g1CollectedHeap.cpp 251.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#if !defined(__clang_major__) && defined(__GNUC__)
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29
#include "precompiled.hpp"
30
#include "classfile/metadataOnStackMark.hpp"
J
johnc 已提交
31
#include "code/codeCache.hpp"
32 33 34 35 36
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
37
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
38 39
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
40
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
41
#include "gc_implementation/g1/g1EvacFailure.hpp"
42
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
43
#include "gc_implementation/g1/g1Log.hpp"
44 45
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
46
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
47
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
48
#include "gc_implementation/g1/g1RemSet.inline.hpp"
49
#include "gc_implementation/g1/g1RootProcessor.hpp"
P
pliden 已提交
50
#include "gc_implementation/g1/g1StringDedup.hpp"
S
sla 已提交
51
#include "gc_implementation/g1/g1YCTypes.hpp"
52
#include "gc_implementation/g1/heapRegion.inline.hpp"
53
#include "gc_implementation/g1/heapRegionRemSet.hpp"
54
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
55
#include "gc_implementation/g1/vm_operations_g1.hpp"
S
sla 已提交
56 57 58 59
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
60
#include "gc_implementation/shared/isGCActiveMark.hpp"
61
#include "memory/allocation.hpp"
62 63
#include "memory/gcLocker.inline.hpp"
#include "memory/generationSpec.hpp"
64
#include "memory/iterator.hpp"
65
#include "memory/referenceProcessor.hpp"
66 67
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
68
#include "runtime/orderAccess.inline.hpp"
69
#include "runtime/vmThread.hpp"
70

71 72
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

73 74 75
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
76
#define YOUNG_LIST_VERBOSE 0
77 78 79 80 81 82
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
83 84 85 86 87
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
88 89 90 91 92 93

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  bool _concurrent;
public:
94 95
  RefineCardTableEntryClosure() : _concurrent(true) { }

96
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
97
    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
J
johnc 已提交
98 99 100 101 102
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

P
pliden 已提交
103
    if (_concurrent && SuspendibleThreadSet::should_yield()) {
104 105 106 107 108 109
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
110

111 112 113 114 115
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
116
  size_t _num_processed;
117 118
  CardTableModRefBS* _ctbs;
  int _histo[256];
119 120

 public:
121
  ClearLoggedCardTableEntryClosure() :
122
    _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
123 124 125
  {
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
126

127
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
128 129 130 131 132 133 134
    unsigned char* ujb = (unsigned char*)card_ptr;
    int ind = (int)(*ujb);
    _histo[ind]++;

    *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
    _num_processed++;

135 136
    return true;
  }
137 138 139

  size_t num_processed() { return _num_processed; }

140 141 142 143 144 145 146 147 148 149
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

150 151 152 153 154 155
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 private:
  size_t _num_processed;

 public:
  RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
156

157
  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
158 159
    *card_ptr = CardTableModRefBS::dirty_card_val();
    _num_processed++;
160 161
    return true;
  }
162 163

  size_t num_processed() const { return _num_processed; }
164 165
};

166 167 168 169
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
170 171 172 173 174 175 176 177 178
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

179
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
180 181 182 183
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
184
  assert(hr->is_survivor(), "should be flagged as survivor region");
185 186 187 188
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
189
    _survivor_tail = hr;
190 191 192 193 194 195 196 197 198 199
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
200 201 202 203
    // This is called before a Full GC and all the non-empty /
    // non-humongous regions at the end of the Full GC will end up as
    // old anyway.
    list->set_old();
204 205 206 207 208 209 210 211 212 213 214 215 216
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
217
  _survivor_tail = NULL;
218 219 220 221 222 223 224 225 226 227
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

228
  uint length = 0;
229 230 231
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
232
    if (!curr->is_young()) {
233
      gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
234
                             "incorrectly tagged (y: %d, surv: %d)",
235
                             curr->bottom(), curr->end(),
236
                             curr->is_young(), curr->is_survivor());
237 238 239 240 241 242 243 244 245 246
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
247
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
248 249 250
                           length, _length);
  }

251
  return ret;
252 253
}

254
bool YoungList::check_list_empty(bool check_sample) {
255 256 257
  bool ret = true;

  if (_length != 0) {
258
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

274
  return ret;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
291 292 293 294 295 296 297 298 299 300 301 302
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

303 304 305 306 307 308 309 310 311 312 313 314 315 316
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
317
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
318

319
  int young_index_in_cset = 0;
320 321 322
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
323
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
324 325 326 327 328

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
329
    young_index_in_cset += 1;
330
  }
331
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
332 333
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

334 335
  _head   = _survivor_head;
  _length = _survivor_length;
336
  if (_survivor_head != NULL) {
337 338 339
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
340 341
  }

342 343 344 345
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
346

347
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
348 349 350 351 352

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
353 354
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
355

356
  for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
357 358 359 360 361
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
362
      gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
363
                             HR_FORMAT_PARAMS(curr),
364 365
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
366
                             curr->age_in_surv_rate_group_cond());
367 368 369 370
      curr = curr->get_next_young_region();
    }
  }

371
  gclog_or_tty->cr();
372 373
}

374 375 376 377
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
  OtherRegionsTable::invalidate(start_idx, num_regions);
}

378 379 380
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
  // The from card cache is not the memory that is actually committed. So we cannot
  // take advantage of the zero_filled parameter.
381 382 383
  reset_from_card_cache(start_idx, num_regions);
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

437 438 439 440 441 442 443 444 445 446 447 448
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
449 450 451 452
  if (p == NULL) {
    return false;
  }
  return heap_region_containing(p)->in_collection_set();
453 454 455 456
}
#endif

// Returns true if the reference points to an object that
S
sla 已提交
457
// can move in an incremental collection.
458 459
bool G1CollectedHeap::is_scavengable(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
460
  return !hr->isHumongous();
461 462
}

463 464
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
465
  CardTableModRefBS* ct_bs = g1_barrier_set();
466 467 468 469 470 471 472 473

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
474 475
  dcqs.apply_closure_to_all_completed_buffers(&clear);
  dcqs.iterate_closure_all_threads(&clear, false);
476 477 478 479 480 481 482 483 484 485 486 487
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
488 489
  dcqs.apply_closure_to_all_completed_buffers(&redirty);
  dcqs.iterate_closure_all_threads(&redirty, false);
490
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
491 492
                         clear.num_processed(), orig_count);
  guarantee(redirty.num_processed() == clear.num_processed(),
493
            err_msg("Redirtied " SIZE_FORMAT " cards, bug cleared " SIZE_FORMAT,
494
                    redirty.num_processed(), clear.num_processed()));
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

511
HeapRegion*
512
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
513 514 515 516 517
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
518
                               "secondary_free_list has %u entries",
519 520 521 522 523 524 525
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

526
      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
527
             "empty we should have moved at least one entry to the free_list");
528
      HeapRegion* res = _hrm.allocate_free_region(is_old);
529 530
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
531
                               "allocated " HR_FORMAT " from secondary_free_list",
532 533 534 535 536
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

S
sla 已提交
537
    // Wait here until we get notified either when (a) there are no
538 539 540 541 542 543 544 545 546 547 548
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
549

550
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
551
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
552 553
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
554

555 556 557 558 559 560 561
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
562
      res = new_region_try_secondary_free_list(is_old);
563 564 565 566 567
      if (res != NULL) {
        return res;
      }
    }
  }
568

569
  res = _hrm.allocate_free_region(is_old);
570

571 572 573 574 575
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
576
    res = new_region_try_secondary_free_list(is_old);
577
  }
578 579 580 581 582 583 584
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

585 586 587 588 589
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
590
    if (expand(word_size * HeapWordSize)) {
591 592
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
593
      // region size, the free list should in theory not be empty.
594
      // In either case allocate_free_region() will check for NULL.
595
      res = _hrm.allocate_free_region(is_old);
596 597
    } else {
      _expand_heap_after_alloc_failure = false;
598
    }
599 600 601 602
  }
  return res;
}

T
tonyp 已提交
603
HeapWord*
604 605
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
606 607
                                                           size_t word_size,
                                                           AllocationContext_t context) {
608
  assert(first != G1_NO_HRM_INDEX, "pre-condition");
T
tonyp 已提交
609 610 611 612
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
613
  uint last = first + num_regions;
T
tonyp 已提交
614 615 616 617 618 619 620 621 622 623

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
624
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
625 626 627
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
628
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
629 630 631 632
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
S
sla 已提交
633
  // should also match the end of the last region in the series.
T
tonyp 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);
659
  first_hr->set_allocation_context(context);
T
tonyp 已提交
660 661 662
  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
663
  for (uint i = first + 1; i < last; ++i) {
664
    hr = region_at(i);
T
tonyp 已提交
665
    hr->set_continuesHumongous(first_hr);
666
    hr->set_allocation_context(context);
T
tonyp 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
686 687 688 689 690 691 692 693 694 695 696
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
710
  for (uint i = first + 1; i < last; ++i) {
711
    hr = region_at(i);
T
tonyp 已提交
712 713 714 715 716
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
717
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
718 719 720 721
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
722
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
723 724 725 726 727 728 729
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");
730
  check_bitmaps("Humongous Region Allocation", first_hr);
T
tonyp 已提交
731 732

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
733
  _allocator->increase_used(first_hr->used());
T
tonyp 已提交
734 735 736 737 738
  _humongous_set.add(first_hr);

  return new_obj;
}

739 740 741
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
742
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
743
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
744

745
  verify_region_sets_optional();
746

747
  uint first = G1_NO_HRM_INDEX;
748 749 750 751 752 753 754 755
  uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);

  if (obj_regions == 1) {
    // Only one region to allocate, try to use a fast path by directly allocating
    // from the free lists. Do not try to expand here, we will potentially do that
    // later.
    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
    if (hr != NULL) {
756
      first = hr->hrm_index();
757 758 759 760 761 762 763 764
    }
  } else {
    // We can't allocate humongous regions spanning more than one region while
    // cleanupComplete() is running, since some of the regions we find to be
    // empty might not yet be added to the free list. It is not straightforward
    // to know in which list they are on so that we can remove them. We only
    // need to do this if we need to allocate more than one region to satisfy the
    // current humongous allocation request. If we are only allocating one region
765 766
    // we use the one-region region allocation code (see above), that already
    // potentially waits for regions from the secondary free list.
767 768 769 770 771
    wait_while_free_regions_coming();
    append_secondary_free_list_if_not_empty_with_lock();

    // Policy: Try only empty regions (i.e. already committed first). Maybe we
    // are lucky enough to find some.
772 773 774
    first = _hrm.find_contiguous_only_empty(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
775 776
    }
  }
777

778
  if (first == G1_NO_HRM_INDEX) {
779 780 781
    // Policy: We could not find enough regions for the humongous object in the
    // free list. Look through the heap to find a mix of free and uncommitted regions.
    // If so, try expansion.
782 783
    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
    if (first != G1_NO_HRM_INDEX) {
784 785
      // We found something. Make sure these regions are committed, i.e. expand
      // the heap. Alternatively we could do a defragmentation GC.
786 787 788 789 790
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
791

792
      _hrm.expand_at(first, obj_regions);
793 794 795 796 797
      g1_policy()->record_new_heap_size(num_regions());

#ifdef ASSERT
      for (uint i = first; i < first + obj_regions; ++i) {
        HeapRegion* hr = region_at(i);
798
        assert(hr->is_free(), "sanity");
799 800
        assert(hr->is_empty(), "sanity");
        assert(is_on_master_free_list(hr), "sanity");
801
      }
802
#endif
803
      _hrm.allocate_free_regions_starting_at(first, obj_regions);
804 805
    } else {
      // Policy: Potentially trigger a defragmentation GC.
806 807
    }
  }
808

T
tonyp 已提交
809
  HeapWord* result = NULL;
810
  if (first != G1_NO_HRM_INDEX) {
811 812
    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
                                                       word_size, context);
T
tonyp 已提交
813
    assert(result != NULL, "it should always return a valid result");
814 815 816 817 818

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
819
  }
820 821

  verify_region_sets_optional();
T
tonyp 已提交
822 823

  return result;
824 825
}

826 827 828
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
829

830 831
  uint dummy_gc_count_before;
  uint dummy_gclocker_retry_count = 0;
832
  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
833 834 835
}

HeapWord*
836 837 838
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
839

S
sla 已提交
840
  // Loop until the allocation is satisfied, or unsatisfied after GC.
841 842
  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
    uint gc_count_before;
843

844 845
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
846
      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
847
    } else {
848
      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
849 850 851 852
    }
    if (result != NULL) {
      return result;
    }
853

854 855
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
856 857
    op.set_allocation_context(AllocationContext::current());

858 859
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
860

861 862 863 864 865 866
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
867
        // Allocations that take place on VM operations do not do any
868 869
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
870 871 872
        dirty_young_block(result, word_size);
      }
      return result;
873
    } else {
874 875 876
      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
        return NULL;
      }
877 878
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
879 880 881 882 883
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
884
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
885 886 887
    }
  }

888
  ShouldNotReachHere();
889 890 891
  return NULL;
}

892
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
893
                                                   AllocationContext_t context,
894 895
                                                   uint* gc_count_before_ret,
                                                   uint* gclocker_retry_count_ret) {
896 897 898 899 900
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
901

902 903 904 905 906 907 908
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
909
  HeapWord* result = NULL;
910 911
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
912
    uint gc_count_before;
913

914 915
    {
      MutexLockerEx x(Heap_lock);
916 917
      result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                    false /* bot_updates */);
918 919
      if (result != NULL) {
        return result;
920
      }
921

922 923
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
924
      assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
925

926 927
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
928 929
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
930 931
          result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
                                                                                       false /* bot_updates */);
932 933 934 935 936 937
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
938 939 940 941 942 943 944 945 946 947 948 949
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
950 951
      }
    }
952

953 954
    if (should_try_gc) {
      bool succeeded;
955
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
956
                                   GCCause::_g1_inc_collection_pause);
957
      if (result != NULL) {
958
        assert(succeeded, "only way to get back a non-NULL result");
959 960 961
        return result;
      }

962 963 964 965 966
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
967
        *gc_count_before_ret = total_collections();
968 969 970
        return NULL;
      }
    } else {
971 972 973 974 975
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
976 977 978
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
979
      GC_locker::stall_until_clear();
980
      (*gclocker_retry_count_ret) += 1;
981 982
    }

S
sla 已提交
983
    // We can reach here if we were unsuccessful in scheduling a
984 985 986 987 988 989 990
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
991 992
    result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                           false /* bot_updates */);
993
    if (result != NULL) {
994
      return result;
995 996
    }

997 998 999
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1000
      warning("G1CollectedHeap::attempt_allocation_slow() "
1001
              "retries %d times", try_count);
1002 1003 1004
    }
  }

1005 1006
  ShouldNotReachHere();
  return NULL;
1007 1008
}

1009
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1010 1011
                                                        uint* gc_count_before_ret,
                                                        uint* gclocker_retry_count_ret) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1023
  assert_heap_not_locked_and_not_at_safepoint();
1024 1025
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1026

1027 1028 1029 1030 1031
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1032 1033
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1034 1035 1036
    collect(GCCause::_g1_humongous_allocation);
  }

1037 1038 1039 1040 1041
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1042
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1043
    bool should_try_gc;
1044
    uint gc_count_before;
1045

1046
    {
1047
      MutexLockerEx x(Heap_lock);
1048

1049 1050 1051
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
1052
      result = humongous_obj_allocate(word_size, AllocationContext::current());
1053 1054
      if (result != NULL) {
        return result;
1055
      }
1056

1057 1058 1059
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1072 1073 1074
      }
    }

