Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openanolis
dragonwell11
提交
ae759ac4
D
dragonwell11
项目概览
openanolis
/
dragonwell11
通知
7
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
dragonwell11
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae759ac4
编写于
5月 07, 2008
作者:
R
rasbold
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply Reviewed-by: never, kvn
上级
ac63822e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
484 addition
and
208 deletion
+484
-208
hotspot/src/cpu/x86/vm/x86_64.ad
hotspot/src/cpu/x86/vm/x86_64.ad
+12
-0
hotspot/src/share/vm/opto/classes.hpp
hotspot/src/share/vm/opto/classes.hpp
+1
-0
hotspot/src/share/vm/opto/divnode.cpp
hotspot/src/share/vm/opto/divnode.cpp
+440
-207
hotspot/src/share/vm/opto/mulnode.cpp
hotspot/src/share/vm/opto/mulnode.cpp
+19
-0
hotspot/src/share/vm/opto/mulnode.hpp
hotspot/src/share/vm/opto/mulnode.hpp
+10
-0
hotspot/src/share/vm/opto/type.hpp
hotspot/src/share/vm/opto/type.hpp
+1
-0
hotspot/src/share/vm/utilities/globalDefinitions.hpp
hotspot/src/share/vm/utilities/globalDefinitions.hpp
+1
-1
未找到文件。
hotspot/src/cpu/x86/vm/x86_64.ad
浏览文件 @
ae759ac4
...
@@ -8075,6 +8075,18 @@ instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
...
@@ -8075,6 +8075,18 @@ instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
ins_pipe(ialu_reg_mem_alu0);
ins_pipe(ialu_reg_mem_alu0);
%}
%}
instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
%{
match(Set dst (MulHiL src rax));
effect(USE_KILL rax, KILL cr);
ins_cost(300);
format %{ "imulq RDX:RAX, RAX, $src\t# mulhi" %}
opcode(0xF7, 0x5); /* Opcode F7 /5 */
ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
ins_pipe(ialu_reg_reg_alu0);
%}
instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
rFlagsReg cr)
rFlagsReg cr)
%{
%{
...
...
hotspot/src/share/vm/opto/classes.hpp
浏览文件 @
ae759ac4
...
@@ -164,6 +164,7 @@ macro(MoveL2D)
...
@@ -164,6 +164,7 @@ macro(MoveL2D)
macro
(
MoveD2L
)
macro
(
MoveD2L
)
macro
(
MulD
)
macro
(
MulD
)
macro
(
MulF
)
macro
(
MulF
)
macro
(
MulHiL
)
macro
(
MulI
)
macro
(
MulI
)
macro
(
MulL
)
macro
(
MulL
)
macro
(
Multi
)
macro
(
Multi
)
...
...
hotspot/src/share/vm/opto/divnode.cpp
浏览文件 @
ae759ac4
...
@@ -30,70 +30,86 @@
...
@@ -30,70 +30,86 @@
#include "incls/_divnode.cpp.incl"
#include "incls/_divnode.cpp.incl"
#include <math.h>
#include <math.h>
// Implement the integer constant divide -> long multiply transform found in
//----------------------magic_int_divide_constants-----------------------------
// "Division by Invariant Integers using Multiplication"
// Compute magic multiplier and shift constant for converting a 32 bit divide
// by Granlund and Montgomery
// by constant into a multiply/shift/add series. Return false if calculations
static
Node
*
transform_int_divide_to_long_multiply
(
PhaseGVN
*
phase
,
Node
*
dividend
,
int
divisor
)
{
// fail.
//
// Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes.
static
bool
magic_int_divide_constants
(
jint
d
,
jint
&
M
,
jint
&
s
)
{
int32_t
p
;
uint32_t
ad
,
anc
,
delta
,
q1
,
r1
,
q2
,
r2
,
t
;
const
uint32_t
two31
=
0x80000000L
;
// 2**31.
ad
=
ABS
(
d
);
if
(
d
==
0
||
d
==
1
)
return
false
;
t
=
two31
+
((
uint32_t
)
d
>>
31
);
anc
=
t
-
1
-
t
%
ad
;
// Absolute value of nc.
p
=
31
;
// Init. p.
q1
=
two31
/
anc
;
// Init. q1 = 2**p/|nc|.
r1
=
two31
-
q1
*
anc
;
// Init. r1 = rem(2**p, |nc|).
q2
=
two31
/
ad
;
// Init. q2 = 2**p/|d|.
r2
=
two31
-
q2
*
ad
;
// Init. r2 = rem(2**p, |d|).
do
{
p
=
p
+
1
;
q1
=
2
*
q1
;
// Update q1 = 2**p/|nc|.
r1
=
2
*
r1
;
// Update r1 = rem(2**p, |nc|).
if
(
r1
>=
anc
)
{
// (Must be an unsigned
q1
=
q1
+
1
;
// comparison here).
r1
=
r1
-
anc
;
}
q2
=
2
*
q2
;
// Update q2 = 2**p/|d|.
r2
=
2
*
r2
;
// Update r2 = rem(2**p, |d|).
if
(
r2
>=
ad
)
{
// (Must be an unsigned
q2
=
q2
+
1
;
// comparison here).
r2
=
r2
-
ad
;
}
delta
=
ad
-
r2
;
}
while
(
q1
<
delta
||
(
q1
==
delta
&&
r1
==
0
));
M
=
q2
+
1
;
if
(
d
<
0
)
M
=
-
M
;
// Magic number and
s
=
p
-
32
;
// shift amount to return.
return
true
;
}
//--------------------------transform_int_divide-------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static
Node
*
transform_int_divide
(
PhaseGVN
*
phase
,
Node
*
dividend
,
jint
divisor
)
{
// Check for invalid divisors
// Check for invalid divisors
assert
(
divisor
!=
0
&&
divisor
!=
min_jint
&&
divisor
!=
1
,
assert
(
divisor
!=
0
&&
divisor
!=
min_jint
,
"bad divisor for transforming to long multiply"
);
"bad divisor for transforming to long multiply"
);
// Compute l = ceiling(log2(d))
// presumes d is more likely small
bool
d_pos
=
divisor
>=
0
;
bool
d_pos
=
divisor
>=
0
;
int
d
=
d_pos
?
