/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_inode.h" #include "xfs_dinode.h" #include "xfs_error.h" #include "xfs_filestream.h" #include "xfs_vnodeops.h" #include "xfs_inode_item.h" #include "xfs_quota.h" #include "xfs_trace.h" #include "xfs_fsops.h" #include "xfs_icache.h" #include #include /* * The inode lookup is done in batches to keep the amount of lock traffic and * radix tree lookups to a minimum. The batch size is a trade off between * lookup reduction and stack usage. This is in the reclaim path, so we can't * be too greedy. */ #define XFS_LOOKUP_BATCH 32 STATIC int xfs_inode_ag_walk_grab( struct xfs_inode *ip) { struct inode *inode = VFS_I(ip); ASSERT(rcu_read_lock_held()); /* * check for stale RCU freed inode * * If the inode has been reallocated, it doesn't matter if it's not in * the AG we are walking - we are walking for writeback, so if it * passes all the "valid inode" checks and is dirty, then we'll write * it back anyway. If it has been reallocated and still being * initialised, the XFS_INEW check below will catch it. */ spin_lock(&ip->i_flags_lock); if (!ip->i_ino) goto out_unlock_noent; /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) goto out_unlock_noent; spin_unlock(&ip->i_flags_lock); /* nothing to sync during shutdown */ if (XFS_FORCED_SHUTDOWN(ip->i_mount)) return EFSCORRUPTED; /* If we can't grab the inode, it must on it's way to reclaim. */ if (!igrab(inode)) return ENOENT; if (is_bad_inode(inode)) { IRELE(ip); return ENOENT; } /* inode is valid */ return 0; out_unlock_noent: spin_unlock(&ip->i_flags_lock); return ENOENT; } STATIC int xfs_inode_ag_walk( struct xfs_mount *mp, struct xfs_perag *pag, int (*execute)(struct xfs_inode *ip, struct xfs_perag *pag, int flags), int flags) { uint32_t first_index; int last_error = 0; int skipped; int done; int nr_found; restart: done = 0; skipped = 0; first_index = 0; nr_found = 0; do { struct xfs_inode *batch[XFS_LOOKUP_BATCH]; int error = 0; int i; rcu_read_lock(); nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void **)batch, first_index, XFS_LOOKUP_BATCH); if (!nr_found) { rcu_read_unlock(); break; } /* * Grab the inodes before we drop the lock. if we found * nothing, nr == 0 and the loop will be skipped. */ for (i = 0; i < nr_found; i++) { struct xfs_inode *ip = batch[i]; if (done || xfs_inode_ag_walk_grab(ip)) batch[i] = NULL; /* * Update the index for the next lookup. Catch * overflows into the next AG range which can occur if * we have inodes in the last block of the AG and we * are currently pointing to the last inode. * * Because we may see inodes that are from the wrong AG * due to RCU freeing and reallocation, only update the * index if it lies in this AG. It was a race that lead * us to see this inode, so another lookup from the * same index will not find it again. */ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) continue; first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) done = 1; } /* unlock now we've grabbed the inodes. */ rcu_read_unlock(); for (i = 0; i < nr_found; i++) { if (!batch[i]) continue; error = execute(batch[i], pag, flags); IRELE(batch[i]); if (error == EAGAIN) { skipped++; continue; } if (error && last_error != EFSCORRUPTED) last_error = error; } /* bail out if the filesystem is corrupted. */ if (error == EFSCORRUPTED) break; cond_resched(); } while (nr_found && !done); if (skipped) { delay(1); goto restart; } return last_error; } int xfs_inode_ag_iterator( struct xfs_mount *mp, int (*execute)(struct xfs_inode *ip, struct xfs_perag *pag, int flags), int flags) { struct xfs_perag *pag; int error = 0; int last_error = 0; xfs_agnumber_t ag; ag = 0; while ((pag = xfs_perag_get(mp, ag))) { ag = pag->pag_agno + 1; error = xfs_inode_ag_walk(mp, pag, execute, flags); xfs_perag_put(pag); if (error) { last_error = error; if (error == EFSCORRUPTED) break; } } return XFS_ERROR(last_error); } /* * Queue a new inode reclaim pass if there are reclaimable inodes and there * isn't a reclaim pass already in progress. By default it runs every 5s based * on the xfs periodic sync default of 30s. Perhaps this should have it's own * tunable, but that can be done if this method proves to be ineffective or too * aggressive. */ static void xfs_reclaim_work_queue( struct xfs_mount *mp) { rcu_read_lock(); if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); } rcu_read_unlock(); } /* * This is a fast pass over the inode cache to try to get reclaim moving on as * many inodes as possible in a short period of time. It kicks itself every few * seconds, as well as being kicked by the inode cache shrinker when memory * goes low. It scans as quickly as possible avoiding locked inodes or those * already being flushed, and once done schedules a future pass. */ void xfs_reclaim_worker( struct work_struct *work) { struct xfs_mount *mp = container_of(to_delayed_work(work), struct xfs_mount, m_reclaim_work); xfs_reclaim_inodes(mp, SYNC_TRYLOCK); xfs_reclaim_work_queue(mp); } void __xfs_inode_set_reclaim_tag( struct xfs_perag *pag, struct xfs_inode *ip) { radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), XFS_ICI_RECLAIM_TAG); if (!pag->pag_ici_reclaimable) { /* propagate the reclaim tag up into the perag radix tree */ spin_lock(&ip->i_mount->m_perag_lock); radix_tree_tag_set(&ip->i_mount->m_perag_tree, XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), XFS_ICI_RECLAIM_TAG); spin_unlock(&ip->i_mount->m_perag_lock); /* schedule periodic background inode reclaim */ xfs_reclaim_work_queue(ip->i_mount); trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, -1, _RET_IP_); } pag->pag_ici_reclaimable++; } /* * We set the inode flag atomically with the radix tree tag. * Once we get tag lookups on the radix tree, this inode flag * can go away. */ void xfs_inode_set_reclaim_tag( xfs_inode_t *ip) { struct xfs_mount *mp = ip->i_mount; struct xfs_perag *pag; pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); spin_lock(&pag->pag_ici_lock); spin_lock(&ip->i_flags_lock); __xfs_inode_set_reclaim_tag(pag, ip); __xfs_iflags_set(ip, XFS_IRECLAIMABLE); spin_unlock(&ip->i_flags_lock); spin_unlock(&pag->pag_ici_lock); xfs_perag_put(pag); } STATIC void __xfs_inode_clear_reclaim( xfs_perag_t *pag, xfs_inode_t *ip) { pag->pag_ici_reclaimable--; if (!pag->pag_ici_reclaimable) { /* clear the reclaim tag from the perag radix tree */ spin_lock(&ip->i_mount->m_perag_lock); radix_tree_tag_clear(&ip->i_mount->m_perag_tree, XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), XFS_ICI_RECLAIM_TAG); spin_unlock(&ip->i_mount->m_perag_lock); trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, -1, _RET_IP_); } } void __xfs_inode_clear_reclaim_tag( xfs_mount_t *mp, xfs_perag_t *pag, xfs_inode_t *ip) { radix_tree_tag_clear(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); __xfs_inode_clear_reclaim(pag, ip); } /* * Grab the inode for reclaim exclusively. * Return 0 if we grabbed it, non-zero otherwise. */ STATIC int xfs_reclaim_inode_grab( struct xfs_inode *ip, int flags) { ASSERT(rcu_read_lock_held()); /* quick check for stale RCU freed inode */ if (!ip->i_ino) return 1; /* * If we are asked for non-blocking operation, do unlocked checks to * see if the inode already is being flushed or in reclaim to avoid * lock traffic. */ if ((flags & SYNC_TRYLOCK) && __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) return 1; /* * The radix tree lock here protects a thread in xfs_iget from racing * with us starting reclaim on the inode. Once we have the * XFS_IRECLAIM flag set it will not touch us. * * Due to RCU lookup, we may find inodes that have been freed and only * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that * aren't candidates for reclaim at all, so we must check the * XFS_IRECLAIMABLE is set first before proceeding to reclaim. */ spin_lock(&ip->i_flags_lock); if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || __xfs_iflags_test(ip, XFS_IRECLAIM)) { /* not a reclaim candidate. */ spin_unlock(&ip->i_flags_lock); return 1; } __xfs_iflags_set(ip, XFS_IRECLAIM); spin_unlock(&ip->i_flags_lock); return 0; } /* * Inodes in different states need to be treated differently. The following * table lists the inode states and the reclaim actions necessary: * * inode state iflush ret required action * --------------- ---------- --------------- * bad - reclaim * shutdown EIO unpin and reclaim * clean, unpinned 0 reclaim * stale, unpinned 0 reclaim * clean, pinned(*) 