1075 1076 1077 1078
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1079

1080
      bool succeeded;
1081
      result = do_collection_pause(word_size, gc_count_before, &succeeded,
1082
                                   GCCause::_g1_humongous_allocation);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1093
        *gc_count_before_ret = total_collections();
1094
        return NULL;
1095 1096
      }
    } else {
1097 1098 1099 1100 1101
      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = total_collections();
        return NULL;
      }
1102 1103 1104
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1105
      GC_locker::stall_until_clear();
1106
      (*gclocker_retry_count_ret) += 1;
1107 1108
    }

S
sla 已提交
1109
    // We can reach here if we were unsuccessful in scheduling a
1110 1111 1112 1113 1114 1115
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1116 1117
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1118 1119
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1120 1121
    }
  }
1122 1123

  ShouldNotReachHere();
1124
  return NULL;
1125 1126
}

1127
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1128 1129
                                                           AllocationContext_t context,
                                                           bool expect_null_mutator_alloc_region) {
1130
  assert_at_safepoint(true /* should_be_vm_thread */);
1131
  assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1132 1133
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1134

1135
  if (!isHumongous(word_size)) {
1136
    return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1137 1138
                                                      false /* bot_updates */);
  } else {
1139
    HeapWord* result = humongous_obj_allocate(word_size, context);
1140 1141 1142 1143
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1144
  }
1145 1146

  ShouldNotReachHere();
1147 1148 1149
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1150
  G1CollectedHeap* _g1h;
1151 1152
  ModRefBarrierSet* _mr_bs;
public:
1153
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
J
johnc 已提交
1154 1155
    _g1h(g1h), _mr_bs(mr_bs) {}

1156
  bool doHeapRegion(HeapRegion* r) {
J
johnc 已提交
1157 1158
    HeapRegionRemSet* hrrs = r->rem_set();

1159
    if (r->continuesHumongous()) {
J
johnc 已提交
1160 1161 1162
      // We'll assert that the strong code root list and RSet is empty
      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
      assert(hrrs->occupied() == 0, "RSet should be empty");
1163
      return false;
1164
    }
J
johnc 已提交
1165

1166
    _g1h->reset_gc_time_stamps(r);
J
johnc 已提交
1167
    hrrs->clear();
1168 1169 1170 1171 1172 1173
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
J
johnc 已提交
1174

1175 1176 1177 1178
    return false;
  }
};

1179
void G1CollectedHeap::clear_rsets_post_compaction() {
1180
  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1181 1182
  heap_region_iterate(&rs_clear);
}
1183

1184 1185 1186 1187 1188 1189
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190
    _cl(g1->g1_rem_set(), worker_i),
1191 1192 1193
    _worker_i(worker_i),
    _g1h(g1)
  { }
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1212 1213 1214
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215
                                          _g1->workers()->active_workers(),
1216 1217 1218 1219
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1220 1221 1222 1223 1224 1225
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
1226 1227 1228 1229 1230 1231
    if (hr->is_free()) {
      // We only generate output for non-empty regions.
    } else if (hr->startsHumongous()) {
      if (hr->region_num() == 1) {
        // single humongous region
        _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1232
      } else {
1233
        _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1234
      }
1235 1236 1237 1238 1239 1240
    } else if (hr->continuesHumongous()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
    } else if (hr->is_old()) {
      _hr_printer->post_compaction(hr, G1HRPrinter::Old);
    } else {
      ShouldNotReachHere();
1241 1242 1243 1244 1245 1246 1247 1248
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1249
void G1CollectedHeap::print_hrm_post_compaction() {
1250 1251 1252 1253
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1254
bool G1CollectedHeap::do_collection(bool explicit_gc,
1255
                                    bool clear_all_soft_refs,
1256
                                    size_t word_size) {
1257 1258
  assert_at_safepoint(true /* should_be_vm_thread */);

1259
  if (GC_locker::check_active_before_gc()) {
1260
    return false;
1261 1262
  }

S
sla 已提交
1263
  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1264
  gc_timer->register_gc_start();
S
sla 已提交
1265 1266 1267 1268

  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());

1269
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1270 1271
  ResourceMark rm;

1272
  print_heap_before_gc();
S
sla 已提交
1273
  trace_heap_before_gc(gc_tracer);
1274

1275
  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1276

1277
  verify_region_sets_optional();
1278

1279 1280 1281 1282 1283
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1284 1285 1286 1287
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1288
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1289
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1290

1291
    {
1292
      GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
      TraceCollectorStats tcs(g1mm()->full_collection_counters());
      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());

      double start = os::elapsedTime();
      g1_policy()->record_full_collection_start();

      // Note: When we have a more flexible GC logging framework that
      // allows us to add optional attributes to a GC log record we
      // could consider timing and reporting how long we wait in the
      // following two methods.
      wait_while_free_regions_coming();
      // If we start the compaction before the CM threads finish
      // scanning the root regions we might trip them over as we'll
      // be moving objects / updating references. So let's wait until
      // they are done. By telling them to abort, they should complete
      // early.
      _cm->root_regions()->abort();
      _cm->root_regions()->wait_until_scan_finished();
      append_secondary_free_list_if_not_empty_with_lock();
1312

1313 1314 1315
      gc_prologue(true);
      increment_total_collections(true /* full gc */);
      increment_old_marking_cycles_started();
1316

1317
      assert(used() == recalculate_used(), "Should be equal");
1318

1319
      verify_before_gc();
1320

1321
      check_bitmaps("Full GC Start");
S
sla 已提交
1322
      pre_full_gc_dump(gc_timer);
1323

1324
      COMPILER2_PRESENT(DerivedPointerTable::clear());
1325

1326 1327 1328 1329 1330
      // Disable discovery and empty the discovered lists
      // for the CM ref processor.
      ref_processor_cm()->disable_discovery();
      ref_processor_cm()->abandon_partial_discovery();
      ref_processor_cm()->verify_no_references_recorded();
1331

1332 1333 1334 1335
      // Abandon current iterations of concurrent marking and concurrent
      // refinement, if any are in progress. We have to do this before
      // wait_until_scan_finished() below.
      concurrent_mark()->abort();
1336

1337
      // Make sure we'll choose a new allocation region afterwards.
1338 1339
      _allocator->release_mutator_alloc_region();
      _allocator->abandon_gc_alloc_regions();
1340
      g1_rem_set()->cleanupHRRS();
1341

1342 1343 1344 1345
      // We should call this after we retire any currently active alloc
      // regions so that all the ALLOC / RETIRE events are generated
      // before the start GC event.
      _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1346

1347 1348 1349 1350 1351 1352 1353
      // We may have added regions to the current incremental collection
      // set between the last GC or pause and now. We need to clear the
      // incremental collection set and then start rebuilding it afresh
      // after this full GC.
      abandon_collection_set(g1_policy()->inc_cset_head());
      g1_policy()->clear_incremental_cset();
      g1_policy()->stop_incremental_cset_building();
1354

1355 1356
      tear_down_region_sets(false /* free_list_only */);
      g1_policy()->set_gcs_are_young(true);
1357

1358 1359 1360
      // See the comments in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() about
      // how reference processing currently works in G1.
1361

1362 1363
      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1364

1365 1366
      // Temporarily clear the STW ref processor's _is_alive_non_header field.
      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1367

1368 1369
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1370

1371 1372 1373 1374 1375
      // Do collection work
      {
        HandleMark hm;  // Discard invalid handles created during gc
        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
      }
1376

1377
      assert(num_free_regions() == 0, "we should not have added any free regions");
1378
      rebuild_region_sets(false /* free_list_only */);
1379

1380 1381 1382
      // Enqueue any discovered reference objects that have
      // not been removed from the discovered lists.
      ref_processor_stw()->enqueue_discovered_references();
1383

1384
      COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1385

1386
      MemoryService::track_memory_usage();
1387

1388 1389
      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
      ref_processor_stw()->verify_no_references_recorded();
1390

1391 1392
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
J
johnc 已提交
1393
      MetaspaceAux::verify_metrics();
1394

1395 1396 1397 1398 1399 1400
      // Note: since we've just done a full GC, concurrent
      // marking is no longer active. Therefore we need not
      // re-enable reference discovery for the CM ref processor.
      // That will be done at the start of the next marking cycle.
      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
      ref_processor_cm()->verify_no_references_recorded();
1401

1402 1403
      reset_gc_time_stamp();
      // Since everything potentially moved, we will clear all remembered
S
sla 已提交
1404
      // sets, and clear all cards.  Later we will rebuild remembered
1405 1406 1407
      // sets. We will also reset the GC time stamps of the regions.
      clear_rsets_post_compaction();
      check_gc_time_stamps();
1408

1409 1410
      // Resize the heap if necessary.
      resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1411

1412 1413 1414 1415
      if (_hr_printer.is_active()) {
        // We should do this after we potentially resize the heap so
        // that all the COMMIT / UNCOMMIT events are generated before
        // the end GC event.
1416

1417
        print_hrm_post_compaction();
1418 1419
        _hr_printer.end_gc(true /* full */, (size_t) total_collections());
      }
1420

1421 1422 1423 1424
      G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
      if (hot_card_cache->use_cache()) {
        hot_card_cache->reset_card_counts();
        hot_card_cache->reset_hot_cache();
1425
      }
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      // Rebuild remembered sets of all regions.
      if (G1CollectedHeap::use_parallel_gc_threads()) {
        uint n_workers =
          AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                  workers()->active_workers(),
                                                  Threads::number_of_non_daemon_threads());
        assert(UseDynamicNumberOfGCThreads ||
               n_workers == workers()->total_workers(),
               "If not dynamic should be using all the  workers");
        workers()->set_active_workers(n_workers);
        // Set parallel threads in the heap (_n_par_threads) only
        // before a parallel phase and always reset it to 0 after
        // the phase so that the number of parallel threads does
        // no get carried forward to a serial phase where there
        // may be code that is "possibly_parallel".
        set_par_threads(n_workers);

        ParRebuildRSTask rebuild_rs_task(this);
        assert(check_heap_region_claim_values(
               HeapRegion::InitialClaimValue), "sanity check");
        assert(UseDynamicNumberOfGCThreads ||
               workers()->active_workers() == workers()->total_workers(),
               "Unless dynamic should use total workers");
        // Use the most recent number of  active workers
        assert(workers()->active_workers() > 0,
               "Active workers not properly set");
        set_par_threads(workers()->active_workers());
        workers()->run_task(&rebuild_rs_task);
        set_par_threads(0);
        assert(check_heap_region_claim_values(
               HeapRegion::RebuildRSClaimValue), "sanity check");
        reset_heap_region_claim_values();
      } else {
        RebuildRSOutOfRegionClosure rebuild_rs(this);
        heap_region_iterate(&rebuild_rs);
      }
1463

J
johnc 已提交
1464 1465 1466
      // Rebuild the strong code root lists for each region
      rebuild_strong_code_roots();

1467 1468 1469
      // Purge code root memory
      purge_code_root_memory();

1470 1471 1472
      if (true) { // FIXME
        MetaspaceGC::compute_new_size();
      }
1473

1474 1475 1476
#ifdef TRACESPINNING
      ParallelTaskTerminator::print_termination_counts();
#endif
1477

1478 1479
      // Discard all rset updates
      JavaThread::dirty_card_queue_set().abandon_logs();
1480
      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1481

1482 1483 1484 1485 1486
      _young_list->reset_sampled_info();
      // At this point there should be no regions in the
      // entire heap tagged as young.
      assert(check_young_list_empty(true /* check_heap */),
             "young list should be empty at this point");
1487

1488 1489
      // Update the number of full collections that have been completed.
      increment_old_marking_cycles_completed(false /* concurrent */);
1490

1491
      _hrm.verify_optional();
1492
      verify_region_sets_optional();
1493

1494 1495
      verify_after_gc();

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
      // Clear the previous marking bitmap, if needed for bitmap verification.
      // Note we cannot do this when we clear the next marking bitmap in
      // ConcurrentMark::abort() above since VerifyDuringGC verifies the
      // objects marked during a full GC against the previous bitmap.
      // But we need to clear it before calling check_bitmaps below since
      // the full GC has compacted objects and updated TAMS but not updated
      // the prev bitmap.
      if (G1VerifyBitmaps) {
        ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
      }
      check_bitmaps("Full GC End");

1508 1509 1510
      // Start a new incremental collection set for the next pause
      assert(g1_policy()->collection_set() == NULL, "must be");
      g1_policy()->start_incremental_cset_building();
1511

1512
      clear_cset_fast_test();
1513

1514
      _allocator->init_mutator_alloc_region();
1515

1516 1517
      double end = os::elapsedTime();
      g1_policy()->record_full_collection_end();
1518

1519 1520 1521
      if (G1Log::fine()) {
        g1_policy()->print_heap_transition();
      }
1522

1523 1524 1525 1526 1527
      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
      // before any GC notifications are raised.
      g1mm()->update_sizes();
1528

1529 1530
      gc_epilogue(true);
    }
1531

1532
    if (G1Log::finer()) {
1533
      g1_policy()->print_detailed_heap_transition(true /* full */);
1534
    }
1535 1536

    print_heap_after_gc();
S
sla 已提交
1537 1538 1539
    trace_heap_after_gc(gc_tracer);

    post_full_gc_dump(gc_timer);
1540

1541
    gc_timer->register_gc_end();
S
sla 已提交
1542
    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1543
  }
1544

1545
  return true;
1546 1547 1548
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1549 1550 1551 1552 1553 1554 1555 1556
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1569 1570 1571 1572
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1573
  // We don't have floating point command-line arguments
1574
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1575
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1576
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1577 1578
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
1603 1604
         err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
                 "maximum_desired_capacity = " SIZE_FORMAT,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1615

1616
  if (capacity_after_gc < minimum_desired_capacity) {
1617 1618
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1629 1630

    // No expansion, now see if we want to shrink
1631
  } else if (capacity_after_gc > maximum_desired_capacity) {
1632 1633
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1634 1635 1636 1637 1638 1639 1640 1641 1642
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1643 1644 1645 1646 1647 1648
    shrink(shrink_bytes);
  }
}


HeapWord*
1649
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1650
                                           AllocationContext_t context,
1651
                                           bool* succeeded) {
1652
  assert_at_safepoint(true /* should_be_vm_thread */);
1653 1654 1655

  *succeeded = true;
  // Let's attempt the allocation first.
1656 1657
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
1658 1659
                                    context,
                                    false /* expect_null_mutator_alloc_region */);
1660 1661 1662 1663
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1664 1665 1666 1667 1668

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
1669
  result = expand_and_allocate(word_size, context);
1670
  if (result != NULL) {
1671
    assert(*succeeded, "sanity");
1672 1673 1674
    return result;
  }

1675 1676 1677 1678 1679 1680 1681 1682
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1683

1684 1685
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1686 1687
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1688
  if (result != NULL) {
1689
    assert(*succeeded, "sanity");
1690 1691 1692
    return result;
  }

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1704 1705
                                           context,
                                           true /* expect_null_mutator_alloc_region */);
1706
  if (result != NULL) {
1707
    assert(*succeeded, "sanity");
1708 1709 1710
    return result;
  }

1711
  assert(!collector_policy()->should_clear_all_soft_refs(),
1712
         "Flag should have been handled and cleared prior to this point");
1713

1714 1715 1716 1717
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1718
  assert(*succeeded, "sanity");
1719 1720 1721 1722 1723 1724 1725 1726
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

1727
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1728 1729 1730
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1731

1732
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1733 1734 1735 1736 1737
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1738
  if (expand(expand_bytes)) {
1739
    _hrm.verify_optional();
1740 1741
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1742 1743
                                           context,
                                           false /* expect_null_mutator_alloc_region */);
1744
  }
1745
  return NULL;
1746 1747
}