divisor
:
-
divisor
;
jint
d
=
d_pos
?
divisor
:
-
divisor
;
unsigned
ud
=
(
unsigned
)
d
;
const
int
N
=
32
;
const
int
N
=
32
;
int
l
=
log2_intptr
(
d
-
1
)
+
1
;
int
sh_post
=
l
;
const
uint64_t
U1
=
(
uint64_t
)
1
;
// Cliff pointed out how to prevent overflow (from the paper)
uint64_t
m_low
=
(((
U1
<<
l
)
-
ud
)
<<
N
)
/
ud
+
(
U1
<<
N
);
uint64_t
m_high
=
((((
U1
<<
l
)
-
ud
)
<<
N
)
+
(
U1
<<
(
l
+
1
)))
/
ud
+
(
U1
<<
N
);
// Reduce to lowest terms
for
(
;
sh_post
>
0
;
sh_post
--
)
{
uint64_t
m_low_1
=
m_low
>>
1
;
uint64_t
m_high_1
=
m_high
>>
1
;
if
(
m_low_1
>=
m_high_1
)
break
;
m_low
=
m_low_1
;
m_high
=
m_high_1
;
}
// Result
// Result
Node
*
q
;
Node
*
q
=
NULL
;
// division by +/- 1
if
(
d
==
1
)
{
if
(
d
==
1
)
{
// Filtered out as identity above
// division by +/- 1
if
(
d_pos
)
if
(
!
d_pos
)
{
return
NULL
;
// Just negate the value
// Just negate the value
else
{
q
=
new
(
phase
->
C
,
3
)
SubINode
(
phase
->
intcon
(
0
),
dividend
);
q
=
new
(
phase
->
C
,
3
)
SubINode
(
phase
->
intcon
(
0
),
dividend
);
}
}
}
}
else
if
(
is_power_of_2
(
d
)
)
{
// division by +/- a power of 2
// division by +/- a power of 2
else
if
(
is_power_of_2
(
d
)
)
{
// See if we can simply do a shift without rounding
// See if we can simply do a shift without rounding
bool
needs_rounding
=
true
;
bool
needs_rounding
=
true
;
const
Type
*
dt
=
phase
->
type
(
dividend
);
const
Type
*
dt
=
phase
->
type
(
dividend
);
const
TypeInt
*
dti
=
dt
->
isa_int
();
const
TypeInt
*
dti
=
dt
->
isa_int
();
if
(
dti
&&
dti
->
_lo
>=
0
)
{
// we don't need to round a positive dividend
// we don't need to round a positive dividend
if
(
dti
&&
dti
->
_lo
>=
0
)
needs_rounding
=
false
;
needs_rounding
=
false
;
}
else
if
(
dividend
->
Opcode
()
==
Op_AndI
)
{
// An AND mask of sufficient size clears the low bits and
// An AND mask of sufficient size clears the low bits and
// I can avoid rounding.
// I can avoid rounding.
else
if
(
dividend
->
Opcode
()
==
Op_AndI
)
{
const
TypeInt
*
andconi
=
phase
->
type
(
dividend
->
in
(
2
)
)
->
isa_int
();
const
TypeInt
*
andconi
=
phase
->
type
(
dividend
->
in
(
2
)
)
->
isa_int
();
if
(
andconi
&&
andconi
->
is_con
(
-
d
)
)
{
if
(
andconi
&&
andconi
->
is_con
(
-
d
)
)
{
dividend
=
dividend
->
in
(
1
);
dividend
=
dividend
->
in
(
1
);
...
@@ -102,47 +118,271 @@ static Node *transform_int_divide_to_long_multiply( PhaseGVN *phase, Node *divid
...
@@ -102,47 +118,271 @@ static Node *transform_int_divide_to_long_multiply( PhaseGVN *phase, Node *divid
}
}
// Add rounding to the shift to handle the sign bit
// Add rounding to the shift to handle the sign bit
if
(
needs_rounding
)
{
int
l
=
log2_intptr
(
d
-
1
)
+
1
;
Node
*
t1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
l
-
1
)));
if
(
needs_rounding
)
{
Node
*
t2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
URShiftINode
(
t1
,
phase
->
intcon
(
N
-
l
)));
// Divide-by-power-of-2 can be made into a shift, but you have to do
dividend
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
dividend
,
t2
));
// more math for the rounding. You need to add 0 for positive
// numbers, and "i-1" for negative numbers. Example: i=4, so the
// shift is by 2. You need to add 3 to negative dividends and 0 to
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
// (-2+3)>>2 becomes 0, etc.
// Compute 0 or -1, based on sign bit
Node
*
sign
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
// Mask sign bit to the low sign bits
Node
*
round
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
URShiftINode
(
sign
,
phase
->
intcon
(
N
-
l
)));
// Round up before shifting
dividend
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
dividend
,
round
));
}
}
// Shift for division
q
=
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
l
));
q
=
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
l
));
if
(
!
d_pos
)
if
(
!
d_pos
)
{
q
=
new
(
phase
->
C
,
3
)
SubINode
(
phase
->
intcon
(
0
),
phase
->
transform
(
q
));
q
=
new
(
phase
->
C
,
3
)
SubINode
(
phase
->
intcon
(
0
),
phase
->
transform
(
q
));
}
}
else
{
// Attempt the jint constant divide -> multiply transform found in
// "Division by Invariant Integers using Multiplication"
// by Granlund and Montgomery
// See also "Hacker's Delight", chapter 10 by Warren.
jint
magic_const
;
jint
shift_const
;
if
(
magic_int_divide_constants
(
d
,
magic_const
,
shift_const
))
{
Node
*
magic
=
phase
->
longcon
(
magic_const
);
Node
*
dividend_long
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvI2LNode
(
dividend
));
// Compute the high half of the dividend x magic multiplication
Node
*
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
dividend_long
,
magic
));
if
(
magic_const
<
0
)
{
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
mul_hi
,
phase
->
intcon
(
N
)));
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvL2INode
(
mul_hi
));
// The magic multiplier is too large for a 32 bit constant. We've adjusted
// it down by 2^32, but have to add 1 dividend back in after the multiplication.