0 requeue * stale, pinned EAGAIN requeue * dirty, async - requeue * dirty, sync 0 reclaim * * (*) dgc: I don't think the clean, pinned state is possible but it gets * handled anyway given the order of checks implemented. * * Also, because we get the flush lock first, we know that any inode that has * been flushed delwri has had the flush completed by the time we check that * the inode is clean. * * Note that because the inode is flushed delayed write by AIL pushing, the * flush lock may already be held here and waiting on it can result in very * long latencies. Hence for sync reclaims, where we wait on the flush lock, * the caller should push the AIL first before trying to reclaim inodes to * minimise the amount of time spent waiting. For background relaim, we only * bother to reclaim clean inodes anyway. * * Hence the order of actions after gaining the locks should be: * bad => reclaim * shutdown => unpin and reclaim * pinned, async => requeue * pinned, sync => unpin * stale => reclaim * clean => reclaim * dirty, async => requeue * dirty, sync => flush, wait and reclaim */ STATIC int xfs_reclaim_inode( struct xfs_inode *ip, struct xfs_perag *pag, int sync_mode) { struct xfs_buf *bp = NULL; int error; restart: error = 0; xfs_ilock(ip, XFS_ILOCK_EXCL); if (!xfs_iflock_nowait(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out; xfs_iflock(ip); } if (is_bad_inode(VFS_I(ip))) goto reclaim; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_iunpin_wait(ip); xfs_iflush_abort(ip, false); goto reclaim; } if (xfs_ipincount(ip)) { if (!(sync_mode & SYNC_WAIT)) goto out_ifunlock; xfs_iunpin_wait(ip); } if (xfs_iflags_test(ip, XFS_ISTALE)) goto reclaim; if (xfs_inode_clean(ip)) goto reclaim; /* * Never flush out dirty data during non-blocking reclaim, as it would * just contend with AIL pushing trying to do the same job. */ if (!(sync_mode & SYNC_WAIT)) goto out_ifunlock; /* * Now we have an inode that needs flushing. * * Note that xfs_iflush will never block on the inode buffer lock, as * xfs_ifree_cluster() can lock the inode buffer before it locks the * ip->i_lock, and we are doing the exact opposite here. As a result, * doing a blocking xfs_imap_to_bp() to get the cluster buffer would * result in an ABBA deadlock with xfs_ifree_cluster(). * * As xfs_ifree_cluser() must gather all inodes that are active in the * cache to mark them stale, if we hit this case we don't actually want * to do IO here - we want the inode marked stale so we can simply * reclaim it. Hence if we get an EAGAIN error here, just unlock the * inode, back off and try again. Hopefully the next pass through will * see the stale flag set on the inode. */ error = xfs_iflush(ip, &bp); if (error == EAGAIN) { xfs_iunlock(ip, XFS_ILOCK_EXCL); /* backoff longer than in xfs_ifree_cluster */ delay(2); goto restart; } if (!error) { error = xfs_bwrite(bp); xfs_buf_relse(bp); } xfs_iflock(ip); reclaim: xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); XFS_STATS_INC(xs_ig_reclaims); /* * Remove the inode from the per-AG radix tree. * * Because radix_tree_delete won't complain even if the item was never * added to the tree assert that it's been there before to catch * problems with the inode life time early on. */ spin_lock(&pag->pag_ici_lock); if (!radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) ASSERT(0); __xfs_inode_clear_reclaim(pag, ip); spin_unlock(&pag->pag_ici_lock); /* * Here we do an (almost) spurious inode lock in order to coordinate * with inode cache radix tree lookups. This is because the lookup * can reference the inodes in the cache without taking references. * * We make that OK here by ensuring that we wait until the inode is * unlocked after the lookup before we go ahead and free it. */ xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_qm_dqdetach(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_inode_free(ip); return error; out_ifunlock: xfs_ifunlock(ip); out: xfs_iflags_clear(ip, XFS_IRECLAIM); xfs_iunlock(ip, XFS_ILOCK_EXCL); /* * We could return EAGAIN here to make reclaim rescan the inode tree in * a short while. However, this just burns CPU time scanning the tree * waiting for IO to complete and the reclaim work never goes