1748 1749
bool G1CollectedHeap::expand(size_t expand_bytes) {
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1750 1751
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1752 1753 1754 1755 1756
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1757

1758
  if (is_maximal_no_gc()) {
1759 1760 1761 1762 1763 1764
    ergo_verbose0(ErgoHeapSizing,
                      "did not expand the heap",
                      ergo_format_reason("heap already fully expanded"));
    return false;
  }

1765 1766
  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  assert(regions_to_expand > 0, "Must expand by at least one region");
1767

1768
  uint expanded_by = _hrm.expand_by(regions_to_expand);
1769

1770 1771
  if (expanded_by > 0) {
    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1772
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1773
    g1_policy()->record_new_heap_size(num_regions());
1774
  } else {
1775 1776 1777
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1778 1779 1780
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
1781
        _hrm.available() >= regions_to_expand) {
1782
      // We had head room...
1783
      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1784 1785
    }
  }
1786
  return regions_to_expand > 0;
1787 1788
}

1789
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1790 1791 1792 1793
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1794 1795
  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);

1796
  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1797
  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1798 1799 1800 1801 1802 1803

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
1804 1805
                shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  if (num_regions_removed > 0) {
1806
    g1_policy()->record_new_heap_size(num_regions());
1807 1808 1809 1810
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1811 1812 1813 1814
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1815 1816
  verify_region_sets_optional();

1817 1818 1819
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
1820
  _allocator->abandon_gc_alloc_regions();
1821

1822 1823 1824
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1825
  tear_down_region_sets(true /* free_list_only */);
1826
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1827
  rebuild_region_sets(true /* free_list_only */);
1828

1829
  _hrm.verify_optional();
1830
  verify_region_sets_optional();
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1843
  _dirty_card_queue_set(false),
J
johnc 已提交
1844
  _into_cset_dirty_card_queue_set(false),
1845 1846 1847 1848
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1849
  _bot_shared(NULL),
S
sla 已提交
1850
  _evac_failure_scan_stack(NULL),
1851
  _mark_in_progress(false),
1852
  _cg1r(NULL),
1853
  _g1mm(NULL),
1854 1855
  _refine_cte_cl(NULL),
  _full_collection(false),
1856 1857 1858
  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1859
  _humongous_reclaim_candidates(),
1860
  _has_humongous_reclaim_candidates(false),
1861
  _free_regions_coming(false),
1862 1863
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1864 1865
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1866
  _expand_heap_after_alloc_failure(true),
1867
  _surviving_young_words(NULL),
1868 1869
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
S
sla 已提交
1870
  _concurrent_cycle_started(false),
1871
  _heap_summary_sent(false),
1872
  _in_cset_fast_test(),
1873 1874
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
S
sla 已提交
1875 1876 1877 1878 1879 1880 1881
  _worker_cset_start_region_time_stamp(NULL),
  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {

  _g1h = this;
1882

1883
  _allocator = G1Allocator::create_allocator(_g1h);
1884 1885
  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1886 1887 1888
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

1889
  uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1890 1891
  assert(n_rem_sets > 0, "Invariant.");

Z
zgu 已提交
1892
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1893
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
S
sla 已提交
1894
  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1895

1896 1897 1898 1899
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
S
sla 已提交
1900
    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1901
  }
1902 1903
  clear_cset_start_regions();

1904 1905 1906
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1907 1908 1909
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

1910 1911 1912
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
                                                                 size_t size,
                                                                 size_t translation_factor) {
1913
  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1914
  // Allocate a new reserved space, preferring to use large pages.
1915
  ReservedSpace rs(size, preferred_page_size);
1916 1917 1918 1919 1920 1921 1922 1923 1924
  G1RegionToSpaceMapper* result  =
    G1RegionToSpaceMapper::create_mapper(rs,
                                         size,
                                         rs.alignment(),
                                         HeapRegion::GrainBytes,
                                         translation_factor,
                                         mtGC);
  if (TracePageSizes) {
    gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1925
                           description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1926 1927 1928 1929
  }
  return result;
}

1930
jint G1CollectedHeap::initialize() {
1931
  CollectedHeap::pre_initialize();
1932 1933
  os::enable_vtime();

1934 1935
  G1Log::init();

1936 1937 1938 1939
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1940 1941 1942 1943
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1944 1945 1946 1947 1948 1949 1950 1951 1952
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1953
  size_t heap_alignment = collector_policy()->heap_alignment();
1954 1955 1956 1957

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1958
  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1959

1960 1961 1962
  _refine_cte_cl = new RefineCardTableEntryClosure();

  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1963 1964

  // Reserve the maximum.
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

1977
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1978
                                                 heap_alignment);
1979 1980

  // It is important to do this in a way such that concurrent readers can't
S
sla 已提交
1981
  // temporarily think something is in the heap.  (I've actually seen this
1982 1983 1984 1985 1986 1987 1988 1989
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
1990 1991
  if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
    vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1992 1993 1994 1995
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1996
  _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1997 1998 1999

  // Carve out the G1 part of the heap.

2000
  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2001 2002
  G1RegionToSpaceMapper* heap_storage =
    G1RegionToSpaceMapper::create_mapper(g1_rs,
2003
                                         g1_rs.size(),
2004 2005 2006 2007 2008 2009
                                         UseLargePages ? os::large_page_size() : os::vm_page_size(),
                                         HeapRegion::GrainBytes,
                                         1,
                                         mtJavaHeap);
  heap_storage->set_mapping_changed_listener(&_listener);

2010
  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2011
  G1RegionToSpaceMapper* bot_storage =
2012 2013 2014
    create_aux_memory_mapper("Block offset table",
                             G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2015 2016 2017

  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  G1RegionToSpaceMapper* cardtable_storage =
2018 2019 2020
    create_aux_memory_mapper("Card table",
                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2021 2022

  G1RegionToSpaceMapper* card_counts_storage =
2023 2024 2025
    create_aux_memory_mapper("Card counts table",
                             G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
                             G1BlockOffsetSharedArray::N_bytes);
2026 2027 2028

  size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  G1RegionToSpaceMapper* prev_bitmap_storage =
2029
    create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
2030
  G1RegionToSpaceMapper* next_bitmap_storage =
2031
    create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
2032

2033
  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2034 2035 2036
  g1_barrier_set()->initialize(cardtable_storage);
   // Do later initialization work for concurrent refinement.
  _cg1r->init(card_counts_storage);
2037

2038 2039
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2040
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2041 2042 2043
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2044
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2045
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2046
            "too many cards per region");
2047

2048
  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2049

2050
  _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2051 2052 2053

  _g1h = this;

2054 2055 2056 2057 2058 2059 2060 2061
  {
    HeapWord* start = _hrm.reserved().start();
    HeapWord* end = _hrm.reserved().end();
    size_t granularity = HeapRegion::GrainBytes;

    _in_cset_fast_test.initialize(start, end, granularity);
    _humongous_reclaim_candidates.initialize(start, end, granularity);
  }
2062

2063 2064
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2065
  _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2066 2067 2068 2069
  if (_cm == NULL || !_cm->completed_initialization()) {
    vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
    return JNI_ENOMEM;
  }
2070 2071 2072 2073 2074
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2075
  // Now expand into the initial heap size.
2076
  if (!expand(init_byte_size)) {
2077
    vm_shutdown_during_initialization("Failed to allocate initial heap.");
2078 2079
    return JNI_ENOMEM;
  }
2080 2081 2082 2083 2084 2085

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2086
                                               G1SATBProcessCompletedThreshold,
2087
                                               Shared_SATB_Q_lock);
2088

2089 2090
  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
                                                DirtyCardQ_CBL_mon,
2091
                                                DirtyCardQ_FL_lock,
2092 2093
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2094 2095
                                                Shared_DirtyCardQ_lock);

2096 2097 2098 2099 2100 2101 2102
  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
                                    DirtyCardQ_CBL_mon,
                                    DirtyCardQ_FL_lock,
                                    -1, // never trigger processing
                                    -1, // no limit on length
                                    Shared_DirtyCardQ_lock,
                                    &JavaThread::dirty_card_queue_set());
J
johnc 已提交
2103 2104 2105

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
2106 2107
  _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
                                             DirtyCardQ_CBL_mon,
J
johnc 已提交
2108 2109 2110 2111 2112 2113
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2114 2115 2116 2117
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

2118 2119
  // Here we allocate the dummy HeapRegion that is required by the
  // G1AllocRegion class.
2120
  HeapRegion* dummy_region = _hrm.get_dummy_region();
2121

2122 2123 2124
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
2125 2126
  // BOT updates. So we'll tag the dummy region as eden to avoid that.
  dummy_region->set_eden();
2127 2128 2129 2130
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

2131
  _allocator->init_mutator_alloc_region();
2132

2133 2134
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2135
  _g1mm = new G1MonitoringSupport(this);
2136

P
pliden 已提交
2137 2138
  G1StringDedup::initialize();

2139 2140 2141
  return JNI_OK;
}

2142
void G1CollectedHeap::stop() {
2143 2144
  // Stop all concurrent threads. We do this to make sure these threads
  // do not continue to execute and access resources (e.g. gclog_or_tty)
2145
  // that are destroyed during shutdown.
2146 2147 2148 2149 2150
  _cg1r->stop();
  _cmThread->stop();
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::stop();
  }
2151 2152
}

2153 2154 2155 2156
size_t G1CollectedHeap::conservative_max_heap_alignment() {
  return HeapRegion::max_region_size();
}

2157
void G1CollectedHeap::ref_processing_init() {
2158 2159
  // Reference processing in G1 currently works as follows:
  //
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2192

2193 2194
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
2209
                           &_is_alive_closure_cm);
2210 2211 2212 2213 2214
                                // is alive closure
                                // (for efficiency/performance)

  // STW ref processor
  _ref_processor_stw =
2215
    new ReferenceProcessor(mr,    // span
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
2226
                           &_is_alive_closure_stw);
2227 2228
                                // is alive closure
                                // (for efficiency/performance)
2229 2230 2231
}

size_t G1CollectedHeap::capacity() const {
2232
  return _hrm.length() * HeapRegion::GrainBytes;
2233 2234
}

2235 2236 2237 2238
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
2239
    uint first_index = hr->hrm_index() + 1;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
2262
      gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2280 2281 2282
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2283
                                                 uint worker_i) {
2284
  // Clean cards in the hot card cache
2285 2286
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2287

2288
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2289
  size_t n_completed_buffers = 0;
J
johnc 已提交
2290
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2291 2292
    n_completed_buffers++;
  }
2293
  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2294 2295 2296 2297 2298 2299 2300
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
2301
  return _allocator->used();
2302 2303
}

2304
size_t G1CollectedHeap::used_unlocked() const {
2305
  return _allocator->used_unlocked();
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
2322 2323
  double recalculate_used_start = os::elapsedTime();

2324
  SumUsedClosure blk;
2325
  heap_region_iterate(&blk);
2326 2327

  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2328 2329 2330
  return blk.result();
}

2331
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2332 2333 2334 2335
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
2336
    case GCCause::_update_allocation_context_stats_inc: return true;
2337
    case GCCause::_wb_conc_mark:            return true;
2338 2339
    default:                                return false;
  }
2340 2341
}

2342 2343 2344 2345 2346 2347 2348 2349 2350
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
2351 2352
    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
                                                 AllocationContext::system());
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2375 2376
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2377 2378 2379 2380 2381
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2382 2383 2384 2385 2386 2387 2388 2389
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2390
  assert(concurrent ||
2391 2392 2393 2394 2395
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2396 2397

  // This is the case for the outer caller, i.e. the concurrent cycle.
2398
  assert(!concurrent ||
2399
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2400
         err_msg("for outer caller (concurrent cycle): "
2401 2402 2403
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2404

2405
  _old_marking_cycles_completed += 1;
2406

2407 2408 2409
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
S
sla 已提交
2410
  // incorrectly see that a marking cycle is still in progress.
2411
  if (concurrent) {
2412 2413 2414
    _cmThread->clear_in_progress();
  }

2415 2416 2417 2418 2419 2420 2421
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2422
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
S
sla 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
  _concurrent_cycle_started = true;
  _gc_timer_cm->register_gc_start(start_time);

  _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  trace_heap_before_gc(_gc_tracer_cm);
}

void G1CollectedHeap::register_concurrent_cycle_end() {
  if (_concurrent_cycle_started) {
    if (_cm->has_aborted()) {
      _gc_tracer_cm->report_concurrent_mode_failure();
    }
2435

2436
    _gc_timer_cm->register_gc_end();
S
sla 已提交
2437 2438
    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());

2439
    // Clear state variables to prepare for the next concurrent cycle.
S
sla 已提交
2440
    _concurrent_cycle_started = false;
2441
    _heap_summary_sent = false;
S
sla 已提交
2442 2443 2444 2445 2446
  }
}

void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  if (_concurrent_cycle_started) {
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    // This function can be called when:
    //  the cleanup pause is run
    //  the concurrent cycle is aborted before the cleanup pause.
    //  the concurrent cycle is aborted after the cleanup pause,
    //   but before the concurrent cycle end has been registered.
    // Make sure that we only send the heap information once.
    if (!_heap_summary_sent) {
      trace_heap_after_gc(_gc_tracer_cm);
      _heap_summary_sent = true;
    }
S
sla 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
  }
}

G1YCType G1CollectedHeap::yc_type() {
  bool is_young = g1_policy()->gcs_are_young();
  bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  bool is_during_mark = mark_in_progress();

  if (is_initial_mark) {
    return InitialMark;
  } else if (is_during_mark) {
    return DuringMark;
  } else if (is_young) {
    return Normal;
  } else {
    return Mixed;
  }
}

2476
void G1CollectedHeap::collect(GCCause::Cause cause) {
2477
  assert_heap_not_locked();
2478

2479 2480 2481
  uint gc_count_before;
  uint old_marking_count_before;
  uint full_gc_count_before;
2482 2483 2484 2485 2486 2487 2488
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2489

2490 2491
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2492
      full_gc_count_before = total_full_collections();
2493
      old_marking_count_before = _old_marking_cycles_started;
2494 2495 2496 2497 2498 2499
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2500
      VM_G1IncCollectionPause op(gc_count_before,
2501
                                 0,     /* word_size */
2502
                                 true,  /* should_initiate_conc_mark */
2503 2504
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2505
      op.set_allocation_context(AllocationContext::current());
2506

2507
      VMThread::execute(&op);
2508
      if (!op.pause_succeeded()) {
2509
        if (old_marking_count_before == _old_marking_cycles_started) {
2510
          retry_gc = op.should_retry_gc();
2511 2512 2513 2514 2515
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2516 2517 2518 2519 2520 2521

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2522
      }
2523 2524 2525 2526 2527 2528
    } else if (GC_locker::should_discard(cause, gc_count_before)) {
      // Return to be consistent with VMOp failure due to another
      // collection slipping in after our gc_count but before our
      // request is processed.  _gc_locker collections upgraded by
      // GCLockerInvokesConcurrent are handled above and never discarded.
      return;
2529
    } else {
2530
      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2543
        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2544 2545
        VMThread::execute(&op);
      }
2546
    }
2547
  } while (retry_gc);
2548 2549 2550
}

bool G1CollectedHeap::is_in(const void* p) const {
2551
  if (_hrm.reserved().contains(p)) {
2552
    // Given that we know that p is in the reserved space,
S
stefank 已提交
2553 2554 2555
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2556 2557
    return hr->is_in(p);
  } else {
2558
    return false;
2559 2560 2561
  }
}

2562 2563 2564
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
  bool contains = reserved_region().contains(p);
2565
  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2566 2567 2568 2569 2570 2571 2572 2573
  if (contains && available) {
    return true;
  } else {
    return false;
  }
}
#endif

2574 2575
// Iteration functions.

