/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2008 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include #include #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "mac.h" #include "spi.h" #include "falcon.h" #include "regs.h" #include "io.h" #include "mdio_10g.h" #include "phy.h" #include "workarounds.h" /* Falcon hardware control. * Falcon is the internal codename for the SFC4000 controller that is * present in SFE400X evaluation boards */ /** * struct falcon_nic_data - Falcon NIC state * @pci_dev2: The secondary PCI device if present * @i2c_data: Operations and state for I2C bit-bashing algorithm */ struct falcon_nic_data { struct pci_dev *pci_dev2; struct i2c_algo_bit_data i2c_data; }; /************************************************************************** * * Configurable values * ************************************************************************** */ static int disable_dma_stats; /* This is set to 16 for a good reason. In summary, if larger than * 16, the descriptor cache holds more than a default socket * buffer's worth of packets (for UDP we can only have at most one * socket buffer's worth outstanding). This combined with the fact * that we only get 1 TX event per descriptor cache means the NIC * goes idle. */ #define TX_DC_ENTRIES 16 #define TX_DC_ENTRIES_ORDER 0 #define TX_DC_BASE 0x130000 #define RX_DC_ENTRIES 64 #define RX_DC_ENTRIES_ORDER 2 #define RX_DC_BASE 0x100000 static const unsigned int /* "Large" EEPROM device: Atmel AT25640 or similar * 8 KB, 16-bit address, 32 B write block */ large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), /* Default flash device: Atmel AT25F1024 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); /* RX FIFO XOFF watermark * * When the amount of the RX FIFO increases used increases past this * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A) * This also has an effect on RX/TX arbitration */ static int rx_xoff_thresh_bytes = -1; module_param(rx_xoff_thresh_bytes, int, 0644); MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold"); /* RX FIFO XON watermark * * When the amount of the RX FIFO used decreases below this * watermark send XON. Only used if TX flow control is enabled (ethtool -A) * This also has an effect on RX/TX arbitration */ static int rx_xon_thresh_bytes = -1; module_param(rx_xon_thresh_bytes, int, 0644); MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold"); /* If FALCON_MAX_INT_ERRORS internal errors occur within * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and * disable it. */ #define FALCON_INT_ERROR_EXPIRE 3600 #define FALCON_MAX_INT_ERRORS 5 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times */ #define FALCON_FLUSH_INTERVAL 10 #define FALCON_FLUSH_POLL_COUNT 100 /************************************************************************** * * Falcon constants * ************************************************************************** */ /* Size and alignment of special buffers (4KB) */ #define FALCON_BUF_SIZE 4096 /* Dummy SRAM size code */ #define SRM_NB_BSZ_ONCHIP_ONLY (-1) #define FALCON_IS_DUAL_FUNC(efx) \ (falcon_rev(efx) < FALCON_REV_B0) /************************************************************************** * * Falcon hardware access * **************************************************************************/ static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, unsigned int index) { efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, value, index); } /* Read the current event from the event queue */ static inline efx_qword_t *falcon_event(struct efx_channel *channel, unsigned int index) { return (((efx_qword_t *) (channel->eventq.addr)) + index); } /* See if an event is present * * We check both the high and low dword of the event for all ones. We * wrote all ones when we cleared the event, and no valid event can * have all ones in either its high or low dwords. This approach is * robust against reordering. * * Note that using a single 64-bit comparison is incorrect; even * though the CPU read will be atomic, the DMA write may not be. */ static inline int falcon_event_present(efx_qword_t *event) { return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | EFX_DWORD_IS_ALL_ONES(event->dword[1]))); } /************************************************************************** * * I2C bus - this is a bit-bashing interface using GPIO pins * Note that it uses the output enables to tristate the outputs * SDA is the data pin and SCL is the clock * ************************************************************************** */ static void falcon_setsda(void *data, int state) { struct efx_nic *efx = (struct efx_nic *)data; efx_oword_t reg; efx_reado(efx, ®, FR_AB_GPIO_CTL); EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); efx_writeo(efx, ®, FR_AB_GPIO_CTL); } static void falcon_setscl(void *data, int state) { struct efx_nic *efx = (struct efx_nic *)data; efx_oword_t reg; efx_reado(efx, ®, FR_AB_GPIO_CTL); EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); efx_writeo(efx, ®, FR_AB_GPIO_CTL); } static int falcon_getsda(void *data) { struct efx_nic *efx = (struct efx_nic *)data; efx_oword_t reg; efx_reado(efx, ®, FR_AB_GPIO_CTL); return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); } static int falcon_getscl(void *data) { struct efx_nic *efx = (struct efx_nic *)data; efx_oword_t reg; efx_reado(efx, ®, FR_AB_GPIO_CTL); return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); } static struct i2c_algo_bit_data falcon_i2c_bit_operations = { .setsda = falcon_setsda, .setscl = falcon_setscl, .getsda = falcon_getsda, .getscl = falcon_getscl, .udelay = 5, /* Wait up to 50 ms for slave to let us pull SCL high */ .timeout = DIV_ROUND_UP(HZ, 20), }; /************************************************************************** * * Falcon special buffer handling * Special buffers are used for event queues and the TX and RX * descriptor rings. * *************************************************************************/ /* * Initialise a Falcon special buffer * * This will define a buffer (previously allocated via * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing * it to be used for event queues, descriptor rings etc. */ static void falcon_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { efx_qword_t buf_desc; int index; dma_addr_t dma_addr; int i; EFX_BUG_ON_PARANOID(!buffer->addr); /* Write buffer descriptors to NIC */ for (i = 0; i < buffer->entries; i++) { index = buffer->index + i; dma_addr = buffer->dma_addr + (i * 4096); EFX_LOG(efx, "mapping special buffer %d at %llx\n", index, (unsigned long long)dma_addr); EFX_POPULATE_QWORD_3(buf_desc, FRF_AZ_BUF_ADR_REGION, 0, FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, FRF_AZ_BUF_OWNER_ID_FBUF, 0); falcon_write_buf_tbl(efx, &buf_desc, index); } } /* Unmaps a buffer from Falcon and clears the buffer table entries */ static void falcon_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { efx_oword_t buf_tbl_upd; unsigned int start = buffer->index; unsigned int end = (buffer->index + buffer->entries - 1); if (!buffer->entries) return; EFX_LOG(efx, "unmapping special buffers %d-%d\n", buffer->index, buffer->index + buffer->entries - 1); EFX_POPULATE_OWORD_4(buf_tbl_upd, FRF_AZ_BUF_UPD_CMD, 0, FRF_AZ_BUF_CLR_CMD, 1, FRF_AZ_BUF_CLR_END_ID, end, FRF_AZ_BUF_CLR_START_ID, start); efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); } /* * Allocate a new Falcon special buffer * * This allocates memory for a new buffer, clears it and allocates a * new buffer ID range. It does not write into Falcon's buffer table. * * This call will allocate 4KB buffers, since Falcon can't use 8KB * buffers for event queues and descriptor rings. */ static int falcon_alloc_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer, unsigned int len) { len = ALIGN(len, FALCON_BUF_SIZE); buffer->addr = pci_alloc_consistent(efx->pci_dev, len, &buffer->dma_addr); if (!buffer->addr) return -ENOMEM; buffer->len = len; buffer->entries = len / FALCON_BUF_SIZE; BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1)); /* All zeros is a potentially valid event so memset to 0xff */ memset(buffer->addr, 0xff, len); /* Select new buffer ID */ buffer->index = efx->next_buffer_table; efx->next_buffer_table += buffer->entries; EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->dma_addr, len, buffer->addr, (u64)virt_to_phys(buffer->addr)); return 0; } static void falcon_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) { if (!buffer->addr) return; EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->dma_addr, buffer->len, buffer->addr, (u64)virt_to_phys(buffer->addr)); pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; buffer->entries = 0; } /************************************************************************** * * Falcon generic buffer handling * These buffers are used for interrupt status and MAC stats * **************************************************************************/ static int falcon_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len) { buffer->addr = pci_alloc_consistent(efx->pci_dev, len, &buffer->dma_addr); if (!buffer->addr) return -ENOMEM; buffer->len = len; memset(buffer->addr, 0, len); return 0; } static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) { if (buffer->addr) { pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, buffer->dma_addr); buffer->addr = NULL; } } /************************************************************************** * * Falcon TX path * **************************************************************************/ /* Returns a pointer to the specified transmit descriptor in the TX * descriptor queue belonging