/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2010 Adaptec, Inc. * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * commsup.c * * Abstract: Contain all routines that are required for FSA host/adapter * communication. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aacraid.h" /** * fib_map_alloc - allocate the fib objects * @dev: Adapter to allocate for * * Allocate and map the shared PCI space for the FIB blocks used to * talk to the Adaptec firmware. */ static int fib_map_alloc(struct aac_dev *dev) { if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; else dev->max_cmd_size = dev->max_fib_size; if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; } else { dev->max_cmd_size = dev->max_fib_size; } dprintk((KERN_INFO "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), &dev->hw_fib_pa, GFP_KERNEL); if (dev->hw_fib_va == NULL) return -ENOMEM; return 0; } /** * aac_fib_map_free - free the fib objects * @dev: Adapter to free * * Free the PCI mappings and the memory allocated for FIB blocks * on this adapter. */ void aac_fib_map_free(struct aac_dev *dev) { size_t alloc_size; size_t fib_size; int num_fibs; if(!dev->hw_fib_va || !dev->max_cmd_size) return; num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); alloc_size = fib_size * num_fibs + ALIGN32 - 1; dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, dev->hw_fib_pa); dev->hw_fib_va = NULL; dev->hw_fib_pa = 0; } void aac_fib_vector_assign(struct aac_dev *dev) { u32 i = 0; u32 vector = 1; struct fib *fibptr = NULL; for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) { if ((dev->max_msix == 1) || (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) - dev->vector_cap))) { fibptr->vector_no = 0; } else { fibptr->vector_no = vector; vector++; if (vector == dev->max_msix) vector = 1; } } } /** * aac_fib_setup - setup the fibs * @dev: Adapter to set up * * Allocate the PCI space for the fibs, map it and then initialise the * fib area, the unmapped fib data and also the free list */ int aac_fib_setup(struct aac_dev * dev) { struct fib *fibptr; struct hw_fib *hw_fib; dma_addr_t hw_fib_pa; int i; u32 max_cmds; while (((i = fib_map_alloc(dev)) == -ENOMEM) && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); } if (i<0) return -ENOMEM; memset(dev->hw_fib_va, 0, (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); /* 32 byte alignment for PMC */ hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + (hw_fib_pa - dev->hw_fib_pa)); /* add Xport header */ hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + sizeof(struct aac_fib_xporthdr)); hw_fib_pa += sizeof(struct aac_fib_xporthdr); /* * Initialise the fibs */ for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) { fibptr->flags = 0; fibptr->size = sizeof(struct fib); fibptr->dev = dev; fibptr->hw_fib_va = hw_fib; fibptr->data = (void *) fibptr->hw_fib_va->data; fibptr->next = fibptr+1; /* Forward chain the fibs */ sema_init(&fibptr->event_wait, 0); spin_lock_init(&fibptr->event_lock); hw_fib->header.XferState = cpu_to_le32(0xffffffff); hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ fibptr->hw_fib_pa = hw_fib_pa; fibptr->hw_sgl_pa = hw_fib_pa + offsetof(struct aac_hba_cmd_req, sge[2]); /* * one element is for the ptr to the separate sg list, * second element for 32 byte alignment */ fibptr->hw_error_pa = hw_fib_pa + offsetof(struct aac_native_hba, resp.resp_bytes[0]); hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); hw_fib_pa = hw_fib_pa + dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); } /* *Assign vector numbers to fibs */ aac_fib_vector_assign(dev); /* * Add the fib chain to the free list */ dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; /* * Set 8 fibs aside for management tools */ dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; return 0; } /** * aac_fib_alloc_tag-allocate a fib using tags * @dev: Adapter to allocate the fib for * * Allocate a fib from the adapter fib pool using tags * from the blk layer. */ struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) { struct fib *fibptr; fibptr = &dev->fibs[scmd->request->tag]; /* * Null out fields that depend on being zero at the start of * each I/O */ fibptr->hw_fib_va->header.XferState = 0; fibptr->type = FSAFS_NTC_FIB_CONTEXT; fibptr->callback_data = NULL; fibptr->callback = NULL; return fibptr; } /** * aac_fib_alloc - allocate a fib * @dev: Adapter to allocate the fib for * * Allocate a fib from the adapter fib pool. If the pool is empty we * return NULL. */ struct fib *aac_fib_alloc(struct aac_dev *dev) { struct fib * fibptr; unsigned long flags; spin_lock_irqsave(&dev->fib_lock, flags); fibptr = dev->free_fib; if(!fibptr){ spin_unlock_irqrestore(&dev->fib_lock, flags); return fibptr; } dev->free_fib = fibptr->next; spin_unlock_irqrestore(&dev->fib_lock, flags); /* * Set the proper node type code and node byte size */ fibptr->type = FSAFS_NTC_FIB_CONTEXT; fibptr->size = sizeof(struct fib); /* * Null out fields that depend on being zero at the start of * each I/O */ fibptr->hw_fib_va->header.XferState = 0; fibptr->flags = 0; fibptr->callback = NULL; fibptr->callback_data = NULL; return fibptr; } /** * aac_fib_free - free a fib * @fibptr: fib to free up * * Frees up a fib and places it on the appropriate queue */ void aac_fib_free(struct fib *fibptr) { unsigned long flags; if (fibptr->done == 2) return; spin_lock_irqsave(&fibptr->dev->fib_lock, flags); if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) aac_config.fib_timeouts++; if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && fibptr->hw_fib_va->header.XferState != 0) { printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", (void*)fibptr, le32_to_cpu(fibptr->hw_fib_va->header.XferState)); } fibptr->next = fibptr->dev->free_fib; fibptr->dev->free_fib = fibptr; spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); } /** * aac_fib_init - initialise a fib * @fibptr: The fib to initialize * * Set up the generic fib fields ready for use */ void aac_fib_init(struct fib *fibptr) { struct hw_fib *hw_fib = fibptr->hw_fib_va; memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); hw_fib->header.StructType = FIB_MAGIC; hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); } /** * fib_deallocate - deallocate a fib * @fibptr: fib to deallocate * * Will deallocate and return to the free pool the FIB pointed to by the * caller. */ static void fib_dealloc(struct fib * fibptr) { struct hw_fib *hw_fib = fibptr->hw_fib_va; hw_fib->header.XferState = 0; } /* * Commuication primitives define and support the queuing method we use to * support host to adapter commuication. All queue accesses happen through * these routines and are the only routines which have a knowledge of the * how these queues are implemented. */ /** * aac_get_entry - get a queue entry * @dev: Adapter * @qid: Queue Number * @entry: Entry return * @index: Index return * @nonotify: notification control * * With a priority the routine returns a queue entry if the queue has free entries. If the queue * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is * returned. */ static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) { struct aac_queue * q; unsigned long idx; /* * All of the queues wrap when they reach the end, so we check * to see if they have reached the end and if they have we just * set the index back to zero. This is a wrap. You could or off * the high bits in all updates but this is a bit faster I think. */ q = &dev->queues->queue[qid]; idx = *index = le32_to_cpu(*(q->headers.producer)); /* Interrupt Moderation, only interrupt for first two entries */ if (idx != le32_to_cpu(*(q->headers.consumer))) { if (--idx == 0) { if (qid == AdapNormCmdQueue) idx = ADAP_NORM_CMD_ENTRIES; else idx = ADAP_NORM_RESP_ENTRIES; } if (idx != le32_to_cpu(*(q->headers.consumer))) *nonotify = 1; } if (qid == AdapNormCmdQueue) { if (*index >= ADAP_NORM_CMD_ENTRIES) *index = 0; /* Wrap to front of the Producer Queue. */ } else { if (*index >= ADAP_NORM_RESP_ENTRIES) *index = 0; /* Wrap to front of the Producer Queue. */ } /* Queue is full */ if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { printk(KERN_WARNING "Queue %d full, %u outstanding.