// This handles the "overflow" case described by Granlund and Montgomery.
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
dividend
,
mul_hi
));
// Shift over the (adjusted) mulhi
if
(
shift_const
!=
0
)
{
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
mul_hi
,
phase
->
intcon
(
shift_const
)));
}
}
else
{
// No add is required, we can merge the shifts together.
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
mul_hi
,
phase
->
intcon
(
N
+
shift_const
)));
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvL2INode
(
mul_hi
));
}
// Get a 0 or -1 from the sign of the dividend.
Node
*
addend0
=
mul_hi
;
Node
*
addend1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
// If the divisor is negative, swap the order of the input addends;
// this has the effect of negating the quotient.
if
(
!
d_pos
)
{
Node
*
temp
=
addend0
;
addend0
=
addend1
;
addend1
=
temp
;
}
// Adjust the final quotient by subtracting -1 (adding 1)
// from the mul_hi.
q
=
new
(
phase
->
C
,
3
)
SubINode
(
addend0
,
addend1
);
}
}
}
// division by something else
return
q
;
else
if
(
m_high
<
(
U1
<<
(
N
-
1
)))
{
}
Node
*
t1
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvI2LNode
(
dividend
));
Node
*
t2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
t1
,
phase
->
longcon
(
m_high
)));
//---------------------magic_long_divide_constants-----------------------------
Node
*
t3
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
t2
,
phase
->
intcon
(
sh_post
+
N
)));
// Compute magic multiplier and shift constant for converting a 64 bit divide
Node
*
t4
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvL2INode
(
t3
));
// by constant into a multiply/shift/add series. Return false if calculations
Node
*
t5
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
// fail.
//
// Borrowed almost verbatum from Hacker's Delight by Henry S. Warren, Jr. with
// minor type name and parameter changes. Adjusted to 64 bit word width.
static
bool
magic_long_divide_constants
(
jlong
d
,
jlong
&
M
,
jint
&
s
)
{
int64_t
p
;
uint64_t
ad
,
anc
,
delta
,
q1
,
r1
,
q2
,
r2
,
t
;
const
uint64_t
two63
=
0x8000000000000000LL
;
// 2**63.
ad
=
ABS
(
d
);
if
(
d
==
0
||
d
==
1
)
return
false
;
t
=
two63
+
((
uint64_t
)
d
>>
63
);
anc
=
t
-
1
-
t
%
ad
;
// Absolute value of nc.
p
=
63
;
// Init. p.
q1
=
two63
/
anc
;
// Init. q1 = 2**p/|nc|.
r1
=
two63
-
q1
*
anc
;
// Init. r1 = rem(2**p, |nc|).
q2
=
two63
/
ad
;
// Init. q2 = 2**p/|d|.
r2
=
two63
-
q2
*
ad
;
// Init. r2 = rem(2**p, |d|).
do
{
p
=
p
+
1
;
q1
=
2
*
q1
;
// Update q1 = 2**p/|nc|.
r1
=
2
*
r1
;
// Update r1 = rem(2**p, |nc|).
if
(
r1
>=
anc
)
{
// (Must be an unsigned
q1
=
q1
+
1
;
// comparison here).
r1
=
r1
-
anc
;
}
q2
=
2
*
q2
;
// Update q2 = 2**p/|d|.
r2
=
2
*
r2
;
// Update r2 = rem(2**p, |d|).
if
(
r2
>=
ad
)
{
// (Must be an unsigned
q2
=
q2
+
1
;
// comparison here).
r2
=
r2
-
ad
;
}
delta
=
ad
-
r2
;
}
while
(
q1
<
delta
||
(
q1
==
delta
&&
r1
==
0
));
M
=
q2
+
1
;
if
(
d
<
0
)
M
=
-
M
;
// Magic number and
s
=
p
-
64
;
// shift amount to return.
return
true
;
}
q
=
new
(
phase
->
C
,
3
)
SubINode
(
d_pos
?
t4
:
t5
,
d_pos
?
t5
:
t4
);
//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
static
Node
*
long_by_long_mulhi
(
PhaseGVN
*
phase
,
Node
*
dividend
,
jlong
magic_const
)
{
// If the architecture supports a 64x64 mulhi, there is
// no need to synthesize it in ideal nodes.
if
(
Matcher
::
has_match_rule
(
Op_MulHiL
))
{
Node
*
v
=
phase
->
longcon
(
magic_const
);
return
new
(
phase
->
C
,
3
)
MulHiLNode
(
dividend
,
v
);
}
}
// This handles that case where m_high is >= 2**(N-1). In that case,
const
int
N
=
64
;
// we subtract out 2**N from the multiply and add it in later as
// "dividend" in the equation (t5). This case computes the same result
Node
*
u_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
N
/
2
)));
// as the immediately preceeding case, save that rounding and overflow
Node
*
u_lo
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndLNode
(
dividend
,
phase
->
longcon
(
0xFFFFFFFF
)));
// are accounted for.