to the specified channel. */ static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) { return (((efx_qword_t *) (tx_queue->txd.addr)) + index); } /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned write_ptr; efx_dword_t reg; write_ptr = tx_queue->write_count & EFX_TXQ_MASK; EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(tx_queue->efx, ®, FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); } /* For each entry inserted into the software descriptor ring, create a * descriptor in the hardware TX descriptor ring (in host memory), and * write a doorbell. */ void falcon_push_buffers(struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer; efx_qword_t *txd; unsigned write_ptr; BUG_ON(tx_queue->write_count == tx_queue->insert_count); do { write_ptr = tx_queue->write_count & EFX_TXQ_MASK; buffer = &tx_queue->buffer[write_ptr]; txd = falcon_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; /* Create TX descriptor ring entry */ EFX_POPULATE_QWORD_4(*txd, FSF_AZ_TX_KER_CONT, buffer->continuation, FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, FSF_AZ_TX_KER_BUF_REGION, 0, FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ falcon_notify_tx_desc(tx_queue); } /* Allocate hardware resources for a TX queue */ int falcon_probe_tx(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 || EFX_TXQ_SIZE & EFX_TXQ_MASK); return falcon_alloc_special_buffer(efx, &tx_queue->txd, EFX_TXQ_SIZE * sizeof(efx_qword_t)); } void falcon_init_tx(struct efx_tx_queue *tx_queue) { efx_oword_t tx_desc_ptr; struct efx_nic *efx = tx_queue->efx; tx_queue->flushed = false; /* Pin TX descriptor ring */ falcon_init_special_buffer(efx, &tx_queue->txd); /* Push TX descriptor ring to card */ EFX_POPULATE_OWORD_10(tx_desc_ptr, FRF_AZ_TX_DESCQ_EN, 1, FRF_AZ_TX_ISCSI_DDIG_EN, 0, FRF_AZ_TX_ISCSI_HDIG_EN, 0, FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, FRF_AZ_TX_DESCQ_EVQ_ID, tx_queue->channel->channel, FRF_AZ_TX_DESCQ_OWNER_ID, 0, FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, FRF_AZ_TX_DESCQ_SIZE, __ffs(tx_queue->txd.entries), FRF_AZ_TX_DESCQ_TYPE, 0, FRF_BZ_TX_NON_IP_DROP_DIS, 1); if (falcon_rev(efx) >= FALCON_REV_B0) { int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM; EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum); EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); } efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, tx_queue->queue); if (falcon_rev(efx) < FALCON_REV_B0) { efx_oword_t reg; /* Only 128 bits in this register */ BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128); efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM) clear_bit_le(tx_queue->queue, (void *)®); else set_bit_le(tx_queue->queue, (void *)®); efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); } } static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; efx_oword_t tx_flush_descq; /* Post a flush command */ EFX_POPULATE_OWORD_2(tx_flush_descq, FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); } void falcon_fini_tx(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; efx_oword_t tx_desc_ptr; /* The queue should have been flushed */ WARN_ON(!tx_queue->flushed); /* Remove TX descriptor ring from card */ EFX_ZERO_OWORD(tx_desc_ptr); efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, tx_queue->queue); /* Unpin TX descriptor ring */ falcon_fini_special_buffer(efx, &tx_queue->txd); } /* Free buffers backing TX queue */ void falcon_remove_tx(struct efx_tx_queue *tx_queue) { falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd); } /************************************************************************** * * Falcon RX path * **************************************************************************/ /* Returns a pointer to the specified descriptor in the RX descriptor queue */ static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { return (((efx_qword_t *) (rx_queue->rxd.addr)) + index); } /* This creates an entry in the RX descriptor queue */ static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) { struct efx_rx_buffer *rx_buf; efx_qword_t *rxd; rxd = falcon_rx_desc(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index); EFX_POPULATE_QWORD_3(*rxd, FSF_AZ_RX_KER_BUF_SIZE, rx_buf->len - rx_queue->efx->type->rx_buffer_padding, FSF_AZ_RX_KER_BUF_REGION, 0, FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } /* This writes to the RX_DESC_WPTR register for the specified receive * descriptor ring. */ void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue) { efx_dword_t reg; unsigned write_ptr; while (rx_queue->notified_count != rx_queue->added_count) { falcon_build_rx_desc(rx_queue, rx_queue->notified_count & EFX_RXQ_MASK); ++rx_queue->notified_count; } wmb(); write_ptr = rx_queue->added_count & EFX_RXQ_MASK; EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(rx_queue->efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue); } int falcon_probe_rx(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 || EFX_RXQ_SIZE & EFX_RXQ_MASK); return falcon_alloc_special_buffer(efx, &rx_queue->rxd, EFX_RXQ_SIZE * sizeof(efx_qword_t)); } void falcon_init_rx(struct efx_rx_queue *rx_queue) { efx_oword_t rx_desc_ptr; struct efx_nic *efx = rx_queue->efx; bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0; bool iscsi_digest_en = is_b0; EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n", rx_queue->queue, rx_queue->rxd.index, rx_queue->rxd.index + rx_queue->rxd.entries - 1); rx_queue->flushed = false; /* Pin RX descriptor ring */ falcon_init_special_buffer(efx, &rx_queue->rxd); /* Push RX descriptor ring to card */ EFX_POPULATE_OWORD_10(rx_desc_ptr, FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, FRF_AZ_RX_DESCQ_EVQ_ID, rx_queue->channel->channel, FRF_AZ_RX_DESCQ_OWNER_ID, 0, FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue, FRF_AZ_RX_DESCQ_SIZE, __ffs(rx_queue->rxd.entries), FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , /* For >=B0 this is scatter so disable */ FRF_AZ_RX_DESCQ_JUMBO, !is_b0, FRF_AZ_RX_DESCQ_EN, 1); efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, rx_queue->queue); } static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; efx_oword_t rx_flush_descq; /* Post a flush command */ EFX_POPULATE_OWORD_2(rx_flush_descq, FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue); efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); } void falcon_fini_rx(struct efx_rx_queue *rx_queue) { efx_oword_t rx_desc_ptr; struct efx_nic *efx = rx_queue->efx; /* The queue should already have been flushed */ WARN_ON(!rx_queue->flushed); /* Remove RX descriptor ring from card */ EFX_ZERO_OWORD(rx_desc_ptr); efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, rx_queue->queue); /* Unpin RX descriptor ring */ falcon_fini_special_buffer(efx, &rx_queue->rxd); } /* Free buffers backing RX queue */ void falcon_remove_rx(struct efx_rx_queue *rx_queue) { falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd); } /************************************************************************** * * Falcon event queue processing * Event queues are processed by per-channel tasklets. * **************************************************************************/ /* Update a channel's event queue's read pointer (RPTR) register * * This writes the EVQ_RPTR_REG register for the specified channel's * event queue. * * Note that EVQ_RPTR_REG contains the index of the "last read" event, * whereas channel->eventq_read_ptr contains the index of the "next to * read" event. */ void falcon_eventq_read_ack(struct efx_channel *channel) { efx_dword_t reg; struct efx_nic *efx = channel->efx; EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr); efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, channel->channel); } /* Use HW to insert a SW defined event */ void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event) { efx_oword_t drv_ev_reg; BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || FRF_AZ_DRV_EV_DATA_WIDTH != 64); drv_ev_reg.u32[0] = event->u32[0]; drv_ev_reg.u32[1] = event->u32[1]; drv_ev_reg.u32[2] = 0; drv_ev_reg.u32[3] = 0; EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); } /* Handle a transmit completion event * * Falcon batches TX completion events; the message we receive is of * the form "complete all TX events up to this index". */ static void falcon_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) { unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; struct efx_tx_queue *tx_queue; struct efx_nic *efx = channel->efx; if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { /* Transmit completion */ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = &efx->tx_queue[tx_ev_q_label]; channel->irq_mod_score += (tx_ev_desc_ptr - tx_queue->read_count) & EFX_TXQ_MASK; efx_xmit_done(tx_queue, tx_ev_desc_ptr); } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { /* Rewrite the FIFO write pointer */ tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = &efx->tx_queue[tx_ev_q_label]; if (efx_dev_registered(efx)) netif_tx_lock(efx->net_dev); falcon_notify_tx_desc(tx_queue); if (efx_dev_registered(efx)) netif_tx_unlock(efx->net_dev); } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && EFX_WORKAROUND_10727(efx)) { efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); } else { EFX_ERR(efx, "channel %d unexpected TX event " EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(*event)); } } /* Detect errors included in the rx_evt_pkt_ok bit. */ static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue, const efx_qword_t *event, bool *rx_ev_pkt_ok, bool *discard) { struct efx_nic *efx = rx_queue->efx; bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; bool rx_ev_other_err, rx_ev_pause_frm; bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned rx_ev_pkt_type; rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR); rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ? 