2576
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2577 2578

class IterateOopClosureRegionClosure: public HeapRegionClosure {
2579
  ExtendedOopClosure* _cl;
2580
public:
2581
  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2582
  bool doHeapRegion(HeapRegion* r) {
2583
    if (!r->continuesHumongous()) {
2584 2585 2586 2587 2588 2589
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2590
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2591
  IterateOopClosureRegionClosure blk(cl);
2592
  heap_region_iterate(&blk);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2609
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2610
  IterateObjectClosureRegionClosure blk(cl);
2611
  heap_region_iterate(&blk);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2628
  heap_region_iterate(&blk);
2629 2630
}

2631
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2632
  _hrm.iterate(cl);
2633 2634 2635 2636
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2637
                                                 uint worker_id,
2638 2639
                                                 uint num_workers,
                                                 jint claim_value) const {
2640
  _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2651
void G1CollectedHeap::reset_heap_region_claim_values() {
2652 2653 2654 2655
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2656 2657 2658 2659 2660
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2661 2662 2663 2664 2665 2666 2667 2668 2669
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2670
  uint _failures;
2671
  HeapRegion* _sh_region;
2672

2673 2674 2675 2676 2677
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2678
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2679
                             "claim value = %d, should be %d",
2680 2681
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2682 2683 2684 2685 2686 2687 2688 2689
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2690
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2691
                               "HS = " PTR_FORMAT ", should be " PTR_FORMAT,
2692
                               HR_FORMAT_PARAMS(r),
2693 2694 2695 2696 2697 2698 2699
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2700
  uint failures() { return _failures; }
2701 2702 2703 2704 2705 2706 2707
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2708 2709

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2710 2711 2712
private:
  jint _claim_value;
  uint _failures;
2713 2714 2715

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2716
    _claim_value(claim_value), _failures(0) { }
2717

2718
  uint failures() { return _failures; }
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2739 2740
#endif // ASSERT

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2753

2754 2755
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2756
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2784
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2785
    uint cs_size = g1_policy()->cset_region_length();
2786
    uint active_workers = workers()->active_workers();
2787 2788 2789 2790
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2791 2792
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2793 2794 2795 2796 2797 2798

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
2799
      OrderAccess::loadload();
2800 2801 2802
      result = _worker_cset_start_region[worker_i - 1];
    }

2803
    for (uint i = start_ind; i < end_ind; i++) {
2804 2805 2806
      result = result->next_in_collection_set();
    }
  }
2807 2808 2809 2810 2811 2812 2813 2814 2815

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2816 2817 2818
  return result;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2833 2834 2835 2836 2837
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

2860
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2861
  HeapRegion* result = _hrm.next_region_in_heap(from);
2862
  while (result != NULL && result->isHumongous()) {
2863
    result = _hrm.next_region_in_heap(result);
2864
  }
2865
  return result;
2866 2867 2868
}

Space* G1CollectedHeap::space_containing(const void* addr) const {
2869
  return heap_region_containing(addr);
2870 2871 2872 2873
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
2874
  return sp->block_start(addr);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
B
brutisso 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
  return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  return young_list()->eden_used_bytes();
}

// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be smaller than the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
  return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2903 2904 2905 2906 2907 2908
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2909
  // Also, this value can be at most the humongous object threshold,
S
sla 已提交
2910
  // since we can't allow tlabs to grow big enough to accommodate
2911 2912
  // humongous objects.

2913
  HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
B
brutisso 已提交
2914
  size_t max_tlab = max_tlab_size() * wordSize;
2915
  if (hr == NULL) {
B
brutisso 已提交
2916
    return max_tlab;
2917
  } else {
B
brutisso 已提交
2918
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2919 2920 2921 2922
  }
}

size_t G1CollectedHeap::max_capacity() const {
2923
  return _hrm.reserved().byte_size();
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

2983
class VerifyRootsClosure: public OopClosure {
J
johnc 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
private:
  G1CollectedHeap* _g1h;
  VerifyOption     _vo;
  bool             _failures;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
    _g1h(G1CollectedHeap::heap()),
    _vo(vo),
    _failures(false) { }

  bool failures() { return _failures; }

  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
3004 3005
        gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
                              "points to dead obj " PTR_FORMAT, p, (void*) obj);
J
johnc 已提交
3006
        if (_vo == VerifyOption_G1UseMarkWord) {
3007
          gclog_or_tty->print_cr("  Mark word: " PTR_FORMAT, (void*)(obj->mark()));
J
johnc 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
        }
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
};

3019
class G1VerifyCodeRootOopClosure: public OopClosure {
J
johnc 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
  G1CollectedHeap* _g1h;
  OopClosure* _root_cl;
  nmethod* _nm;
  VerifyOption _vo;
  bool _failures;

  template <class T> void do_oop_work(T* p) {
    // First verify that this root is live
    _root_cl->do_oop(p);

    if (!G1VerifyHeapRegionCodeRoots) {
      // We're not verifying the code roots attached to heap region.
      return;
    }

    // Don't check the code roots during marking verification in a full GC
    if (_vo == VerifyOption_G1UseMarkWord) {
      return;
    }

    // Now verify that the current nmethod (which contains p) is
    // in the code root list of the heap region containing the
    // object referenced by p.

    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Now fetch the region containing the object
      HeapRegion* hr = _g1h->heap_region_containing(obj);
      HeapRegionRemSet* hrrs = hr->rem_set();
      // Verify that the strong code root list for this region
      // contains the nmethod
      if (!hrrs->strong_code_roots_list_contains(_nm)) {
3054 3055 3056
        gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
                              "from nmethod " PTR_FORMAT " not in strong "
                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
J
johnc 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
                              p, _nm, hr->bottom(), hr->end());
        _failures = true;
      }
    }
  }

public:
  G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
    _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}

  void do_oop(oop* p) { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }

  void set_nmethod(nmethod* nm) { _nm = nm; }
  bool failures() { return _failures; }
};

class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  G1VerifyCodeRootOopClosure* _oop_cl;

public:
  G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
    _oop_cl(oop_cl) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL) {
      _oop_cl->set_nmethod(nm);
      nm->oops_do(_oop_cl);
    }
  }
};

class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

3118
class VerifyLivenessOopClosure: public OopClosure {
3119 3120
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3121
public:
3122 3123 3124
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3125 3126 3127 3128 3129
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3130
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3131
              "Dead object referenced by a not dead object");
3132 3133 3134 3135
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3136
private:
3137 3138 3139
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3140
  VerifyOption _vo;
3141
public:
3142 3143 3144 3145 3146
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3147 3148 3149
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3150
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3151
    assert(o != NULL, "Huh?");
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3164
      o->oop_iterate_no_header(&isLive);
3165 3166 3167 3168
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
3186
      gclog_or_tty->print("\nPrinting obj " PTR_FORMAT " of size " SIZE_FORMAT
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
3197
        gclog_or_tty->print("\t " PTR_FORMAT ":" PTR_FORMAT "\n", val, *val);
3198 3199 3200 3201 3202 3203
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3204
private:
3205 3206 3207
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3208
public:
3209 3210 3211
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3212 3213
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3214
      _vo(vo),
3215 3216 3217 3218 3219
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3220

3221
  bool doHeapRegion(HeapRegion* r) {
3222
    if (!r->continuesHumongous()) {
3223
      bool failures = false;
3224
      r->verify(_vo, &failures);
3225 3226 3227
      if (failures) {
        _failures = true;
      } else {
3228
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3229
        r->object_iterate(&not_dead_yet_cl);
3230 3231
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3232 3233 3234
            gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
                                   "max_live_bytes " SIZE_FORMAT " "
                                   "< calculated " SIZE_FORMAT,
3235 3236
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3237
                                 not_dead_yet_cl.live_bytes());
3238 3239 3240 3241 3242 3243
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3244 3245
        }
      }
3246
    }
3247
    return false; // stop the region iteration if we hit a failure
3248 3249 3250
  }
};

J
johnc 已提交
3251
// This is the task used for parallel verification of the heap regions
3252 3253 3254 3255

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3256 3257
  VerifyOption     _vo;
  bool             _failures;
3258 3259

public:
3260 3261 3262
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3263
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3264
    AbstractGangTask("Parallel verify task"),
3265
    _g1h(g1h),
3266
    _vo(vo),
3267 3268 3269 3270 3271
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3272

3273
  void work(uint worker_id) {
3274
    HandleMark hm;
3275
    VerifyRegionClosure blk(true, _vo);
3276
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3277
                                          _g1h->workers()->active_workers(),
3278
                                          HeapRegion::ParVerifyClaimValue);
3279 3280 3281
    if (blk.failures()) {
      _failures = true;
    }
3282 3283 3284
  }
};

J
johnc 已提交
3285
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3286
  if (SafepointSynchronize::is_at_safepoint()) {
3287
    assert(Thread::current()->is_VM_thread(),
3288
           "Expected to be executed serially by the VM thread at this point");
3289

J
johnc 已提交
3290 3291
    if (!silent) { gclog_or_tty->print("Roots "); }
    VerifyRootsClosure rootsCl(vo);
3292
    VerifyKlassClosure klassCl(this, &rootsCl);
3293
    CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3294

3295
    // We apply the relevant closures to all the oops in the
3296 3297
    // system dictionary, class loader data graph, the string table
    // and the nmethods in the code cache.
3298 3299
    G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
    G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3300

3301 3302 3303 3304 3305 3306
    {
      G1RootProcessor root_processor(this);
      root_processor.process_all_roots(&rootsCl,
                                       &cldCl,
                                       &blobsCl);
    }
3307

J
johnc 已提交
3308
    bool failures = rootsCl.failures() || codeRootsCl.failures();
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3319
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3320 3321 3322 3323
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3324
      G1ParVerifyTask task(this, vo);
3325 3326 3327 3328
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3329 3330 3331
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3332 3333 3334
      if (task.failures()) {
        failures = true;
      }
3335

3336 3337
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3338 3339 3340 3341 3342 3343 3344 3345
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3346
      VerifyRegionClosure blk(false, vo);
3347
      heap_region_iterate(&blk);
3348 3349 3350
      if (blk.failures()) {
        failures = true;
      }
3351
    }
3352
    if (!silent) gclog_or_tty->print("RemSet ");
3353
    rem_set()->verify();
3354

P
pliden 已提交
3355 3356 3357 3358 3359
    if (G1StringDedup::is_enabled()) {
      if (!silent) gclog_or_tty->print("StrDedup ");
      G1StringDedup::verify();
    }

3360 3361
    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3362 3363 3364 3365
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3366
      gclog_or_tty->cr();
3367
#ifndef PRODUCT
3368
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3369
        concurrent_mark()->print_reachable("at-verification-failure",
3370
                                           vo, false /* all */);
3371
      }
3372
#endif
3373 3374 3375
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3376
  } else {
P
pliden 已提交
3377 3378 3379 3380 3381 3382 3383
    if (!silent) {
      gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
      if (G1StringDedup::is_enabled()) {
        gclog_or_tty->print(", StrDedup");
      }
      gclog_or_tty->print(") ");
    }
3384 3385 3386
  }
}

J
johnc 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
}

double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    prepare_for_verify();
    Universe::verify(VerifyOption_G1UsePrevMarking, msg);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const HeapRegion* hr,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
                                       const VerifyOption vo) const {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

3448
void G1CollectedHeap::print_on(outputStream* st) const {
3449 3450
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3451
            capacity()/K, used_unlocked()/K);
3452
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3453 3454 3455
            _hrm.reserved().start(),
            _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
            _hrm.reserved().end());
3456
  st->cr();
3457
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3458 3459 3460 3461 3462 3463
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3464
  st->cr();
3465
  MetaspaceAux::print_on(st);
3466 3467
}

3468 3469 3470 3471 3472
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3473 3474 3475 3476 3477
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3478
  PrintRegionClosure blk(st);
3479
  heap_region_iterate(&blk);
3480 3481
}

3482 3483 3484 3485 3486 3487 3488 3489 3490
void G1CollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (_cm != NULL) {
    st->cr();
    _cm->print_on_error(st);
  }
}

3491
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3492
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3493
    workers()->print_worker_threads_on(st);
3494
  }
T
tonyp 已提交
3495
  _cmThread->print_on(st);
3496
  st->cr();
T
tonyp 已提交
3497 3498
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
P
pliden 已提交
3499 3500 3501
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::print_worker_threads_on(st);
  }
3502 3503 3504
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3505
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3506 3507 3508
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3509
  _cg1r->threads_do(tc);
P
pliden 已提交
3510 3511 3512
  if (G1StringDedup::is_enabled()) {
    G1StringDedup::threads_do(tc);
  }
3513 3514 3515 3516 3517 3518 3519 3520 3521
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3522
  if (G1SummarizeRSetStats) {
3523 3524
    g1_rem_set()->print_summary_info();
  }
3525
  if (G1SummarizeConcMark) {
3526 3527 3528 3529 3530 3531
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

3546
    gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
3560
    gclog_or_tty->print_cr("%s", msg);
3561 3562 3563 3564
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
3565
    gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3582 3583 3584 3585 3586 3587 3588
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3589
  // always_do_update_barrier = false;
3590 3591
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Fill TLAB's and such
B
brutisso 已提交
3592
  accumulate_statistics_all_tlabs();
3593
  ensure_parsability(true);
3594 3595 3596 3597 3598

  if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  }
3599 3600
}

3601
void G1CollectedHeap::gc_epilogue(bool full) {
3602 3603 3604 3605 3606

  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      // we are at the end of the GC. Total collections has already been increased.
      ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3607
    g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3608 3609
  }

3610 3611 3612 3613 3614
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3615
  // always_do_update_barrier = true;
3616

B
brutisso 已提交
3617
  resize_all_tlabs();
3618
  allocation_context_stats().update(full);
B
brutisso 已提交
3619

3620 3621 3622
  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3623 3624
}

3625
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3626
                                               uint gc_count_before,
3627 3628
                                               bool* succeeded,
                                               GCCause::Cause gc_cause) {
3629
  assert_heap_not_locked_and_not_at_safepoint();
3630
  g1_policy()->record_stop_world_start();
3631 3632 3633 3634
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
3635
                             gc_cause);
3636 3637

  op.set_allocation_context(AllocationContext::current());
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3648 3649 3650 3651
}

void
G1CollectedHeap::doConcurrentMark() {
3652 3653 3654 3655
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3671 3672 3673 3674
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3675 3676 3677
}

size_t G1CollectedHeap::cards_scanned() {
3678
  return g1_rem_set()->cardsScanned();
3679 3680
}

3681 3682 3683 3684
class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
 private:
  size_t _total_humongous;
  size_t _candidate_humongous;
3685 3686 3687

  DirtyCardQueue _dcq;

3688 3689 3690
  // We don't nominate objects with many remembered set entries, on
  // the assumption that such objects are likely still live.
  bool is_remset_small(HeapRegion* region) const {
3691
    HeapRegionRemSet* const rset = region->rem_set();
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
    return G1EagerReclaimHumongousObjectsWithStaleRefs
      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
      : rset->is_empty();
  }

  bool is_typeArray_region(HeapRegion* region) const {
    return oop(region->bottom())->is_typeArray();
  }

  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
    assert(region->startsHumongous(), "Must start a humongous object");