else
{
Node
*
v_hi
=
phase
->
longcon
(
magic_const
>>
N
/
2
);
Node
*
t1
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvI2LNode
(
dividend
));
Node
*
v_lo
=
phase
->
longcon
(
magic_const
&
0XFFFFFFFF
);
Node
*
t2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
t1
,
phase
->
longcon
(
m_high
-
(
U1
<<
N
))));
Node
*
t3
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
t2
,
phase
->
intcon
(
N
)));
Node
*
hihi_product
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
u_hi
,
v_hi
));
Node
*
t4
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
ConvL2INode
(
t3
));
Node
*
hilo_product
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
u_hi
,
v_lo
));
Node
*
t5
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
dividend
,
t4
));
Node
*
lohi_product
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
u_lo
,
v_hi
));
Node
*
t6
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
t5
,
phase
->
intcon
(
sh_post
)));
Node
*
lolo_product
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
u_lo
,
v_lo
));
Node
*
t7
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
Node
*
t1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
URShiftLNode
(
lolo_product
,
phase
->
intcon
(
N
/
2
)));
q
=
new
(
phase
->
C
,
3
)
SubINode
(
d_pos
?
t6
:
t7
,
d_pos
?
t7
:
t6
);
Node
*
t2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
hilo_product
,
t1
));
Node
*
t3
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
t2
,
phase
->
intcon
(
N
/
2
)));
Node
*
t4
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndLNode
(
t2
,
phase
->
longcon
(
0xFFFFFFFF
)));
Node
*
t5
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
t4
,
lohi_product
));
Node
*
t6
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
t5
,
phase
->
intcon
(
N
/
2
)));
Node
*
t7
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
t3
,
hihi_product
));
return
new
(
phase
->
C
,
3
)
AddLNode
(
t7
,
t6
);
}
//--------------------------transform_long_divide------------------------------
// Convert a division by constant divisor into an alternate Ideal graph.
// Return NULL if no transformation occurs.
static
Node
*
transform_long_divide
(
PhaseGVN
*
phase
,
Node
*
dividend
,
jlong
divisor
)
{
// Check for invalid divisors
assert
(
divisor
!=
0L
&&
divisor
!=
min_jlong
,
"bad divisor for transforming to long multiply"
);
bool
d_pos
=
divisor
>=
0
;
jlong
d
=
d_pos
?
divisor
:
-
divisor
;
const
int
N
=
64
;
// Result
Node
*
q
=
NULL
;
if
(
d
==
1
)
{
// division by +/- 1
if
(
!
d_pos
)
{
// Just negate the value
q
=
new
(
phase
->
C
,
3
)
SubLNode
(
phase
->
longcon
(
0
),
dividend
);
}
}
else
if
(
is_power_of_2_long
(
d
)
)
{
// division by +/- a power of 2
// See if we can simply do a shift without rounding
bool
needs_rounding
=
true
;
const
Type
*
dt
=
phase
->
type
(
dividend
);
const
TypeLong
*
dtl
=
dt
->
isa_long
();
if
(
dtl
&&
dtl
->
_lo
>
0
)
{
// we don't need to round a positive dividend
needs_rounding
=
false
;
}
else
if
(
dividend
->
Opcode
()
==
Op_AndL
)
{
// An AND mask of sufficient size clears the low bits and
// I can avoid rounding.
const
TypeLong
*
andconl
=
phase
->
type
(
dividend
->
in
(
2
)
)
->
isa_long
();
if
(
andconl
&&
andconl
->
is_con
(
-
d
))
{
dividend
=
dividend
->
in
(
1
);
needs_rounding
=
false
;
}
}
// Add rounding to the shift to handle the sign bit
int
l
=
log2_long
(
d
-
1
)
+
1
;
if
(
needs_rounding
)
{
// Divide-by-power-of-2 can be made into a shift, but you have to do
// more math for the rounding. You need to add 0 for positive
// numbers, and "i-1" for negative numbers. Example: i=4, so the
// shift is by 2. You need to add 3 to negative dividends and 0 to
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
// (-2+3)>>2 becomes 0, etc.
// Compute 0 or -1, based on sign bit
Node
*
sign
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
// Mask sign bit to the low sign bits
Node
*
round
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
URShiftLNode
(
sign
,
phase
->
intcon
(
N
-
l
)));
// Round up before shifting
dividend
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
dividend
,
round
));
}
// Shift for division
q
=
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
l
));
if
(
!
d_pos
)
{
q
=
new
(
phase
->
C
,
3
)
SubLNode
(
phase
->
longcon
(
0
),
phase
->
transform
(
q
));
}
}
else
{
// Attempt the jlong constant divide -> multiply transform found in
// "Division by Invariant Integers using Multiplication"
// by Granlund and Montgomery
// See also "Hacker's Delight", chapter 10 by Warren.
jlong
magic_const
;
jint
shift_const
;
if
(
magic_long_divide_constants
(
d
,
magic_const
,
shift_const
))
{
// Compute the high half of the dividend x magic multiplication
Node
*
mul_hi
=
phase
->
transform
(
long_by_long_mulhi
(
phase
,
dividend
,
magic_const
));
// The high half of the 128-bit multiply is computed.
if
(
magic_const
<
0
)
{
// The magic multiplier is too large for a 64 bit constant. We've adjusted
// it down by 2^64, but have to add 1 dividend back in after the multiplication.
// This handles the "overflow" case described by Granlund and Montgomery.
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
dividend
,
mul_hi
));
}
// Shift over the (adjusted) mulhi
if
(
shift_const
!=
0
)
{
mul_hi
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
mul_hi
,
phase
->
intcon
(
shift_const
)));
}
// Get a 0 or -1 from the sign of the dividend.
Node
*
addend0
=
mul_hi
;
Node
*
addend1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
N
-
1
)));
// If the divisor is negative, swap the order of the input addends;
// this has the effect of negating the quotient.
if
(
!
d_pos
)
{
Node
*
temp
=
addend0
;
addend0
=
addend1
;
addend1
=
temp
;
}
// Adjust the final quotient by subtracting -1 (adding 1)
// from the mul_hi.
q
=
new
(
phase
->
C
,
3
)
SubLNode
(
addend0
,
addend1
);
}
}
}
return
(
q
)
;
return
q
;
}
}
//=============================================================================
//=============================================================================
...
@@ -164,7 +404,7 @@ Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
...