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); /* Every error apart from tobe_disc and pause_frm */ rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); /* Count errors that are not in MAC stats. Ignore expected * checksum errors during self-test. */ if (rx_ev_frm_trunc) ++rx_queue->channel->n_rx_frm_trunc; else if (rx_ev_tobe_disc) ++rx_queue->channel->n_rx_tobe_disc; else if (!efx->loopback_selftest) { if (rx_ev_ip_hdr_chksum_err) ++rx_queue->channel->n_rx_ip_hdr_chksum_err; else if (rx_ev_tcp_udp_chksum_err) ++rx_queue->channel->n_rx_tcp_udp_chksum_err; } if (rx_ev_ip_frag_err) ++rx_queue->channel->n_rx_ip_frag_err; /* The frame must be discarded if any of these are true. */ *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | rx_ev_tobe_disc | rx_ev_pause_frm); /* TOBE_DISC is expected on unicast mismatches; don't print out an * error message. FRM_TRUNC indicates RXDP dropped the packet due * to a FIFO overflow. */ #ifdef EFX_ENABLE_DEBUG if (rx_ev_other_err) { EFX_INFO_RL(efx, " RX queue %d unexpected RX event " EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", rx_queue->queue, EFX_QWORD_VAL(*event), rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", rx_ev_ip_hdr_chksum_err ? " [IP_HDR_CHKSUM_ERR]" : "", rx_ev_tcp_udp_chksum_err ? " [TCP_UDP_CHKSUM_ERR]" : "", rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", rx_ev_drib_nib ? " [DRIB_NIB]" : "", rx_ev_tobe_disc ? " [TOBE_DISC]" : "", rx_ev_pause_frm ? " [PAUSE]" : ""); } #endif } /* Handle receive events that are not in-order. */ static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) { struct efx_nic *efx = rx_queue->efx; unsigned expected, dropped; expected = rx_queue->removed_count & EFX_RXQ_MASK; dropped = (index - expected) & EFX_RXQ_MASK; EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n", dropped, index, expected); efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); } /* Handle a packet received event * * Falcon silicon gives a "discard" flag if it's a unicast packet with the * wrong destination address * Also "is multicast" and "matches multicast filter" flags can be used to * discard non-matching multicast packets. */ static void falcon_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) { unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned expected_ptr; bool rx_ev_pkt_ok, discard = false, checksummed; struct efx_rx_queue *rx_queue; struct efx_nic *efx = channel->efx; /* Basic packet information */ rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != channel->channel); rx_queue = &efx->rx_queue[channel->channel]; rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK; if (unlikely(rx_ev_desc_ptr != expected_ptr)) falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); if (likely(rx_ev_pkt_ok)) { /* If packet is marked as OK and packet type is TCP/IPv4 or * UDP/IPv4, then we can rely on the hardware checksum. */ checksummed = rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP || rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP; } else { falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); checksummed = false; } /* Detect multicast packets that didn't match the filter */ rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); if (rx_ev_mcast_pkt) { unsigned int rx_ev_mcast_hash_match = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); if (unlikely(!rx_ev_mcast_hash_match)) discard = true; } channel->irq_mod_score += 2; /* Handle received packet */ efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, checksummed, discard); } /* Global events are basically PHY events */ static void falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; bool handled = false; if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) || EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) || EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) { efx->phy_op->clear_interrupt(efx); queue_work(efx->workqueue, &efx->phy_work); handled = true; } if ((falcon_rev(efx) >= FALCON_REV_B0) && EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) { queue_work(efx->workqueue, &efx->mac_work); handled = true; } if (falcon_rev(efx) <= FALCON_REV_A1 ? EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) : EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) { EFX_ERR(efx, "channel %d seen global RX_RESET " "event. Resetting.\n", channel->channel); atomic_inc(&efx->rx_reset); efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); handled = true; } if (!handled) EFX_ERR(efx, "channel %d unknown global event " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(*event)); } static void falcon_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; unsigned int ev_sub_code; unsigned int ev_sub_data; ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); switch (ev_sub_code) { case FSE_AZ_TX_DESCQ_FLS_DONE_EV: EFX_TRACE(efx, "channel %d TXQ %d flushed\n", channel->channel, ev_sub_data); break; case FSE_AZ_RX_DESCQ_FLS_DONE_EV: EFX_TRACE(efx, "channel %d RXQ %d flushed\n", channel->channel, ev_sub_data); break; case FSE_AZ_EVQ_INIT_DONE_EV: EFX_LOG(efx, "channel %d EVQ %d initialised\n", channel->channel, ev_sub_data); break; case FSE_AZ_SRM_UPD_DONE_EV: EFX_TRACE(efx, "channel %d SRAM update done\n", channel->channel); break; case FSE_AZ_WAKE_UP_EV: EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n", channel->channel, ev_sub_data); break; case FSE_AZ_TIMER_EV: EFX_TRACE(efx, "channel %d RX queue %d timer expired\n", channel->channel, ev_sub_data); break; case FSE_AA_RX_RECOVER_EV: EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. " "Resetting.\n", channel->channel); atomic_inc(&efx->rx_reset); efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); break; case FSE_BZ_RX_DSC_ERROR_EV: EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error." " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); break; case FSE_BZ_TX_DSC_ERROR_EV: EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error." " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); break; default: EFX_TRACE(efx, "channel %d unknown driver event code %d " "data %04x\n", channel->channel, ev_sub_code, ev_sub_data); break; } } int falcon_process_eventq(struct efx_channel *channel, int rx_quota) { unsigned int read_ptr; efx_qword_t event, *p_event; int ev_code; int rx_packets = 0; read_ptr = channel->eventq_read_ptr; do { p_event = falcon_event(channel, read_ptr); event = *p_event; if (!falcon_event_present(&event)) /* End of events */ break; EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(event)); /* Clear this event by marking it all ones */ EFX_SET_QWORD(*p_event); ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); switch (ev_code) { case FSE_AZ_EV_CODE_RX_EV: falcon_handle_rx_event(channel, &event); ++rx_packets; break; case FSE_AZ_EV_CODE_TX_EV: falcon_handle_tx_event(channel, &event); break; case FSE_AZ_EV_CODE_DRV_GEN_EV: channel->eventq_magic = EFX_QWORD_FIELD( event, FSF_AZ_DRV_GEN_EV_MAGIC); EFX_LOG(channel->efx, "channel %d received generated " "event "EFX_QWORD_FMT"\n", channel->channel, EFX_QWORD_VAL(event)); break; case FSE_AZ_EV_CODE_GLOBAL_EV: falcon_handle_global_event(channel, &event); break; case FSE_AZ_EV_CODE_DRIVER_EV: falcon_handle_driver_event(channel, &event); break; default: EFX_ERR(channel->efx, "channel %d unknown event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, ev_code, EFX_QWORD_VAL(event)); } /* Increment read pointer */ read_ptr = (read_ptr + 1) & EFX_EVQ_MASK; } while (rx_packets < rx_quota); channel->eventq_read_ptr = read_ptr; return rx_packets; } void falcon_set_int_moderation(struct efx_channel *channel) { efx_dword_t timer_cmd; struct efx_nic *efx = channel->efx; /* Set timer register */ if (channel->irq_moderation) { EFX_POPULATE_DWORD_2(timer_cmd, FRF_AB_TC_TIMER_MODE, FFE_BB_TIMER_MODE_INT_HLDOFF, FRF_AB_TC_TIMER_VAL, channel->irq_moderation - 1); } else { EFX_POPULATE_DWORD_2(timer_cmd, FRF_AB_TC_TIMER_MODE, FFE_BB_TIMER_MODE_DIS, FRF_AB_TC_TIMER_VAL, 0); } BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, channel->channel); } /* Allocate buffer table entries for event queue */ int falcon_probe_eventq(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 || EFX_EVQ_SIZE & EFX_EVQ_MASK); return falcon_alloc_special_buffer(efx, &channel->eventq, EFX_EVQ_SIZE * sizeof(efx_qword_t)); } void falcon_init_eventq(struct efx_channel *channel) { efx_oword_t evq_ptr; struct efx_nic *efx = channel->efx; EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n", channel->channel, channel->eventq.index, channel->eventq.index + channel->eventq.entries - 1); /* Pin event queue buffer */ falcon_init_special_buffer(efx, &channel->eventq); /* Fill event queue with all ones (i.e. empty events) */ memset(channel->eventq.addr, 0xff, channel->eventq.len); /* Push event queue to card */ EFX_POPULATE_OWORD_3(evq_ptr, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base, channel->channel); falcon_set_int_moderation(channel); } void falcon_fini_eventq(struct efx_channel *channel) { efx_oword_t eventq_ptr; struct efx_nic *efx = channel->efx; /* Remove event queue from card */ EFX_ZERO_OWORD(eventq_ptr); efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base, channel->channel); /* Unpin event queue */ falcon_fini_special_buffer(efx, &channel->eventq); } /* Free buffers backing event queue */ void falcon_remove_eventq(struct efx_channel *channel) { falcon_free_special_buffer(channel->efx, &channel->eventq); } /* Generates a test event on the event queue. A subsequent call to * process_eventq() should pick up the event and place the value of * "magic" into channel->eventq_magic; */ void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic) { efx_qword_t test_event; EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_DRV_GEN_EV, FSF_AZ_DRV_GEN_EV_MAGIC, magic); falcon_generate_event(channel, &test_event); } void falcon_sim_phy_event(struct efx_nic *efx) { efx_qword_t phy_event; EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_GLOBAL_EV); if (EFX_IS10G(efx)) EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1); else EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1); falcon_generate_event(&efx->channel[0], &phy_event); } /************************************************************************** * * Flush handling * **************************************************************************/ static void falcon_poll_flush_events(struct efx_nic *efx) { struct efx_channel *channel = &efx->channel[0]; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; unsigned int read_ptr = channel->eventq_read_ptr; unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK; do { efx_qword_t *event = falcon_event(channel, read_ptr); int ev_code, ev_sub_code, ev_queue; bool ev_failed; if (!falcon_event_present(event)) break; ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { ev_queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); if (ev_queue < EFX_TX_QUEUE_COUNT) { tx_queue = efx->tx_queue + ev_queue; tx_queue->flushed = true; } } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { ev_queue = EFX_QWORD_FIELD( *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); ev_failed = EFX_QWORD_FIELD( *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); if (ev_queue < efx->n_rx_queues) { rx_queue = efx->rx_queue + ev_queue; /* retry the rx flush */ if (ev_failed) falcon_flush_rx_queue(rx_queue); else rx_queue->flushed = true; } } read_ptr = (read_ptr + 1) & EFX_EVQ_MASK; } while (read_ptr != end_ptr); } /* Handle tx and rx flushes at the same time, since they run in * parallel in the hardware and there's no reason for us to * serialise them */ int falcon_flush_queues(struct efx_nic *efx) { struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; int i; bool outstanding; /* Issue flush requests */ efx_for_each_tx_queue(tx_queue, efx) { tx_queue->flushed = false; falcon_flush_tx_queue(tx_queue); } efx_for_each_rx_queue(rx_queue, efx) { rx_queue->flushed = false; falcon_flush_rx_queue(rx_queue); } /* Poll the evq looking for flush completions. Since we're not pushing * any more rx or tx descriptors at this point, we're in no danger of * overflowing the evq whilst we wait */ for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) { msleep(FALCON_FLUSH_INTERVAL); falcon_poll_flush_events(efx); /* Check if every queue has been succesfully flushed */ outstanding = false; efx_for_each_tx_queue(tx_queue, efx) outstanding |= !tx_queue->flushed; efx_for_each_rx_queue(rx_queue, efx) outstanding |= !rx_queue->flushed; if (!outstanding) return 0; } /* Mark the queues as all flushed. We're going to return failure * leading to a reset, or fake up success anyway. "flushed" now * indicates that we tried to flush. */ efx_for_each_tx_queue(tx_queue, efx) { if (!tx_queue->flushed) EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue); tx_queue->flushed = true; } efx_for_each_rx_queue(rx_queue, efx) { if (!rx_queue->flushed) EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue); rx_queue->flushed = true; } if (EFX_WORKAROUND_7803(efx)) return 0; return -ETIMEDOUT; } /************************************************************************** * * Falcon hardware interrupts * The hardware interrupt handler does very little work; all the event * queue processing is carried out by per-channel tasklets. * **************************************************************************/ /* Enable/disable/generate Falcon interrupts */ static inline void falcon_interrupts(struct efx_nic *efx, int enabled, int force) { efx_oword_t int_en_reg_ker; EFX_POPULATE_OWORD_2(int_en_reg_ker, FRF_AZ_KER_INT_KER, force, FRF_AZ_DRV_INT_EN_KER, enabled); efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); } void falcon_enable_interrupts(struct efx_nic *efx) { efx_oword_t int_adr_reg_ker; struct efx_channel *channel; EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ /* Program address */ EFX_POPULATE_OWORD_2(int_adr_reg_ker, FRF_AZ_NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx), FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER); /* Enable interrupts */ falcon_interrupts(efx, 1, 0); /* Force processing of all the channels to get the EVQ RPTRs up to date */ efx_for_each_channel(channel, efx) efx_schedule_channel(channel); } void falcon_disable_interrupts(struct efx_nic *efx) { /* Disable interrupts */ falcon_interrupts(efx, 0, 0); } /* Generate a Falcon test interrupt * Interrupt must already have been enabled, otherwise nasty things * may happen. */ void falcon_generate_interrupt(struct efx_nic *efx) { falcon_interrupts(efx, 1, 1); } /* Acknowledge a legacy interrupt from Falcon * * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. * * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the * BIU. Interrupt acknowledge is read sensitive so must write instead * (then read to ensure the BIU collector is flushed) * * NB most hardware supports MSI interrupts */ static inline void falcon_irq_ack_a1(struct efx_nic *efx) { efx_dword_t reg; EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); efx_writed(efx, ®, FR_AA_INT_ACK_KER); efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); } /* Process a fatal interrupt * Disable bus mastering ASAP and schedule a reset */ static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; efx_oword_t *int_ker = efx->irq_status.addr; efx_oword_t fatal_intr; int error, mem_perr; efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status " EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), EFX_OWORD_VAL(fatal_intr), error ? "disabling bus mastering" : "no recognised error"); if (error == 0) goto out; /* If this is a memory parity error dump which blocks are offending */ mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER); if (mem_perr) { efx_oword_t reg; efx_reado(efx, ®, FR_AZ_MEM_STAT); EFX_ERR(efx, "SYSTEM ERROR: memory parity error " EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg)); } /* Disable both devices */ pci_clear_master(efx->pci_dev); if (FALCON_IS_DUAL_FUNC(efx)) pci_clear_master(nic_data->pci_dev2); falcon_disable_interrupts(efx); /* Count errors and reset or disable the NIC accordingly */ if (efx->int_error_count == 0 || time_after(jiffies, efx->int_error_expire)) { efx->int_error_count = 0; efx->int_error_expire = jiffies + FALCON_INT_ERROR_EXPIRE * HZ; } if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) { EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n"); efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); } else { EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen." "NIC will be disabled\n"); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } out: return IRQ_HANDLED; } /* Handle a legacy interrupt from Falcon * Acknowledges the interrupt and schedule event queue processing. */ static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id) { struct efx_nic *efx = dev_id; efx_oword_t *int_ker = efx->irq_status.addr; irqreturn_t result = IRQ_NONE; struct efx_channel *channel; efx_dword_t reg; u32 queues; int syserr; /* Read the ISR which also ACKs the interrupts */ efx_readd(efx, ®, FR_BZ_INT_ISR0); queues = EFX_EXTRACT_DWORD(reg, 0, 31); /* Check to see if we have a serious error condition */ syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return falcon_fatal_interrupt(efx); /* Schedule processing of any interrupting queues */ efx_for_each_channel(channel, efx) { if ((queues & 1) || falcon_event_present( falcon_event(channel, channel->eventq_read_ptr))) { efx_schedule_channel(channel); result = IRQ_HANDLED; } queues >>= 1; } if (result == IRQ_HANDLED) { efx->last_irq_cpu = raw_smp_processor_id(); EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); } return result; } static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) { struct efx_nic *efx = dev_id; efx_oword_t *int_ker = efx->irq_status.addr; struct efx_channel *channel; int syserr; int queues; /* Check to see if this is our interrupt. If it isn't, we * exit without having touched the hardware. */ if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, raw_smp_processor_id()); return IRQ_NONE; } efx->last_irq_cpu = raw_smp_processor_id(); EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); /* Check to see if we have a serious error condition */ syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return falcon_fatal_interrupt(efx); /* Determine interrupting queues, clear interrupt status * register and acknowledge the device interrupt. */ BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS); queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS); EFX_ZERO_OWORD(*int_ker); wmb(); /* Ensure the vector is cleared before interrupt ack */ falcon_irq_ack_a1(efx); /* Schedule processing of any interrupting queues */ channel = &efx->channel[0]; while (queues) { if (queues & 0x01) efx_schedule_channel(channel); channel++; queues >>= 1; } return IRQ_HANDLED; } /* Handle an MSI interrupt from Falcon * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id) { struct efx_channel *channel = dev_id; struct efx_nic *efx = channel->efx; efx_oword_t *int_ker = efx->irq_status.addr; int