/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian * Eddie Dong * Zhiyuan Lv * * Contributors: * Min He * Tina Zhang * Pei Zhang * Niu Bing * Ping Gao * Zhi Wang * */ #include "i915_drv.h" #include "gvt.h" #include "i915_pvinfo.h" /* XXX FIXME i915 has changed PP_XXX definition */ #define PCH_PP_STATUS _MMIO(0xc7200) #define PCH_PP_CONTROL _MMIO(0xc7204) #define PCH_PP_ON_DELAYS _MMIO(0xc7208) #define PCH_PP_OFF_DELAYS _MMIO(0xc720c) #define PCH_PP_DIVISOR _MMIO(0xc7210) /* Register contains RO bits */ #define F_RO (1 << 0) /* Register contains graphics address */ #define F_GMADR (1 << 1) /* Mode mask registers with high 16 bits as the mask bits */ #define F_MODE_MASK (1 << 2) /* This reg can be accessed by GPU commands */ #define F_CMD_ACCESS (1 << 3) /* This reg has been accessed by a VM */ #define F_ACCESSED (1 << 4) /* This reg has been accessed through GPU commands */ #define F_CMD_ACCESSED (1 << 5) /* This reg could be accessed by unaligned address */ #define F_UNALIGN (1 << 6) unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt) { if (IS_BROADWELL(gvt->dev_priv)) return D_BDW; else if (IS_SKYLAKE(gvt->dev_priv)) return D_SKL; return 0; } bool intel_gvt_match_device(struct intel_gvt *gvt, unsigned long device) { return intel_gvt_get_device_type(gvt) & device; } static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); } static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); } static int new_mmio_info(struct intel_gvt *gvt, u32 offset, u32 flags, u32 size, u32 addr_mask, u32 ro_mask, u32 device, void *read, void *write) { struct intel_gvt_mmio_info *info, *p; u32 start, end, i; if (!intel_gvt_match_device(gvt, device)) return 0; if (WARN_ON(!IS_ALIGNED(offset, 4))) return -EINVAL; start = offset; end = offset + size; for (i = start; i < end; i += 4) { info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->offset = i; p = intel_gvt_find_mmio_info(gvt, info->offset); if (p) gvt_err("dup mmio definition offset %x\n", info->offset); info->size = size; info->length = (i + 4) < end ? 4 : (end - i); info->addr_mask = addr_mask; info->device = device; info->read = read ? read : intel_vgpu_default_mmio_read; info->write = write ? write : intel_vgpu_default_mmio_write; gvt->mmio.mmio_attribute[info->offset / 4] = flags; INIT_HLIST_NODE(&info->node); hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset); } return 0; } static int render_mmio_to_ring_id(struct intel_gvt *gvt, unsigned int reg) { enum intel_engine_id id; struct intel_engine_cs *engine; reg &= ~GENMASK(11, 0); for_each_engine(engine, gvt->dev_priv, id) { if (engine->mmio_base == reg) return id; } return -1; } #define offset_to_fence_num(offset) \ ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3) #define fence_num_to_offset(num) \ (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu, unsigned int fence_num, void *p_data, unsigned int bytes) { if (fence_num >= vgpu_fence_sz(vgpu)) { gvt_err("vgpu%d: found oob fence register access\n", vgpu->id); gvt_err("vgpu%d: total fence num %d access fence num %d\n", vgpu->id, vgpu_fence_sz(vgpu), fence_num); memset(p_data, 0, bytes); } return 0; } static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { int ret; ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off), p_data, bytes); if (ret) return ret; read_vreg(vgpu, off, p_data, bytes); return 0; } static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off, void *p_data, unsigned int bytes) { unsigned int fence_num = offset_to_fence_num(off); int ret; ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes); if (ret) return ret; write_vreg(vgpu, off, p_data, bytes); intel_vgpu_write_fence(vgpu, fence_num, vgpu_vreg64(vgpu, fence_num_to_offset(fence_num))); return 0; } #define CALC_MODE_MASK_REG(old, new) \ (((new) & GENMASK(31, 16)) \ | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \ | ((new) & ((new) >> 16)))) static int mul_force_wake_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 old, new; uint32_t ack_reg_offset; old = vgpu_vreg(vgpu, offset); new = CALC_MODE_MASK_REG(old, *(u32 *)p_data); if (IS_SKYLAKE(vgpu->gvt->dev_priv)) { switch (offset) { case FORCEWAKE_RENDER_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG; break; case FORCEWAKE_BLITTER_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_BLITTER_GEN9_REG; break; case FORCEWAKE_MEDIA_GEN9_REG: ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG; break; default: /*should not hit here*/ gvt_err("invalid forcewake offset 0x%x\n", offset); return 1; } } else { ack_reg_offset = FORCEWAKE_ACK_HSW_REG; } vgpu_vreg(vgpu, offset) = new; vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0)); return 0; } static int