@@ -164,7 +404,7 @@ Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
const
TypeInt
*
ti
=
t
->
isa_int
();
const
TypeInt
*
ti
=
t
->
isa_int
();
if
(
!
ti
)
return
NULL
;
if
(
!
ti
)
return
NULL
;
if
(
!
ti
->
is_con
()
)
return
NULL
;
if
(
!
ti
->
is_con
()
)
return
NULL
;
int
i
=
ti
->
get_con
();
// Get divisor
jint
i
=
ti
->
get_con
();
// Get divisor
if
(
i
==
0
)
return
NULL
;
// Dividing by zero constant does not idealize
if
(
i
==
0
)
return
NULL
;
// Dividing by zero constant does not idealize
...
@@ -173,7 +413,7 @@ Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
...
@@ -173,7 +413,7 @@ Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Dividing by MININT does not optimize as a power-of-2 shift.
// Dividing by MININT does not optimize as a power-of-2 shift.
if
(
i
==
min_jint
)
return
NULL
;
if
(
i
==
min_jint
)
return
NULL
;
return
transform_int_divide
_to_long_multiply
(
phase
,
in
(
1
),
i
);
return
transform_int_divide
(
phase
,
in
(
1
),
i
);
}
}
//------------------------------Value------------------------------------------
//------------------------------Value------------------------------------------
...
@@ -255,85 +495,22 @@ Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
...
@@ -255,85 +495,22 @@ Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
if
(
in
(
0
)
&&
remove_dead_region
(
phase
,
can_reshape
))
return
this
;
if
(
in
(
0
)
&&
remove_dead_region
(
phase
,
can_reshape
))
return
this
;
const
Type
*
t
=
phase
->
type
(
in
(
2
)
);
const
Type
*
t
=
phase
->
type
(
in
(
2
)
);
if
(
t
==
TypeLong
::
ONE
)
// Identity?
if
(
t
==
TypeLong
::
ONE
)
// Identity?
return
NULL
;
// Skip it
return
NULL
;
// Skip it
const
TypeLong
*
ti
=
t
->
isa_long
();
const
TypeLong
*
tl
=
t
->
isa_long
();
if
(
!
ti
)
return
NULL
;
if
(
!
tl
)
return
NULL
;
if
(
!
ti
->
is_con
()
)
return
NULL
;
if
(
!
tl
->
is_con
()
)
return
NULL
;
jlong
i
=
ti
->
get_con
();
// Get divisor
jlong
l
=
tl
->
get_con
();
// Get divisor
if
(
i
)
set_req
(
0
,
NULL
);
// Dividing by a not-zero constant; no faulting
// Dividing by MININT does not optimize as a power-of-2 shift.
if
(
l
==
0
)
return
NULL
;
// Dividing by zero constant does not idealize
if
(
i
==
min_jlong
)
return
NULL
;
// Check for negative power of 2 divisor, if so, negate it and set a flag
// to indicate result needs to be negated. Note that negating the dividend
// here does not work when it has the value MININT
Node
*
dividend
=
in
(
1
);
bool
negate_res
=
false
;
if
(
is_power_of_2_long
(
-
i
))
{
i
=
-
i
;
// Flip divisor
negate_res
=
true
;
}
// Check for power of 2
if
(
!
is_power_of_2_long
(
i
))
// Is divisor a power of 2?
return
NULL
;
// Not a power of 2
// Compute number of bits to shift
int
log_i
=
log2_long
(
i
);
// See if we can simply do a shift without rounding
bool
needs_rounding
=
true
;
const
Type
*
dt
=
phase
->
type
(
dividend
);
const
TypeLong
*
dtl
=
dt
->
isa_long
();
if
(
dtl
&&
dtl
->
_lo
>
0
)
{
// we don't need to round a positive dividend
needs_rounding
=
false
;
}
else
if
(
dividend
->
Opcode
()
==
Op_AndL
)
{
// An AND mask of sufficient size clears the low bits and
// I can avoid rounding.
const
TypeLong
*
andconi
=
phase
->
type
(
dividend
->
in
(
2
)
)
->
isa_long
();
if
(
andconi
&&
andconi
->
is_con
()
&&
andconi
->
get_con
()
==
-
i
)
{
dividend
=
dividend
->
in
(
1
);
needs_rounding
=
false
;
}
}
if
(
!
needs_rounding
)
{
set_req
(
0
,
NULL
);
// Dividing by a not-zero constant; no faulting
Node
*
result
=
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
log_i
));
if
(
negate_res
)
{
result
=
phase
->
transform
(
result
);
result
=
new
(
phase
->
C
,
3
)
SubLNode
(
phase
->
longcon
(
0
),
result
);
}
return
result
;
}
// Divide-by-power-of-2 can be made into a shift, but you have to do
// Dividing by MININT does not optimize as a power-of-2 shift.
// more math for the rounding. You need to add 0 for positive
if
(
l
==
min_jlong
)
return
NULL
;
// numbers, and "i-1" for negative numbers. Example: i=4, so the
// shift is by 2. You need to add 3 to negative dividends and 0 to
// positive ones. So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
// (-2+3)>>2 becomes 0, etc.
// Compute 0 or -1, based on sign bit
Node
*
sign
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
dividend
,
phase
->
intcon
(
63
)));
// Mask sign bit to the low sign bits
Node
*
round
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndLNode
(
sign
,
phase
->
longcon
(
i
-
1
)));
// Round up before shifting
Node
*
sum
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
dividend
,
round
));
// Shift for division
Node
*
result
=
new
(
phase
->
C
,
3
)
RShiftLNode
(
sum
,
phase
->
intcon
(
log_i
));
if
(
negate_res
)
{
result
=
phase
->
transform
(
result
);
result
=
new
(
phase
->
C
,
3
)
SubLNode
(
phase
->
longcon
(
0
),
result
);
}
return
result
;
return
transform_long_divide
(
phase
,
in
(
1
),
l
)
;
}
}
//------------------------------Value------------------------------------------
//------------------------------Value------------------------------------------
...
@@ -615,10 +792,10 @@ Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
...