\n", qid, atomic_read(&q->numpending)); return 0; } else { *entry = q->base + *index; return 1; } } /** * aac_queue_get - get the next free QE * @dev: Adapter * @index: Returned index * @priority: Priority of fib * @fib: Fib to associate with the queue entry * @wait: Wait if queue full * @fibptr: Driver fib object to go with fib * @nonotify: Don't notify the adapter * * Gets the next free QE off the requested priorty adapter command * queue and associates the Fib with the QE. The QE represented by * index is ready to insert on the queue when this routine returns * success. */ int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) { struct aac_entry * entry = NULL; int map = 0; if (qid == AdapNormCmdQueue) { /* if no entries wait for some if caller wants to */ while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { printk(KERN_ERR "GetEntries failed\n"); } /* * Setup queue entry with a command, status and fib mapped */ entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); map = 1; } else { while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { /* if no entries wait for some if caller wants to */ } /* * Setup queue entry with command, status and fib mapped */ entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); entry->addr = hw_fib->header.SenderFibAddress; /* Restore adapters pointer to the FIB */ hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ map = 0; } /* * If MapFib is true than we need to map the Fib and put pointers * in the queue entry. */ if (map) entry->addr = cpu_to_le32(fibptr->hw_fib_pa); return 0; } #ifdef CONFIG_EEH static inline int aac_check_eeh_failure(struct aac_dev *dev) { /* Check for an EEH failure for the given * device node. Function eeh_dev_check_failure() * returns 0 if there has not been an EEH error * otherwise returns a non-zero value. * * Need to be called before any PCI operation, * i.e.,before aac_adapter_check_health() */ struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev); if (eeh_dev_check_failure(edev)) { /* The EEH mechanisms will handle this * error and reset the device if * necessary. */ return 1; } return 0; } #else static inline int aac_check_eeh_failure(struct aac_dev *dev) { return 0; } #endif /* * Define the highest level of host to adapter communication routines. * These routines will support host to adapter FS commuication. These * routines have no knowledge of the commuication method used. This level * sends and receives FIBs. This level has no knowledge of how these FIBs * get passed back and forth. */ /** * aac_fib_send - send a fib to the adapter * @command: Command to send * @fibptr: The fib * @size: Size of fib data area * @priority: Priority of Fib * @wait: Async/sync select * @reply: True if a reply is wanted * @callback: Called with reply * @callback_data: Passed to callback * * Sends the requested FIB to the adapter and optionally will wait for a * response FIB. If the caller does not wish to wait for a response than * an event to wait on must be supplied. This event will be set when a * response FIB is received from the adapter. */ int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void *callback_data) { struct aac_dev * dev = fibptr->dev; struct hw_fib * hw_fib = fibptr->hw_fib_va; unsigned long flags = 0; unsigned long mflags = 0; unsigned long sflags = 0; if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) return -EBUSY; if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) return -EINVAL; /* * There are 5 cases with the wait and response requested flags. * The only invalid cases are if the caller requests to wait and * does not request a response and if the caller does not want a * response and the Fib is not allocated from pool. If a response * is not requesed the Fib will just be deallocaed by the DPC * routine when the response comes back from the adapter. No * further processing will be done besides deleting the Fib. We * will have a debug mode where the adapter can notify the host * it had a problem and the host can log that fact. */ fibptr->flags = 0; if (wait && !reply) { return -EINVAL; } else if (!wait && reply) { hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); FIB_COUNTER_INCREMENT(aac_config.AsyncSent); } else if (!wait && !reply) { hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); } else if (wait && reply) { hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); FIB_COUNTER_INCREMENT(aac_config.NormalSent); } /* * Map the fib into 32bits by using the fib number */ hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); /* use the same shifted value for handle to be compatible * with the new native hba command handle */ hw_fib->header.Handle = cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); /* * Set FIB state to indicate where it came from and if we want a * response from the adapter. Also load the command from the * caller. * * Map the hw fib pointer as a 32bit value */ hw_fib->header.Command = cpu_to_le16(command); hw_fib->header.XferState |= cpu_to_le32(SentFromHost); /* * Set the size of the Fib we want to send to the adapter */ hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { return -EMSGSIZE; } /* * Get a queue entry connect the FIB to it and send an notify * the adapter a command is ready. */ hw_fib->header.XferState |= cpu_to_le32(NormalPriority); /* * Fill in the Callback and CallbackContext if we are not * going to wait. */ if (!wait) { fibptr->callback = callback; fibptr->callback_data = callback_data; fibptr->flags = FIB_CONTEXT_FLAG; } fibptr->done = 0; FIB_COUNTER_INCREMENT(aac_config.FibsSent); dprintk((KERN_DEBUG "Fib contents:.\n")); dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); if (!dev->queues) return -EBUSY; if (wait) { spin_lock_irqsave(&dev->manage_lock, mflags); if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { printk(KERN_INFO "No management Fibs Available:%d\n", dev->management_fib_count); spin_unlock_irqrestore(&dev->manage_lock, mflags); return -EBUSY; } dev->management_fib_count++; spin_unlock_irqrestore(&dev->manage_lock, mflags); spin_lock_irqsave(&fibptr->event_lock, flags); } if (dev->sync_mode) { if (wait) spin_unlock_irqrestore(&fibptr->event_lock, flags); spin_lock_irqsave(&dev->sync_lock, sflags); if (dev->sync_fib) { list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); spin_unlock_irqrestore(&dev->sync_lock, sflags); } else { dev->sync_fib = fibptr; spin_unlock_irqrestore(&dev->sync_lock, sflags); aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL); } if (wait) { fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; if (down_interruptible(&fibptr->event_wait)) { fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; return -EFAULT; } return 0; } return -EINPROGRESS; } if (aac_adapter_deliver(fibptr) != 0) { printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); if (wait) { spin_unlock_irqrestore(&fibptr->event_lock, flags); spin_lock_irqsave(&dev->manage_lock, mflags); dev->management_fib_count--; spin_unlock_irqrestore(&dev->manage_lock, mflags); } return -EBUSY; } /* * If the caller wanted us to wait for response wait now. */ if (wait) { spin_unlock_irqrestore(&fibptr->event_lock, flags); /* Only set for first known interruptable command */ if (wait < 0) { /* * *VERY* Dangerous to time out a command, the * assumption is made that we have no hope of * functioning because an interrupt routing or other * hardware failure has occurred. */ unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ while (down_trylock(&fibptr->event_wait)) { int blink; if (time_is_before_eq_jiffies(timeout)) { struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; atomic_dec(&q->numpending); if (wait == -1) { printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" "Usually a result of a PCI interrupt routing problem;\n" "update mother board BIOS or consider utilizing one of\n" "the SAFE mode kernel options (acpi, apic etc)\n"); } return -ETIMEDOUT; } if (aac_check_eeh_failure(dev)) return -EFAULT; if ((blink = aac_adapter_check_health(dev)) > 0) { if (wait == -1) { printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" "Usually a result of a serious unrecoverable hardware problem\n", blink); } return -EFAULT; } /* * Allow other processes / CPUS to use core */ schedule(); } } else if (down_interruptible(&fibptr->event_wait)) { /* Do nothing ... satisfy * down_interruptible must_check */ } spin_lock_irqsave(&fibptr->event_lock, flags); if (fibptr->done == 0) { fibptr->done = 2; /* Tell interrupt we aborted */ spin_unlock_irqrestore(&fibptr->event_lock, flags); return -ERESTARTSYS; } spin_unlock_irqrestore(&fibptr->event_lock, flags); BUG_ON(fibptr->done == 0); if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) return -ETIMEDOUT; return 0; } /* * If the user does not want a response than return success otherwise * return pending */ if (reply) return -EINPROGRESS; else return 0; } int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, void *callback_data) { struct aac_dev *dev = fibptr->dev; int wait; unsigned long flags = 0; unsigned long mflags = 0; fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); if (callback) { wait = 0; fibptr->callback = callback; fibptr->callback_data = callback_data; } else wait = 1; if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)fibptr->hw_fib_va; hbacmd->iu_type = command; /* bit1 of request_id must be 0 */ hbacmd->request_id = cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) return -EINVAL; if (wait) { spin_lock_irqsave(&dev->manage_lock, mflags); if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { spin_unlock_irqrestore(&dev->manage_lock, mflags); return -EBUSY; } dev->management_fib_count++; spin_unlock_irqrestore(&dev->manage_lock, mflags); spin_lock_irqsave(&fibptr->event_lock, flags); } if (aac_adapter_deliver(fibptr) != 0) { if (wait) { spin_unlock_irqrestore(&fibptr->event_lock, flags); spin_lock_irqsave(&dev->manage_lock, mflags); dev->management_fib_count--; spin_unlock_irqrestore(&dev->manage_lock, mflags); } return -EBUSY; } FIB_COUNTER_INCREMENT(aac_config.NativeSent); if (wait) { spin_unlock_irqrestore(&fibptr->event_lock, flags); if (aac_check_eeh_failure(dev)) return -EFAULT; fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; if (down_interruptible(&fibptr->event_wait)) fibptr->done = 2; fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); spin_lock_irqsave(&fibptr->event_lock, flags); if ((fibptr->done == 0) || (fibptr->done == 2)) { fibptr->done = 2; /* Tell interrupt we aborted */ spin_unlock_irqrestore(&fibptr->event_lock, flags); return -ERESTARTSYS; } spin_unlock_irqrestore(&fibptr->event_lock, flags); WARN_ON(fibptr->done == 0); if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) return -ETIMEDOUT; return 0; } return -EINPROGRESS; } /** * aac_consumer_get - get the top of the queue * @dev: Adapter * @q: Queue * @entry: Return entry * * Will return a pointer to the entry on the top of the queue requested that * we are a consumer of, and return the address of the queue entry. It does * not change the state of the queue. */ int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) { u32 index; int status; if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { status = 0; } else { /* * The consumer index must be wrapped if we have reached * the end of the queue, else we just use the entry * pointed to by the header index */ if (le32_to_cpu(*q->headers.consumer) >= q->entries) index = 0; else index = le32_to_cpu(*q->headers.consumer); *entry = q->base + index; status = 1; } return(status); } /** * aac_consumer_free - free consumer entry * @dev: Adapter * @q: Queue * @qid: Queue ident * * Frees up the current top of the queue we are a consumer of. If the * queue was full notify the producer that the queue is no longer full. */ void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) { int wasfull = 0; u32 notify; if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) wasfull = 1; if (le32_to_cpu(*q->headers.consumer) >= q->entries) *q->headers.consumer = cpu_to_le32(1); else le32_add_cpu(q->headers.consumer, 1); if (wasfull) { switch (qid) { case HostNormCmdQueue: notify = HostNormCmdNotFull; break; case HostNormRespQueue: notify = HostNormRespNotFull; break; default: BUG(); return; } aac_adapter_notify(dev, notify); } } /** * aac_fib_adapter_complete - complete adapter issued fib * @fibptr: fib to complete * @size: size of fib * * Will do all necessary work to complete a FIB that was sent from * the adapter. */ int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) { struct hw_fib * hw_fib = fibptr->hw_fib_va; struct aac_dev * dev = fibptr->dev; struct aac_queue * q; unsigned long nointr = 0; unsigned long qflags; if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { kfree(hw_fib); return 0; } if (hw_fib->header.XferState == 0) { if (dev->comm_interface == AAC_COMM_MESSAGE) kfree(hw_fib); return 0; } /* * If we plan to do anything check the structure type first. */ if (hw_fib->header.StructType != FIB_MAGIC && hw_fib->header.StructType != FIB_MAGIC2 && hw_fib->header.StructType != FIB_MAGIC2_64) { if (dev->comm_interface == AAC_COMM_MESSAGE) kfree(hw_fib); return -EINVAL; } /* * This block handles the case where the adapter had sent us a * command and we have finished processing the command. We * call completeFib when we are done processing the command * and want to send a response back to the adapter. This will * send the completed cdb to the adapter. */ if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { if (dev->comm_interface == AAC_COMM_MESSAGE) { kfree (hw_fib); } else { u32 index; hw_fib->header.XferState |= cpu_to_le32(HostProcessed); if (size) { size += sizeof(struct aac_fibhdr); if (size > le16_to_cpu(hw_fib->header.SenderSize)) return -EMSGSIZE; hw_fib->header.Size = cpu_to_le16(size); } q = &dev->queues->queue[AdapNormRespQueue]; spin_lock_irqsave(q->lock, qflags); aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); *(q->headers.producer) = cpu_to_le32(index + 1); spin_unlock_irqrestore(q->lock, qflags); if (!(nointr & (int)aac_config.irq_mod)) aac_adapter_notify(dev, AdapNormRespQueue); } } else { printk(KERN_WARNING "aac_fib_adapter_complete: " "Unknown xferstate detected.