handle_device_reset(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes, unsigned long bitmap) { struct intel_gvt_workload_scheduler *scheduler = &vgpu->gvt->scheduler; vgpu->resetting = true; intel_vgpu_stop_schedule(vgpu); /* * The current_vgpu will set to NULL after stopping the * scheduler when the reset is triggered by current vgpu. */ if (scheduler->current_vgpu == NULL) { mutex_unlock(&vgpu->gvt->lock); intel_gvt_wait_vgpu_idle(vgpu); mutex_lock(&vgpu->gvt->lock); } intel_vgpu_reset_execlist(vgpu, bitmap); /* full GPU reset */ if (bitmap == 0xff) { mutex_unlock(&vgpu->gvt->lock); intel_vgpu_clean_gtt(vgpu); mutex_lock(&vgpu->gvt->lock); setup_vgpu_mmio(vgpu); populate_pvinfo_page(vgpu); intel_vgpu_init_gtt(vgpu); } vgpu->resetting = false; return 0; } static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; u64 bitmap = 0; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & GEN6_GRDOM_FULL) { gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id); bitmap = 0xff; } if (data & GEN6_GRDOM_RENDER) { gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id); bitmap |= (1 << RCS); } if (data & GEN6_GRDOM_MEDIA) { gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id); bitmap |= (1 << VCS); } if (data & GEN6_GRDOM_BLT) { gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id); bitmap |= (1 << BCS); } if (data & GEN6_GRDOM_VECS) { gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id); bitmap |= (1 << VECS); } if (data & GEN8_GRDOM_MEDIA2) { gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id); if (HAS_BSD2(vgpu->gvt->dev_priv)) bitmap |= (1 << VCS2); } return handle_device_reset(vgpu, offset, p_data, bytes, bitmap); } static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes); } static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes); } static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) { vgpu_vreg(vgpu, PCH_PP_STATUS) |= PP_ON; vgpu_vreg(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE; vgpu_vreg(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN; vgpu_vreg(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE; } else vgpu_vreg(vgpu, PCH_PP_STATUS) &= ~(PP_ON | PP_SEQUENCE_POWER_DOWN | PP_CYCLE_DELAY_ACTIVE); return 0; } static int transconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE) vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE; else vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE; return 0; } static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE) vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK; else vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK; if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK) vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE; else vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE; return 0; } static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { *(u32 *)p_data = (1 << 17); return 0; } static int dpy_reg_mmio_read_2(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { *(u32 *)p_data = 3; return 0; } static int dpy_reg_mmio_read_3(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { *(u32 *)p_data = (0x2f << 16); return 0; } static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & PIPECONF_ENABLE) vgpu_vreg(vgpu, offset) |= I965_PIPECONF_ACTIVE; else vgpu_vreg(vgpu, offset) &= ~I965_PIPECONF_ACTIVE; intel_gvt_check_vblank_emulation(vgpu->gvt); return 0; } static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) { vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE; } else { vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE; if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E))) vgpu_vreg(vgpu, DP_TP_STATUS(PORT_E)) &= ~DP_TP_STATUS_AUTOTRAIN_DONE; } return 0; } static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data; return 0; } #define FDI_LINK_TRAIN_PATTERN1 0 #define FDI_LINK_TRAIN_PATTERN2 1 static int fdi_auto_training_started(struct intel_vgpu *vgpu) { u32 ddi_buf_ctl = vgpu_vreg(vgpu, DDI_BUF_CTL(PORT_E)); u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL); u32 tx_ctl = vgpu_vreg(vgpu, DP_TP_CTL(PORT_E)); if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) && (rx_ctl & FDI_RX_ENABLE) && (rx_ctl & FDI_AUTO_TRAINING) && (tx_ctl & DP_TP_CTL_ENABLE) && (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN)) return 1; else return 0; } static int check_fdi_rx_train_status(struct intel_vgpu *vgpu, enum pipe pipe, unsigned int train_pattern) { i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl; unsigned int fdi_rx_check_bits, fdi_tx_check_bits; unsigned int fdi_rx_train_bits, fdi_tx_train_bits; unsigned int fdi_iir_check_bits; fdi_rx_imr = FDI_RX_IMR(pipe); fdi_tx_ctl = FDI_TX_CTL(pipe); fdi_rx_ctl = FDI_RX_CTL(pipe); if (train_pattern == FDI_LINK_TRAIN_PATTERN1) { fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT; fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1; fdi_iir_check_bits = FDI_RX_BIT_LOCK; } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) { fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT; fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2; fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK; } else { gvt_err("Invalid train pattern %d\n", train_pattern); return -EINVAL; } fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits; fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits; /* If imr bit has been masked */ if (vgpu_vreg(vgpu, fdi_rx_imr) & fdi_iir_check_bits) return 0; if (((vgpu_vreg(vgpu, fdi_tx_ctl) & fdi_tx_check_bits) == fdi_tx_check_bits) && ((vgpu_vreg(vgpu, fdi_rx_ctl) & fdi_rx_check_bits) == fdi_rx_check_bits)) return 1; else return 0; } #define INVALID_INDEX (~0U) static unsigned int calc_index(unsigned int offset, unsigned int start, unsigned int next, unsigned int end, i915_reg_t i915_end) { unsigned int range = next - start; if (!end) end = i915_mmio_reg_offset(i915_end); if (offset < start || offset > end) return INVALID_INDEX; offset -= start; return offset / range; } #define FDI_RX_CTL_TO_PIPE(offset) \ calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C)) #define FDI_TX_CTL_TO_PIPE(offset) \ calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C)) #define FDI_RX_IMR_TO_PIPE(offset) \ calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C)) static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { i915_reg_t fdi_rx_iir; unsigned int index; int ret; if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX) index = FDI_RX_CTL_TO_PIPE(offset); else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX) index = FDI_TX_CTL_TO_PIPE(offset); else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX) index = FDI_RX_IMR_TO_PIPE(offset); else { gvt_err("Unsupport registers %x\n", offset); return -EINVAL; } write_vreg(vgpu, offset, p_data, bytes); fdi_rx_iir = FDI_RX_IIR(index); ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1); if (ret < 0) return ret; if (ret) vgpu_vreg(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK; ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2); if (ret < 0) return ret; if (ret) vgpu_vreg(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK; if (offset == _FDI_RXA_CTL) if (fdi_auto_training_started(vgpu)) vgpu_vreg(vgpu, DP_TP_STATUS(PORT_E)) |= DP_TP_STATUS_AUTOTRAIN_DONE; return 0; } #define DP_TP_CTL_TO_PORT(offset) \ calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E)) static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { i915_reg_t status_reg; unsigned int index; u32 data; write_vreg(vgpu, offset, p_data, bytes); index = DP_TP_CTL_TO_PORT(offset); data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8; if (data == 0x2) { status_reg = DP_TP_STATUS(index); vgpu_vreg(vgpu, status_reg) |= (1 << 25); } return 0; } static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 reg_val; u32 sticky_mask; reg_val = *((u32 *)p_data); sticky_mask = GENMASK(27, 26) | (1 << 24); vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) | (vgpu_vreg(vgpu, offset) & sticky_mask); vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask); return 0; } static int pch_adpa_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER) vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER; return 0; } static int south_chicken2_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (data & FDI_MPHY_IOSFSB_RESET_CTL) vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS; else vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS; return 0; } #define DSPSURF_TO_PIPE(offset) \ calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C)) static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; unsigned int index = DSPSURF_TO_PIPE(offset); i915_reg_t surflive_reg = DSPSURFLIVE(index); int flip_event[] = { [PIPE_A] = PRIMARY_A_FLIP_DONE, [PIPE_B] = PRIMARY_B_FLIP_DONE, [PIPE_C] = PRIMARY_C_FLIP_DONE, }; write_vreg(vgpu, offset, p_data, bytes); vgpu_vreg(vgpu, surflive_reg) = vgpu_vreg(vgpu, offset); set_bit(flip_event[index], vgpu->irq.flip_done_event[index]); return 0; } #define SPRSURF_TO_PIPE(offset) \ calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C)) static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { unsigned int index = SPRSURF_TO_PIPE(offset); i915_reg_t surflive_reg = SPRSURFLIVE(index); int flip_event[] = { [PIPE_A] = SPRITE_A_FLIP_DONE, [PIPE_B] = SPRITE_B_FLIP_DONE, [PIPE_C] = SPRITE_C_FLIP_DONE, }; write_vreg(vgpu, offset, p_data, bytes); vgpu_vreg(vgpu, surflive_reg) = vgpu_vreg(vgpu, offset); set_bit(flip_event[index], vgpu->irq.flip_done_event[index]); return 