/* Copyright (c) 2018, Mellanox Technologies All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include /* device_offload_lock is used to synchronize tls_dev_add * against NETDEV_DOWN notifications. */ static DECLARE_RWSEM(device_offload_lock); static void tls_device_gc_task(struct work_struct *work); static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task); static LIST_HEAD(tls_device_gc_list); static LIST_HEAD(tls_device_list); static DEFINE_SPINLOCK(tls_device_lock); static void tls_device_free_ctx(struct tls_context *ctx) { if (ctx->tx_conf == TLS_HW) { kfree(tls_offload_ctx_tx(ctx)); kfree(ctx->tx.rec_seq); kfree(ctx->tx.iv); } if (ctx->rx_conf == TLS_HW) kfree(tls_offload_ctx_rx(ctx)); kfree(ctx); } static void tls_device_gc_task(struct work_struct *work) { struct tls_context *ctx, *tmp; unsigned long flags; LIST_HEAD(gc_list); spin_lock_irqsave(&tls_device_lock, flags); list_splice_init(&tls_device_gc_list, &gc_list); spin_unlock_irqrestore(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &gc_list, list) { struct net_device *netdev = ctx->netdev; if (netdev && ctx->tx_conf == TLS_HW) { netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); dev_put(netdev); ctx->netdev = NULL; } list_del(&ctx->list); tls_device_free_ctx(ctx); } } static void tls_device_attach(struct tls_context *ctx, struct sock *sk, struct net_device *netdev) { if (sk->sk_destruct != tls_device_sk_destruct) { refcount_set(&ctx->refcount, 1); dev_hold(netdev); ctx->netdev = netdev; spin_lock_irq(&tls_device_lock); list_add_tail(&ctx->list, &tls_device_list); spin_unlock_irq(&tls_device_lock); ctx->sk_destruct = sk->sk_destruct; sk->sk_destruct = tls_device_sk_destruct; } } static void tls_device_queue_ctx_destruction(struct tls_context *ctx) { unsigned long flags; spin_lock_irqsave(&tls_device_lock, flags); list_move_tail(&ctx->list, &tls_device_gc_list); /* schedule_work inside the spinlock * to make sure tls_device_down waits for that work. */ schedule_work(&tls_device_gc_work); spin_unlock_irqrestore(&tls_device_lock, flags); } /* We assume that the socket is already connected */ static struct net_device *get_netdev_for_sock(struct sock *sk) { struct dst_entry *dst = sk_dst_get(sk); struct net_device *netdev = NULL; if (likely(dst)) { netdev = dst->dev; dev_hold(netdev); } dst_release(dst); return netdev; } static void destroy_record(struct tls_record_info *record) { int nr_frags = record->num_frags; skb_frag_t *frag; while (nr_frags-- > 0) { frag = &record->frags[nr_frags]; __skb_frag_unref(frag); } kfree(record); } static void delete_all_records(struct tls_offload_context_tx *offload_ctx) { struct tls_record_info *info, *temp; list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { list_del(&info->list); destroy_record(info); } offload_ctx->retransmit_hint = NULL; } static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_record_info *info, *temp; struct tls_offload_context_tx *ctx; u64 deleted_records = 0; unsigned long flags; if (!tls_ctx) return; ctx = tls_offload_ctx_tx(tls_ctx); spin_lock_irqsave(&ctx->lock, flags); info = ctx->retransmit_hint; if (info && !before(acked_seq, info->end_seq)) { ctx->retransmit_hint = NULL; list_del(&info->list); destroy_record(info); deleted_records++; } list_for_each_entry_safe(info, temp, &ctx->records_list, list) { if (before(acked_seq, info->end_seq)) break; list_del(&info->list); destroy_record(info); deleted_records++; } ctx->unacked_record_sn += deleted_records; spin_unlock_irqrestore(&ctx->lock, flags); } /* At this point, there should be no references on this * socket and no in-flight SKBs associated with this * socket, so it is safe to free all the resources. */ void tls_device_sk_destruct(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); tls_ctx->sk_destruct(sk); if (tls_ctx->tx_conf == TLS_HW) { if (ctx->open_record) destroy_record(ctx->open_record); delete_all_records(ctx); crypto_free_aead(ctx->aead_send); clean_acked_data_disable(inet_csk(sk)); } if (refcount_dec_and_test(&tls_ctx->refcount)) tls_device_queue_ctx_destruction(tls_ctx); } EXPORT_SYMBOL(tls_device_sk_destruct); static void