\n"); BUG(); } return 0; } /** * aac_fib_complete - fib completion handler * @fib: FIB to complete * * Will do all necessary work to complete a FIB. */ int aac_fib_complete(struct fib *fibptr) { struct hw_fib * hw_fib = fibptr->hw_fib_va; if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { fib_dealloc(fibptr); return 0; } /* * Check for a fib which has already been completed or with a * status wait timeout */ if (hw_fib->header.XferState == 0 || fibptr->done == 2) return 0; /* * If we plan to do anything check the structure type first. */ if (hw_fib->header.StructType != FIB_MAGIC && hw_fib->header.StructType != FIB_MAGIC2 && hw_fib->header.StructType != FIB_MAGIC2_64) return -EINVAL; /* * This block completes a cdb which orginated on the host and we * just need to deallocate the cdb or reinit it. At this point the * command is complete that we had sent to the adapter and this * cdb could be reused. */ if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) { fib_dealloc(fibptr); } else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) { /* * This handles the case when the host has aborted the I/O * to the adapter because the adapter is not responding */ fib_dealloc(fibptr); } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { fib_dealloc(fibptr); } else { BUG(); } return 0; } /** * aac_printf - handle printf from firmware * @dev: Adapter * @val: Message info * * Print a message passed to us by the controller firmware on the * Adaptec board */ void aac_printf(struct aac_dev *dev, u32 val) { char *cp = dev->printfbuf; if (dev->printf_enabled) { int length = val & 0xffff; int level = (val >> 16) & 0xffff; /* * The size of the printfbuf is set in port.c * There is no variable or define for it */ if (length > 255) length = 255; if (cp[length] != 0) cp[length] = 0; if (level == LOG_AAC_HIGH_ERROR) printk(KERN_WARNING "%s:%s", dev->name, cp); else printk(KERN_INFO "%s:%s", dev->name, cp); } memset(cp, 0, 256); } static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) { return le32_to_cpu(((__le32 *)aifcmd->data)[index]); } static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) { switch (aac_aif_data(aifcmd, 1)) { case AifBuCacheDataLoss: if (aac_aif_data(aifcmd, 2)) dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", aac_aif_data(aifcmd, 2)); else dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); break; case AifBuCacheDataRecover: if (aac_aif_data(aifcmd, 2)) dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", aac_aif_data(aifcmd, 2)); else dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); break; } } /** * aac_handle_aif - Handle a message from the firmware * @dev: Which adapter this fib is from * @fibptr: Pointer to fibptr from adapter * * This routine handles a driver notify fib from the adapter and * dispatches it to the appropriate routine for handling. */ #define AIF_SNIFF_TIMEOUT (500*HZ) static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) { struct hw_fib * hw_fib = fibptr->hw_fib_va; struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; u32 channel, id, lun, container; struct scsi_device *device; enum { NOTHING, DELETE, ADD, CHANGE } device_config_needed = NOTHING; /* Sniff for container changes */ if (!dev || !dev->fsa_dev) return; container = channel = id = lun = (u32)-1; /* * We have set this up to try and minimize the number of * re-configures that take place. As a result of this when * certain AIF's come in we will set a flag waiting for another * type of AIF before setting the re-config flag. */ switch (le32_to_cpu(aifcmd->command)) { case AifCmdDriverNotify: switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { case AifRawDeviceRemove: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if ((container >> 28)) { container = (u32)-1; break; } channel = (container >> 24) & 0xF; if (channel >= dev->maximum_num_channels) { container = (u32)-1; break; } id = container & 0xFFFF; if (id >= dev->maximum_num_physicals) { container = (u32)-1; break; } lun = (container >> 16) & 0xFF; container = (u32)-1; channel = aac_phys_to_logical(channel); device_config_needed = DELETE; break; /* * Morph or Expand complete */ case AifDenMorphComplete: case AifDenVolumeExtendComplete: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; /* * Find the scsi_device associated with the SCSI * address. Make sure we have the right array, and if * so set the flag to initiate a new re-config once we * see an AifEnConfigChange AIF come through. */ if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { device = scsi_device_lookup(dev->scsi_host_ptr, CONTAINER_TO_CHANNEL(container), CONTAINER_TO_ID(container), CONTAINER_TO_LUN(container)); if (device) { dev->fsa_dev[container].config_needed = CHANGE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; scsi_device_put(device); } } } /* * If we are waiting on something and this happens to be * that thing then set the re-configure flag. */ if (container != (u32)-1) { if (container >= dev->maximum_num_containers) break; if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(__le32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } else for (container = 0; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(__le32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } break; case AifCmdEventNotify: switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { case AifEnBatteryEvent: dev->cache_protected = (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); break; /* * Add an Array. */ case AifEnAddContainer: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; dev->fsa_dev[container].config_needed = ADD; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; /* * Delete an Array. */ case AifEnDeleteContainer: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; dev->fsa_dev[container].config_needed = DELETE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; /* * Container change detected. If we currently are not * waiting on something else, setup to wait on a Config Change. */ case AifEnContainerChange: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if (container >= dev->maximum_num_containers) break; if (dev->fsa_dev[container].config_waiting_on && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) break; dev->fsa_dev[container].config_needed = CHANGE; dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; dev->fsa_dev[container].config_waiting_stamp = jiffies; break; case AifEnConfigChange: break; case AifEnAddJBOD: case AifEnDeleteJBOD: container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); if ((container >> 28)) { container = (u32)-1; break; } channel = (container >> 24) & 0xF; if (channel >= dev->maximum_num_channels) { container = (u32)-1; break; } id = container & 0xFFFF; if (id >= dev->maximum_num_physicals) { container = (u32)-1; break; } lun = (container >> 16) & 0xFF; container = (u32)-1; channel = aac_phys_to_logical(channel); device_config_needed = (((__le32 *)aifcmd->data)[0] == cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; if (device_config_needed == ADD) { device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); if (device) { scsi_remove_device(device); scsi_device_put(device); } } break; case AifEnEnclosureManagement: /* * If in JBOD mode, automatic exposure of new * physical target to be suppressed until configured. */ if (dev->jbod) break; switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { case EM_DRIVE_INSERTION: case EM_DRIVE_REMOVAL: case EM_SES_DRIVE_INSERTION: case EM_SES_DRIVE_REMOVAL: container = le32_to_cpu( ((__le32 *)aifcmd->data)[2]); if ((container >> 28)) { container = (u32)-1; break; } channel = (container >> 24) & 0xF; if (channel >= dev->maximum_num_channels) { container = (u32)-1; break; } id = container & 0xFFFF; lun = (container >> 16) & 0xFF; container = (u32)-1; if (id >= dev->maximum_num_physicals) { /* legacy dev_t ? */ if ((0x2000 <= id) || lun || channel || ((channel = (id >> 7) & 0x3F) >= dev->maximum_num_channels)) break; lun = (id >> 4) & 7; id &= 0xF; } channel = aac_phys_to_logical(channel); device_config_needed = ((((__le32 *)aifcmd->data)[3] == cpu_to_le32(EM_DRIVE_INSERTION)) || (((__le32 *)aifcmd->data)[3] == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? ADD : DELETE; break; } case AifBuManagerEvent: aac_handle_aif_bu(dev, aifcmd); break; } /* * If we are waiting on something and this happens to be * that thing then set the re-configure flag. */ if (container != (u32)-1) { if (container >= dev->maximum_num_containers) break; if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(__le32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } else for (container = 0; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == le32_to_cpu(*(__le32 *)aifcmd->data)) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) dev->fsa_dev[container].config_waiting_on = 0; } break; case AifCmdJobProgress: /* * These are job progress AIF's. When a Clear is being * done on a container it is initially created then hidden from * the OS. When the clear completes we don't get a config * change so we monitor the job status complete on a clear then * wait for a container change. */ if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { for (container = 0; container < dev->maximum_num_containers; ++container) { /* * Stomp on all config sequencing for all * containers? */ dev->fsa_dev[container].config_waiting_on = AifEnContainerChange; dev->fsa_dev[container].config_needed = ADD; dev->fsa_dev[container].config_waiting_stamp = jiffies; } } if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && ((__le32 *)aifcmd->data)[6] == 0 && ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { for (container = 0; container < dev->maximum_num_containers; ++container) { /* * Stomp on all config sequencing for all * containers? */ dev->fsa_dev[container].config_waiting_on = AifEnContainerChange; dev->fsa_dev[container].config_needed = DELETE; dev->fsa_dev[container].config_waiting_stamp = jiffies; } } break; } container = 0; retry_next: if (device_config_needed == NOTHING) for (; container < dev->maximum_num_containers; ++container) { if ((dev->fsa_dev[container].config_waiting_on == 0) && (dev->fsa_dev[container].config_needed != NOTHING) && time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { device_config_needed = dev->fsa_dev[container].config_needed; dev->fsa_dev[container].config_needed = NOTHING; channel = CONTAINER_TO_CHANNEL(container); id = CONTAINER_TO_ID(container); lun = CONTAINER_TO_LUN(container); break; } } if (device_config_needed == NOTHING) return; /* * If we decided that a re-configuration needs to be done, * schedule it here on the way out the door, please close the door * behind you. */ /* * Find the scsi_device associated with the SCSI address, * and mark it as changed, invalidating the cache. This deals * with changes to existing device IDs. */ if (!dev || !dev->scsi_host_ptr) return; /* * force reload of disk info via aac_probe_container */ if ((channel == CONTAINER_CHANNEL) && (device_config_needed != NOTHING)) { if (dev->fsa_dev[container].valid == 1) dev->fsa_dev[container].valid = 2; aac_probe_container(dev, container); } device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); if (device) { switch (device_config_needed) { case DELETE: #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) scsi_remove_device(device); #else if (scsi_device_online(device)) { scsi_device_set_state(device, SDEV_OFFLINE); sdev_printk(KERN_INFO, device, "Device offlined - %s\n", (channel == CONTAINER_CHANNEL) ? "array deleted" : "enclosure services event"); } #endif break; case ADD: if (!scsi_device_online(device)) { sdev_printk(KERN_INFO, device, "Device online - %s\n", (channel == CONTAINER_CHANNEL) ? "array created" : "enclosure services event"); scsi_device_set_state(device, SDEV_RUNNING); } /* FALLTHRU */ case CHANGE: if ((channel == CONTAINER_CHANNEL) && (!dev->fsa_dev[container].valid)) { #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) scsi_remove_device(device); #else if (!scsi_device_online(device)) break; scsi_device_set_state(device, SDEV_OFFLINE); sdev_printk(KERN_INFO, device, "Device offlined - %s\n", "array failed"); #endif break; } scsi_rescan_device(&device->sdev_gendev); default: break; } scsi_device_put(device); device_config_needed = NOTHING; } if (device_config_needed == ADD) scsi_add_device(dev->scsi_host_ptr, channel, id, lun); if (channel == CONTAINER_CHANNEL) { container++; device_config_needed = NOTHING; goto retry_next; } } static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) { int index, quirks; int retval; struct Scsi_Host *host; struct scsi_device *dev; struct scsi_cmnd *command; struct scsi_cmnd *command_list; int jafo = 0; int bled; u64 dmamask; int num_of_fibs = 0; /* * Assumptions: * - host is locked, unless called by the aacraid thread. * (a matter of convenience, due to legacy issues surrounding * eh_host_adapter_reset). * - in_reset is asserted, so no new i/o is getting to the * card. * - The card is dead, or will be very shortly ;-/ so no new * commands are completing in the interrupt service. */ host = aac->scsi_host_ptr; scsi_block_requests(host); aac_adapter_disable_int(aac); if (aac->thread->pid != current->pid) { spin_unlock_irq(host->host_lock); kthread_stop(aac->thread); jafo = 1; } /* * If a positive health, means in a known DEAD PANIC * state and the adapter could be reset to `try again'. */ bled = forced ? 0 : aac_adapter_check_health(aac); retval = aac_adapter_restart(aac, bled, reset_type); if (retval) goto out; /* * Loop through the fibs, close the synchronous FIBS */ retval = 1; num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; for (index = 0; index < num_of_fibs; index++) { struct fib *fib = &aac->fibs[index]; __le32 XferState = fib->hw_fib_va->header.XferState; bool is_response_expected = false; if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && (XferState & cpu_to_le32(ResponseExpected))) is_response_expected = true; if (is_response_expected || fib->flags & FIB_CONTEXT_FLAG_WAIT) { unsigned long flagv; spin_lock_irqsave(&fib->event_lock, flagv); up(&fib->event_wait); spin_unlock_irqrestore(&fib->event_lock, flagv); schedule(); retval = 0; } } /* Give some extra time for ioctls to complete. */ if (retval == 0) ssleep(2); index = aac->cardtype; /* * Re-initialize the adapter, first free resources, then carefully * apply the initialization sequence to come back again. Only risk * is a change in Firmware dropping cache, it is assumed the caller * will ensure that i/o is queisced and the card is flushed in that * case. */ aac_fib_map_free(aac); dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, aac->comm_phys); aac->comm_addr = NULL; aac->comm_phys = 0; kfree(aac->queues); aac->queues = NULL; aac_free_irq(aac); kfree(aac->fsa_dev); aac->fsa_dev = NULL; dmamask = DMA_BIT_MASK(32); quirks = aac_get_driver_ident(index)->quirks; if (quirks & AAC_QUIRK_31BIT) retval = pci_set_dma_mask(aac->pdev, dmamask); else if (!