    // Candidate selection must satisfy the following constraints
    // while concurrent marking is in progress:
    //
    // * In order to maintain SATB invariants, an object must not be
    // reclaimed if it was allocated before the start of marking and
    // has not had its references scanned.  Such an object must have
    // its references (including type metadata) scanned to ensure no
    // live objects are missed by the marking process.  Objects
    // allocated after the start of concurrent marking don't need to
    // be scanned.
    //
    // * An object must not be reclaimed if it is on the concurrent
    // mark stack.  Objects allocated after the start of concurrent
    // marking are never pushed on the mark stack.
    //
    // Nominating only objects allocated after the start of concurrent
    // marking is sufficient to meet both constraints.  This may miss
    // some objects that satisfy the constraints, but the marking data
    // structures don't support efficiently performing the needed
    // additional tests or scrubbing of the mark stack.
    //
    // However, we presently only nominate is_typeArray() objects.
    // A humongous object containing references induces remembered
    // set entries on other regions.  In order to reclaim such an
    // object, those remembered sets would need to be cleaned up.
    //
    // We also treat is_typeArray() objects specially, allowing them
    // to be reclaimed even if allocated before the start of
    // concurrent mark.  For this we rely on mark stack insertion to
    // exclude is_typeArray() objects, preventing reclaiming an object
    // that is in the mark stack.  We also rely on the metadata for
    // such objects to be built-in and so ensured to be kept live.
    // Frequent allocation and drop of large binary blobs is an
    // important use case for eager reclaim, and this special handling
    // may reduce needed headroom.

    return is_typeArray_region(region) && is_remset_small(region);
3741 3742
  }

3743
 public:
3744 3745 3746 3747
  RegisterHumongousWithInCSetFastTestClosure()
  : _total_humongous(0),
    _candidate_humongous(0),
    _dcq(&JavaThread::dirty_card_queue_set()) {
3748 3749 3750 3751 3752 3753 3754 3755
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }
    G1CollectedHeap* g1h = G1CollectedHeap::heap();

3756 3757 3758
    bool is_candidate = humongous_region_is_candidate(g1h, r);
    uint rindex = r->hrm_index();
    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3759
    if (is_candidate) {
3760 3761 3762 3763 3764 3765 3766
      _candidate_humongous++;
      g1h->register_humongous_region_with_in_cset_fast_test(rindex);
      // Is_candidate already filters out humongous object with large remembered sets.
      // If we have a humongous object with a few remembered sets, we simply flush these
      // remembered set entries into the DCQS. That will result in automatic
      // re-evaluation of their remembered set entries during the following evacuation
      // phase.
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
      if (!r->rem_set()->is_empty()) {
        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
        HeapRegionRemSetIterator hrrs(r->rem_set());
        size_t card_index;
        while (hrrs.has_next(card_index)) {
          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
          if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
            *card_ptr = CardTableModRefBS::dirty_card_val();
            _dcq.enqueue(card_ptr);
          }
        }
3780 3781 3782
        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
               err_msg("Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
               hrrs.n_yielded(), r->rem_set()->occupied()));
3783 3784 3785
        r->rem_set()->clear_locked();
      }
      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3786 3787 3788 3789 3790 3791 3792 3793
    }
    _total_humongous++;

    return false;
  }

  size_t total_humongous() const { return _total_humongous; }
  size_t candidate_humongous() const { return _candidate_humongous; }
3794 3795

  void flush_rem_set_entries() { _dcq.flush(); }
3796 3797 3798
};

void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3799 3800
  if (!G1EagerReclaimHumongousObjects) {
    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3801 3802
    return;
  }
3803
  double time = os::elapsed_counter();
3804

3805
  // Collect reclaim candidate information and register candidates with cset.
3806 3807
  RegisterHumongousWithInCSetFastTestClosure cl;
  heap_region_iterate(&cl);
3808 3809 3810 3811

  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
                                                                  cl.total_humongous(),
3812 3813 3814
                                                                  cl.candidate_humongous());
  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;

3815 3816
  // Finally flush all remembered set entries to re-check into the global DCQS.
  cl.flush_rem_set_entries();
3817 3818
}

3819 3820
void
G1CollectedHeap::setup_surviving_young_words() {
3821 3822
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3823
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3824
  if (_surviving_young_words == NULL) {
3825
    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3826 3827
                          "Not enough space for young surv words summary.");
  }
3828
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3829
#ifdef ASSERT
3830
  for (uint i = 0;  i < array_length; ++i) {
3831
    assert( _surviving_young_words[i] == 0, "memset above" );
3832
  }
3833
#endif // !ASSERT
3834 3835 3836 3837 3838
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3839 3840
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3841
    _surviving_young_words[i] += surv_young_words[i];
3842
  }
3843 3844 3845 3846 3847
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3848
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3849 3850 3851
  _surviving_young_words = NULL;
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
class VerifyRegionRemSetClosure : public HeapRegionClosure {
  public:
    bool doHeapRegion(HeapRegion* hr) {
      if (!hr->continuesHumongous()) {
        hr->verify_rem_set();
      }
      return false;
    }
};

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3879 3880 3881
    return false;
  }
};
3882
#endif // ASSERT
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3895
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3906
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3907 3908 3909 3910 3911 3912
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3913 3914 3915 3916 3917
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

3918
  gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3919 3920

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3921
    .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
3947
  gclog_or_tty->flush();
3948 3949
}

3950
bool
3951
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3952 3953 3954
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3955
  if (GC_locker::check_active_before_gc()) {
3956
    return false;
3957 3958
  }

3959
  _gc_timer_stw->register_gc_start();
S
sla 已提交
3960 3961 3962

  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());

3963
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3964 3965
  ResourceMark rm;

3966
  print_heap_before_gc();
S
sla 已提交
3967
  trace_heap_before_gc(_gc_tracer_stw);
3968

3969
  verify_region_sets_optional();
3970
  verify_dirty_young_regions();
3971

3972 3973 3974 3975 3976 3977 3978 3979
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3980

3981 3982
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3983

3984 3985 3986 3987
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3988

3989 3990
  // Inner scope for scope based logging, timers, and stats collection
  {
S
sla 已提交
3991 3992
    EvacuationInfo evacuation_info;

3993 3994 3995
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3996
      increment_old_marking_cycles_started();
S
sla 已提交
3997
      register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3998
    }
S
sla 已提交
3999 4000 4001

    _gc_tracer_stw->report_yc_type(yc_type());

4002
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012
    uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                                                  workers()->active_workers(),
                                                                  Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           active_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
    workers()->set_active_workers(active_workers);


4013
    double pause_start_sec = os::elapsedTime();
4014
    g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
4015
    log_gc_header();
4016

4017
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4018 4019
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause(),
                                yc_type() == Mixed /* allMemoryPoolsAffected */);
4020

T
tonyp 已提交
4021 4022 4023 4024 4025 4026
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
4027
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
4028
      append_secondary_free_list_if_not_empty_with_lock();
4029
    }
4030

J
johnc 已提交
4031 4032 4033
    assert(check_young_list_well_formed(), "young list should be well formed");
    assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
4034

4035 4036 4037 4038
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

4039 4040 4041 4042 4043
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
4044
      increment_gc_time_stamp();
4045

4046 4047 4048 4049 4050 4051 4052 4053
      if (VerifyRememberedSets) {
        if (!VerifySilently) {
          gclog_or_tty->print_cr("[Verifying RemSets before GC]");
        }
        VerifyRegionRemSetClosure v_cl;
        heap_region_iterate(&v_cl);
      }

4054
      verify_before_gc();
4055
      check_bitmaps("GC Start");
4056

4057
      COMPILER2_PRESENT(DerivedPointerTable::clear());
4058

4059 4060 4061
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
4062

4063 4064 4065
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
4066

4067 4068 4069 4070 4071 4072 4073 4074 4075
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
4076
        _allocator->release_mutator_alloc_region();
4077 4078 4079 4080 4081 4082

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

4083 4084 4085 4086 4087 4088
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
4089 4090
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
4091
        double sample_start_time_sec = os::elapsedTime();
4092

4093
#if YOUNG_LIST_VERBOSE
4094 4095 4096
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4097 4098
#endif // YOUNG_LIST_VERBOSE

4099
        g1_policy()->record_collection_pause_start(sample_start_time_sec);
4100

4101 4102 4103 4104 4105 4106
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
4107
        double wait_time_ms = 0.0;
4108 4109
        if (waited) {
          double scan_wait_end = os::elapsedTime();
4110
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4111
        }
4112
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4113

4114
#if YOUNG_LIST_VERBOSE
4115 4116
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
4117
#endif // YOUNG_LIST_VERBOSE
4118

4119 4120 4121
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
4122

4123
#if YOUNG_LIST_VERBOSE
4124 4125 4126
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4127
#endif // YOUNG_LIST_VERBOSE
4128

S
sla 已提交
4129
        g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4130

4131 4132 4133 4134 4135 4136 4137
        // Make sure the remembered sets are up to date. This needs to be
        // done before register_humongous_regions_with_cset(), because the
        // remembered sets are used there to choose eager reclaim candidates.
        // If the remembered sets are not up to date we might miss some
        // entries that need to be handled.
        g1_rem_set()->cleanupHRRS();

4138 4139
        register_humongous_regions_with_in_cset_fast_test();

4140 4141
        assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");

4142
        _cm->note_start_of_gc();
4143
        // We call this after finalize_cset() to
4144
        // ensure that the CSet has been finalized.
4145
        _cm->verify_no_cset_oops();
4146

4147 4148 4149 4150 4151
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
4152 4153 4154
          }
        }

4155
#ifdef ASSERT
4156 4157
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
4158
#endif // ASSERT
4159

4160
        setup_surviving_young_words();
4161

4162
        // Initialize the GC alloc regions.
4163
        _allocator->init_gc_alloc_regions(evacuation_info);
4164

4165
        // Actually do the work...
S
sla 已提交
4166
        evacuate_collection_set(evacuation_info);
4167

S
sla 已提交
4168
        free_collection_set(g1_policy()->collection_set(), evacuation_info);
4169 4170 4171

        eagerly_reclaim_humongous_regions();

4172
        g1_policy()->clear_collection_set();
4173

4174
        cleanup_surviving_young_words();
4175

4176 4177
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
4178

4179
        clear_cset_fast_test();
4180

4181
        _young_list->reset_sampled_info();
4182

4183 4184 4185 4186 4187 4188
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
4189 4190

#if YOUNG_LIST_VERBOSE
4191 4192
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
4193
#endif // YOUNG_LIST_VERBOSE
4194

4195
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
S
sla 已提交
4196 4197
                                             _young_list->first_survivor_region(),
                                             _young_list->last_survivor_region());
4198

4199
        _young_list->reset_auxilary_lists();
4200

4201
        if (evacuation_failed()) {
4202
          _allocator->set_used(recalculate_used());
S
sla 已提交
4203 4204 4205 4206 4207 4208
          uint n_queues = MAX2((int)ParallelGCThreads, 1);
          for (uint i = 0; i < n_queues; i++) {
            if (_evacuation_failed_info_array[i].has_failed()) {
              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
            }
          }
4209 4210 4211
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
4212
          _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4213
        }
4214

4215
        if (g1_policy()->during_initial_mark_pause()) {
4216 4217 4218
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
4219 4220
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
4221 4222 4223
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
4224
        }
4225

4226
        allocate_dummy_regions();
4227

4228
#if YOUNG_LIST_VERBOSE
4229 4230 4231
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4232
#endif // YOUNG_LIST_VERBOSE
4233

4234
        _allocator->init_mutator_alloc_region();
4235 4236 4237 4238 4239

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
4240 4241
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
4242
            if (!expand(expand_bytes)) {
4243
              // We failed to expand the heap. Cannot do anything about it.
4244
            }
4245 4246 4247
          }
        }

S
sla 已提交
4248
        // We redo the verification but now wrt to the new CSet which
4249
        // has just got initialized after the previous CSet was freed.
4250
        _cm->verify_no_cset_oops();
4251 4252
        _cm->note_end_of_gc();

4253 4254 4255 4256 4257
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
S
sla 已提交
4258
        g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4285 4286 4287 4288 4289 4290 4291 4292
        if (VerifyRememberedSets) {
          if (!VerifySilently) {
            gclog_or_tty->print_cr("[Verifying RemSets after GC]");
          }
          VerifyRegionRemSetClosure v_cl;
          heap_region_iterate(&v_cl);
        }

4293
        verify_after_gc();
4294
        check_bitmaps("GC End");
4295

4296 4297
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4298

4299 4300
        // CM reference discovery will be re-enabled if necessary.
      }
4301

4302 4303 4304 4305 4306 4307
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4308
#ifdef TRACESPINNING
4309
      ParallelTaskTerminator::print_termination_counts();
4310
#endif
4311

4312 4313
      gc_epilogue(false);
    }
4314

4315 4316 4317
    // Print the remainder of the GC log output.
    log_gc_footer(os::elapsedTime() - pause_start_sec);

4318
    // It is not yet to safe to tell the concurrent mark to
4319 4320 4321
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4322

4323
    _hrm.verify_optional();
4324 4325 4326 4327
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4328

4329
    print_heap_after_gc();
S
sla 已提交
4330
    trace_heap_after_gc(_gc_tracer_stw);
4331

4332 4333 4334 4335 4336
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
4337

S
sla 已提交
4338 4339
    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4340
    _gc_timer_stw->register_gc_end();
S
sla 已提交
4341 4342
    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  }
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
P
pliden 已提交
4354
    // SuspendibleThreadSet::desynchronize().
4355 4356 4357
    doConcurrentMark();
  }

4358
  return true;
4359 4360 4361 4362 4363
}

void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4364
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4365 4366 4367 4368 4369 4370 4371
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4372
  delete _evac_failure_scan_stack;
4373 4374 4375
  _evac_failure_scan_stack = NULL;
}

4376 4377
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4378

4379 4380
  double remove_self_forwards_start = os::elapsedTime();

4381
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4382

4383 4384 4385 4386
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4387
  } else {
4388
    rsfp_task.work(0);
4389
  }
4390 4391 4392 4393 4394 4395 4396

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4397 4398

  // Now restore saved marks, if any.
4399 4400 4401 4402 4403 4404
  assert(_objs_with_preserved_marks.size() ==
            _preserved_marks_of_objs.size(), "Both or none.");
  while (!_objs_with_preserved_marks.is_empty()) {
    oop obj = _objs_with_preserved_marks.pop();
    markOop m = _preserved_marks_of_objs.pop();
    obj->set_mark(m);
4405
  }
4406 4407
  _objs_with_preserved_marks.clear(true);
  _preserved_marks_of_objs.clear(true);
4408 4409

  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
S
sla 已提交
4427
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4428
                                               oop old) {
4429
  assert(obj_in_cs(old),
4430
         err_msg("obj: " PTR_FORMAT " should still be in the CSet",
4431
                 (HeapWord*) old));
4432 4433 4434 4435
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
S
sla 已提交
4436 4437 4438
    assert(_par_scan_state != NULL, "par scan state");
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    uint queue_num = _par_scan_state->queue_num();
4439

S
sla 已提交
4440 4441
    _evacuation_failed = true;
    _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4460 4461 4462 4463
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4464
           err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
4465 4466
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4477
    _hr_printer.evac_failure(r);
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4491 4492 4493 4494
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4495 4496
    _objs_with_preserved_marks.push(obj);
    _preserved_marks_of_objs.push(m);
4497 4498 4499
  }
}

4500
void G1ParCopyHelper::mark_object(oop obj) {
4501
  assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4502 4503

  // We know that the object is not moving so it's safe to read its size.
4504
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4505 4506
}

4507
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4508 4509 4510 4511
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

4512 4513
  assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4514 4515 4516 4517 4518

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4519
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4520 4521
}