back to * the idle state. Instead, return 0 to let the next scheduled * background reclaim attempt to reclaim the inode again. */ return 0; } /* * Walk the AGs and reclaim the inodes in them. Even if the filesystem is * corrupted, we still want to try to reclaim all the inodes. If we don't, * then a shut down during filesystem unmount reclaim walk leak all the * unreclaimed inodes. */ int xfs_reclaim_inodes_ag( struct xfs_mount *mp, int flags, int *nr_to_scan) { struct xfs_perag *pag; int error = 0; int last_error = 0; xfs_agnumber_t ag; int trylock = flags & SYNC_TRYLOCK; int skipped; restart: ag = 0; skipped = 0; while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { unsigned long first_index = 0; int done = 0; int nr_found = 0; ag = pag->pag_agno + 1; if (trylock) { if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { skipped++; xfs_perag_put(pag); continue; } first_index = pag->pag_ici_reclaim_cursor; } else mutex_lock(&pag->pag_ici_reclaim_lock); do { struct xfs_inode *batch[XFS_LOOKUP_BATCH]; int i; rcu_read_lock(); nr_found = radix_tree_gang_lookup_tag( &pag->pag_ici_root, (void **)batch, first_index, XFS_LOOKUP_BATCH, XFS_ICI_RECLAIM_TAG); if (!nr_found) { done = 1; rcu_read_unlock(); break; } /* * Grab the inodes before we drop the lock. if we found * nothing, nr == 0 and the loop will be skipped. */ for (i = 0; i < nr_found; i++) { struct xfs_inode *ip = batch[i]; if (done || xfs_reclaim_inode_grab(ip, flags)) batch[i] = NULL; /* * Update the index for the next lookup. Catch * overflows into the next AG range which can * occur if we have inodes in the last block of * the AG and we are currently pointing to the * last inode. * * Because we may see inodes that are from the * wrong AG due to RCU freeing and * reallocation, only update the index if it * lies in this AG. It was a race that lead us * to see this inode, so another lookup from * the same index will not find it again. */ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) continue; first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) done = 1; } /* unlock now we've grabbed the inodes. */ rcu_read_unlock(); for (i = 0; i < nr_found; i++) { if (!batch[i]) continue; error = xfs_reclaim_inode(batch[i], pag, flags); if (error && last_error != EFSCORRUPTED) last_error = error; } *nr_to_scan -= XFS_LOOKUP_BATCH; cond_resched(); } while (nr_found && !done && *nr_to_scan > 0); if (trylock && !done) pag->pag_ici_reclaim_cursor = first_index; else pag->pag_ici_reclaim_cursor = 0; mutex_unlock(&pag->pag_ici_reclaim_lock); xfs_perag_put(pag); } /* * if we skipped any AG, and we still have scan count remaining, do * another pass this time using blocking reclaim semantics (i.e * waiting on the reclaim locks and ignoring the reclaim cursors). This * ensure that when we get more reclaimers than AGs we block rather * than spin trying to execute reclaim. */ if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { trylock = 0; goto restart; } return XFS_ERROR(last_error); } int xfs_reclaim_inodes( xfs_mount_t *mp, int mode) { int nr_to_scan = INT_MAX; return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); } /* * Scan a certain number of inodes for reclaim. * * When called we make sure that there is a background (fast) inode reclaim in * progress, while we will throttle the speed of reclaim via doing synchronous * reclaim of inodes. That means if we come across dirty inodes, we wait for * them to be cleaned, which we hope will not be very long due to the * background walker having already kicked the IO off on those dirty inodes. */ void xfs_reclaim_inodes_nr( struct xfs_mount *mp, int nr_to_scan) { /* kick background reclaimer and push the AIL */ xfs_reclaim_work_queue(mp); xfs_ail_push_all(mp->m_ail); xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); } /* * Return the number of reclaimable inodes in the filesystem for * the shrinker to determine how much to reclaim. */ int xfs_reclaim_inodes_count( struct xfs_mount *mp) { struct xfs_perag *pag; xfs_agnumber_t ag = 0; int reclaimable = 0; while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { ag = pag->pag_agno + 1; reclaimable += pag->pag_ici_reclaimable; xfs_perag_put(pag); } return reclaimable; }