0; } static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu, unsigned int reg) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; enum intel_gvt_event_type event; if (reg == _DPA_AUX_CH_CTL) event = AUX_CHANNEL_A; else if (reg == _PCH_DPB_AUX_CH_CTL || reg == _DPB_AUX_CH_CTL) event = AUX_CHANNEL_B; else if (reg == _PCH_DPC_AUX_CH_CTL || reg == _DPC_AUX_CH_CTL) event = AUX_CHANNEL_C; else if (reg == _PCH_DPD_AUX_CH_CTL || reg == _DPD_AUX_CH_CTL) event = AUX_CHANNEL_D; else { WARN_ON(true); return -EINVAL; } intel_vgpu_trigger_virtual_event(vgpu, event); return 0; } static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value, unsigned int reg, int len, bool data_valid) { /* mark transaction done */ value |= DP_AUX_CH_CTL_DONE; value &= ~DP_AUX_CH_CTL_SEND_BUSY; value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR; if (data_valid) value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR; else value |= DP_AUX_CH_CTL_TIME_OUT_ERROR; /* message size */ value &= ~(0xf << 20); value |= (len << 20); vgpu_vreg(vgpu, reg) = value; if (value & DP_AUX_CH_CTL_INTERRUPT) return trigger_aux_channel_interrupt(vgpu, reg); return 0; } static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd, uint8_t t) { if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) { /* training pattern 1 for CR */ /* set LANE0_CR_DONE, LANE1_CR_DONE */ dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE; /* set LANE2_CR_DONE, LANE3_CR_DONE */ dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE; } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_2) { /* training pattern 2 for EQ */ /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */ dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE; dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED; /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */ dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE; dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED; /* set INTERLANE_ALIGN_DONE */ dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |= DPCD_INTERLANE_ALIGN_DONE; } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_LINK_TRAINING_DISABLED) { /* finish link training */ /* set sink status as synchronized */ dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC; } } #define _REG_HSW_DP_AUX_CH_CTL(dp) \ ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010) #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100) #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8) #define dpy_is_valid_port(port) \ (((port) >= PORT_A) && ((port) < I915_MAX_PORTS)) static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct intel_vgpu_display *display = &vgpu->display; int msg, addr, ctrl, op, len; int port_index = OFFSET_TO_DP_AUX_PORT(offset); struct intel_vgpu_dpcd_data *dpcd = NULL; struct intel_vgpu_port *port = NULL; u32 data; if (!dpy_is_valid_port(port_index)) { gvt_err("GVT(%d): Unsupported DP port access!\n", vgpu->id); return 0; } write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); if (IS_SKYLAKE(vgpu->gvt->dev_priv) && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) { /* SKL DPB/C/D aux ctl register changed */ return 0; } else if (IS_BROADWELL(vgpu->gvt->dev_priv) && offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) { /* write to the data registers */ return 0; } if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) { /* just want to clear the sticky bits */ vgpu_vreg(vgpu, offset) = 0; return 0; } port = &display->ports[port_index]; dpcd = port->dpcd; /* read out message from DATA1 register */ msg = vgpu_vreg(vgpu, offset + 4); addr = (msg >> 8) & 0xffff; ctrl = (msg >> 24) & 0xff; len = msg & 0xff; op = ctrl >> 4; if (op == GVT_AUX_NATIVE_WRITE) { int t; uint8_t buf[16]; if ((addr + len + 1) >= DPCD_SIZE) { /* * Write request exceeds what we supported, * DCPD spec: When a Source Device is writing a DPCD * address not supported by the Sink Device, the Sink * Device shall reply with AUX NACK and “M” equal to * zero. */ /* NAK the write */ vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK; dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true); return 0; } /* * Write request format: (command + address) occupies * 3 bytes, followed by (len + 1) bytes of data. */ if (WARN_ON((len + 4) > AUX_BURST_SIZE)) return -EINVAL; /* unpack data from vreg to buf */ for (t = 0; t < 4; t++) { u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4); buf[t * 4] = (r >> 24) & 0xff; buf[t * 4 + 1] = (r >> 16) & 0xff; buf[t * 4 + 2] = (r >> 8) & 0xff; buf[t * 4 + 3] = r & 0xff; } /* write to virtual DPCD */ if (dpcd && dpcd->data_valid) { for (t = 0; t <= len; t++) { int p = addr + t; dpcd->data[p] = buf[t]; /* check for link training */ if (p == DPCD_TRAINING_PATTERN_SET) dp_aux_ch_ctl_link_training(dpcd, buf[t]); } } /* ACK the write */ vgpu_vreg(vgpu, offset + 4) = 0; dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1, dpcd && dpcd->data_valid); return 0; } if (op == GVT_AUX_NATIVE_READ) { int idx, i, ret = 0; if ((addr + len + 1) >= DPCD_SIZE) { /* * read request exceeds what we supported * DPCD spec: A Sink Device receiving a Native AUX CH * read request for an unsupported DPCD address must * reply with an AUX ACK and read data set equal to * zero instead of replying with AUX NACK. */ /* ACK the READ*/ vgpu_vreg(vgpu, offset + 4) = 0; vgpu_vreg(vgpu, offset + 8) = 0; vgpu_vreg(vgpu, offset + 12) = 0; vgpu_vreg(vgpu, offset + 16) = 0; vgpu_vreg(vgpu, offset + 20) = 0; dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, true); return 0; } for (idx = 1; idx <= 5; idx++) { /* clear the data registers */ vgpu_vreg(vgpu, offset + 4 * idx) = 0; } /* * Read reply format: ACK (1 byte) plus (len + 1) bytes of data. */ if (WARN_ON((len + 2) > AUX_BURST_SIZE)) return -EINVAL; /* read from virtual DPCD to vreg */ /* first 4 bytes: [ACK][addr][addr+1][addr+2] */ if (dpcd && dpcd->data_valid) { for (i = 1; i <= (len + 1); i++) { int t; t = dpcd->data[addr + i - 1]; t <<= (24 - 8 * (i % 4)); ret |= t; if ((i % 4 == 3) || (i == (len + 1))) { vgpu_vreg(vgpu, offset + (i / 4 + 1) * 4) = ret; ret = 0; } } } dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, dpcd && dpcd->data_valid); return 0; } /* i2c transaction starts */ intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data); if (data & DP_AUX_CH_CTL_INTERRUPT) trigger_aux_channel_interrupt(vgpu, offset); return 0; } static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { bool vga_disable; write_vreg(vgpu, offset, p_data, bytes); vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE; gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id, vga_disable ? "Disable" : "Enable"); return 0; } static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu, unsigned int sbi_offset) { struct intel_vgpu_display *display = &vgpu->display; int num = display->sbi.number; int i; for (i = 0; i < num; ++i) if (display->sbi.registers[i].offset == sbi_offset) break; if (i == num) return 0; return display->sbi.registers[i].value; } static void write_virtual_sbi_register(struct intel_vgpu *vgpu, unsigned int offset, u32 value) { struct intel_vgpu_display *display = &vgpu->display; int num = display->sbi.number; int i; for (i = 0; i < num; ++i) { if (display->sbi.registers[i].offset == offset) break; } if (i == num) { if (num == SBI_REG_MAX) { gvt_err("vgpu%d: SBI caching meets maximum limits\n", vgpu->id); return; } display->sbi.number++; } display->sbi.registers[i].offset = offset; display->sbi.registers[i].value = value; } static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { if (((vgpu_vreg(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) { unsigned int sbi_offset = (vgpu_vreg(vgpu, SBI_ADDR) & SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu, sbi_offset); } read_vreg(vgpu, offset, p_data, bytes); return 0; } static bool sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT); data |= SBI_READY; data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT); data |= SBI_RESPONSE_SUCCESS; vgpu_vreg(vgpu, offset) = data; if (((vgpu_vreg(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) { unsigned int sbi_offset = (vgpu_vreg(vgpu, SBI_ADDR) & SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; write_virtual_sbi_register(vgpu, sbi_offset, vgpu_vreg(vgpu, SBI_DATA)); } return 0; } #define _vgtif_reg(x) \ (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x)) static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { bool invalid_read = false; read_vreg(vgpu, offset, p_data, bytes); switch (offset) { case _vgtif_reg(magic) ... _vgtif_reg(vgt_id): if (offset + bytes > _vgtif_reg(vgt_id) + 4) invalid_read = true; break; case _vgtif_reg(avail_rs.mappable_gmadr.base) ... _vgtif_reg(avail_rs.fence_num): if (offset + bytes > _vgtif_reg(avail_rs.fence_num) + 4) invalid_read = true; break; case 0x78010: /* vgt_caps */ case 0x7881c: break; default: invalid_read = true; break; } if (invalid_read) gvt_err("invalid pvinfo read: [%x:%x] = %x\n", offset, bytes, *(u32 *)p_data); return 0; } static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification) { int ret = 0; switch (notification) { case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE: ret = intel_vgpu_g2v_create_ppgtt_mm(vgpu, 3); break; case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY: ret = intel_vgpu_g2v_destroy_ppgtt_mm(vgpu, 