(quirks & AAC_QUIRK_SRC)) retval = pci_set_dma_mask(aac->pdev, dmamask); else retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); if (quirks & AAC_QUIRK_31BIT && !retval) { dmamask = DMA_BIT_MASK(31); retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); } if (retval) goto out; if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) goto out; if (jafo) { aac->thread = kthread_run(aac_command_thread, aac, "%s", aac->name); if (IS_ERR(aac->thread)) { retval = PTR_ERR(aac->thread); goto out; } } (void)aac_get_adapter_info(aac); if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { host->sg_tablesize = 34; host->max_sectors = (host->sg_tablesize * 8) + 112; } if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { host->sg_tablesize = 17; host->max_sectors = (host->sg_tablesize * 8) + 112; } aac_get_config_status(aac, 1); aac_get_containers(aac); /* * This is where the assumption that the Adapter is quiesced * is important. */ command_list = NULL; __shost_for_each_device(dev, host) { unsigned long flags; spin_lock_irqsave(&dev->list_lock, flags); list_for_each_entry(command, &dev->cmd_list, list) if (command->SCp.phase == AAC_OWNER_FIRMWARE) { command->SCp.buffer = (struct scatterlist *)command_list; command_list = command; } spin_unlock_irqrestore(&dev->list_lock, flags); } while ((command = command_list)) { command_list = (struct scsi_cmnd *)command->SCp.buffer; command->SCp.buffer = NULL; command->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; command->SCp.phase = AAC_OWNER_ERROR_HANDLER; command->scsi_done(command); } /* * Any Device that was already marked offline needs to be marked * running */ __shost_for_each_device(dev, host) { if (!scsi_device_online(dev)) scsi_device_set_state(dev, SDEV_RUNNING); } retval = 0; out: aac->in_reset = 0; scsi_unblock_requests(host); /* * Issue bus rescan to catch any configuration that might have * occurred */ if (!retval && !is_kdump_kernel()) { dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); aac_schedule_safw_scan_worker(aac); } if (jafo) { spin_lock_irq(host->host_lock); } return retval; } int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) { unsigned long flagv = 0; int retval; struct Scsi_Host * host; int bled; if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) return -EBUSY; if (aac->in_reset) { spin_unlock_irqrestore(&aac->fib_lock, flagv); return -EBUSY; } aac->in_reset = 1; spin_unlock_irqrestore(&aac->fib_lock, flagv); /* * Wait for all commands to complete to this specific * target (block maximum 60 seconds). Although not necessary, * it does make us a good storage citizen. */ host = aac->scsi_host_ptr; scsi_block_requests(host); /* Quiesce build, flush cache, write through mode */ if (forced < 2) aac_send_shutdown(aac); spin_lock_irqsave(host->host_lock, flagv); bled = forced ? forced : (aac_check_reset != 0 && aac_check_reset != 1); retval = _aac_reset_adapter(aac, bled, reset_type); spin_unlock_irqrestore(host->host_lock, flagv); if ((forced < 2) && (retval == -ENODEV)) { /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ struct fib * fibctx = aac_fib_alloc(aac); if (fibctx) { struct aac_pause *cmd; int status; aac_fib_init(fibctx); cmd = (struct aac_pause *) fib_data(fibctx); cmd->command = cpu_to_le32(VM_ContainerConfig); cmd->type = cpu_to_le32(CT_PAUSE_IO); cmd->timeout = cpu_to_le32(1); cmd->min = cpu_to_le32(1); cmd->noRescan = cpu_to_le32(1); cmd->count = cpu_to_le32(0); status = aac_fib_send(ContainerCommand, fibctx, sizeof(struct aac_pause), FsaNormal, -2 /* Timeout silently */, 1, NULL, NULL); if (status >= 0) aac_fib_complete(fibctx); /* FIB should be freed only after getting * the response from the F/W */ if (status != -ERESTARTSYS) aac_fib_free(fibctx); } } return retval; } int aac_check_health(struct aac_dev * aac) { int BlinkLED; unsigned long time_now, flagv = 0; struct list_head * entry; /* Extending the scope of fib_lock slightly to protect aac->in_reset */ if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) return 0; if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { spin_unlock_irqrestore(&aac->fib_lock, flagv); return 0; /* OK */ } aac->in_reset = 1; /* Fake up an AIF: * aac_aifcmd.command = AifCmdEventNotify = 1 * aac_aifcmd.seqnum = 0xFFFFFFFF * aac_aifcmd.data[0] = AifEnExpEvent = 23 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 * aac.aifcmd.data[2] = AifHighPriority = 3 * aac.aifcmd.data[3] = BlinkLED */ time_now = jiffies/HZ; entry = aac->fib_list.next; /* * For each Context that is on the * fibctxList, make a copy of the * fib, and then set the event to wake up the * thread that is waiting for it. */ while (entry != &aac->fib_list) { /* * Extract the fibctx */ struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); struct hw_fib * hw_fib; struct fib * fib; /* * Check if the queue is getting * backlogged */ if (fibctx->count > 20) { /* * It's *not* jiffies folks, * but jiffies / HZ, so do not * panic ... */ u32 time_last = fibctx->jiffies; /* * Has it been > 2 minutes * since the last read off * the queue? */ if ((time_now - time_last) > aif_timeout) { entry = entry->next; aac_close_fib_context(aac, fibctx); continue; } } /* * Warning: no sleep allowed while * holding spinlock */ hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); if (fib && hw_fib) { struct aac_aifcmd * aif; fib->hw_fib_va = hw_fib; fib->dev = aac; aac_fib_init(fib); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof (struct fib); fib->data = hw_fib->data; aif = (struct aac_aifcmd *)hw_fib->data; aif->command = cpu_to_le32(AifCmdEventNotify); aif->seqnum = cpu_to_le32(0xFFFFFFFF); ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); /* * Put the FIB onto the * fibctx's fibs */ list_add_tail(&fib->fiblink, &fibctx->fib_list); fibctx->count++; /* * Set the event to wake up the * thread that will waiting. */ up(&fibctx->wait_sem); } else { printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); kfree(fib); kfree(hw_fib); } entry = entry->next; } spin_unlock_irqrestore(&aac->fib_lock, flagv); if (BlinkLED < 0) { printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", aac->name, BlinkLED); goto out; } printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); out: aac->in_reset = 0; return BlinkLED; } static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) { return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; } static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, int bus, int target) { if (bus != CONTAINER_CHANNEL) bus = aac_phys_to_logical(bus); return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); } static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) { if (bus != CONTAINER_CHANNEL) bus = aac_phys_to_logical(bus); return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); } static void aac_put_safw_scsi_device(struct scsi_device *sdev) { if (sdev) scsi_device_put(sdev); } static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) { struct scsi_device *sdev; sdev = aac_lookup_safw_scsi_device(dev, bus, target); scsi_remove_device(sdev); aac_put_safw_scsi_device(sdev); } static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, int bus, int target) { return dev->hba_map[bus][target].scan_counter == dev->scan_counter; } static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) { if (is_safw_raid_volume(dev, bus, target)) return dev->fsa_dev[target].valid; else return aac_is_safw_scan_count_equal(dev, bus, target); } static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) { int is_exposed = 0; struct scsi_device *sdev; sdev = aac_lookup_safw_scsi_device(dev, bus, target); if (sdev) is_exposed = 1; aac_put_safw_scsi_device(sdev); return is_exposed; } static int aac_update_safw_host_devices(struct aac_dev *dev, int rescan) { int i; int bus; int target; int is_exposed = 0; int rcode = 0; rcode = aac_setup_safw_adapter(dev, rescan); if (unlikely(rcode < 0)) { goto out; } for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { bus = get_bus_number(i); target = get_target_number(i); is_exposed = aac_is_safw_device_exposed(dev, bus, target); if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) aac_add_safw_device(dev, bus, target); else if (!aac_is_safw_target_valid(dev, bus, target) && is_exposed) aac_remove_safw_device(dev, bus, target); } out: return rcode; } static int aac_scan_safw_host(struct aac_dev *dev, int rescan) { int rcode = 0; rcode = aac_update_safw_host_devices(dev, rescan); if (rcode) aac_schedule_safw_scan_worker(dev); return rcode; } int aac_scan_host(struct aac_dev *dev, int rescan) { int rcode = 0; mutex_lock(&dev->scan_mutex); if (dev->sa_firmware) rcode = aac_scan_safw_host(dev, rescan); else scsi_scan_host(dev->scsi_host_ptr); mutex_unlock(&dev->scan_mutex); return rcode; } /** * aac_handle_sa_aif Handle a message from the firmware * @dev: Which adapter this fib is from * @fibptr: Pointer to fibptr from adapter * * This routine handles a driver notify fib from the adapter and * dispatches it to the appropriate routine for handling. */ static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) { int i; u32 events = 0; if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) events = SA_AIF_HOTPLUG; else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) events = SA_AIF_HARDWARE; else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) events = SA_AIF_PDEV_CHANGE; else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) events = SA_AIF_LDEV_CHANGE; else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) events = SA_AIF_BPSTAT_CHANGE; else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) events = SA_AIF_BPCFG_CHANGE; switch (events) { case SA_AIF_HOTPLUG: case SA_AIF_HARDWARE: case SA_AIF_PDEV_CHANGE: case SA_AIF_LDEV_CHANGE: case SA_AIF_BPCFG_CHANGE: aac_scan_host(dev, AAC_RESCAN); break; case SA_AIF_BPSTAT_CHANGE: /* currently do nothing */ break; } for (i = 1; i <= 10; ++i) { events = src_readl(dev, MUnit.IDR); if (events & (1<<23)) { pr_warn(" AIF not cleared by firmware - %d/%d)\n", i, 10); ssleep(1); } } } static int get_fib_count(struct aac_dev *dev) { unsigned int num = 0; struct list_head *entry; unsigned long flagv; /* * Warning: no sleep allowed while * holding spinlock. We take the estimate * and pre-allocate a set of fibs outside the * lock. */ num = le32_to_cpu(dev->init->r7.adapter_fibs_size) / sizeof(struct hw_fib); /* some extra */ spin_lock_irqsave(&dev->fib_lock, flagv); entry = dev->fib_list.next; while (entry != &dev->fib_list) { entry = entry->next; ++num; } spin_unlock_irqrestore(&dev->fib_lock, flagv); return num; } static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, struct fib **fib_pool, unsigned int num) { struct hw_fib **hw_fib_p; struct fib **fib_p; hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (hw_fib_p < &hw_fib_pool[num]) { *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); if (!(*(hw_fib_p++))) { --hw_fib_p; break; } *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); if (!(*(fib_p++))) { kfree(*(--hw_fib_p)); break; } } /* * Get the actual number of allocated fibs */ num = hw_fib_p - hw_fib_pool; return num; } static void wakeup_fibctx_threads(struct aac_dev *dev, struct hw_fib **hw_fib_pool, struct fib **fib_pool, struct fib *fib, struct hw_fib *hw_fib, unsigned int num) { unsigned long flagv; struct list_head *entry; struct hw_fib **hw_fib_p; struct fib **fib_p; u32 time_now, time_last; struct hw_fib *hw_newfib; struct fib *newfib; struct aac_fib_context *fibctx; time_now = jiffies/HZ; spin_lock_irqsave(&dev->fib_lock, flagv); entry = dev->fib_list.next; /* * For each Context that is on the * fibctxList, make a copy of the * fib, and then set the event to wake up the * thread that is waiting for it. */ hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (entry != &dev->fib_list) { /* * Extract the fibctx */ fibctx = list_entry(entry, struct aac_fib_context, next); /* * Check if the queue is getting * backlogged */ if (fibctx->count > 20) { /* * It's *not* jiffies folks, * but jiffies / HZ so do not * panic ... */ time_last = fibctx->jiffies; /* * Has it been > 2 minutes * since the last read off * the queue? */ if ((time_now - time_last) > aif_timeout) { entry = entry->next; aac_close_fib_context(dev, fibctx); continue; } } /* * Warning: no sleep allowed while * holding spinlock */ if (hw_fib_p >= &hw_fib_pool[num]) { pr_warn("aifd: didn't allocate NewFib\n"); entry = entry->next; continue; } hw_newfib = *hw_fib_p; *(hw_fib_p++) = NULL; newfib = *fib_p; *(fib_p++) = NULL; /* * Make the copy of the FIB */ memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); memcpy(newfib, fib, sizeof(struct fib)); newfib->hw_fib_va = hw_newfib; /* * Put the FIB onto the * fibctx's fibs */ list_add_tail(&newfib->fiblink, &fibctx->fib_list); fibctx->count++; /* * Set the event to wake up the * thread that is waiting. */ up(&fibctx->wait_sem); entry = entry->next; } /* * Set the status of this FIB */ *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); aac_fib_adapter_complete(fib, sizeof(u32)); spin_unlock_irqrestore(&dev->fib_lock, flagv); } static void aac_process_events(struct aac_dev *dev) { struct hw_fib *hw_fib; struct fib *fib; unsigned long flags; spinlock_t *t_lock; t_lock = dev->queues->queue[HostNormCmdQueue].lock; spin_lock_irqsave(t_lock, flags); while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { struct list_head *entry; struct aac_aifcmd *aifcmd; unsigned int num; struct hw_fib **hw_fib_pool, **hw_fib_p; struct fib **fib_pool, **fib_p; set_current_state(TASK_RUNNING); entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; list_del(entry); t_lock = dev->queues->queue[HostNormCmdQueue].lock; spin_unlock_irqrestore(t_lock, flags); fib = list_entry(entry, struct fib, fiblink); hw_fib = fib->hw_fib_va; if (dev->sa_firmware) { /* Thor AIF */ aac_handle_sa_aif(dev, fib); aac_fib_adapter_complete(fib, (u16)sizeof(u32)); goto free_fib; } /* * We will process the FIB here or pass it to a * worker thread that is TBD. We Really can't * do anything at this point since we don't have * anything defined for this thread to do. */ memset(fib, 0, sizeof(struct fib)); fib->type = FSAFS_NTC_FIB_CONTEXT; fib->size = sizeof(struct fib); fib->hw_fib_va = hw_fib; fib->data = hw_fib->data; fib->dev = dev; /* * We only handle AifRequest fibs from the adapter. */ aifcmd = (struct aac_aifcmd *) hw_fib->data; if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { /* Handle Driver Notify Events */ aac_handle_aif(dev, fib); *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); aac_fib_adapter_complete(fib, (u16)sizeof(u32)); goto free_fib; } /* * The u32 here is important and intended. We are using * 32bit wrapping time to fit the adapter field */ /* Sniff events */ if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { aac_handle_aif(dev, fib); } /* * get number of fibs to process */ num = get_fib_count(dev); if (!num) goto free_fib; hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), GFP_KERNEL); if (!hw_fib_pool) goto