tls_append_frag(struct tls_record_info *record, struct page_frag *pfrag, int size) { skb_frag_t *frag; frag = &record->frags[record->num_frags - 1]; if (frag->page.p == pfrag->page && frag->page_offset + frag->size == pfrag->offset) { frag->size += size; } else { ++frag; frag->page.p = pfrag->page; frag->page_offset = pfrag->offset; frag->size = size; ++record->num_frags; get_page(pfrag->page); } pfrag->offset += size; record->len += size; } static int tls_push_record(struct sock *sk, struct tls_context *ctx, struct tls_offload_context_tx *offload_ctx, struct tls_record_info *record, struct page_frag *pfrag, int flags, unsigned char record_type) { struct tcp_sock *tp = tcp_sk(sk); struct page_frag dummy_tag_frag; skb_frag_t *frag; int i; /* fill prepend */ frag = &record->frags[0]; tls_fill_prepend(ctx, skb_frag_address(frag), record->len - ctx->tx.prepend_size, record_type); /* HW doesn't care about the data in the tag, because it fills it. */ dummy_tag_frag.page = skb_frag_page(frag); dummy_tag_frag.offset = 0; tls_append_frag(record, &dummy_tag_frag, ctx->tx.tag_size); record->end_seq = tp->write_seq + record->len; spin_lock_irq(&offload_ctx->lock); list_add_tail(&record->list, &offload_ctx->records_list); spin_unlock_irq(&offload_ctx->lock); offload_ctx->open_record = NULL; set_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); tls_advance_record_sn(sk, &ctx->tx); for (i = 0; i < record->num_frags; i++) { frag = &record->frags[i]; sg_unmark_end(&offload_ctx->sg_tx_data[i]); sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), frag->size, frag->page_offset); sk_mem_charge(sk, frag->size); get_page(skb_frag_page(frag)); } sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); /* all ready, send */ return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); } static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { struct tls_record_info *record; skb_frag_t *frag; record = kmalloc(sizeof(*record), GFP_KERNEL); if (!record) return -ENOMEM; frag = &record->frags[0]; __skb_frag_set_page(frag, pfrag->page); frag->page_offset = pfrag->offset; skb_frag_size_set(frag, prepend_size); get_page(pfrag->page); pfrag->offset += prepend_size; record->num_frags = 1; record->len = prepend_size; offload_ctx->open_record = record; return 0; } static int tls_do_allocation(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { int ret; if (!offload_ctx->open_record) { if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, sk->sk_allocation))) { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return -ENOMEM; } ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); if (ret) return ret; if (pfrag->size > pfrag->offset) return 0; } if (!sk_page_frag_refill(sk, pfrag)) return -ENOMEM; return 0; } static int tls_push_data(struct sock *sk, struct iov_iter *msg_iter, size_t size, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE); struct tls_record_info *record = ctx->open_record; struct page_frag *pfrag; size_t orig_size = size; u32 max_open_record_len; int copy, rc = 0; bool done = false; long timeo; if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) return -ENOTSUPP; if (sk->sk_err) return -sk->sk_err; timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); rc = tls_complete_pending_work(sk, tls_ctx, flags, &timeo); if (rc < 0) return rc; pfrag = sk_page_frag(sk); /* TLS_HEADER_SIZE is not counted as part of the TLS record, and * we need to leave room for an authentication tag. */ max_open_record_len = TLS_MAX_PAYLOAD_SIZE + tls_ctx->tx.prepend_size; do { rc = tls_do_allocation(sk, ctx, pfrag, tls_ctx->tx.prepend_size); if (rc) { rc = sk_stream_wait_memory(sk, &timeo); if (!rc) continue; record = ctx->open_record; if (!record) break; handle_error: if (record_type != TLS_RECORD_TYPE_DATA) { /* avoid sending partial * record with type != * application_data */ size = orig_size; destroy_record(record); ctx->open_record = NULL; } else if (record->len > tls_ctx->tx.prepend_size) { goto last_record; } break; } record = ctx->open_record; copy = min_t(size_t, size, (pfrag->size - pfrag->offset)); copy = min_t(size_t, copy, (max_open_record_len - record->len)); if (copy_from_iter_nocache(page_address(pfrag->page) + pfrag->offset, copy, msg_iter) != copy) { rc = -EFAULT; goto handle_error; } tls_append_frag(record, pfrag, copy); size -= copy; if (!size) { last_record: tls_push_record_flags = flags; if (more) { tls_ctx->pending_open_record_frags = record->num_frags; break; } done = true; } if (done || record->len >= max_open_record_len || (record->num_frags >= MAX_SKB_FRAGS - 1)) { rc = tls_push_record(sk, tls_ctx, ctx, record, pfrag, tls_push_record_flags, record_type); if (rc < 0) break; } } while (!done); if (orig_size - size > 0) rc = orig_size - size; return rc; } int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { unsigned char record_type = TLS_RECORD_TYPE_DATA; int rc; lock_sock(sk); if (unlikely(msg->msg_controllen)) { rc = tls_proccess_cmsg(sk, msg, &record_type); if (rc) goto out; } rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, record_type); out: release_sock(sk); return rc; } int tls_device_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct iov_iter msg_iter; char *kaddr = kmap(page); struct kvec iov; int rc; if (flags & MSG_SENDPAGE_NOTLAST) flags |= MSG_MORE; lock_sock(sk); if (flags & MSG_OOB) { rc = -ENOTSUPP; goto out; } iov.iov_base = kaddr + offset; iov.iov_len = size; iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, &iov, 1, size); rc = tls_push_data(sk, &msg_iter, size, flags, TLS_RECORD_TYPE_DATA); kunmap(page); out: release_sock(sk); return rc; } struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn) { u64 record_sn = context->hint_record_sn; struct tls_record_info *info; info = context->retransmit_hint; if (!info || before(seq, info->end_seq - info->len)) { /* if retransmit_hint is irrelevant start * from the beggining of the list */ info = list_first_entry(&context->records_list, struct tls_record_info, list); record_sn = context->unacked_record_sn; } list_for_each_entry_from(info, &context->records_list, list) { if (before(seq, info->end_seq)) { if (!context->retransmit_hint || after(info->end_seq, context->retransmit_hint->end_seq)) { context->hint_record_sn = record_sn; context->retransmit_hint = info; } *p_record_sn = record_sn; return info; } record_sn++; } return NULL; } EXPORT_SYMBOL(tls_get_record); static int tls_device_push_pending_record(struct sock *sk, int flags) { struct iov_iter msg_iter; iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA); } void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct net_device *netdev = tls_ctx->netdev; struct tls_offload_context_rx *rx_ctx; u32 is_req_pending; s64 resync_req; u32 req_seq; if (tls_ctx->rx_conf != TLS_HW) return; rx_ctx = tls_offload_ctx_rx(tls_ctx); resync_req = atomic64_read(&rx_ctx->resync_req); req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1); is_req_pending = resync_req; if (unlikely(is_req_pending) && req_seq == seq && atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk, seq + TLS_HEADER_SIZE - 1, rcd_sn); } static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb) { struct strp_msg *rxm = strp_msg(skb); int err = 0, offset = rxm->offset, copy, nsg, data_len, pos; struct sk_buff *skb_iter, *unused; struct scatterlist sg[1]; char *orig_buf, *buf; orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation); if (!orig_buf) return -ENOMEM; buf = orig_buf; nsg = skb_cow_data(skb, 0, &unused); if (unlikely(nsg < 0)) { err = nsg; goto free_buf; } sg_init_table(sg, 1); sg_set_buf(&sg[0], buf, rxm->full_len + TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE); /* We are interested only in the decrypted data not the auth */ err = decrypt_skb(sk, skb, sg); if (err != -EBADMSG) goto free_buf; else err = 0; data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE; if (skb_pagelen(skb) > offset) { copy = min_t(int, skb_pagelen(skb) - offset, data_len); if (skb->decrypted) skb_store_bits(skb, offset, buf, copy); offset += copy; buf += copy; } pos = skb_pagelen(skb); skb_walk_frags(skb, skb_iter) { int frag_pos; /* Practically all frags must belong to msg if reencrypt * is needed with current strparser and coalescing logic, * but strparser may "get optimized", so let's be safe. */ if (pos + skb_iter->len <= offset) goto done_with_frag; if (pos >= data_len + rxm->offset) break; frag_pos = offset - pos; copy = min_t(int, skb_iter->len - frag_pos, data_len + rxm->offset - offset); if (skb_iter->decrypted) skb_store_bits(skb_iter, frag_pos, buf, copy); offset += copy; buf += copy; done_with_frag: pos += skb_iter->len; } free_buf: kfree(orig_buf); return err; } int tls_device_decrypted(struct sock *sk, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); int is_decrypted = skb->decrypted; int is_encrypted = !is_decrypted; struct sk_buff *skb_iter; /* Skip if it is already decrypted */ if (ctx->sw.decrypted) return 0; /* Check if all the data is decrypted already */ skb_walk_frags(skb, skb_iter) { is_decrypted &= skb_iter->decrypted; is_encrypted &= !skb_iter->decrypted; } ctx->sw.decrypted |= is_decrypted; /* Return immedeatly if the record is either entirely plaintext or * entirely ciphertext. Otherwise handle reencrypt partially decrypted * record. */ return (is_encrypted || is_decrypted) ? 0 : tls_device_reencrypt(sk, skb); } int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) { u16 nonce_size, tag_size, iv_size, rec_seq_size; struct tls_record_info *start_marker_record; struct tls_offload_context_tx *offload_ctx; struct tls_crypto_info *crypto_info; struct net_device *netdev; char *iv, *rec_seq; struct sk_buff *skb; int rc = -EINVAL; __be64 rcd_sn; if (!ctx) goto out; if (ctx->priv_ctx_tx) { rc = -EEXIST; goto out; } start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); if (!start_marker_record) { rc = -ENOMEM; goto out; } offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); if (!offload_ctx) { rc = -ENOMEM; goto free_marker_record; } crypto_info = &ctx->crypto_send.info; switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; rec_seq = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; break; default: rc = -EINVAL; goto free_offload_ctx; } ctx->tx.prepend_size = TLS_HEADER_SIZE + nonce_size; ctx->tx.tag_size = tag_size; ctx->tx.overhead_size = ctx->tx.prepend_size + ctx->tx.tag_size; ctx->tx.iv_size = iv_size; ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, GFP_KERNEL); if (!ctx->tx.iv) { rc = -ENOMEM; goto free_offload_ctx; } memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); ctx->tx.rec_seq_size = rec_seq_size; ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); if (!ctx->tx.rec_seq) { rc = -ENOMEM; goto free_iv; } rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); if (rc) goto free_rec_seq; /* start at rec_seq - 1 to account for the start marker record */ memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; start_marker_record->end_seq = tcp_sk(sk)->write_seq; start_marker_record->len = 0; start_marker_record->num_frags = 0; INIT_LIST_HEAD(&offload_ctx->records_list); list_add_tail(&start_marker_record->list, &offload_ctx->records_list); spin_lock_init(&offload_ctx->lock); sg_init_table(offload_ctx->sg_tx_data, ARRAY_SIZE(offload_ctx->sg_tx_data)); clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); ctx->push_pending_record = tls_device_push_pending_record; /* TLS offload is greatly simplified if we don't send * SKBs where only part of the payload needs to be encrypted. * So mark the last skb in the write queue as end of record. */ skb = tcp_write_queue_tail(sk); if (skb) TCP_SKB_CB(skb)->eor = 1; /* We support starting offload on multiple sockets * concurrently, so we only need a read lock here. * This lock must precede get_netdev_for_sock to prevent races between * NETDEV_DOWN and setsockopt. */ down_read(&device_offload_lock); netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); rc = -EINVAL; goto release_lock; } if (!