variable linking
TypeParameter(Identifier* id, ClassType* class_bound,
GrowableArray<ClassType*>& interface_bounds) :
_identifier(id), _class_bound(class_bound),
_interface_bounds(interface_bounds), _position(-1) {}
public:
static TypeParameter* parse_generic_signature(DescriptorStream* str);
ClassType* bound();
int position() { return _position; }
void bind_variables_to_parameters(Descriptor* sig, int position);
Identifier* identifier() { return _identifier; }
Type* resolve(Context* ctx, int inner_depth, int ctx_depth);
TypeParameter* canonicalize(Context* ctx, int ctx_depth);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
class Type : public ResourceObj {
public:
static Type* parse_generic_signature(DescriptorStream* str);
virtual ClassType* as_class() { return NULL; }
virtual TypeVariable* as_variable() { return NULL; }
virtual ArrayType* as_array() { return NULL; }
virtual PrimitiveType* as_primitive() { return NULL; }
virtual bool covariant_match(Type* gt, Context* ctx) = 0;
virtual Type* canonicalize(Context* ctx, int ctx_depth) = 0;
virtual void bind_variables_to_parameters(Descriptor* sig) = 0;
#ifndef PRODUCT
virtual void reify_signature(stringStream* ss, Context* ctx) = 0;
virtual void print_on(outputStream* str) const = 0;
#endif
};
class ClassType : public Type {
friend class ClassDescriptor;
protected:
Identifier* _identifier;
GrowableArray<TypeArgument*> _type_arguments;
ClassType* _outer_class;
ClassType(Identifier* identifier,
GrowableArray<TypeArgument*>& args,
ClassType* outer)
: _identifier(identifier), _type_arguments(args), _outer_class(outer) {}
// Returns true if there are inner classes to read
static Identifier* parse_generic_signature_simple(
GrowableArray<TypeArgument*>* args,
bool* has_inner, DescriptorStream* str);
static ClassType* parse_generic_signature(ClassType* outer,
DescriptorStream* str);
static ClassType* from_symbol(Symbol* sym);
public:
ClassType* as_class() { return this; }
static ClassType* parse_generic_signature(DescriptorStream* str);
static ClassType* java_lang_Object();
Identifier* identifier() { return _identifier; }
int type_arguments_length() { return _type_arguments.length(); }
TypeArgument* type_argument_at(int i);
virtual ClassType* outer_class() { return _outer_class; }
bool covariant_match(Type* gt, Context* ctx);
ClassType* canonicalize(Context* ctx, int context_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class TypeVariable : public Type {
private:
Identifier* _id;
TypeParameter* _parameter; // assigned during linking
// how many steps "out" from inner classes, -1 if method
int _inner_depth;
TypeVariable(Identifier* id)
: _id(id), _parameter(NULL), _inner_depth(0) {}
public:
TypeVariable* as_variable() { return this; }
static TypeVariable* parse_generic_signature(DescriptorStream* str);
Identifier* identifier() { return _id; }
TypeParameter* parameter() { return _parameter; }
int inner_depth() { return _inner_depth; }
void bind_variables_to_parameters(Descriptor* sig);
Type* resolve(Context* ctx, int ctx_depth);
bool covariant_match(Type* gt, Context* ctx);
Type* canonicalize(Context* ctx, int ctx_depth);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class ArrayType : public Type {
private:
Type* _base;
ArrayType(Type* base) : _base(base) {}
public:
ArrayType* as_array() { return this; }
static ArrayType* parse_generic_signature(DescriptorStream* str);
bool covariant_match(Type* gt, Context* ctx);
ArrayType* canonicalize(Context* ctx, int ctx_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class PrimitiveType : public Type {
friend class Type;
private:
char _type; // includes V for void
PrimitiveType(char& type) : _type(type) {}
public:
PrimitiveType* as_primitive() { return this; }
bool covariant_match(Type* gt, Context* ctx);
PrimitiveType* canonicalize(Context* ctx, int ctx_depth);
void bind_variables_to_parameters(Descriptor* sig);
#ifndef PRODUCT
void reify_signature(stringStream* ss, Context* ctx);
void print_on(outputStream* str) const;
#endif
};
class TypeArgument : public ResourceObj {
private:
Type* _lower_bound;
Type* _upper_bound; // may be null or == _lower_bound
TypeArgument(Type* lower_bound, Type* upper_bound)
: _lower_bound(lower_bound), _upper_bound(upper_bound) {}
public:
static TypeArgument* parse_generic_signature(DescriptorStream* str);
Type* lower_bound() { return _lower_bound; }
Type* upper_bound() { return _upper_bound; }
void bind_variables_to_parameters(Descriptor* sig);
TypeArgument* canonicalize(Context* ctx, int ctx_depth);
bool covariant_match(TypeArgument* a, Context* ctx);
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
class Context : public ResourceObj {
private:
DescriptorCache* _cache;
GrowableArray<ClassType*> _type_arguments;
void reset_to_mark(int size);
public:
// When this object goes out of scope or 'destroy' is
// called, then the application of the type to the
// context is wound-back (unless it's been deactivated).
class Mark : public StackObj {
private:
mutable Context* _context;
int _marked_size;
bool is_active() const { return _context != NULL; }
void deactivate() const { _context = NULL; }
public:
Mark() : _context(NULL), _marked_size(0) {}
Mark(Context* ctx, int sz) : _context(ctx), _marked_size(sz) {}
Mark(const Mark& m) : _context(m._context), _marked_size(m._marked_size) {
m.deactivate(); // Ownership is transferred
}
Mark& operator=(const Mark& cm) {
destroy();
_context = cm._context;
_marked_size = cm._marked_size;
cm.deactivate();
return *this;
}
void destroy();
~Mark() { destroy(); }
};
Context(DescriptorCache* cache) : _cache(cache) {}
Mark mark() { return Mark(this, _type_arguments.length()); }
void apply_type_arguments(InstanceKlass* current, InstanceKlass* super,TRAPS);
ClassType* at_depth(int i) const;
#ifndef PRODUCT
void print_on(outputStream* str) const;
#endif
};
/**
* Contains a cache of descriptors for classes and methods so they can be
* looked-up instead of reparsing each time they are needed.
*/
class DescriptorCache : public ResourceObj {
private:
ResourceHashtable<InstanceKlass*, ClassDescriptor*> _class_descriptors;
ResourceHashtable<Method*, MethodDescriptor*> _method_descriptors;
public:
ClassDescriptor* descriptor_for(InstanceKlass* ikh, TRAPS);
MethodDescriptor* descriptor_for(Method* mh, ClassDescriptor* cd, TRAPS);
// Class descriptor derived from method holder
MethodDescriptor* descriptor_for(Method* mh, TRAPS);
};
} // namespace generic
#endif // SHARE_VM_CLASSFILE_GENERICSIGNATURES_HPP
......@@ -3682,15 +3682,9 @@ class CommandLineFlags {
develop(bool, TraceDefaultMethods, false, \
"Trace the default method processing steps") \
\
develop(bool, ParseAllGenericSignatures, false, \
"Parse all generic signatures while classloading") \
\
develop(bool, VerifyGenericSignatures, false, \
"Abort VM on erroneous or inconsistent generic signatures") \
\
product(bool, ParseGenericDefaults, false, \
"Parse generic signatures for default method handling") \
\
product(bool, UseVMInterruptibleIO, false, \
"(Unstable, Solaris-specific) Thread interrupt before or with " \
"EINTR for I/O operations results in OS_INTRPT. The default value"\
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册