@@ -615,10 +792,10 @@ Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
hook
->
init_req
(
0
,
x
);
// Add a use to x to prevent him from dying
hook
->
init_req
(
0
,
x
);
// Add a use to x to prevent him from dying
// Generate code to reduce X rapidly to nearly 2^k-1.
// Generate code to reduce X rapidly to nearly 2^k-1.
for
(
int
i
=
0
;
i
<
trip_count
;
i
++
)
{
for
(
int
i
=
0
;
i
<
trip_count
;
i
++
)
{
Node
*
xl
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndINode
(
x
,
divisor
)
);
Node
*
xl
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndINode
(
x
,
divisor
)
);
Node
*
xh
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
x
,
phase
->
intcon
(
k
))
);
// Must be signed
Node
*
xh
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftINode
(
x
,
phase
->
intcon
(
k
))
);
// Must be signed
x
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
xh
,
xl
)
);
x
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddINode
(
xh
,
xl
)
);
hook
->
set_req
(
0
,
x
);
hook
->
set_req
(
0
,
x
);
}
}
// Generate sign-fixup code. Was original value positive?
// Generate sign-fixup code. Was original value positive?
...
@@ -675,18 +852,21 @@ Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
...
@@ -675,18 +852,21 @@ Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
hook
->
init_req
(
0
,
in
(
1
));
hook
->
init_req
(
0
,
in
(
1
));
// Divide using the transform from DivI to MulL
// Divide using the transform from DivI to MulL
Node
*
divide
=
phase
->
transform
(
transform_int_divide_to_long_multiply
(
phase
,
in
(
1
),
pos_con
)
);
Node
*
result
=
transform_int_divide
(
phase
,
in
(
1
),
pos_con
);
if
(
result
!=
NULL
)
{
Node
*
divide
=
phase
->
transform
(
result
);
// Re-multiply, using a shift if this is a power of two
// Re-multiply, using a shift if this is a power of two
Node
*
mult
=
NULL
;
Node
*
mult
=
NULL
;
if
(
log2_con
>=
0
)
if
(
log2_con
>=
0
)
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
LShiftINode
(
divide
,
phase
->
intcon
(
log2_con
)
)
);
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
LShiftINode
(
divide
,
phase
->
intcon
(
log2_con
)
)
);
else
else
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulINode
(
divide
,
phase
->
intcon
(
pos_con
)
)
);
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulINode
(
divide
,
phase
->
intcon
(
pos_con
)
)
);
// Finally, subtract the multiplied divided value from the original
// Finally, subtract the multiplied divided value from the original
Node
*
result
=
new
(
phase
->
C
,
3
)
SubINode
(
in
(
1
),
mult
);
result
=
new
(
phase
->
C
,
3
)
SubINode
(
in
(
1
),
mult
);
}
// Now remove the bogus extra edges used to keep things alive
// Now remove the bogus extra edges used to keep things alive
if
(
can_reshape
)
{
if
(
can_reshape
)
{
...
@@ -748,73 +928,126 @@ Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
...
@@ -748,73 +928,126 @@ Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Get the modulus
// Get the modulus
const
Type
*
t
=
phase
->
type
(
in
(
2
)
);
const
Type
*
t
=
phase
->
type
(
in
(
2
)
);
if
(
t
==
Type
::
TOP
)
return
NULL
;
if
(
t
==
Type
::
TOP
)
return
NULL
;
const
TypeLong
*
t
i
=
t
->
is_long
();
const
TypeLong
*
t
l
=
t
->
is_long
();
// Check for useless control input
// Check for useless control input
// Check for excluding mod-zero case
// Check for excluding mod-zero case
if
(
in
(
0
)
&&
(
t
i
->
_hi
<
0
||
ti
->
_lo
>
0
)
)
{
if
(
in
(
0
)
&&
(
t
l
->
_hi
<
0
||
tl
->
_lo
>
0
)
)
{
set_req
(
0
,
NULL
);
// Yank control input
set_req
(
0
,
NULL
);
// Yank control input
return
this
;
return
this
;
}
}
// See if we are MOD'ing by 2^k or 2^k-1.
// See if we are MOD'ing by 2^k or 2^k-1.
if
(
!
ti
->
is_con
()
)
return
NULL
;
if
(
!
tl
->
is_con
()
)
return
NULL
;
jlong
con
=
ti
->
get_con
();
jlong
con
=
tl
->
get_con
();
bool
m1
=
false
;
if
(
!
is_power_of_2_long
(
con
)
)
{
// Not 2^k
Node
*
hook
=
new
(
phase
->
C
,
1
)
Node
(
1
);
if
(
!
is_power_of_2_long
(
con
+
1
)
)
// Not 2^k-1?
return
NULL
;
// No interesting mod hacks
m1
=
true
;
// Found 2^k-1
con
++
;
// Convert to 2^k form
}
uint
k
=
log2_long
(
con
);
// Extract k
// Expand mod
// Expand mod
if
(
!
m1
)
{
// Case 2^k
if
(
con
>=
0
&&
con
<
max_jlong
&&
is_power_of_2_long
(
con
+
1
)
)
{
}
else
{
// Case 2^k-1
uint
k
=
log2_long
(
con
);
// Extract k
// Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
// Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
// Used to help a popular random number generator which does a long-mod
// Used to help a popular random number generator which does a long-mod
// of 2^31-1 and shows up in SpecJBB and SciMark.
