/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_H #define BLK_MQ_H #include #include #include struct blk_mq_tags; struct blk_flush_queue; /** * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware block device */ struct blk_mq_hw_ctx { struct { spinlock_t lock; struct list_head dispatch; unsigned long state; /* BLK_MQ_S_* flags */ } ____cacheline_aligned_in_smp; struct delayed_work run_work; cpumask_var_t cpumask; int next_cpu; int next_cpu_batch; unsigned long flags; /* BLK_MQ_F_* flags */ void *sched_data; struct request_queue *queue; struct blk_flush_queue *fq; void *driver_data; struct sbitmap ctx_map; struct blk_mq_ctx *dispatch_from; unsigned int dispatch_busy; unsigned int nr_ctx; struct blk_mq_ctx **ctxs; spinlock_t dispatch_wait_lock; wait_queue_entry_t dispatch_wait; atomic_t wait_index; struct blk_mq_tags *tags; struct blk_mq_tags *sched_tags; unsigned long queued; unsigned long run; #define BLK_MQ_MAX_DISPATCH_ORDER 7 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; unsigned int numa_node; unsigned int queue_num; atomic_t nr_active; unsigned int nr_expired; struct hlist_node cpuhp_dead; struct kobject kobj; unsigned long poll_considered; unsigned long poll_invoked; unsigned long poll_success; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *debugfs_dir; struct dentry *sched_debugfs_dir; #endif ALI_HOTFIX_RESERVE(1) ALI_HOTFIX_RESERVE(2) ALI_HOTFIX_RESERVE(3) ALI_HOTFIX_RESERVE(4) /* Must be the last member - see also blk_mq_hw_ctx_size(). */ struct srcu_struct srcu[0]; }; struct blk_mq_tag_set { unsigned int *mq_map; const struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; /* max hw supported */ unsigned int reserved_tags; unsigned int cmd_size; /* per-request extra data */ int numa_node; unsigned int timeout; unsigned int flags; /* BLK_MQ_F_* */ void *driver_data; struct blk_mq_tags **tags; struct mutex tag_list_lock; struct list_head tag_list; ALI_HOTFIX_RESERVE(1) ALI_HOTFIX_RESERVE(2) ALI_HOTFIX_RESERVE(3) ALI_HOTFIX_RESERVE(4) }; struct blk_mq_queue_data { struct request *rq; bool last; ALI_HOTFIX_RESERVE(1) }; typedef blk_status_t (queue_rq_fn)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *); typedef bool (get_budget_fn)(struct blk_mq_hw_ctx *); typedef void (put_budget_fn)(struct blk_mq_hw_ctx *); typedef enum blk_eh_timer_return (timeout_fn)(struct request *, bool); typedef int (init_hctx_fn)(struct blk_mq_hw_ctx *, void *, unsigned int); typedef void (exit_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int); typedef int (init_request_fn)(struct blk_mq_tag_set *set, struct request *, unsigned int, unsigned int); typedef void (exit_request_fn)(struct blk_mq_tag_set *set, struct request *, unsigned int); typedef void (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, bool); typedef void (busy_tag_iter_fn)(struct request *, void *, bool); typedef int (poll_fn)(struct blk_mq_hw_ctx *, unsigned int); typedef int (map_queues_fn)(struct blk_mq_tag_set *set); typedef void (cleanup_rq_fn)(struct request *); struct blk_mq_ops { /* * Queue request */ queue_rq_fn *queue_rq; /* * Reserve budget before queue request, once .queue_rq is * run, it is driver's responsibility to release the * reserved budget. Also we have to handle failure case * of .get_budget for avoiding I/O deadlock. */ get_budget_fn *get_budget; put_budget_fn *put_budget; /* * Called on request timeout */ timeout_fn *timeout; /* * Called to poll for completion of a specific tag. */ poll_fn *poll; softirq_done_fn *complete; /* * Called when the block layer side of a hardware queue has been * set up, allowing the driver to allocate/init matching structures. * Ditto for exit/teardown. */ init_hctx_fn *init_hctx; exit_hctx_fn *exit_hctx; /* * Called for every command allocated by the block layer to allow * the driver to set up driver specific data. * * Tag greater than or equal to queue_depth is for setting up * flush request. * * Ditto for exit/teardown. */ init_request_fn *init_request; exit_request_fn *exit_request; /* Called from inside blk_get_request() */ void (*initialize_rq_fn)(struct request *rq); /* * Called before freeing one request which isn't completed yet, * and usually for freeing the driver private data */ cleanup_rq_fn *cleanup_rq; map_queues_fn *map_queues; #ifdef CONFIG_BLK_DEBUG_FS /* * Used by the debugfs implementation to show driver-specific * information about a request. */ void (*show_rq)(struct seq_file *m, struct request *rq); #endif ALI_HOTFIX_RESERVE_P(1) ALI_HOTFIX_RESERVE_P(2) }; enum { BLK_MQ_F_SHOULD_MERGE = 1 << 0, BLK_MQ_F_TAG_SHARED = 1 << 1, BLK_MQ_F_SG_MERGE = 1 << 2, BLK_MQ_F_BLOCKING = 1 << 5, BLK_MQ_F_NO_SCHED = 1 << 6, BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, BLK_MQ_F_ALLOC_POLICY_BITS = 1, BLK_MQ_S_STOPPED = 0, BLK_MQ_S_TAG_ACTIVE = 1, BLK_MQ_S_SCHED_RESTART = 2, BLK_MQ_MAX_DEPTH = 10240, BLK_MQ_CPU_WORK_BATCH = 8, }; #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ << BLK_MQ_F_ALLOC_POLICY_START_BIT) struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q); int blk_mq_register_dev(struct device *, struct request_queue *); void blk_mq_unregister_dev(struct device *, struct request_queue *); int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); void blk_mq_free_tag_set(struct blk_mq_tag_set *set); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_free_request(struct request *rq); bool blk_mq_can_queue(struct blk_mq_hw_ctx *); enum { /* return when out of requests */ BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), /* allocate from reserved pool */ BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), /* allocate internal/sched tag */ BLK_MQ_REQ_INTERNAL = (__force blk_mq_req_flags_t)(1 << 2), /* set RQF_PREEMPT */ BLK_MQ_REQ_PREEMPT = (__force blk_mq_req_flags_t)(1 << 3), }; struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx); struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); enum { BLK_MQ_UNIQUE_TAG_BITS = 16, BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, }; u32 blk_mq_unique_tag(struct request *rq); static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) { return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; } static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) { return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; } int blk_mq_request_started(struct request *rq); void blk_mq_start_request(struct request *rq); void blk_mq_end_request(struct request *rq, blk_status_t error); void __blk_mq_end_request(struct request *rq, blk_status_t error); void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, bool kick_requeue_list); void blk_mq_kick_requeue_list(struct request_queue *q); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); void blk_mq_complete_request(struct request *rq); bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio); bool blk_mq_queue_stopped(struct request_queue *q); void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_stop_hw_queues(struct request_queue *q); void blk_mq_start_hw_queues(struct request_queue *q); void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); void blk_mq_quiesce_queue(struct request_queue *q); void blk_mq_unquiesce_queue(struct request_queue *q); void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_run_hw_queues(struct request_queue *q, bool async); void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv); void blk_mq_freeze_queue(struct request_queue *q); void blk_mq_unfreeze_queue(struct request_queue *q); void blk_freeze_queue_start(struct request_queue *q); void blk_mq_freeze_queue_wait(struct request_queue *q); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout); int blk_mq_map_queues(struct blk_mq_tag_set *set); void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); void blk_mq_quiesce_queue_nowait(struct request_queue *q); /** * blk_mq_mark_complete() - Set request state to complete * @rq: request to set to complete state * * Returns true if request state was successfully set to complete. If * successful, the caller is responsibile for seeing this request is ended, as * blk_mq_complete_request will not work again. */ static inline bool blk_mq_mark_complete(struct request *rq) { return cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) == MQ_RQ_IN_FLIGHT; } /* * Driver command data is immediately after the request. So subtract request * size to get back to the original request, add request size to get the PDU. */ static inline struct request *blk_mq_rq_from_pdu(void *pdu) { return pdu - sizeof(struct request); } static inline void *blk_mq_rq_to_pdu(struct request *rq) { return rq + 1; } #define queue_for_each_hw_ctx(q, hctx, i) \ for ((i) = 0; (i) < (q)->nr_hw_queues && \ ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) #define hctx_for_each_ctx(hctx, ctx, i) \ for ((i) = 0; (i) < (hctx)->nr_ctx && \ ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) static inline void blk_mq_cleanup_rq(struct request *rq) { if (rq->q->mq_ops->cleanup_rq) rq->q->mq_ops->cleanup_rq(rq); } #endif