free_fib; fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); if (!fib_pool) goto free_hw_fib_pool; /* * Fill up fib pointer pools with actual fibs * and hw_fibs */ num = fillup_pools(dev, hw_fib_pool, fib_pool, num); if (!num) goto free_mem; /* * wakeup the thread that is waiting for * the response from fw (ioctl) */ wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, fib, hw_fib, num); free_mem: /* Free up the remaining resources */ hw_fib_p = hw_fib_pool; fib_p = fib_pool; while (hw_fib_p < &hw_fib_pool[num]) { kfree(*hw_fib_p); kfree(*fib_p); ++fib_p; ++hw_fib_p; } kfree(fib_pool); free_hw_fib_pool: kfree(hw_fib_pool); free_fib: kfree(fib); t_lock = dev->queues->queue[HostNormCmdQueue].lock; spin_lock_irqsave(t_lock, flags); } /* * There are no more AIF's */ t_lock = dev->queues->queue[HostNormCmdQueue].lock; spin_unlock_irqrestore(t_lock, flags); } static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, u32 datasize) { struct aac_srb *srbcmd; struct sgmap64 *sg64; dma_addr_t addr; char *dma_buf; struct fib *fibptr; int ret = -ENOMEM; u32 vbus, vid; fibptr = aac_fib_alloc(dev); if (!fibptr) goto out; dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, GFP_KERNEL); if (!dma_buf) goto fib_free_out; aac_fib_init(fibptr); vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); srbcmd = (struct aac_srb *)fib_data(fibptr); srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); srbcmd->channel = cpu_to_le32(vbus); srbcmd->id = cpu_to_le32(vid); srbcmd->lun = 0; srbcmd->flags = cpu_to_le32(SRB_DataOut); srbcmd->timeout = cpu_to_le32(10); srbcmd->retry_limit = 0; srbcmd->cdb_size = cpu_to_le32(12); srbcmd->count = cpu_to_le32(datasize); memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); srbcmd->cdb[0] = BMIC_OUT; srbcmd->cdb[6] = WRITE_HOST_WELLNESS; memcpy(dma_buf, (char *)wellness_str, datasize); sg64 = (struct sgmap64 *)&srbcmd->sg; sg64->count = cpu_to_le32(1); sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); sg64->sg[0].count = cpu_to_le32(datasize); ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), FsaNormal, 1, 1, NULL, NULL); dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); /* * Do not set XferState to zero unless * receives a response from F/W */ if (ret >= 0) aac_fib_complete(fibptr); /* * FIB should be freed only after * getting the response from the F/W */ if (ret != -ERESTARTSYS) goto fib_free_out; out: return ret; fib_free_out: aac_fib_free(fibptr); goto out; } int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) { struct tm cur_tm; char wellness_str[] = "TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; u32 datasize = sizeof(wellness_str); time64_t local_time; int ret = -ENODEV; if (!dev->sa_firmware) goto out; local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); time64_to_tm(local_time, 0, &cur_tm); cur_tm.tm_mon += 1; cur_tm.tm_year += 1900; wellness_str[8] = bin2bcd(cur_tm.tm_hour); wellness_str[9] = bin2bcd(cur_tm.tm_min); wellness_str[10] = bin2bcd(cur_tm.tm_sec); wellness_str[12] = bin2bcd(cur_tm.tm_mon); wellness_str[13] = bin2bcd(cur_tm.tm_mday); wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); ret = aac_send_wellness_command(dev, wellness_str, datasize); out: return ret; } int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) { int ret = -ENOMEM; struct fib *fibptr; __le32 *info; fibptr = aac_fib_alloc(dev); if (!fibptr) goto out; aac_fib_init(fibptr); info = (__le32 *)fib_data(fibptr); *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 1, 1, NULL, NULL); /* * Do not set XferState to zero unless * receives a response from F/W */ if (ret >= 0) aac_fib_complete(fibptr); /* * FIB should be freed only after * getting the response from the F/W */ if (ret != -ERESTARTSYS) aac_fib_free(fibptr); out: return ret; } /** * aac_command_thread - command processing thread * @dev: Adapter to monitor * * Waits on the commandready event in it's queue. When the event gets set * it will pull FIBs off it's queue. It will continue to pull FIBs off * until the queue is empty. When the queue is empty it will wait for * more FIBs. */ int aac_command_thread(void *data) { struct aac_dev *dev = data; DECLARE_WAITQUEUE(wait, current); unsigned long next_jiffies = jiffies + HZ; unsigned long next_check_jiffies = next_jiffies; long difference = HZ; /* * We can only have one thread per adapter for AIF's. */ if (dev->aif_thread) return -EINVAL; /* * Let the DPC know it has a place to send the AIF's to. */ dev->aif_thread = 1; add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); set_current_state(TASK_INTERRUPTIBLE); dprintk ((KERN_INFO "aac_command_thread start\n")); while (1) { aac_process_events(dev); /* * Background activity */ if ((time_before(next_check_jiffies,next_jiffies)) && ((difference = next_check_jiffies - jiffies) <= 0)) { next_check_jiffies = next_jiffies; if (aac_adapter_check_health(dev) == 0) { difference = ((long)(unsigned)check_interval) * HZ; next_check_jiffies = jiffies + difference; } else if (!dev->queues) break; } if (!time_before(next_check_jiffies,next_jiffies) && ((difference = next_jiffies - jiffies) <= 0)) { struct timespec64 now; int ret; /* Don't even try to talk to adapter if its sick */ ret = aac_adapter_check_health(dev); if (ret || !dev->queues) break; next_check_jiffies = jiffies + ((long)(unsigned)check_interval) * HZ; ktime_get_real_ts64(&now); /* Synchronize our watches */ if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) && (now.tv_nsec > (NSEC_PER_SEC / HZ))) difference = (((NSEC_PER_SEC - now.tv_nsec) * HZ) + NSEC_PER_SEC / 2) / NSEC_PER_SEC; else { if (now.tv_nsec > NSEC_PER_SEC / 2) ++now.tv_sec; if (dev->sa_firmware) ret = aac_send_safw_hostttime(dev, &now); else ret = aac_send_hosttime(dev, &now); difference = (long)(unsigned)update_interval*HZ; } next_jiffies = jiffies + difference; if (time_before(next_check_jiffies,next_jiffies)) difference = next_check_jiffies - jiffies; } if (difference <= 0) difference = 1; set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) break; schedule_timeout(difference); if (kthread_should_stop()) break; } if (dev->queues) remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); dev->aif_thread = 0; return 0; } int aac_acquire_irq(struct aac_dev *dev) { int i; int j; int ret = 0; if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { for (i = 0; i < dev->max_msix; i++) { dev->aac_msix[i].vector_no = i; dev->aac_msix[i].dev = dev; if (request_irq(pci_irq_vector(dev->pdev, i), dev->a_ops.adapter_intr, 0, "aacraid", &(dev->aac_msix[i]))) { printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", dev->name, dev->id, i); for (j = 0 ; j < i ; j++) free_irq(pci_irq_vector(dev->pdev, j), &(dev->aac_msix[j])); pci_disable_msix(dev->pdev); ret = -1; } } } else { dev->aac_msix[0].vector_no = 0; dev->aac_msix[0].dev = dev; if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, IRQF_SHARED, "aacraid", &(dev->aac_msix[0])) < 0) { if (dev->msi) pci_disable_msi(dev->pdev); printk(KERN_ERR "%s%d: Interrupt unavailable.\n", dev->name, dev->id); ret = -1; } } return ret; } void aac_free_irq(struct aac_dev *dev) { int i; int cpu; cpu = cpumask_first(cpu_online_mask); if (aac_is_src(dev)) { if (dev->max_msix > 1) { for (i = 0; i < dev->max_msix; i++) free_irq(pci_irq_vector(dev->pdev, i), &(dev->aac_msix[i])); } else { free_irq(dev->pdev->irq, &(dev->aac_msix[0])); } } else { free_irq(dev->pdev->irq, dev); } if (dev->msi) pci_disable_msi(dev->pdev); else if (dev->max_msix > 1) pci_disable_msix(dev->pdev); }