// of 2^31-1 and shows up in SpecJBB and SciMark.
static
int
unroll_factor
[]
=
{
999
,
999
,
61
,
30
,
20
,
15
,
12
,
10
,
8
,
7
,
6
,
6
,
5
,
5
,
4
,
4
,
4
,
3
,
3
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
1
/*past here we assume 1 forever*/
};
static
int
unroll_factor
[]
=
{
999
,
999
,
61
,
30
,
20
,
15
,
12
,
10
,
8
,
7
,
6
,
6
,
5
,
5
,
4
,
4
,
4
,
3
,
3
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
1
/*past here we assume 1 forever*/
};
int
trip_count
=
1
;
int
trip_count
=
1
;
if
(
k
<
ARRAY_SIZE
(
unroll_factor
))
trip_count
=
unroll_factor
[
k
];
if
(
k
<
ARRAY_SIZE
(
unroll_factor
))
trip_count
=
unroll_factor
[
k
];
if
(
trip_count
>
4
)
return
NULL
;
// Too much unrolling
if
(
ConditionalMoveLimit
==
0
)
return
NULL
;
// cmov is required
Node
*
x
=
in
(
1
);
// Value being mod'd
// If the unroll factor is not too large, and if conditional moves are
Node
*
divisor
=
in
(
2
);
// Also is mask
// ok, then use this case
if
(
trip_count
<=
5
&&
ConditionalMoveLimit
!=
0
)
{
Node
*
x
=
in
(
1
);
// Value being mod'd
Node
*
divisor
=
in
(
2
);
// Also is mask
Node
*
hook
=
new
(
phase
->
C
,
1
)
Node
(
x
);
hook
->
init_req
(
0
,
x
);
// Add a use to x to prevent him from dying
// Generate code to reduce X rapidly to nearly 2^k-1.
// Generate code to reduce X rapidly to nearly 2^k-1.
for
(
int
i
=
0
;
i
<
trip_count
;
i
++
)
{
for
(
int
i
=
0
;
i
<
trip_count
;
i
++
)
{
Node
*
xl
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndLNode
(
x
,
divisor
)
);
Node
*
xl
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AndLNode
(
x
,
divisor
)
);
Node
*
xh
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
x
,
phase
->
intcon
(
k
))
);
// Must be signed
Node
*
xh
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
RShiftLNode
(
x
,
phase
->
intcon
(
k
))
);
// Must be signed
x
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
xh
,
xl
)
);
x
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
AddLNode
(
xh
,
xl
)
);
hook
->
set_req
(
0
,
x
);
// Add a use to x to prevent him from dying
hook
->
set_req
(
0
,
x
);
// Add a use to x to prevent him from dying
}
// Generate sign-fixup code. Was original value positive?
// long hack_res = (i >= 0) ? divisor : CONST64(1);
Node
*
cmp1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
CmpLNode
(
in
(
1
),
phase
->
longcon
(
0
)
)
);
Node
*
bol1
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
BoolNode
(
cmp1
,
BoolTest
::
ge
)
);
Node
*
cmov1
=
phase
->
transform
(
new
(
phase
->
C
,
4
)
CMoveLNode
(
bol1
,
phase
->
longcon
(
1
),
divisor
,
TypeLong
::
LONG
)
);
// if( x >= hack_res ) x -= divisor;
Node
*
sub
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
SubLNode
(
x
,
divisor
)
);
Node
*
cmp2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
CmpLNode
(
x
,
cmov1
)
);
Node
*
bol2
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
BoolNode
(
cmp2
,
BoolTest
::
ge
)
);
// Convention is to not transform the return value of an Ideal
// since Ideal is expected to return a modified 'this' or a new node.
Node
*
cmov2
=
new
(
phase
->
C
,
4
)
CMoveLNode
(
bol2
,
x
,
sub
,
TypeLong
::
LONG
);
// cmov2 is now the mod
// Now remove the bogus extra edges used to keep things alive
if
(
can_reshape
)
{
phase
->
is_IterGVN
()
->
remove_dead_node
(
hook
);
}
else
{
hook
->
set_req
(
0
,
NULL
);
// Just yank bogus edge during Parse phase
}
return
cmov2
;
}
}
// Generate sign-fixup code. Was original value positive?
// long hack_res = (i >= 0) ? divisor : CONST64(1);
Node
*
cmp1
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
CmpLNode
(
in
(
1
),
phase
->
longcon
(
0
)
)
);
Node
*
bol1
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
BoolNode
(
cmp1
,
BoolTest
::
ge
)
);
Node
*
cmov1
=
phase
->
transform
(
new
(
phase
->
C
,
4
)
CMoveLNode
(
bol1
,
phase
->
longcon
(
1
),
divisor
,
TypeLong
::
LONG
)
);
// if( x >= hack_res ) x -= divisor;
Node
*
sub
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
SubLNode
(
x
,
divisor
)
);
Node
*
cmp2
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
CmpLNode
(
x
,
cmov1
)
);
Node
*
bol2
=
phase
->
transform
(
new
(
phase
->
C
,
2
)
BoolNode
(
cmp2
,
BoolTest
::
ge
)
);
// Convention is to not transform the return value of an Ideal
// since Ideal is expected to return a modified 'this' or a new node.
Node
*
cmov2
=
new
(
phase
->
C
,
4
)
CMoveLNode
(
bol2
,
x
,
sub
,
TypeLong
::
LONG
);
// cmov2 is now the mod
// Now remove the bogus extra edges used to keep things alive
if
(
can_reshape
)
{
phase
->
is_IterGVN
()
->
remove_dead_node
(
hook
);
}
else
{
hook
->
set_req
(
0
,
NULL
);
// Just yank bogus edge during Parse phase
}
return
cmov2
;
}
}
return
NULL
;
// Fell thru, the unroll case is not appropriate. Transform the modulo
// into a long multiply/int multiply/subtract case
// Cannot handle mod 0, and min_jint isn't handled by the transform
if
(
con
==
0
||
con
==
min_jlong
)
return
NULL
;
// Get the absolute value of the constant; at this point, we can use this
jlong
pos_con
=
(
con
>=
0
)
?