4522 4523 4524 4525 4526 4527 4528
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4529
template <G1Barrier barrier, G1Mark do_mark_object>
4530
template <class T>
4531
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4532 4533 4534 4535 4536 4537 4538
  T heap_oop = oopDesc::load_heap_oop(p);

  if (oopDesc::is_null(heap_oop)) {
    return;
  }

  oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4539

4540 4541
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4542 4543
  const InCSetState state = _g1->in_cset_state(obj);
  if (state.is_in_cset()) {
4544
    oop forwardee;
4545 4546 4547
    markOop m = obj->mark();
    if (m->is_marked()) {
      forwardee = (oop) m->decode_pointer();
4548
    } else {
4549
      forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4550 4551 4552
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
4553
    if (do_mark_object != G1MarkNone && forwardee != obj) {
4554 4555 4556
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4557
    }
4558

4559
    if (barrier == G1BarrierKlass) {
4560
      do_klass_barrier(p, forwardee);
4561
    }
4562
  } else {
4563
    if (state.is_humongous()) {
4564 4565
      _g1->set_humongous_is_live(obj);
    }
4566
    // The object is not in collection set. If we're a root scanning
4567 4568
    // closure during an initial mark pause then attempt to mark the object.
    if (do_mark_object == G1MarkFromRoot) {
4569
      mark_object(obj);
4570
    }
4571
  }
4572

4573
  if (barrier == G1BarrierEvac) {
4574
    _par_scan_state->update_rs(_from, p, _worker_id);
4575
  }
4576 4577
}

4578 4579
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4600
  void do_void();
4601

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();
  do {
4618
    pss->steal_and_trim_queue(queues());
4619 4620
  } while (!offer_termination());
}
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4648 4649 4650 4651
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
4652
  G1RootProcessor*       _root_processor;
4653
  ParallelTaskTerminator _terminator;
4654
  uint _n_workers;
4655 4656 4657 4658 4659

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

public:
4660
  G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4661 4662 4663
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4664
      _root_processor(root_processor),
4665 4666
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4667 4668 4669 4670 4671 4672 4673 4674
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4675 4676 4677
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
4678
    _root_processor->set_num_workers(active_workers);
4679 4680 4681 4682
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
  // Helps out with CLD processing.
  //
  // During InitialMark we need to:
  // 1) Scavenge all CLDs for the young GC.
  // 2) Mark all objects directly reachable from strong CLDs.
  template <G1Mark do_mark_object>
  class G1CLDClosure : public CLDClosure {
    G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
    G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
    G1KlassScanClosure                                _klass_in_cld_closure;
    bool                                              _claim;

   public:
    G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
                 bool only_young, bool claim)
        : _oop_closure(oop_closure),
          _oop_in_klass_closure(oop_closure->g1(),
                                oop_closure->pss(),
                                oop_closure->rp()),
          _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
          _claim(claim) {

    }

    void do_cld(ClassLoaderData* cld) {
      cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
    }
  };

4712 4713
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4714

4715
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4716

4717 4718 4719
    {
      ResourceMark rm;
      HandleMark   hm;
4720

4721
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4722

4723
      G1ParScanThreadState            pss(_g1h, worker_id, rp);
4724
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4725

4726
      pss.set_evac_failure_closure(&evac_failure_cl);
4727

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;
4751 4752

      bool trace_metadata = false;
4753

4754 4755
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
4756 4757
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
4758 4759 4760
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
4761
          trace_metadata = true;
4762 4763 4764 4765
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
4766 4767 4768 4769 4770
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
4771
      }
4772

4773
      pss.start_strong_roots();
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
      _root_processor->evacuate_roots(strong_root_cl,
                                      weak_root_cl,
                                      strong_cld_cl,
                                      weak_cld_cl,
                                      trace_metadata,
                                      worker_id);

      G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
      _root_processor->scan_remembered_sets(&push_heap_rs_cl,
                                            weak_root_cl,
                                            worker_id);
4786
      pss.end_strong_roots();
4787

4788 4789 4790 4791
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
4792 4793 4794 4795 4796
        double elapsed_sec = os::elapsedTime() - start;
        double term_sec = pss.term_time();
        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4797 4798 4799 4800 4801 4802 4803 4804
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4805

4806
      assert(pss.queue_is_empty(), "should be empty");
4807

4808 4809 4810
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4811
    }
4812
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4813 4814 4815
  }
};

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
private:
  BoolObjectClosure* _is_alive;
  int _initial_string_table_size;
  int _initial_symbol_table_size;

  bool  _process_strings;
  int _strings_processed;
  int _strings_removed;

  bool  _process_symbols;
  int _symbols_processed;
  int _symbols_removed;
4829 4830

  bool _do_in_parallel;
4831 4832
public:
  G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4833 4834
    AbstractGangTask("String/Symbol Unlinking"),
    _is_alive(is_alive),
4835
    _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {

    _initial_string_table_size = StringTable::the_table()->table_size();
    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
    if (process_strings) {
      StringTable::clear_parallel_claimed_index();
    }
    if (process_symbols) {
      SymbolTable::clear_parallel_claimed_index();
    }
  }

  ~G1StringSymbolTableUnlinkTask() {
4850
    guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4851
              err_msg("claim value " INT32_FORMAT " after unlink less than initial string table size " INT32_FORMAT,
4852
                      StringTable::parallel_claimed_index(), _initial_string_table_size));
4853
    guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4854
              err_msg("claim value " INT32_FORMAT " after unlink less than initial symbol table size " INT32_FORMAT,
4855
                      SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4856 4857 4858

    if (G1TraceStringSymbolTableScrubbing) {
      gclog_or_tty->print_cr("Cleaned string and symbol table, "
4859 4860
                             "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
                             "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4861 4862 4863
                             strings_processed(), strings_removed(),
                             symbols_processed(), symbols_removed());
    }
4864 4865 4866
  }

  void work(uint worker_id) {
4867
    if (_do_in_parallel) {
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
      int strings_processed = 0;
      int strings_removed = 0;
      int symbols_processed = 0;
      int symbols_removed = 0;
      if (_process_strings) {
        StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
        Atomic::add(strings_processed, &_strings_processed);
        Atomic::add(strings_removed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
        Atomic::add(symbols_processed, &_symbols_processed);
        Atomic::add(symbols_removed, &_symbols_removed);
      }
    } else {
      if (_process_strings) {
        StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
      }
      if (_process_symbols) {
        SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
      }
    }
  }

  size_t strings_processed() const { return (size_t)_strings_processed; }
  size_t strings_removed()   const { return (size_t)_strings_removed; }

  size_t symbols_processed() const { return (size_t)_symbols_processed; }
  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
};

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
private:
  static Monitor* _lock;

  BoolObjectClosure* const _is_alive;
  const bool               _unloading_occurred;
  const uint               _num_workers;

  // Variables used to claim nmethods.
  nmethod* _first_nmethod;
  volatile nmethod* _claimed_nmethod;

  // The list of nmethods that need to be processed by the second pass.
  volatile nmethod* _postponed_list;
  volatile uint     _num_entered_barrier;

 public:
  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
      _is_alive(is_alive),
      _unloading_occurred(unloading_occurred),
      _num_workers(num_workers),
      _first_nmethod(NULL),
      _claimed_nmethod(NULL),
      _postponed_list(NULL),
      _num_entered_barrier(0)
  {
    nmethod::increase_unloading_clock();
    _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
    _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  }

  ~G1CodeCacheUnloadingTask() {
    CodeCache::verify_clean_inline_caches();

    CodeCache::set_needs_cache_clean(false);
    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");

    CodeCache::verify_icholder_relocations();
  }

 private:
  void add_to_postponed_list(nmethod* nm) {
      nmethod* old;
      do {
        old = (nmethod*)_postponed_list;
        nm->set_unloading_next(old);
      } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  }

  void clean_nmethod(nmethod* nm) {
    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);

    if (postponed) {
      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
      add_to_postponed_list(nm);
    }

    // Mark that this thread has been cleaned/unloaded.
    // After this call, it will be safe to ask if this nmethod was unloaded or not.
    nm->set_unloading_clock(nmethod::global_unloading_clock());
  }

  void clean_nmethod_postponed(nmethod* nm) {
    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  }

  static const int MaxClaimNmethods = 16;

  void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
    nmethod* first;
    nmethod* last;

    do {
      *num_claimed_nmethods = 0;

      first = last = (nmethod*)_claimed_nmethod;

      if (first != NULL) {
        for (int i = 0; i < MaxClaimNmethods; i++) {
          last = CodeCache::alive_nmethod(CodeCache::next(last));

          if (last == NULL) {
            break;
          }

          claimed_nmethods[i] = last;
          (*num_claimed_nmethods)++;
        }
      }

    } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  }

  nmethod* claim_postponed_nmethod() {
    nmethod* claim;
    nmethod* next;

    do {
      claim = (nmethod*)_postponed_list;
      if (claim == NULL) {
        return NULL;
      }

      next = claim->unloading_next();

    } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);

    return claim;
  }

 public:
  // Mark that we're done with the first pass of nmethod cleaning.
  void barrier_mark(uint worker_id) {
    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
    _num_entered_barrier++;
    if (_num_entered_barrier == _num_workers) {
      ml.notify_all();
    }
  }

  // See if we have to wait for the other workers to
  // finish their first-pass nmethod cleaning work.
  void barrier_wait(uint worker_id) {
    if (_num_entered_barrier < _num_workers) {
      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
      while (_num_entered_barrier < _num_workers) {
          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
      }
    }
  }

  // Cleaning and unloading of nmethods. Some work has to be postponed
  // to the second pass, when we know which nmethods survive.
  void work_first_pass(uint worker_id) {
    // The first nmethods is claimed by the first worker.
    if (worker_id == 0 && _first_nmethod != NULL) {
      clean_nmethod(_first_nmethod);
      _first_nmethod = NULL;
    }

    int num_claimed_nmethods;
    nmethod* claimed_nmethods[MaxClaimNmethods];

    while (true) {
      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);

      if (num_claimed_nmethods == 0) {
        break;
      }

      for (int i = 0; i < num_claimed_nmethods; i++) {
        clean_nmethod(claimed_nmethods[i]);
      }
    }
5053 5054 5055 5056

    // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
    // Need to retire the buffers now that this thread has stopped cleaning nmethods.
    MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
  }

  void work_second_pass(uint worker_id) {
    nmethod* nm;
    // Take care of postponed nmethods.
    while ((nm = claim_postponed_nmethod()) != NULL) {
      clean_nmethod_postponed(nm);
    }
  }
};

Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");

class G1KlassCleaningTask : public StackObj {
  BoolObjectClosure*                      _is_alive;
  volatile jint                           _clean_klass_tree_claimed;
  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;

 public:
  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
      _is_alive(is_alive),
      _clean_klass_tree_claimed(0),
      _klass_iterator() {
  }

 private:
  bool claim_clean_klass_tree_task() {
    if (_clean_klass_tree_claimed) {
      return false;
    }

    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  }

  InstanceKlass* claim_next_klass() {
    Klass* klass;
    do {
      klass =_klass_iterator.next_klass();
    } while (klass != NULL && !klass->oop_is_instance());

    return (InstanceKlass*)klass;
  }

public:

  void clean_klass(InstanceKlass* ik) {
5103
    ik->clean_weak_instanceklass_links(_is_alive);
5104

5105 5106 5107
    if (JvmtiExport::has_redefined_a_class()) {
      InstanceKlass::purge_previous_versions(ik);
    }
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
  }

  void work() {
    ResourceMark rm;

    // One worker will clean the subklass/sibling klass tree.
    if (claim_clean_klass_tree_task()) {
      Klass::clean_subklass_tree(_is_alive);
    }

    // All workers will help cleaning the classes,
    InstanceKlass* klass;
    while ((klass = claim_next_klass()) != NULL) {
      clean_klass(klass);
    }
  }
};

// To minimize the remark pause times, the tasks below are done in parallel.
class G1ParallelCleaningTask : public AbstractGangTask {
private:
  G1StringSymbolTableUnlinkTask _string_symbol_task;
  G1CodeCacheUnloadingTask      _code_cache_task;
  G1KlassCleaningTask           _klass_cleaning_task;

public:
  // The constructor is run in the VMThread.
  G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
      AbstractGangTask("Parallel Cleaning"),
      _string_symbol_task(is_alive, process_strings, process_symbols),
      _code_cache_task(num_workers, is_alive, unloading_occurred),
      _klass_cleaning_task(is_alive) {
  }

5142
  void pre_work_verification() {
5143 5144 5145
    // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
    assert(Thread::current()->is_VM_thread()
           || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5146 5147 5148 5149 5150 5151
  }

  void post_work_verification() {
    assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
  }

5152 5153
  // The parallel work done by all worker threads.
  void work(uint worker_id) {
5154 5155
    pre_work_verification();

5156 5157 5158
    // Do first pass of code cache cleaning.
    _code_cache_task.work_first_pass(worker_id);

5159
    // Let the threads mark that the first pass is done.
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
    _code_cache_task.barrier_mark(worker_id);

    // Clean the Strings and Symbols.
    _string_symbol_task.work(worker_id);

    // Wait for all workers to finish the first code cache cleaning pass.
    _code_cache_task.barrier_wait(worker_id);

    // Do the second code cache cleaning work, which realize on
    // the liveness information gathered during the first pass.
    _code_cache_task.work_second_pass(worker_id);

    // Clean all klasses that were not unloaded.
    _klass_cleaning_task.work();
5174 5175

    post_work_verification();
5176 5177 5178 5179 5180 5181 5182 5183
  }
};


void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
                                        bool process_strings,
                                        bool process_symbols,
                                        bool class_unloading_occurred) {
5184
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5185
                    workers()->active_workers() : 1);
5186

5187 5188
  G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
                                        n_workers, class_unloading_occurred);
5189 5190 5191 5192 5193 5194 5195
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&g1_unlink_task);
    set_par_threads(0);
  } else {
    g1_unlink_task.work(0);
  }
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
}

void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
                                                     bool process_strings, bool process_symbols) {
  {
    uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                     _g1h->workers()->active_workers() : 1);
    G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads(n_workers);
      workers()->run_task(&g1_unlink_task);
      set_par_threads(0);
    } else {
      g1_unlink_task.work(0);
    }
5211
  }
P
pliden 已提交
5212 5213 5214 5215

  if (G1StringDedup::is_enabled()) {
    G1StringDedup::unlink(is_alive);
  }
5216 5217
}

5218 5219 5220 5221 5222 5223 5224
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
 private:
  DirtyCardQueueSet* _queue;
 public:
  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }

  virtual void work(uint worker_id) {
5225 5226
    G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5227

5228
    RedirtyLoggedCardTableEntryClosure cl;
5229 5230 5231 5232 5233 5234
    if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
      _queue->par_apply_closure_to_all_completed_buffers(&cl);
    } else {
      _queue->apply_closure_to_all_completed_buffers(&cl);
    }

5235
    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5236
  }
5237 5238 5239 5240 5241
};

void G1CollectedHeap::redirty_logged_cards() {
  double redirty_logged_cards_start = os::elapsedTime();

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
  uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                   _g1h->workers()->active_workers() : 1);

  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  dirty_card_queue_set().reset_for_par_iteration();
  if (use_parallel_gc_threads()) {
    set_par_threads(n_workers);
    workers()->run_task(&redirty_task);
    set_par_threads(0);
  } else {
    redirty_task.work(0);
  }
5254 5255 5256 5257 5258 5259 5260 5261

  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  dcq.merge_bufferlists(&dirty_card_queue_set());
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");