(netdev->features & NETIF_F_HW_TLS_TX)) { rc = -ENOTSUPP; goto release_netdev; } /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event */ if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_netdev; } ctx->priv_ctx_tx = offload_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, &ctx->crypto_send.info, tcp_sk(sk)->write_seq); if (rc) goto release_netdev; tls_device_attach(ctx, sk, netdev); /* following this assignment tls_is_sk_tx_device_offloaded * will return true and the context might be accessed * by the netdev's xmit function. */ smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); dev_put(netdev); up_read(&device_offload_lock); goto out; release_netdev: dev_put(netdev); release_lock: up_read(&device_offload_lock); clean_acked_data_disable(inet_csk(sk)); crypto_free_aead(offload_ctx->aead_send); free_rec_seq: kfree(ctx->tx.rec_seq); free_iv: kfree(ctx->tx.iv); free_offload_ctx: kfree(offload_ctx); ctx->priv_ctx_tx = NULL; free_marker_record: kfree(start_marker_record); out: return rc; } int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) { struct tls_offload_context_rx *context; struct net_device *netdev; int rc = 0; /* We support starting offload on multiple sockets * concurrently, so we only need a read lock here. * This lock must precede get_netdev_for_sock to prevent races between * NETDEV_DOWN and setsockopt. */ down_read(&device_offload_lock); netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); rc = -EINVAL; goto release_lock; } if (!(netdev->features & NETIF_F_HW_TLS_RX)) { pr_err_ratelimited("%s: netdev %s with no TLS offload\n", __func__, netdev->name); rc = -ENOTSUPP; goto release_netdev; } /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event */ if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_netdev; } context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); if (!context) { rc = -ENOMEM; goto release_netdev; } ctx->priv_ctx_rx = context; rc = tls_set_sw_offload(sk, ctx, 0); if (rc) goto release_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, &ctx->crypto_recv.info, tcp_sk(sk)->copied_seq); if (rc) { pr_err_ratelimited("%s: The netdev has refused to offload this socket\n", __func__); goto free_sw_resources; } tls_device_attach(ctx, sk, netdev); goto release_netdev; free_sw_resources: up_read(&device_offload_lock); tls_sw_free_resources_rx(sk); down_read(&device_offload_lock); release_ctx: ctx->priv_ctx_rx = NULL; release_netdev: dev_put(netdev); release_lock: up_read(&device_offload_lock); return rc; } void tls_device_offload_cleanup_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct net_device *netdev; down_read(&device_offload_lock); netdev = tls_ctx->netdev; if (!netdev) goto out; netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, TLS_OFFLOAD_CTX_DIR_RX); if (tls_ctx->tx_conf != TLS_HW) { dev_put(netdev); tls_ctx->netdev = NULL; } out: up_read(&device_offload_lock); tls_sw_release_resources_rx(sk); } static int tls_device_down(struct net_device *netdev) { struct tls_context *ctx, *tmp; unsigned long flags; LIST_HEAD(list); /* Request a write lock to block new offload attempts */ down_write(&device_offload_lock); spin_lock_irqsave(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { if (ctx->netdev != netdev || !refcount_inc_not_zero(&ctx->refcount)) continue; list_move(&ctx->list, &list); } spin_unlock_irqrestore(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &list, list) { if (ctx->tx_conf == TLS_HW) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); if (ctx->rx_conf == TLS_HW) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_RX); ctx->netdev = NULL; dev_put(netdev); list_del_init(&ctx->list); if (refcount_dec_and_test(&ctx->refcount)) tls_device_free_ctx(ctx); } up_write(&device_offload_lock); flush_work(&tls_device_gc_work); return NOTIFY_DONE; } static int tls_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (!dev->tlsdev_ops && !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: case NETDEV_FEAT_CHANGE: if ((dev->features & NETIF_F_HW_TLS_RX) && !dev->tlsdev_ops->tls_dev_resync_rx) return NOTIFY_BAD; if (dev->tlsdev_ops && dev->tlsdev_ops->tls_dev_add && dev->tlsdev_ops->tls_dev_del) return NOTIFY_DONE; else return NOTIFY_BAD; case NETDEV_DOWN: return tls_device_down(dev); } return NOTIFY_DONE; } static struct notifier_block tls_dev_notifier = { .notifier_call = tls_dev_event, }; void __init tls_device_init(void) { register_netdevice_notifier(&tls_dev_notifier); } void __exit tls_device_cleanup(void) { unregister_netdevice_notifier(&tls_dev_notifier); flush_work(&tls_device_gc_work); }