con
:
-
con
;
// integer Mod 1 is always 0
if
(
pos_con
==
1
)
return
new
(
phase
->
C
,
1
)
ConLNode
(
TypeLong
::
ZERO
);
int
log2_con
=
-
1
;
// If this is a power of two, they maybe we can mask it
if
(
is_power_of_2_long
(
pos_con
)
)
{
log2_con
=
log2_long
(
pos_con
);
const
Type
*
dt
=
phase
->
type
(
in
(
1
));
const
TypeLong
*
dtl
=
dt
->
isa_long
();
// See if this can be masked, if the dividend is non-negative
if
(
dtl
&&
dtl
->
_lo
>=
0
)
return
(
new
(
phase
->
C
,
3
)
AndLNode
(
in
(
1
),
phase
->
longcon
(
pos_con
-
1
)
)
);
}
// Save in(1) so that it cannot be changed or deleted
hook
->
init_req
(
0
,
in
(
1
));
// Divide using the transform from DivI to MulL
Node
*
result
=
transform_long_divide
(
phase
,
in
(
1
),
pos_con
);
if
(
result
!=
NULL
)
{
Node
*
divide
=
phase
->
transform
(
result
);
// Re-multiply, using a shift if this is a power of two
Node
*
mult
=
NULL
;
if
(
log2_con
>=
0
)
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
LShiftLNode
(
divide
,
phase
->
intcon
(
log2_con
)
)
);
else
mult
=
phase
->
transform
(
new
(
phase
->
C
,
3
)
MulLNode
(
divide
,
phase
->
longcon
(
pos_con
)
)
);
// Finally, subtract the multiplied divided value from the original
result
=
new
(
phase
->
C
,
3
)
SubLNode
(
in
(
1
),
mult
);
}
// Now remove the bogus extra edges used to keep things alive
if
(
can_reshape
)
{
phase
->
is_IterGVN
()
->
remove_dead_node
(
hook
);
}
else
{
hook
->
set_req
(
0
,
NULL
);
// Just yank bogus edge during Parse phase
}
// return the value
return
result
;
}
}
//------------------------------Value------------------------------------------
//------------------------------Value------------------------------------------
...
...
hotspot/src/share/vm/opto/mulnode.cpp
浏览文件 @
ae759ac4
...
@@ -364,6 +364,25 @@ const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
...
@@ -364,6 +364,25 @@ const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
return
TypeD
::
make
(
t0
->
getd
()
*
t1
->
getd
()
);
return
TypeD
::
make
(
t0
->
getd
()
*
t1
->
getd
()
);
}
}
//=============================================================================
//------------------------------Value------------------------------------------
const
Type
*
MulHiLNode
::
Value
(
PhaseTransform
*
phase
)
const
{
// Either input is TOP ==> the result is TOP
const
Type
*
t1
=
phase
->
type
(
in
(
1
)
);
const
Type
*
t2
=
phase
->
type
(
in
(
2
)
);
if
(
t1
==
Type
::
TOP
)
return
Type
::
TOP
;
if
(
t2
==
Type
::
TOP
)
return
Type
::
TOP
;
// Either input is BOTTOM ==> the result is the local BOTTOM
const
Type
*
bot
=
bottom_type
();
if
(
(
t1
==
bot
)
||
(
t2
==
bot
)
||
(
t1
==
Type
::
BOTTOM
)
||
(
t2
==
Type
::
BOTTOM
)
)
return
bot
;
// It is not worth trying to constant fold this stuff!
return
TypeLong
::
LONG
;
}
//=============================================================================
//=============================================================================
//------------------------------mul_ring---------------------------------------
//------------------------------mul_ring---------------------------------------
// Supplied function returns the product of the inputs IN THE CURRENT RING.
// Supplied function returns the product of the inputs IN THE CURRENT RING.
...
...
hotspot/src/share/vm/opto/mulnode.hpp
浏览文件 @
ae759ac4
...
@@ -133,6 +133,16 @@ public:
...
@@ -133,6 +133,16 @@ public:
virtual
uint
ideal_reg
()
const
{
return
Op_RegD
;
}
virtual
uint
ideal_reg
()
const
{
return
Op_RegD
;
}
};
};
//-------------------------------MulHiLNode------------------------------------
// Upper 64 bits of a 64 bit by 64 bit multiply
class
MulHiLNode
:
public
Node
{
public:
MulHiLNode
(
Node
*
in1
,
Node
*
in2
)
:
Node
(
0
,
in1
,
in2
)
{}
virtual
int
Opcode
()
const
;
virtual
const
Type
*
Value
(
PhaseTransform
*
phase
)
const
;
const
Type
*
bottom_type
()
const
{
return
TypeLong
::
LONG
;
}
virtual
uint
ideal_reg
()
const
{
return
Op_RegL
;
}
};
//------------------------------AndINode---------------------------------------
//------------------------------AndINode---------------------------------------
// Logically AND 2 integers. Included with the MUL nodes because it inherits
// Logically AND 2 integers. Included with the MUL nodes because it inherits
...
...
hotspot/src/share/vm/opto/type.hpp
浏览文件 @
ae759ac4
...
@@ -442,6 +442,7 @@ public:
...
@@ -442,6 +442,7 @@ public:
// Check for single integer
// Check for single integer
int
is_con
()
const
{
return
_lo
==
_hi
;
}
int
is_con
()
const
{
return
_lo
==
_hi
;
}
bool
is_con
(
int
i
)
const
{
return
is_con
()
&&
_lo
==
i
;
}
jlong
get_con
()
const
{
assert
(
is_con
(),
""
);
return
_lo
;
}
jlong
get_con
()
const
{
assert
(
is_con
(),
""
);
return
_lo
;
}
virtual
bool
is_finite
()
const
;
// Has a finite value
virtual
bool
is_finite
()
const
;
// Has a finite value
...
...
hotspot/src/share/vm/utilities/globalDefinitions.hpp
浏览文件 @
ae759ac4
...
@@ -890,7 +890,7 @@ inline int log2_long(jlong x) {
...
@@ -890,7 +890,7 @@ inline int log2_long(jlong x) {
i
++
;
p
*=
2
;
i
++
;
p
*=
2
;
}
}
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// (if p = 0 then overflow occured and i =
31
)
// (if p = 0 then overflow occured and i =
63
)
return
i
;
return
i
;
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录