syserr; efx->last_irq_cpu = raw_smp_processor_id(); EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); /* Check to see if we have a serious error condition */ syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); if (unlikely(syserr)) return falcon_fatal_interrupt(efx); /* Schedule processing of the channel */ efx_schedule_channel(channel); return IRQ_HANDLED; } /* Setup RSS indirection table. * This maps from the hash value of the packet to RXQ */ static void falcon_setup_rss_indir_table(struct efx_nic *efx) { int i = 0; unsigned long offset; efx_dword_t dword; if (falcon_rev(efx) < FALCON_REV_B0) return; for (offset = FR_BZ_RX_INDIRECTION_TBL; offset < FR_BZ_RX_INDIRECTION_TBL + 0x800; offset += 0x10) { EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, i % efx->n_rx_queues); efx_writed(efx, &dword, offset); i++; } } /* Hook interrupt handler(s) * Try MSI and then legacy interrupts. */ int falcon_init_interrupt(struct efx_nic *efx) { struct efx_channel *channel; int rc; if (!EFX_INT_MODE_USE_MSI(efx)) { irq_handler_t handler; if (falcon_rev(efx) >= FALCON_REV_B0) handler = falcon_legacy_interrupt_b0; else handler = falcon_legacy_interrupt_a1; rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, efx->name, efx); if (rc) { EFX_ERR(efx, "failed to hook legacy IRQ %d\n", efx->pci_dev->irq); goto fail1; } return 0; } /* Hook MSI or MSI-X interrupt */ efx_for_each_channel(channel, efx) { rc = request_irq(channel->irq, falcon_msi_interrupt, IRQF_PROBE_SHARED, /* Not shared */ channel->name, channel); if (rc) { EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq); goto fail2; } } return 0; fail2: efx_for_each_channel(channel, efx) free_irq(channel->irq, channel); fail1: return rc; } void falcon_fini_interrupt(struct efx_nic *efx) { struct efx_channel *channel; efx_oword_t reg; /* Disable MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) { if (channel->irq) free_irq(channel->irq, channel); } /* ACK legacy interrupt */ if (falcon_rev(efx) >= FALCON_REV_B0) efx_reado(efx, ®, FR_BZ_INT_ISR0); else falcon_irq_ack_a1(efx); /* Disable legacy interrupt */ if (efx->legacy_irq) free_irq(efx->legacy_irq, efx); } /************************************************************************** * * EEPROM/flash * ************************************************************************** */ #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) static int falcon_spi_poll(struct efx_nic *efx) { efx_oword_t reg; efx_reado(efx, ®, FR_AB_EE_SPI_HCMD); return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; } /* Wait for SPI command completion */ static int falcon_spi_wait(struct efx_nic *efx) { /* Most commands will finish quickly, so we start polling at * very short intervals. Sometimes the command may have to * wait for VPD or expansion ROM access outside of our * control, so we allow up to 100 ms. */ unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); int i; for (i = 0; i < 10; i++) { if (!falcon_spi_poll(efx)) return 0; udelay(10); } for (;;) { if (!falcon_spi_poll(efx)) return 0; if (time_after_eq(jiffies, timeout)) { EFX_ERR(efx, "timed out waiting for SPI\n"); return -ETIMEDOUT; } schedule_timeout_uninterruptible(1); } } int falcon_spi_cmd(const struct efx_spi_device *spi, unsigned int command, int address, const void *in, void *out, size_t len) { struct efx_nic *efx = spi->efx; bool addressed = (address >= 0); bool reading = (out != NULL); efx_oword_t reg; int rc; /* Input validation */ if (len > FALCON_SPI_MAX_LEN) return -EINVAL; BUG_ON(!mutex_is_locked(&efx->spi_lock)); /* Check that previous command is not still running */ rc = falcon_spi_poll(efx); if (rc) return rc; /* Program address register, if we have an address */ if (addressed) { EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); efx_writeo(efx, ®, FR_AB_EE_SPI_HADR); } /* Program data register, if we have data */ if (in != NULL) { memcpy(®, in, len); efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA); } /* Issue read/write command */ EFX_POPULATE_OWORD_7(reg, FRF_AB_EE_SPI_HCMD_CMD_EN, 1, FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, FRF_AB_EE_SPI_HCMD_DABCNT, len, FRF_AB_EE_SPI_HCMD_READ, reading, FRF_AB_EE_SPI_HCMD_DUBCNT, 0, FRF_AB_EE_SPI_HCMD_ADBCNT, (addressed ? spi->addr_len : 0), FRF_AB_EE_SPI_HCMD_ENC, command); efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD); /* Wait for read/write to complete */ rc = falcon_spi_wait(efx); if (rc) return rc; /* Read data */ if (out != NULL) { efx_reado(efx, ®, FR_AB_EE_SPI_HDATA); memcpy(out, ®, len); } return 0; } static size_t falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start) { return min(FALCON_SPI_MAX_LEN, (spi->block_size - (start & (spi->block_size - 1)))); } static inline u8 efx_spi_munge_command(const struct efx_spi_device *spi, const u8 command, const unsigned int address) { return command | (((address >> 8) & spi->munge_address) << 3); } /* Wait up to 10 ms for buffered write completion */ int falcon_spi_wait_write(const struct efx_spi_device *spi) { struct efx_nic *efx = spi->efx; unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); u8 status; int rc; for (;;) { rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL, &status, sizeof(status)); if (rc) return rc; if (!(status & SPI_STATUS_NRDY)) return 0; if (time_after_eq(jiffies, timeout)) { EFX_ERR(efx, "SPI write timeout on device %d" " last status=0x%02x\n", spi->device_id, status); return -ETIMEDOUT; } schedule_timeout_uninterruptible(1); } } int falcon_spi_read(const struct efx_spi_device *spi, loff_t start, size_t len, size_t *retlen, u8 *buffer) { size_t block_len, pos = 0; unsigned int command; int rc = 0; while (pos < len) { block_len = min(len - pos, FALCON_SPI_MAX_LEN); command = efx_spi_munge_command(spi, SPI_READ, start + pos); rc = falcon_spi_cmd(spi, command, start + pos, NULL, buffer + pos, block_len); if (rc) break; pos += block_len; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) { rc = -EINTR; break; } } if (retlen) *retlen = pos; return rc; } int falcon_spi_write(const struct efx_spi_device *spi, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { u8 verify_buffer[FALCON_SPI_MAX_LEN]; size_t block_len, pos = 0; unsigned int command; int rc = 0; while (pos < len) { rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0); if (rc) break; block_len = min(len - pos, falcon_spi_write_limit(spi, start + pos)); command = efx_spi_munge_command(spi, SPI_WRITE, start + pos); rc = falcon_spi_cmd(spi, command, start + pos, buffer + pos, NULL, block_len); if (rc) break; rc = falcon_spi_wait_write(spi); if (rc) break; command = efx_spi_munge_command(spi, SPI_READ, start + pos); rc = falcon_spi_cmd(spi, command, start + pos, NULL, verify_buffer, block_len); if (memcmp(verify_buffer, buffer + pos, block_len)) { rc = -EIO; break; } pos += block_len; /* Avoid locking up the system */ cond_resched(); if (signal_pending(current)) { rc = -EINTR; break; } } if (retlen) *retlen = pos; return rc; } /************************************************************************** * * MAC wrapper * ************************************************************************** */ static int falcon_reset_macs(struct efx_nic *efx) { efx_oword_t reg; int count; if (falcon_rev(efx) < FALCON_REV_B0) { /* It's not safe to use GLB_CTL_REG to reset the * macs, so instead use the internal MAC resets */ if (!EFX_IS10G(efx)) { EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1); efx_writeo(efx, ®, FR_AB_GM_CFG1); udelay(1000); EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0); efx_writeo(efx, ®, FR_AB_GM_CFG1); udelay(1000); return 0; } else { EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); for (count = 0; count < 10000; count++) { efx_reado(efx, ®, FR_AB_XM_GLB_CFG); if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == 0) return 0; udelay(10); } EFX_ERR(efx, "timed out waiting for XMAC core reset\n"); return -ETIMEDOUT; } } /* MAC stats will fail whilst the TX fifo is draining. Serialise * the drain sequence with the statistics fetch */ efx_stats_disable(efx); efx_reado(efx, ®, FR_AB_MAC_CTRL); EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1); efx_writeo(efx, ®, FR_AB_MAC_CTRL); efx_reado(efx, ®, FR_AB_GLB_CTL); EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); efx_writeo(efx, ®, FR_AB_GLB_CTL); count = 0; while (1) { efx_reado(efx, ®, FR_AB_GLB_CTL); if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) { EFX_LOG(efx, "Completed MAC reset after %d loops\n", count); break; } if (count > 20) { EFX_ERR(efx, "MAC reset failed\n"); break; } count++; udelay(10); } efx_stats_enable(efx); /* If we've reset the EM block and the link is up, then * we'll have to kick the XAUI link so the PHY can recover */ if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx)) falcon_reset_xaui(efx); return 0; } void falcon_drain_tx_fifo(struct efx_nic *efx) { efx_oword_t reg; if ((falcon_rev(efx) < FALCON_REV_B0) || (efx->loopback_mode != LOOPBACK_NONE)) return; efx_reado(efx, ®, FR_AB_MAC_CTRL); /* There is no point in draining more than once */ if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) return; falcon_reset_macs(efx); } void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) { efx_oword_t reg; if (falcon_rev(efx) < FALCON_REV_B0) return; /* Isolate the MAC -> RX */ efx_reado(efx, ®, FR_AZ_RX_CFG); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); efx_writeo(efx, ®, FR_AZ_RX_CFG); if (!efx->link_up) falcon_drain_tx_fifo(efx); } void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) { efx_oword_t reg; int link_speed; bool tx_fc; switch (efx->link_speed) { case 10000: link_speed = 3; break; case 1000: link_speed = 2; break; case 100: link_speed = 1; break; default: link_speed = 0; break; } /* MAC_LINK_STATUS controls MAC backpressure but doesn't work * as advertised. Disable to ensure packets are not * indefinitely held and TX queue can be flushed at any point * while the link is down. */ EFX_POPULATE_OWORD_5(reg, FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, FRF_AB_MAC_BCAD_ACPT, 1, FRF_AB_MAC_UC_PROM, efx->promiscuous, FRF_AB_MAC_LINK_STATUS, 1, /* always set */ FRF_AB_MAC_SPEED, link_speed); /* On B0, MAC backpressure can be disabled and packets get * discarded. */ if (falcon_rev(efx) >= FALCON_REV_B0) { EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, !efx->link_up); } efx_writeo(efx, ®, FR_AB_MAC_CTRL); /* Restore the multicast hash registers. */ falcon_set_multicast_hash(efx); /* Transmission of pause frames when RX crosses the threshold is * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL. * Action on receipt of pause frames is controller by XM_DIS_FCNTL */ tx_fc = !!