  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5292
  void do_oop(oop* p) {
5293
    oop obj = *p;
5294
    assert(obj != NULL, "the caller should have filtered out NULL values");
5295

5296 5297
    const InCSetState cset_state = _g1->in_cset_state(obj);
    if (!cset_state.is_in_cset_or_humongous()) {
5298 5299
      return;
    }
5300
    if (cset_state.is_in_cset()) {
5301 5302
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
5303 5304
    } else {
      assert(!obj->is_forwarded(), "invariant" );
5305 5306
      assert(cset_state.is_humongous(),
             err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5307
      _g1->set_humongous_is_live(obj);
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

5337
    if (_g1h->is_in_cset_or_humongous(obj)) {
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5352
      // use the the non-heap or metadata closures directly to copy
S
sla 已提交
5353
      // the referent object and update the pointer, while avoiding
5354 5355 5356 5357 5358
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5359
        assert(!Metaspace::contains((const void*)p),
5360
               err_msg("Unexpectedly found a pointer from metadata: "
5361
                              PTR_FORMAT, p));
5362
        _copy_non_heap_obj_cl->do_oop(p);
5363 5364
      }
    }
5365
  }
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5400
  FlexibleWorkGang*  _workers;
5401 5402 5403 5404
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5405
                        FlexibleWorkGang* workers,
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5442
  virtual void work(uint worker_id) {
5443 5444 5445 5446 5447 5448
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5449
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Keep alive closure.
5466
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5467 5468 5469 5470 5471

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5472
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5507 5508
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5509 5510 5511
  }
};

S
sla 已提交
5512
// Driver routine for parallel reference enqueueing.
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5537
  uint _n_workers;
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5548
  void work(uint worker_id) {
5549 5550 5551
    ResourceMark rm;
    HandleMark   hm;

5552
    G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5553 5554 5555 5556
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);

    pss.set_evac_failure_closure(&evac_failure_cl);

5557
    assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5575
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5576 5577 5578

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5579 5580
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5581 5582 5583 5584

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5585
    assert(0 <= worker_id && worker_id < limit, "sanity");
5586 5587 5588
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5589
    for (uint idx = worker_id; idx < limit; idx += stride) {
5590
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5611
    assert(pss.queue_is_empty(), "should be");
5612 5613 5614 5615
  }
};

// Weak Reference processing during an evacuation pause (part 1).
J
johnc 已提交
5616
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
S
sla 已提交
5632
  // As a result the copy closure would not have been applied to the
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5643
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
J
johnc 已提交
5644 5645
           no_of_gc_workers == workers()->active_workers(),
           "Need to reset active GC workers");
5646

J
johnc 已提交
5647 5648 5649 5650
  set_par_threads(no_of_gc_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this,
                                                 no_of_gc_workers,
                                                 _task_queues);
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
5669
  G1ParScanThreadState            pss(this, 0, NULL);
5670 5671 5672 5673 5674 5675 5676 5677

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);

  pss.set_evac_failure_closure(&evac_failure_cl);

5678
  assert(pss.queue_is_empty(), "pre-condition");
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
  }

  // Keep alive closure.
5692
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5693 5694 5695 5696 5697 5698 5699

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

S
sla 已提交
5700
  ReferenceProcessorStats stats;
5701 5702
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
S
sla 已提交
5703 5704 5705 5706
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              NULL,
5707 5708
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5709 5710
  } else {
    // Parallel reference processing
J
johnc 已提交
5711 5712
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5713

J
johnc 已提交
5714
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
S
sla 已提交
5715 5716 5717 5718
    stats = rp->process_discovered_references(&is_alive,
                                              &keep_alive,
                                              &drain_queue,
                                              &par_task_executor,
5719 5720
                                              _gc_timer_stw,
                                              _gc_tracer_stw->gc_id());
5721 5722
  }

S
sla 已提交
5723
  _gc_tracer_stw->report_gc_reference_stats(stats);
5724 5725

  // We have completed copying any necessary live referent objects.
5726
  assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5727 5728

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5729
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5730 5731 5732
}

// Weak Reference processing during an evacuation pause (part 2).
J
johnc 已提交
5733
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
S
sla 已提交
5745
    // Parallel reference enqueueing
5746

J
johnc 已提交
5747 5748 5749 5750
    assert(no_of_gc_workers == workers()->active_workers(),
           "Need to reset active workers");
    assert(rp->num_q() == no_of_gc_workers, "sanity");
    assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5751

J
johnc 已提交
5752
    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5753 5754 5755 5756 5757 5758 5759 5760 5761
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
S
sla 已提交
5762
  // and could significantly increase the pause time.
5763 5764

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5765
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5766 5767
}

S
sla 已提交
5768
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5769
  _expand_heap_after_alloc_failure = true;
S
sla 已提交
5770
  _evacuation_failed = false;
5771

5772 5773 5774
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5775
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
5776 5777 5778 5779 5780

  // Disable the hot card cache.
  G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  hot_card_cache->reset_hot_cache_claimed_index();
  hot_card_cache->set_use_cache(false);
5781

5782
  const uint n_workers = workers()->active_workers();
5783 5784 5785 5786
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
    set_par_threads(n_workers);
5787 5788 5789 5790 5791

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5792
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5793 5794
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5795

5796
  {
5797 5798
    G1RootProcessor root_processor(this);
    G1ParTask g1_par_task(this, _task_queues, &root_processor);
5799 5800 5801 5802
    // InitialMark needs claim bits to keep track of the marked-through CLDs.
    if (g1_policy()->during_initial_mark_pause()) {
      ClassLoaderDataGraph::clear_claimed_marks();
    }
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
5819
    // for the G1RootProcessor object. We record the current
5820
    // elapsed time before closing the scope so that time
5821
    // taken for the destructor is NOT included in the
5822
    // reported parallel time.
5823 5824
  }

5825 5826
  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();

5827
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5828
  phase_times->record_par_time(par_time_ms);
5829 5830 5831

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5832
  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5833

5834
  set_par_threads(0);
5835

5836 5837 5838 5839 5840
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
J
johnc 已提交
5841
  process_discovered_references(n_workers);
5842

5843
  if (G1StringDedup::is_enabled()) {
5844 5845
    double fixup_start = os::elapsedTime();

5846
    G1STWIsAliveClosure is_alive(this);
5847
    G1KeepAliveClosure keep_alive(this);
5848 5849 5850 5851
    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);

    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
    phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5852
  }
5853

5854
  _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5855
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5856

5857 5858 5859 5860 5861
  // Reset and re-enable the hot card cache.
  // Note the counts for the cards in the regions in the
  // collection set are reset when the collection set is freed.
  hot_card_cache->reset_hot_cache();
  hot_card_cache->set_use_cache(true);
5862

5863 5864
  purge_code_root_memory();

J
johnc 已提交
5865 5866 5867 5868 5869
  if (g1_policy()->during_initial_mark_pause()) {
    // Reset the claim values set during marking the strong code roots
    reset_heap_region_claim_values();
  }

5870 5871 5872 5873
  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5874 5875 5876 5877 5878

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5879 5880
  }

5881 5882 5883
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
S
sla 已提交
5884
  // the act of enqueueing entries on to the pending list
5885 5886 5887
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
J
johnc 已提交
5888
  enqueue_discovered_references(n_workers);
5889

5890
  redirty_logged_cards();
5891 5892 5893
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

5894 5895
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  FreeRegionList* free_list,
5896 5897
                                  bool par,
                                  bool locked) {
5898
  assert(!hr->is_free(), "the region should not be free");
5899
  assert(!hr->is_empty(), "the region should not be empty");
5900
  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5901 5902
  assert(free_list != NULL, "pre-condition");

5903 5904 5905 5906 5907
  if (G1VerifyBitmaps) {
    MemRegion mr(hr->bottom(), hr->end());
    concurrent_mark()->clearRangePrevBitmap(mr);
  }

5908 5909 5910 5911 5912 5913
  // Clear the card counts for this region.
  // Note: we only need to do this if the region is not young
  // (since we don't refine cards in young regions).
  if (!hr->is_young()) {
    _cg1r->hot_card_cache()->reset_card_counts(hr);
  }
5914
  hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5915
  free_list->add_ordered(hr);
5916 5917 5918 5919 5920 5921 5922 5923 5924
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     FreeRegionList* free_list,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");

  size_t hr_capacity = hr->capacity();
5925 5926 5927
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5928
  hr->clear_humongous();
5929
  free_region(hr, free_list, par);
5930

5931
  uint i = hr->hrm_index() + 1;
5932
  while (i < last_index) {
5933
    HeapRegion* curr_hr = region_at(i);
5934
    assert(curr_hr->continuesHumongous(), "invariant");
5935
    curr_hr->clear_humongous();
5936
    free_region(curr_hr, free_list, par);
5937 5938
    i += 1;
  }
5939 5940 5941 5942 5943
}

void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
                                       const HeapRegionSetCount& humongous_regions_removed) {
  if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
T
tonyp 已提交
5944
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5945 5946
    _old_set.bulk_remove(old_regions_removed);
    _humongous_set.bulk_remove(humongous_regions_removed);
T
tonyp 已提交
5947
  }
5948 5949 5950 5951 5952 5953 5954

}

void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  assert(list != NULL, "list can't be null");
  if (!list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5955
    _hrm.insert_list_into_free_list(list);
5956 5957 5958
  }
}

5959
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5960
  _allocator->decrease_used(bytes);
5961 5962
}

5963
class G1ParCleanupCTTask : public AbstractGangTask {
5964
  G1SATBCardTableModRefBS* _ct_bs;
5965
  G1CollectedHeap* _g1h;
5966
  HeapRegion* volatile _su_head;
5967
public:
5968
  G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5969
                     G1CollectedHeap* g1h) :
5970
    AbstractGangTask("G1 Par Cleanup CT Task"),
5971
    _ct_bs(ct_bs), _g1h(g1h) { }
5972

5973
  void work(uint worker_id) {
5974 5975 5976 5977 5978
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5979

5980
  void clear_cards(HeapRegion* r) {
5981
    // Cards of the survivors should have already been dirtied.
5982
    if (!r->is_survivor()) {
5983 5984 5985 5986 5987
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5988 5989
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5990
  G1CollectedHeap* _g1h;
5991
  G1SATBCardTableModRefBS* _ct_bs;
5992
public:
5993
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5994
    : _g1h(g1h), _ct_bs(ct_bs) { }
5995
  virtual bool doHeapRegion(HeapRegion* r) {
5996
    if (r->is_survivor()) {
5997
      _g1h->verify_dirty_region(r);
5998
    } else {
5999
      _g1h->verify_not_dirty_region(r);
6000 6001 6002 6003
    }
    return false;
  }
};
6004

6005 6006
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
6007
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
6020
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6021
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6022 6023 6024 6025 6026
  if (hr->is_young()) {
    ct_bs->verify_g1_young_region(mr);
  } else {
    ct_bs->verify_dirty_region(mr);
  }
6027 6028
}

6029
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6030
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6031
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6032
    verify_dirty_region(hr);
6033 6034 6035 6036 6037 6038
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
6039 6040 6041 6042

bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
                                               HeapWord* tams, HeapWord* end) {
  guarantee(tams <= end,
6043
            err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, tams, end));
6044 6045 6046
  HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  if (result < end) {
    gclog_or_tty->cr();
6047
    gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
6048
                           bitmap_name, result);
6049
    gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
                           bitmap_name, tams, end);
    return false;
  }
  return true;
}

bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();

  HeapWord* bottom = hr->bottom();
  HeapWord* ptams  = hr->prev_top_at_mark_start();
  HeapWord* ntams  = hr->next_top_at_mark_start();
  HeapWord* end    = hr->end();

  bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);

  bool res_n = true;
  // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  // if we happen to be in that state.
  if (mark_in_progress() || !_cmThread->in_progress()) {
    res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  }
  if (!res_p || !res_n) {
6075
    gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
                           HR_FORMAT_PARAMS(hr));
    gclog_or_tty->print_cr("#### Caller: %s", caller);
    return false;
  }
  return true;
}

void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  if (!G1VerifyBitmaps) return;

  guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}

class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
  const char* _caller;
  G1CollectedHeap* _g1h;
  bool _failures;

public:
  G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
    _caller(caller), _g1h(g1h), _failures(false) { }

  bool failures() { return _failures; }

  virtual bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) return false;

    bool result = _g1h->verify_bitmaps(_caller, hr);
    if (!result) {
      _failures = true;
    }
    return false;
  }
};

void G1CollectedHeap::check_bitmaps(const char* caller) {
  if (!G1VerifyBitmaps) return;

  G1VerifyBitmapClosure cl(caller, this);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "bitmap verification");
}
6119

6120 6121 6122 6123 6124 6125 6126 6127 6128
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
 private:
  bool _failures;
 public:
  G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    uint i = hr->hrm_index();
    InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
6129 6130 6131
    if (hr->isHumongous()) {
      if (hr->in_collection_set()) {
        gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
6132 6133
        _failures = true;
        return true;
6134 6135 6136
      }
      if (cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
6137 6138
        _failures = true;
        return true;
6139 6140 6141
      }
      if (hr->continuesHumongous() && cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
6142 6143
        _failures = true;
        return true;
6144 6145 6146 6147
      }
    } else {
      if (cset_state.is_humongous()) {
        gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
6148 6149
        _failures = true;
        return true;
6150 6151 6152 6153
      }
      if (hr->in_collection_set() != cset_state.is_in_cset()) {
        gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
                               hr->in_collection_set(), cset_state.value(), i);
6154 6155
       _failures = true;
       return true;
6156 6157 6158 6159 6160
      }
      if (cset_state.is_in_cset()) {
        if (hr->is_young() != (cset_state.is_young())) {
          gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
                                 hr->is_young(), cset_state.value(), i);
6161 6162
          _failures = true;
          return true;
6163 6164 6165 6166
        }
        if (hr->is_old() != (cset_state.is_old())) {
          gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
                                 hr->is_old(), cset_state.value(), i);
6167 6168
          _failures = true;
          return true;
6169 6170 6171
        }
      }
    }
6172
    return false;
6173
  }
6174 6175 6176 6177 6178 6179 6180 6181

  bool failures() const { return _failures; }
};

bool G1CollectedHeap::check_cset_fast_test() {
  G1CheckCSetFastTableClosure cl;
  _hrm.iterate(&cl);
  return !cl.failures();
6182
}
6183
#endif // PRODUCT
6184

6185
void G1CollectedHeap::cleanUpCardTable() {
6186
  G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6187 6188
  double start = os::elapsedTime();

J
johnc 已提交
6189 6190 6191
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
6192

6193 6194
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
6207 6208
      }
    }
J
johnc 已提交
6209 6210 6211 6212 6213 6214
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
6215
  }
6216

6217
  double elapsed = os::elapsedTime() - start;
6218
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6219 6220
}

S
sla 已提交
6221
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6222 6223 6224
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

6225 6226 6227
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

6228 6229 6230 6231 6232
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
6243
    assert(!is_on_master_free_list(cur), "sanity");
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
6254 6255 6256 6257
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
6258

6259 6260 6261
        start_sec = os::elapsedTime();
        non_young = true;
      }
6262 6263
    }

6264
    rs_lengths += cur->rem_set()->occupied_locked();
6265 6266 6267 6268 6269 6270 6271 6272

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
6273
      assert(index != -1, "invariant");
6274
      assert((uint) index < policy->young_cset_region_length(), "invariant");
6275 6276
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
6277 6278 6279 6280 6281 6282

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
6283 6284
    } else {
      int index = cur->young_index_in_cset();
6285
      assert(index == -1, "invariant");
6286 6287 6288 6289 6290 6291 6292
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
6293 6294
      MemRegion used_mr = cur->used_region();