(efx->link_fc & EFX_FC_TX); efx_reado(efx, ®, FR_AZ_RX_CFG); EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc); /* Unisolate the MAC -> RX */ if (falcon_rev(efx) >= FALCON_REV_B0) EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); efx_writeo(efx, ®, FR_AZ_RX_CFG); } int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset) { efx_oword_t reg; u32 *dma_done; int i; if (disable_dma_stats) return 0; /* Statistics fetch will fail if the MAC is in TX drain */ if (falcon_rev(efx) >= FALCON_REV_B0) { efx_oword_t temp; efx_reado(efx, &temp, FR_AB_MAC_CTRL); if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN)) return 0; } dma_done = (efx->stats_buffer.addr + done_offset); *dma_done = FALCON_STATS_NOT_DONE; wmb(); /* ensure done flag is clear */ /* Initiate DMA transfer of stats */ EFX_POPULATE_OWORD_2(reg, FRF_AB_MAC_STAT_DMA_CMD, 1, FRF_AB_MAC_STAT_DMA_ADR, efx->stats_buffer.dma_addr); efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA); /* Wait for transfer to complete */ for (i = 0; i < 400; i++) { if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) { rmb(); /* Ensure the stats are valid. */ return 0; } udelay(10); } EFX_ERR(efx, "timed out waiting for statistics\n"); return -ETIMEDOUT; } /************************************************************************** * * PHY access via GMII * ************************************************************************** */ /* Wait for GMII access to complete */ static int falcon_gmii_wait(struct efx_nic *efx) { efx_dword_t md_stat; int count; /* wait upto 50ms - taken max from datasheet */ for (count = 0; count < 5000; count++) { efx_readd(efx, &md_stat, FR_AB_MD_STAT); if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { EFX_ERR(efx, "error from GMII access " EFX_DWORD_FMT"\n", EFX_DWORD_VAL(md_stat)); return -EIO; } return 0; } udelay(10); } EFX_ERR(efx, "timed out waiting for GMII\n"); return -ETIMEDOUT; } /* Write an MDIO register of a PHY connected to Falcon. */ static int falcon_mdio_write(struct net_device *net_dev, int prtad, int devad, u16 addr, u16 value) { struct efx_nic *efx = netdev_priv(net_dev); efx_oword_t reg; int rc; EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n", prtad, devad, addr, value); spin_lock_bh(&efx->phy_lock); /* Check MDIO not currently being accessed */ rc = falcon_gmii_wait(efx); if (rc) goto out; /* Write the address/ID register */ EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, FRF_AB_MD_DEV_ADR, devad); efx_writeo(efx, ®, FR_AB_MD_ID); /* Write data */ EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); efx_writeo(efx, ®, FR_AB_MD_TXD); EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_WRC, 1, FRF_AB_MD_GC, 0); efx_writeo(efx, ®, FR_AB_MD_CS); /* Wait for data to be written */ rc = falcon_gmii_wait(efx); if (rc) { /* Abort the write operation */ EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_WRC, 0, FRF_AB_MD_GC, 1); efx_writeo(efx, ®, FR_AB_MD_CS); udelay(10); } out: spin_unlock_bh(&efx->phy_lock); return rc; } /* Read an MDIO register of a PHY connected to Falcon. */ static int falcon_mdio_read(struct net_device *net_dev, int prtad, int devad, u16 addr) { struct efx_nic *efx = netdev_priv(net_dev); efx_oword_t reg; int rc; spin_lock_bh(&efx->phy_lock); /* Check MDIO not currently being accessed */ rc = falcon_gmii_wait(efx); if (rc) goto out; EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, FRF_AB_MD_DEV_ADR, devad); efx_writeo(efx, ®, FR_AB_MD_ID); /* Request data to be read */ EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); efx_writeo(efx, ®, FR_AB_MD_CS); /* Wait for data to become available */ rc = falcon_gmii_wait(efx); if (rc == 0) { efx_reado(efx, ®, FR_AB_MD_RXD); rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD); EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n", prtad, devad, addr, rc); } else { /* Abort the read operation */ EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RIC, 0, FRF_AB_MD_GC, 1); efx_writeo(efx, ®, FR_AB_MD_CS); EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n", prtad, devad, addr, rc); } out: spin_unlock_bh(&efx->phy_lock); return rc; } int falcon_switch_mac(struct efx_nic *efx) { struct efx_mac_operations *old_mac_op = efx->mac_op; efx_oword_t nic_stat; unsigned strap_val; int rc = 0; /* Don't try to fetch MAC stats while we're switching MACs */ efx_stats_disable(efx); /* Internal loopbacks override the phy speed setting */ if (efx->loopback_mode == LOOPBACK_GMAC) { efx->link_speed = 1000; efx->link_fd = true; } else if (LOOPBACK_INTERNAL(efx)) { efx->link_speed = 10000; efx->link_fd = true; } WARN_ON(!mutex_is_locked(&efx->mac_lock)); efx->mac_op = (EFX_IS10G(efx) ? &falcon_xmac_operations : &falcon_gmac_operations); /* Always push the NIC_STAT_REG setting even if the mac hasn't * changed, because this function is run post online reset */ efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); strap_val = EFX_IS10G(efx) ? 5 : 3; if (falcon_rev(efx) >= FALCON_REV_B0) { EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1); EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val); efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT); } else { /* Falcon A1 does not support 1G/10G speed switching * and must not be used with a PHY that does. */ BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) != strap_val); } if (old_mac_op == efx->mac_op) goto out; EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G'); /* Not all macs support a mac-level link state */ efx->mac_up = true; rc = falcon_reset_macs(efx); out: efx_stats_enable(efx); return rc; } /* This call is responsible for hooking in the MAC and PHY operations */ int falcon_probe_port(struct efx_nic *efx) { int rc; switch (efx->phy_type) { case PHY_TYPE_SFX7101: efx->phy_op = &falcon_sfx7101_phy_ops; break; case PHY_TYPE_SFT9001A: case PHY_TYPE_SFT9001B: efx->phy_op = &falcon_sft9001_phy_ops; break; case PHY_TYPE_QT2022C2: case PHY_TYPE_QT2025C: efx->phy_op = &falcon_xfp_phy_ops; break; default: EFX_ERR(efx, "Unknown PHY type %d\n", efx->phy_type); return -ENODEV; } if (efx->phy_op->macs & EFX_XMAC) efx->loopback_modes |= ((1 << LOOPBACK_XGMII) | (1 << LOOPBACK_XGXS) | (1 << LOOPBACK_XAUI)); if (efx->phy_op->macs & EFX_GMAC) efx->loopback_modes |= (1 << LOOPBACK_GMAC); efx->loopback_modes |= efx->phy_op->loopbacks; /* Set up MDIO structure for PHY */ efx->mdio.mmds = efx->phy_op->mmds; efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; efx->mdio.mdio_read = falcon_mdio_read; efx->mdio.mdio_write = falcon_mdio_write; /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ if (falcon_rev(efx) >= FALCON_REV_B0) efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; else efx->wanted_fc = EFX_FC_RX; /* Allocate buffer for stats */ rc = falcon_alloc_buffer(efx, &efx->stats_buffer, FALCON_MAC_STATS_SIZE); if (rc) return rc; EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n", (u64)efx->stats_buffer.dma_addr, efx->stats_buffer.addr, (u64)virt_to_phys(efx->stats_buffer.addr)); return 0; } void falcon_remove_port(struct efx_nic *efx) { falcon_free_buffer(efx, &efx->stats_buffer); } /************************************************************************** * * Multicast filtering * ************************************************************************** */ void falcon_set_multicast_hash(struct efx_nic *efx) { union efx_multicast_hash *mc_hash = &efx->multicast_hash; /* Broadcast packets go through the multicast hash filter. * ether_crc_le() of the broadcast address is 0xbe2612ff * so we always add bit 0xff to the mask. */ set_bit_le(0xff, mc_hash->byte); efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); } /************************************************************************** * * Falcon test code * **************************************************************************/ int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) { struct falcon_nvconfig *nvconfig; struct efx_spi_device *spi; void *region; int rc, magic_num, struct_ver; __le16 *word, *limit; u32 csum; spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom; if (!spi) return -EINVAL; region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); if (!region) return -ENOMEM; nvconfig = region + FALCON_NVCONFIG_OFFSET; mutex_lock(&efx->spi_lock); rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region); mutex_unlock(&efx->spi_lock); if (rc) { EFX_ERR(efx, "Failed to read %s\n", efx->spi_flash ? "flash" : "EEPROM"); rc = -EIO; goto out; } magic_num = le16_to_cpu(nvconfig->board_magic_num); struct_ver = le16_to_cpu(nvconfig->board_struct_ver); rc = -EINVAL; if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num); goto