6295
      // And the region is empty.
6296
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6297
      pre_used += cur->used();
6298
      free_region(cur, &local_free_list, false /* par */, true /* locked */);
6299 6300
    } else {
      cur->uninstall_surv_rate_group();
6301
      if (cur->is_young()) {
6302
        cur->set_young_index_in_cset(-1);
6303
      }
6304
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6305
      // The region is now considered to be old.
6306
      cur->set_old();
T
tonyp 已提交
6307
      _old_set.add(cur);
S
sla 已提交
6308
      evacuation_info.increment_collectionset_used_after(cur->used());
6309 6310 6311 6312
    }
    cur = next;
  }

S
sla 已提交
6313
  evacuation_info.set_regions_freed(local_free_list.length());
6314 6315 6316 6317 6318
  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6319 6320

  if (non_young) {
6321
    non_young_time_ms += elapsed_ms;
6322
  } else {
6323
    young_time_ms += elapsed_ms;
6324
  }
6325

6326 6327
  prepend_to_freelist(&local_free_list);
  decrement_summary_bytes(pre_used);
6328 6329
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6330 6331
}

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
 private:
  FreeRegionList* _free_region_list;
  HeapRegionSet* _proxy_set;
  HeapRegionSetCount _humongous_regions_removed;
  size_t _freed_bytes;
 public:

  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
    _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  }

  virtual bool doHeapRegion(HeapRegion* r) {
    if (!r->startsHumongous()) {
      return false;
    }

    G1CollectedHeap* g1h = G1CollectedHeap::heap();

6351 6352 6353
    oop obj = (oop)r->bottom();
    CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();

6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
    // The following checks whether the humongous object is live are sufficient.
    // The main additional check (in addition to having a reference from the roots
    // or the young gen) is whether the humongous object has a remembered set entry.
    //
    // A humongous object cannot be live if there is no remembered set for it
    // because:
    // - there can be no references from within humongous starts regions referencing
    // the object because we never allocate other objects into them.
    // (I.e. there are no intra-region references that may be missed by the
    // remembered set)
    // - as soon there is a remembered set entry to the humongous starts region
    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
    // until the end of a concurrent mark.
    //
    // It is not required to check whether the object has been found dead by marking
    // or not, in fact it would prevent reclamation within a concurrent cycle, as
    // all objects allocated during that time are considered live.
    // SATB marking is even more conservative than the remembered set.
    // So if at this point in the collection there is no remembered set entry,
    // nobody has a reference to it.
    // At the start of collection we flush all refinement logs, and remembered sets
    // are completely up-to-date wrt to references to the humongous object.
    //
    // Other implementation considerations:
6378 6379 6380 6381
    // - never consider object arrays at this time because they would pose
    // considerable effort for cleaning up the the remembered sets. This is
    // required because stale remembered sets might reference locations that
    // are currently allocated into.
6382
    uint region_idx = r->hrm_index();
6383 6384
    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
        !r->rem_set()->is_empty()) {
6385

6386
      if (G1TraceEagerReclaimHumongousObjects) {
6387
        gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length " UINT32_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6388
                               region_idx,
6389
                               obj->size()*HeapWordSize,
6390 6391
                               r->bottom(),
                               r->region_num(),
6392 6393
                               r->rem_set()->occupied(),
                               r->rem_set()->strong_code_roots_list_length(),
6394
                               next_bitmap->isMarked(r->bottom()),
6395 6396
                               g1h->is_humongous_reclaim_candidate(region_idx),
                               obj->is_typeArray()
6397 6398 6399 6400 6401 6402
                              );
      }

      return false;
    }

6403 6404 6405
    guarantee(obj->is_typeArray(),
              err_msg("Only eagerly reclaiming type arrays is supported, but the object "
                      PTR_FORMAT " is not.",
6406 6407
                      r->bottom()));

6408
    if (G1TraceEagerReclaimHumongousObjects) {
6409
      gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length " UINT32_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6410
                             region_idx,
6411
                             obj->size()*HeapWordSize,
6412 6413 6414 6415
                             r->bottom(),
                             r->region_num(),
                             r->rem_set()->occupied(),
                             r->rem_set()->strong_code_roots_list_length(),
6416
                             next_bitmap->isMarked(r->bottom()),
6417 6418
                             g1h->is_humongous_reclaim_candidate(region_idx),
                             obj->is_typeArray()
6419 6420
                            );
    }
6421 6422 6423 6424
    // Need to clear mark bit of the humongous object if already set.
    if (next_bitmap->isMarked(r->bottom())) {
      next_bitmap->clear(r->bottom());
    }
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
    _freed_bytes += r->used();
    r->set_containing_set(NULL);
    _humongous_regions_removed.increment(1u, r->capacity());
    g1h->free_humongous_region(r, _free_region_list, false);

    return false;
  }

  HeapRegionSetCount& humongous_free_count() {
    return _humongous_regions_removed;
  }

  size_t bytes_freed() const {
    return _freed_bytes;
  }

  size_t humongous_reclaimed() const {
    return _humongous_regions_removed.length();
  }
};

void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  assert_at_safepoint(true);

6449 6450
  if (!G1EagerReclaimHumongousObjects ||
      (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
    return;
  }

  double start_time = os::elapsedTime();

  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");

  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  heap_region_iterate(&cl);

  HeapRegionSetCount empty_set;
  remove_from_old_sets(empty_set, cl.humongous_free_count());

  G1HRPrinter* hr_printer = _g1h->hr_printer();
  if (hr_printer->is_active()) {
    FreeRegionListIterator iter(&local_cleanup_list);
    while (iter.more_available()) {
      HeapRegion* hr = iter.get_next();
      hr_printer->cleanup(hr);
    }
  }

  prepend_to_freelist(&local_cleanup_list);
  decrement_summary_bytes(cl.bytes_freed());

  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
                                                                    cl.humongous_reclaimed());
}

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6502 6503 6504 6505
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6506 6507
  }

6508 6509
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6510 6511
}

6512
void G1CollectedHeap::reset_free_regions_coming() {
6513 6514
  assert(free_regions_coming(), "pre-condition");

6515 6516 6517 6518
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6519 6520
  }

6521 6522 6523
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6524 6525 6526
  }
}

6527 6528 6529 6530 6531
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6532 6533
  }

6534 6535 6536
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6537 6538 6539
  }

  {
6540 6541 6542
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6543 6544 6545
    }
  }

6546 6547 6548
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
6565
      gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6566 6567 6568 6569 6570 6571 6572 6573
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6574 6575
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6576

6577
  if (check_heap) {
6578 6579 6580 6581 6582 6583 6584 6585
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6586 6587
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
6588
  HeapRegionSet *_old_set;
6589

T
tonyp 已提交
6590
public:
6591
  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6592

T
tonyp 已提交
6593
  bool doHeapRegion(HeapRegion* r) {
6594
    if (r->is_old()) {
T
tonyp 已提交
6595
      _old_set->remove(r);
6596 6597 6598 6599 6600 6601 6602
    } else {
      // We ignore free regions, we'll empty the free list afterwards.
      // We ignore young regions, we'll empty the young list afterwards.
      // We ignore humongous regions, we're not tearing down the
      // humongous regions set.
      assert(r->is_free() || r->is_young() || r->isHumongous(),
             "it cannot be another type");
T
tonyp 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

P
pliden 已提交
6619 6620 6621 6622
    // Note that emptying the _young_list is postponed and instead done as
    // the first step when rebuilding the regions sets again. The reason for
    // this is that during a full GC string deduplication needs to know if
    // a collected region was young or old when the full GC was initiated.
T
tonyp 已提交
6623
  }
6624
  _hrm.remove_all_free_regions();
6625 6626
}

T
tonyp 已提交
6627 6628 6629
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
6630
  HeapRegionSet*   _old_set;
6631
  HeapRegionManager*   _hrm;
T
tonyp 已提交
6632
  size_t          _total_used;
6633

6634
public:
T
tonyp 已提交
6635
  RebuildRegionSetsClosure(bool free_list_only,
6636
                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
T
tonyp 已提交
6637
    _free_list_only(free_list_only),
6638 6639
    _old_set(old_set), _hrm(hrm), _total_used(0) {
    assert(_hrm->num_free_regions() == 0, "pre-condition");
T
tonyp 已提交
6640 6641 6642 6643
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6644

6645
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6646 6647 6648 6649 6650 6651
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
6652
      r->set_free();
6653
      r->set_allocation_context(AllocationContext::system());
6654
      _hrm->insert_into_free_list(r);
T
tonyp 已提交
6655 6656 6657 6658 6659 6660
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
6661 6662 6663 6664 6665
        // Objects that were compacted would have ended up on regions
        // that were previously old or free.
        assert(r->is_free() || r->is_old(), "invariant");
        // We now consider them old, so register as such.
        r->set_old();
T
tonyp 已提交
6666
        _old_set->add(r);
6667
      }
T
tonyp 已提交
6668
      _total_used += r->used();
6669
    }
T
tonyp 已提交
6670

6671 6672 6673
    return false;
  }

T
tonyp 已提交
6674 6675
  size_t total_used() {
    return _total_used;
6676
  }
6677 6678
};

T
tonyp 已提交
6679 6680 6681
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

P
pliden 已提交
6682 6683 6684 6685
  if (!free_list_only) {
    _young_list->empty_list();
  }

6686
  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
T
tonyp 已提交
6687 6688 6689
  heap_region_iterate(&cl);

  if (!free_list_only) {
6690
    _allocator->set_used(cl.total_used());
T
tonyp 已提交
6691
  }
6692 6693
  assert(_allocator->used_unlocked() == recalculate_used(),
         err_msg("inconsistent _allocator->used_unlocked(), "
6694
                 "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6695
                 _allocator->used_unlocked(), recalculate_used()));
6696 6697 6698 6699 6700 6701
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6702 6703
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
6704
  return hr->is_in(p);
6705 6706
}

6707 6708
// Methods for the mutator alloc region

6709 6710 6711 6712 6713
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6714 6715
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6716
    HeapRegion* new_alloc_region = new_region(word_size,
6717
                                              false /* is_old */,
6718 6719 6720
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6721
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6722
      check_bitmaps("Mutator Region Allocation", new_alloc_region);
6723 6724 6725 6726 6727 6728 6729 6730 6731
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6732
  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6733 6734

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6735
  _allocator->increase_used(allocated_bytes);
6736
  _hr_printer.retire(alloc_region);
6737 6738 6739 6740
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6741 6742
}

6743 6744 6745
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6746
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6747
  uint n_workers = workers()->active_workers();
6748
  assert(UseDynamicNumberOfGCThreads ||
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6759 6760 6761
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6762
                                                 uint count,
6763
                                                 InCSetState dest) {
6764 6765
  assert(FreeList_lock->owned_by_self(), "pre-condition");

6766 6767
  if (count < g1_policy()->max_regions(dest)) {
    const bool is_survivor = (dest.is_young());
6768
    HeapRegion* new_alloc_region = new_region(word_size,
6769
                                              !is_survivor,
6770 6771 6772 6773 6774
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
6775
      new_alloc_region->record_timestamp();
6776
      if (is_survivor) {
6777 6778
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6779
        check_bitmaps("Survivor Region Allocation", new_alloc_region);
6780
      } else {
6781
        new_alloc_region->set_old();
6782
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6783
        check_bitmaps("Old Region Allocation", new_alloc_region);
6784
      }
6785 6786
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6787 6788 6789 6790 6791 6792 6793 6794
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
6795
                                             InCSetState dest) {
6796 6797
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6798
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6799
  if (dest.is_young()) {
6800
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6801 6802
  } else {
    _old_set.add(alloc_region);
6803 6804 6805 6806
  }
  _hr_printer.retire(alloc_region);
}

6807 6808
// Heap region set verification

6809 6810
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
6811 6812
  HeapRegionSet*   _old_set;
  HeapRegionSet*   _humongous_set;
6813
  HeapRegionManager*   _hrm;
6814 6815

public:
6816 6817 6818
  HeapRegionSetCount _old_count;
  HeapRegionSetCount _humongous_count;
  HeapRegionSetCount _free_count;
6819

6820 6821
  VerifyRegionListsClosure(HeapRegionSet* old_set,
                           HeapRegionSet* humongous_set,
6822 6823
                           HeapRegionManager* hrm) :
    _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6824
    _old_count(), _humongous_count(), _free_count(){ }
6825 6826 6827 6828 6829 6830 6831 6832 6833

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
6834
      assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6835
      _humongous_count.increment(1u, hr->capacity());
6836
    } else if (hr->is_empty()) {
6837
      assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6838
      _free_count.increment(1u, hr->capacity());
6839
    } else if (hr->is_old()) {
6840
      assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6841
      _old_count.increment(1u, hr->capacity());
6842 6843
    } else {
      ShouldNotReachHere();
6844
    }
6845 6846
    return false;
  }
6847

6848
  void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6849 6850 6851 6852 6853 6854 6855 6856
    guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
    guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        old_set->total_capacity_bytes(), _old_count.capacity()));

    guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
    guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        humongous_set->total_capacity_bytes(), _humongous_count.capacity()));

6857
    guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6858 6859 6860
    guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
        free_list->total_capacity_bytes(), _free_count.capacity()));
  }
6861 6862
};

6863 6864
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6865

6866
  // First, check the explicit lists.
6867
  _hrm.verify();
6868 6869 6870 6871 6872
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6873
    _secondary_free_list.verify_list();
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
  }

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6889

T
tonyp 已提交
6890 6891 6892 6893
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6894

6895 6896
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
6897

6898
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6899
  heap_region_iterate(&cl);
6900
  cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6901
}
J
johnc 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913

// Optimized nmethod scanning

class RegisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6914
      assert(!hr->continuesHumongous(),
6915 6916
             err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
                     " starting at " HR_FORMAT,
6917
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
J
johnc 已提交
6918

6919 6920
      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
      hr->add_strong_code_root_locked(_nm);
J
johnc 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
    }
  }

public:
  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

class UnregisterNMethodOopClosure: public OopClosure {
  G1CollectedHeap* _g1h;
  nmethod* _nm;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      HeapRegion* hr = _g1h->heap_region_containing(obj);
6941
      assert(!hr->continuesHumongous(),
6942 6943
             err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
                     " starting at " HR_FORMAT,
6944 6945
                     _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));

J
johnc 已提交
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
      hr->remove_strong_code_root(_nm);
    }
  }

public:
  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
    _g1h(g1h), _nm(nm) {}

  void do_oop(oop* p)       { do_oop_work(p); }
  void do_oop(narrowOop* p) { do_oop_work(p); }
};

void G1CollectedHeap::register_nmethod(nmethod* nm) {
  CollectedHeap::register_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  RegisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl);
}

void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  CollectedHeap::unregister_nmethod(nm);

  guarantee(nm != NULL, "sanity");
  UnregisterNMethodOopClosure reg_cl(this, nm);
  nm->oops_do(&reg_cl, true);
}

6974 6975
void G1CollectedHeap::purge_code_root_memory() {
  double purge_start = os::elapsedTime();
6976
  G1CodeRootSet::purge();
6977 6978 6979 6980
  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}

J
johnc 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  G1CollectedHeap* _g1h;

public:
  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
    _g1h(g1h) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
    if (nm == NULL) {
      return;
    }

6994
    if (ScavengeRootsInCode) {
J
johnc 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003
      _g1h->register_nmethod(nm);
    }
  }
};

void G1CollectedHeap::rebuild_strong_code_roots() {
  RebuildStrongCodeRootClosure blob_cl(this);
  CodeCache::blobs_do(&blob_cl);
}