out; } if (struct_ver < 2) { EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver); goto out; } else if (struct_ver < 4) { word = &nvconfig->board_magic_num; limit = (__le16 *) (nvconfig + 1); } else { word = region; limit = region + FALCON_NVCONFIG_END; } for (csum = 0; word < limit; ++word) csum += le16_to_cpu(*word); if (~csum & 0xffff) { EFX_ERR(efx, "NVRAM has incorrect checksum\n"); goto out; } rc = 0; if (nvconfig_out) memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); out: kfree(region); return rc; } /* Registers tested in the falcon register test */ static struct { unsigned address; efx_oword_t mask; } efx_test_registers[] = { { FR_AZ_ADR_REGION, EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) }, { FR_AZ_RX_CFG, EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, { FR_AZ_TX_CFG, EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_TX_RESERVED, EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, { FR_AB_MAC_CTRL, EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_SRM_TX_DC_CFG, EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_RX_DC_CFG, EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, { FR_AZ_RX_DC_PF_WM, EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, { FR_BZ_DP_CTRL, EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_GM_CFG2, EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_GMF_CFG0, EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_GLB_CFG, EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_TX_CFG, EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_RX_CFG, EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_RX_PARAM, EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_FC, EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XM_ADR_LO, EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, { FR_AB_XX_SD_CTL, EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, }; static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, const efx_oword_t *mask) { return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); } int falcon_test_registers(struct efx_nic *efx) { unsigned address = 0, i, j; efx_oword_t mask, imask, original, reg, buf; /* Falcon should be in loopback to isolate the XMAC from the PHY */ WARN_ON(!LOOPBACK_INTERNAL(efx)); for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) { address = efx_test_registers[i].address; mask = imask = efx_test_registers[i].mask; EFX_INVERT_OWORD(imask); efx_reado(efx, &original, address); /* bit sweep on and off */ for (j = 0; j < 128; j++) { if (!EFX_EXTRACT_OWORD32(mask, j, j)) continue; /* Test this testable bit can be set in isolation */ EFX_AND_OWORD(reg, original, mask); EFX_SET_OWORD32(reg, j, j, 1); efx_writeo(efx, ®, address); efx_reado(efx, &buf, address); if (efx_masked_compare_oword(®, &buf, &mask)) goto fail; /* Test this testable bit can be cleared in isolation */ EFX_OR_OWORD(reg, original, mask); EFX_SET_OWORD32(reg, j, j, 0); efx_writeo(efx, ®, address); efx_reado(efx, &buf, address); if (efx_masked_compare_oword(®, &buf, &mask)) goto fail; } efx_writeo(efx, &original, address); } return 0; fail: EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); return -EIO; } /************************************************************************** * * Device reset * ************************************************************************** */ /* Resets NIC to known state. This routine must be called in process * context and is allowed to sleep. */ int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) { struct falcon_nic_data *nic_data = efx->nic_data; efx_oword_t glb_ctl_reg_ker; int rc; EFX_LOG(efx, "performing hardware reset (%d)\n", method); /* Initiate device reset */ if (method == RESET_TYPE_WORLD) { rc = pci_save_state(efx->pci_dev); if (rc) { EFX_ERR(efx, "failed to backup PCI state of primary " "function prior to hardware reset\n"); goto fail1; } if (FALCON_IS_DUAL_FUNC(efx)) { rc = pci_save_state(nic_data->pci_dev2); if (rc) { EFX_ERR(efx, "failed to backup PCI state of " "secondary function prior to " "hardware reset\n"); goto fail2; } } EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, FRF_AB_EXT_PHY_RST_DUR, FFE_AB_EXT_PHY_RST_DUR_10240US, FRF_AB_SWRST, 1); } else { EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, /* exclude PHY from "invisible" reset */ FRF_AB_EXT_PHY_RST_CTL, method == RESET_TYPE_INVISIBLE, /* exclude EEPROM/flash and PCIe */ FRF_AB_PCIE_CORE_RST_CTL, 1, FRF_AB_PCIE_NSTKY_RST_CTL, 1, FRF_AB_PCIE_SD_RST_CTL, 1, FRF_AB_EE_RST_CTL, 1, FRF_AB_EXT_PHY_RST_DUR, FFE_AB_EXT_PHY_RST_DUR_10240US, FRF_AB_SWRST, 1); } efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); EFX_LOG(efx, "waiting for hardware reset\n"); schedule_timeout_uninterruptible(HZ / 20); /* Restore PCI configuration if needed */ if (method == RESET_TYPE_WORLD) { if (FALCON_IS_DUAL_FUNC(efx)) { rc = pci_restore_state(nic_data->pci_dev2); if (rc) { EFX_ERR(efx, "failed to restore PCI config for " "the secondary function\n"); goto fail3; } } rc = pci_restore_state(efx->pci_dev); if (rc) { EFX_ERR(efx, "failed to restore PCI config for the " "primary function\n"); goto fail4; } EFX_LOG(efx, "successfully restored PCI config\n"); } /* Assert that reset complete */ efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { rc = -ETIMEDOUT; EFX_ERR(efx, "timed out waiting for hardware reset\n"); goto fail5; } EFX_LOG(efx, "hardware reset complete\n"); return 0; /* pci_save_state() and pci_restore_state() MUST be called in pairs */ fail2: fail3: pci_restore_state(efx->pci_dev); fail1: fail4: fail5: return rc; } /* Zeroes out the SRAM contents. This routine must be called in * process context and is allowed to sleep. */ static int falcon_reset_sram(struct efx_nic *efx) { efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; int count; /* Set the SRAM wake/sleep GPIO appropriately. */ efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); /* Initiate SRAM reset */ EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN, 1, FRF_AZ_SRM_NB_SZ, 0); efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); /* Wait for SRAM reset to complete */ count = 0; do { EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); /* SRAM reset is slow; expect around 16ms */ schedule_timeout_uninterruptible(HZ / 50); /* Check for reset complete */ efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { EFX_LOG(efx, "SRAM reset complete\n"); return 0; } } while (++count < 20); /* wait upto 0.4 sec */ EFX_ERR(efx, "timed out waiting for SRAM reset\n"); return -ETIMEDOUT; } static int falcon_spi_device_init(struct efx_nic *efx, struct efx_spi_device **spi_device_ret, unsigned int device_id, u32 device_type) { struct efx_spi_device *spi_device; if (device_type != 0) { spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL); if (!spi_device) return -ENOMEM; spi_device->device_id = device_id; spi_device->size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); spi_device->addr_len = SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); spi_device->munge_address = (spi_device->size == 1 << 9 && spi_device->addr_len == 1); spi_device->erase_command = SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); spi_device->erase_size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_SIZE); spi_device->block_size = 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_BLOCK_SIZE); spi_device->efx = efx; } else { spi_device = NULL; } kfree(*spi_device_ret); *spi_device_ret = spi_device; return 0; } static void falcon_remove_spi_devices(struct efx_nic *efx) { kfree(efx->spi_eeprom); efx->spi_eeprom = NULL; kfree(efx->spi_flash); efx->spi_flash = NULL; } /* Extract non-volatile configuration */ static int falcon_probe_nvconfig(struct efx_nic *efx) { struct falcon_nvconfig *nvconfig; int board_rev; int rc; nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); if (!nvconfig) return -ENOMEM; rc = falcon_read_nvram(efx, nvconfig); if (rc == -EINVAL) { EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n"); efx->phy_type = PHY_TYPE_NONE; efx->mdio.prtad = MDIO_PRTAD_NONE; board_rev = 0; rc = 0; } else if (rc) { goto fail1; } else { struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3; efx->phy_type = v2->port0_phy_type; efx->mdio.prtad = v2->port0_phy_addr; board_rev = le16_to_cpu(v2->board_revision); if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { rc = falcon_spi_device_init( efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH, le32_to_cpu(v3->spi_device_type [FFE_AB_SPI_DEVICE_FLASH])); if (rc) goto fail2; rc = falcon_spi_device_init( efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, le32_to_cpu(v3->spi_device_type [FFE_AB_SPI_DEVICE_EEPROM])); if (rc) goto fail2; } } /* Read the MAC addresses */ memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad); falcon_probe_board(efx, board_rev); kfree(nvconfig); return 0; fail2: falcon_remove_spi_devices(efx); fail1: kfree(nvconfig); return rc; } /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port * count, port speed). Set workaround and feature flags accordingly. */ static int falcon_probe_nic_variant(struct efx_nic *efx) { efx_oword_t altera_build; efx_oword_t nic_stat; efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) { EFX_ERR(efx, "Falcon FPGA not supported\n"); return -ENODEV; } efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); switch (falcon_rev(efx)) { case FALCON_REV_A0: case 0xff: EFX_ERR(efx, "Falcon rev A0 not supported\n"); return -ENODEV; case FALCON_REV_A1: if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); return -ENODEV; } break; case FALCON_REV_B0: break; default: EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx)); return -ENODEV; } /* Initial assumed speed */ efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000; return 0; } /* Probe all SPI devices on the NIC */ static void falcon_probe_spi_devices(struct efx_nic *efx) { efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; int boot_dev; efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); EFX_LOG(efx, "Booted from %s\n", boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM"); } else { /* Disable VPD and set clock dividers to safe * values for initial programming. */ boot_dev = -1; EFX_LOG(efx, "Booted from internal ASIC settings;" " setting SPI config\n"); EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, /* 125 MHz / 7 ~= 20 MHz */ FRF_AB_EE_SF_CLOCK_DIV, 7, /* 125 MHz / 63 ~= 2 MHz */ FRF_AB_EE_EE_CLOCK_DIV, 63); efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); } if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) falcon_spi_device_init(efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH, default_flash_type); if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) falcon_spi_device_init(efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, large_eeprom_type); } int falcon_probe_nic(struct efx_nic *efx) { struct falcon_nic_data *nic_data; int rc; /* Allocate storage for hardware specific data */ nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; /* Determine number of ports etc. */ rc = falcon_probe_nic_variant(efx); if (rc) goto fail1; /* Probe secondary function if expected */ if (FALCON_IS_DUAL_FUNC(efx)) { struct pci_dev *dev = pci_dev_get(efx->pci_dev); while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, dev))) { if (dev->bus == efx->pci_dev->bus && dev->devfn == efx->pci_dev->devfn + 1) { nic_data->pci_dev2 = dev; break; } } if (!nic_data->pci_dev2) { EFX_ERR(efx, "failed to find secondary function\n"); rc = -ENODEV; goto fail2; } } /* Now we can reset the NIC */ rc = falcon_reset_hw(efx, RESET_TYPE_ALL); if (rc) { EFX_ERR(efx, "failed to reset NIC\n"); goto fail3; } /* Allocate memory for INT_KER */ rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); if (rc) goto fail4; BUG_ON(efx->irq_status.dma_addr & 0x0f); EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n", (u64)efx->irq_status.dma_addr, efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr)); falcon_probe_spi_devices(efx); /* Read in the non-volatile configuration */ rc = falcon_probe_nvconfig(efx); if (rc) goto fail5; /* Initialise I2C adapter */ efx->i2c_adap.owner = THIS_MODULE; nic_data->i2c_data = falcon_i2c_bit_operations; nic_data->i2c_data.data = efx; efx->i2c_adap.algo_data = &nic_data->i2c_data; efx->i2c_adap.dev.parent = &efx->pci_dev->dev; strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name)); rc = i2c_bit_add_bus(&efx->i2c_adap); if (rc) goto fail5; return 0; fail5: falcon_remove_spi_devices(efx); falcon_free_buffer(efx, &efx->irq_status); fail4: fail3: if (nic_data->pci_dev2) { pci_dev_put(nic_data->pci_dev2); nic_data->pci_dev2 = NULL; } fail2: fail1: kfree(efx->nic_data); return rc; } static void falcon_init_rx_cfg(struct efx_nic *efx) { /* Prior to Siena the RX DMA engine will split each frame at * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to * be so large that that never happens. */ const unsigned huge_buf_size = (3 * 4096) >> 5; /* RX control FIFO thresholds (32 entries) */ const unsigned ctrl_xon_thr = 20; const unsigned ctrl_xoff_thr = 25; /* RX data FIFO thresholds (256-byte units; size varies) */ int data_xon_thr = rx_xon_thresh_bytes >> 8; int data_xoff_thr = rx_xoff_thresh_bytes >> 8; efx_oword_t reg; efx_reado(efx, ®, FR_AZ_RX_CFG); if (falcon_rev(efx) <= FALCON_REV_A1) { /* Data FIFO size is 5.5K */ if (data_xon_thr < 0) data_xon_thr = 512 >> 8; if (data_xoff_thr < 0) data_xoff_thr = 2048 >> 8; EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, huge_buf_size); EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr); EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr); EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); } else { /* Data FIFO size is 80K; register fields moved */ if (data_xon_thr < 0) data_xon_thr = 27648 >> 8; /* ~3*max MTU */ if (data_xoff_thr < 0) data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */ EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, huge_buf_size); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); } efx_writeo(efx, ®, FR_AZ_RX_CFG); } /* This call performs hardware-specific global initialisation, such as * defining the descriptor cache sizes and number of RSS channels. * It does not set up any buffers, descriptor rings or event queues. */ int falcon_init_nic(struct efx_nic *efx) { efx_oword_t temp; int rc; /* Use on-chip SRAM */ efx_reado(efx, &temp, FR_AB_NIC_STAT); EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); efx_writeo(efx, &temp, FR_AB_NIC_STAT); /* Set the source of the GMAC clock */ if (falcon_rev(efx) == FALCON_REV_B0) { efx_reado(efx, &temp, FR_AB_GPIO_CTL); EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true); efx_writeo(efx, &temp, FR_AB_GPIO_CTL); } rc = falcon_reset_sram(efx); if (rc) return rc; /* Set positions of descriptor caches in SRAM. */ EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8); efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8); efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); /* Set TX descriptor cache size. */ BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER)); EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); /* Set RX descriptor cache size. Set low watermark to size-8, as * this allows most efficient prefetching. */ BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER)); EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); /* Clear the parity enables on the TX data fifos as * they produce false parity errors because of timing issues */ if (EFX_WORKAROUND_5129(efx)) { efx_reado(efx, &temp, FR_AZ_CSR_SPARE); EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); efx_writeo(efx, &temp, FR_AZ_CSR_SPARE); } /* Enable all the genuinely fatal interrupts. (They are still * masked by the overall interrupt mask, controlled by * falcon_interrupts()). * * Note: All other fatal interrupts are enabled */ EFX_POPULATE_OWORD_3(temp, FRF_AZ_ILL_ADR_INT_KER_EN, 1, FRF_AZ_RBUF_OWN_INT_KER_EN, 1, FRF_AZ_TBUF_OWN_INT_KER_EN, 1); EFX_INVERT_OWORD(temp); efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); if (EFX_WORKAROUND_7244(efx)) { efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); } falcon_setup_rss_indir_table(efx); /* XXX This is documented only for Falcon A0/A1 */ /* Setup RX. Wait for descriptor is broken and must * be disabled. RXDP recovery shouldn't be needed, but is. */ efx_reado(efx, &temp, FR_AA_RX_SELF_RST); EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); if (EFX_WORKAROUND_5583(efx)) EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); efx_writeo(efx, &temp, FR_AA_RX_SELF_RST); /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. */ efx_reado(efx, &temp, FR_AZ_TX_RESERVED); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); /* Enable SW_EV to inherit in char driver - assume harmless here */ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); /* Prefetch threshold 2 => fetch when descriptor cache half empty */ EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); /* Squash TX of packets of 16 bytes or less */ if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx)) EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 * descriptors (which is bad). */ efx_reado(efx, &temp, FR_AZ_TX_CFG); EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); efx_writeo(efx, &temp, FR_AZ_TX_CFG); falcon_init_rx_cfg(efx); /* Set destination of both TX and RX Flush events */ if (falcon_rev(efx) >= FALCON_REV_B0) { EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); efx_writeo(efx, &temp, FR_BZ_DP_CTRL); } return 0; } void falcon_remove_nic(struct efx_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; int rc; /* Remove I2C adapter and clear it in preparation for a retry */ rc = i2c_del_adapter(&efx->i2c_adap); BUG_ON(rc); memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap)); falcon_remove_spi_devices(efx); falcon_free_buffer(efx, &efx->irq_status); falcon_reset_hw(efx, RESET_TYPE_ALL); /* Release the second function after the reset */ if (nic_data->pci_dev2) { pci_dev_put(nic_data->pci_dev2); nic_data->pci_dev2 = NULL; } /* Tear down the private nic state */ kfree(efx->nic_data); efx->nic_data = NULL; } void falcon_update_nic_stats(struct efx_nic *efx) { efx_oword_t cnt; efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); } /************************************************************************** * * Revision-dependent attributes used by efx.c * ************************************************************************** */ struct efx_nic_type falcon_a_nic_type = { .mem_map_size = 0x20000, .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), .rx_buffer_padding = 0x24, .max_interrupt_mode = EFX_INT_MODE_MSI, .phys_addr_channels = 4, }; struct efx_nic_type falcon_b_nic_type = { /* Map everything up to and including the RSS indirection * table. Don't map MSI-X table, MSI-X PBA since Linux * requires that they not be mapped. */ .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL + FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS), .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, .buf_tbl_base = FR_BZ_BUF_FULL_TBL, .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), .rx_buffer_padding = 0, .max_interrupt_mode = EFX_INT_MODE_MSIX, .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy * interrupt handler only supports 32 * channels */ };