3); break; case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE: ret = intel_vgpu_g2v_create_ppgtt_mm(vgpu, 4); break; case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY: ret = intel_vgpu_g2v_destroy_ppgtt_mm(vgpu, 4); break; case VGT_G2V_EXECLIST_CONTEXT_CREATE: case VGT_G2V_EXECLIST_CONTEXT_DESTROY: case 1: /* Remove this in guest driver. */ break; default: gvt_err("Invalid PV notification %d\n", notification); } return ret; } static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; char *env[3] = {NULL, NULL, NULL}; char vmid_str[20]; char display_ready_str[20]; snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d\n", ready); env[0] = display_ready_str; snprintf(vmid_str, 20, "VMID=%d", vgpu->id); env[1] = vmid_str; return kobject_uevent_env(kobj, KOBJ_ADD, env); } static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data; int ret; write_vreg(vgpu, offset, p_data, bytes); data = vgpu_vreg(vgpu, offset); switch (offset) { case _vgtif_reg(display_ready): send_display_ready_uevent(vgpu, data ? 1 : 0); break; case _vgtif_reg(g2v_notify): ret = handle_g2v_notification(vgpu, data); break; /* add xhot and yhot to handled list to avoid error log */ case 0x78830: case 0x78834: case _vgtif_reg(pdp[0].lo): case _vgtif_reg(pdp[0].hi): case _vgtif_reg(pdp[1].lo): case _vgtif_reg(pdp[1].hi): case _vgtif_reg(pdp[2].lo): case _vgtif_reg(pdp[2].hi): case _vgtif_reg(pdp[3].lo): case _vgtif_reg(pdp[3].hi): case _vgtif_reg(execlist_context_descriptor_lo): case _vgtif_reg(execlist_context_descriptor_hi): break; default: gvt_err("invalid pvinfo write offset %x bytes %x data %x\n", offset, bytes, data); break; } return 0; } static int pf_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 val = *(u32 *)p_data; if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL || offset == _PS_1B_CTRL || offset == _PS_2B_CTRL || offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) { WARN_ONCE(true, "VM(%d): guest is trying to scaling a plane\n", vgpu->id); return 0; } return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); } static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & HSW_PWR_WELL_ENABLE_REQUEST) vgpu_vreg(vgpu, offset) |= HSW_PWR_WELL_STATE_ENABLED; else vgpu_vreg(vgpu, offset) &= ~HSW_PWR_WELL_STATE_ENABLED; return 0; } static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM) vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM; return 0; } static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 mode; write_vreg(vgpu, offset, p_data, bytes); mode = vgpu_vreg(vgpu, offset); if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) { WARN_ONCE(1, "VM(%d): iGVT-g doesn't supporte GuC\n", vgpu->id); return 0; } return 0; } static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; u32 trtte = *(u32 *)p_data; if ((trtte & 1) && (trtte & (1 << 1)) == 0) { WARN(1, "VM(%d): Use physical address for TRTT!\n", vgpu->id); return -EINVAL; } write_vreg(vgpu, offset, p_data, bytes); /* TRTTE is not per-context */ I915_WRITE(_MMIO(offset), vgpu_vreg(vgpu, offset)); return 0; } static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; u32 val = *(u32 *)p_data; if (val & 1) { /* unblock hw logic */ I915_WRITE(_MMIO(offset), val); } write_vreg(vgpu, offset, p_data, bytes); return 0; } static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = 0; if (vgpu_vreg(vgpu, 0x46010) & (1 << 31)) v |= (1 << 0); if (vgpu_vreg(vgpu, 0x46014) & (1 << 31)) v |= (1 << 8); if (vgpu_vreg(vgpu, 0x46040) & (1 << 31)) v |= (1 << 16); if (vgpu_vreg(vgpu, 0x46060) & (1 << 31)) v |= (1 << 24); vgpu_vreg(vgpu, offset) = v; return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); } static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 value = *(u32 *)p_data; u32 cmd = value & 0xff; u32 *data0 = &vgpu_vreg(vgpu, GEN6_PCODE_DATA); switch (cmd) { case 0x6: /** * "Read memory latency" command on gen9. * Below memory latency values are read * from skylake platform. */ if (!*data0) *data0 = 0x1e1a1100; else *data0 = 0x61514b3d; break; case 0x5: *data0 |= 0x1; break; } gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n", vgpu->id, value, *data0); value &= ~(1 << 31); return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); } static int skl_power_well_ctl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; v &= (1 << 31) | (1 << 29) | (1 << 9) | (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1); v |= (v >> 1); return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes); } static int skl_misc_ctl_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; i915_reg_t reg = {.reg = offset}; switch (offset) { case 0x4ddc: vgpu_vreg(vgpu, offset) = 0x8000003c; break; case 0x42080: vgpu_vreg(vgpu, offset) = 0x8000; break; default: return -EINVAL; } /** * TODO: need detect stepping info after gvt contain such information * 0x4ddc enabled after C0, 0x42080 enabled after E0. */ I915_WRITE(reg, vgpu_vreg(vgpu, offset)); return 0; } static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 v = *(u32 *)p_data; /* other bits are MBZ. */ v &= (1 << 31) | (1 << 30); v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30)); vgpu_vreg(vgpu, offset) = v; return 0; } static int ring_timestamp_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; vgpu_vreg(vgpu, offset) = I915_READ(_MMIO(offset)); return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); } static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { int ring_id = render_mmio_to_ring_id(vgpu->gvt, offset); struct intel_vgpu_execlist *execlist; u32 data = *(u32 *)p_data; int ret = 0; if (WARN_ON(ring_id < 0 || ring_id > I915_NUM_ENGINES - 1)) return -EINVAL; execlist = &vgpu->execlist[ring_id]; execlist->elsp_dwords.data[execlist->elsp_dwords.index] = data; if (execlist->elsp_dwords.index == 3) { ret = intel_vgpu_submit_execlist(vgpu, ring_id); if(ret) gvt_err("fail submit workload on ring %d\n", ring_id); } ++execlist->elsp_dwords.index; execlist->elsp_dwords.index &= 0x3; return ret; } static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 data = *(u32 *)p_data; int ring_id = render_mmio_to_ring_id(vgpu->gvt, offset); bool enable_execlist; write_vreg(vgpu, offset, p_data, bytes); if ((data & _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)) || (data & _MASKED_BIT_DISABLE(GFX_RUN_LIST_ENABLE))) { enable_execlist = !!(data & GFX_RUN_LIST_ENABLE); gvt_dbg_core("EXECLIST %s on ring %d\n", (enable_execlist ? "enabling" : "disabling"), ring_id); if (enable_execlist) intel_vgpu_start_schedule(vgpu); } return 0; } static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { int rc = 0; unsigned int id = 0; write_vreg(vgpu, offset, p_data, bytes); switch (offset) { case 0x4260: id = RCS; break; case 0x4264: id = VCS; break; case 0x4268: id = VCS2; break; case 0x426c: id = BCS; break; case 0x4270: id = VECS; break; default: rc = -EINVAL; break; } set_bit(id, (void *)vgpu->tlb_handle_pending); return rc; } #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \ ret = new_mmio_info(gvt, INTEL_GVT_MMIO_OFFSET(reg), \ f, s, am, rm, d, r, w); \ if (ret) \ return ret; \ } while (0) #define MMIO_D(reg, d) \ MMIO_F(reg, 4, 0, 0, 0, d, NULL, NULL) #define MMIO_DH(reg, d, r, w) \ MMIO_F(reg, 4, 0, 0, 0, d, r, w) #define MMIO_DFH(reg, d, f, r, w) \ MMIO_F(reg, 4, f, 0, 0, d, r, w) #define MMIO_GM(reg, d, r, w) \ MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w) #define MMIO_RO(reg, d, f, rm, r, w) \ MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w) #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \ MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \ MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \ } while (0) #define MMIO_RING_D(prefix, d) \ MMIO_RING_F(prefix, 4, 0, 0, 0, d, NULL, NULL) #define MMIO_RING_DFH(prefix, d, f, r, w) \ MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w) #define MMIO_RING_GM(prefix, d, r, w) \ MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w) #define MMIO_RING_RO(prefix, d, f, rm, r, w) \ MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w) static int init_generic_mmio_info(struct intel_gvt *gvt) { struct drm_i915_private *dev_priv = gvt->dev_priv; int ret; MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler); MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler); MMIO_D(SDEISR, D_ALL); MMIO_RING_D(RING_HWSTAM, D_ALL); MMIO_GM(RENDER_HWS_PGA_GEN7, D_ALL, NULL, NULL); MMIO_GM(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL); MMIO_GM(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL); MMIO_GM(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL); #define RING_REG(base) (base + 0x28) MMIO_RING_D(RING_REG, D_ALL); #undef RING_REG #define RING_REG(base) (base + 0x134) MMIO_RING_D(RING_REG, D_ALL); #undef RING_REG MMIO_GM(0x2148, D_ALL, NULL, NULL); MMIO_GM(CCID, D_ALL, NULL, NULL); MMIO_GM(0x12198, D_ALL, NULL, NULL); MMIO_D(GEN7_CXT_SIZE, D_ALL); MMIO_RING_D(RING_TAIL, D_ALL); MMIO_RING_D(RING_HEAD, D_ALL); MMIO_RING_D(RING_CTL, D_ALL); MMIO_RING_D(RING_ACTHD, D_ALL); MMIO_RING_GM(RING_START, D_ALL, NULL, NULL); /* RING MODE */ #define RING_REG(base) (base + 0x29c) MMIO_RING_DFH(RING_REG, D_ALL, F_MODE_MASK, NULL, ring_mode_mmio_write); #undef RING_REG MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS, ring_timestamp_mmio_read, NULL); MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS, ring_timestamp_mmio_read, NULL); MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0x20dc, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0x2088, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0x20e4, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0x2470, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_D(GAM_ECOCHK, D_ALL); MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_D(0x9030, D_ALL); MMIO_D(0x20a0, D_ALL); MMIO_D(0x2420, D_ALL); MMIO_D(0x2430, D_ALL); MMIO_D(0x2434, D_ALL); MMIO_D(0x2438, D_ALL); MMIO_D(0x243c, D_ALL); MMIO_DFH(0x7018, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0xe184, D_ALL, F_MODE_MASK, NULL, NULL); MMIO_DFH(0xe100, D_ALL, F_MODE_MASK, NULL, NULL); /* display */ MMIO_F(0x60220, 0x20, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(0x602a0, D_ALL); MMIO_D(0x65050, D_ALL); MMIO_D(0x650b4, D_ALL); MMIO_D(0xc4040, D_ALL); MMIO_D(DERRMR, D_ALL); MMIO_D(PIPEDSL(PIPE_A), D_ALL); MMIO_D(PIPEDSL(PIPE_B), D_ALL); MMIO_D(PIPEDSL(PIPE_C), D_ALL); MMIO_D(PIPEDSL(_PIPE_EDP), D_ALL); MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write); MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write); MMIO_D(PIPESTAT(PIPE_A), D_ALL); MMIO_D(PIPESTAT(PIPE_B), D_ALL); MMIO_D(PIPESTAT(PIPE_C), D_ALL); MMIO_D(PIPESTAT(_PIPE_EDP), D_ALL); MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_A), D_ALL); MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_B), D_ALL); MMIO_D(PIPE_FLIPCOUNT_G4X(PIPE_C), D_ALL); MMIO_D(PIPE_FLIPCOUNT_G4X(_PIPE_EDP), D_ALL); MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_A), D_ALL); MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_B), D_ALL); MMIO_D(PIPE_FRMCOUNT_G4X(PIPE_C), D_ALL); MMIO_D(PIPE_FRMCOUNT_G4X(_PIPE_EDP), D_ALL); MMIO_D(CURCNTR(PIPE_A), D_ALL); MMIO_D(CURCNTR(PIPE_B), D_ALL); MMIO_D(CURCNTR(PIPE_C), D_ALL); MMIO_D(CURPOS(PIPE_A), D_ALL); MMIO_D(CURPOS(PIPE_B), D_ALL); MMIO_D(CURPOS(PIPE_C), D_ALL); MMIO_D(CURBASE(PIPE_A), D_ALL); MMIO_D(CURBASE(PIPE_B), D_ALL); MMIO_D(CURBASE(PIPE_C), D_ALL); MMIO_D(0x700ac, D_ALL); MMIO_D(0x710ac, D_ALL); MMIO_D(0x720ac, D_ALL); MMIO_D(0x70090, D_ALL); MMIO_D(0x70094, D_ALL); MMIO_D(0x70098, D_ALL); MMIO_D(0x7009c, D_ALL); MMIO_D(DSPCNTR(PIPE_A), D_ALL); MMIO_D(DSPADDR(PIPE_A), D_ALL); MMIO_D(DSPSTRIDE(PIPE_A), D_ALL); MMIO_D(DSPPOS(PIPE_A), D_ALL); MMIO_D(DSPSIZE(PIPE_A), D_ALL); MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write); MMIO_D(DSPOFFSET(PIPE_A), D_ALL); MMIO_D(DSPSURFLIVE(PIPE_A), D_ALL); MMIO_D(DSPCNTR(PIPE_B), D_ALL); MMIO_D(DSPADDR(PIPE_B), D_ALL); MMIO_D(DSPSTRIDE(PIPE_B), D_ALL); MMIO_D(DSPPOS(PIPE_B), D_ALL); MMIO_D(DSPSIZE(PIPE_B), D_ALL); MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write); MMIO_D(DSPOFFSET(PIPE_B), D_ALL); MMIO_D(DSPSURFLIVE(PIPE_B), D_ALL); MMIO_D(DSPCNTR(PIPE_C), D_ALL); MMIO_D(DSPADDR(PIPE_C), D_ALL); MMIO_D(DSPSTRIDE(PIPE_C), D_ALL); MMIO_D(DSPPOS(PIPE_C), D_ALL); MMIO_D(DSPSIZE(PIPE_C), D_ALL); MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write); MMIO_D(DSPOFFSET(PIPE_C), D_ALL); MMIO_D(DSPSURFLIVE(PIPE_C), D_ALL); MMIO_D(SPRCTL(PIPE_A), D_ALL); MMIO_D(SPRLINOFF(PIPE_A), D_ALL); MMIO_D(SPRSTRIDE(PIPE_A), D_ALL); MMIO_D(SPRPOS(PIPE_A), D_ALL); MMIO_D(SPRSIZE(PIPE_A), D_ALL); MMIO_D(SPRKEYVAL(PIPE_A), D_ALL); MMIO_D(SPRKEYMSK(PIPE_A), D_ALL); MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write); MMIO_D(SPRKEYMAX(PIPE_A), D_ALL); MMIO_D(SPROFFSET(PIPE_A), D_ALL); MMIO_D(SPRSCALE(PIPE_A), D_ALL); MMIO_D(SPRSURFLIVE(PIPE_A), D_ALL); MMIO_D(SPRCTL(PIPE_B), D_ALL); MMIO_D(SPRLINOFF(PIPE_B), D_ALL); MMIO_D(SPRSTRIDE(PIPE_B), D_ALL); MMIO_D(SPRPOS(PIPE_B), D_ALL); MMIO_D(SPRSIZE(PIPE_B), D_ALL); MMIO_D(SPRKEYVAL(PIPE_B), D_ALL); MMIO_D(SPRKEYMSK(PIPE_B), D_ALL); MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write); MMIO_D(SPRKEYMAX(PIPE_B), D_ALL); MMIO_D(SPROFFSET(PIPE_B), D_ALL); MMIO_D(SPRSCALE(PIPE_B), D_ALL); MMIO_D(SPRSURFLIVE(PIPE_B), D_ALL); MMIO_D(SPRCTL(PIPE_C), D_ALL); MMIO_D(SPRLINOFF(PIPE_C), D_ALL); MMIO_D(SPRSTRIDE(PIPE_C), D_ALL); MMIO_D(SPRPOS(PIPE_C), D_ALL); MMIO_D(SPRSIZE(PIPE_C), D_ALL); MMIO_D(SPRKEYVAL(PIPE_C), D_ALL); MMIO_D(SPRKEYMSK(PIPE_C), D_ALL); MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write); MMIO_D(SPRKEYMAX(PIPE_C), D_ALL); MMIO_D(SPROFFSET(PIPE_C), D_ALL); MMIO_D(SPRSCALE(PIPE_C), D_ALL); MMIO_D(SPRSURFLIVE(PIPE_C), D_ALL); MMIO_F(LGC_PALETTE(PIPE_A, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(LGC_PALETTE(PIPE_B, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(LGC_PALETTE(PIPE_C, 0), 4 * 256, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(HTOTAL(TRANSCODER_A), D_ALL); MMIO_D(HBLANK(TRANSCODER_A), D_ALL); MMIO_D(HSYNC(TRANSCODER_A), D_ALL); MMIO_D(VTOTAL(TRANSCODER_A), D_ALL); MMIO_D(VBLANK(TRANSCODER_A), D_ALL); MMIO_D(VSYNC(TRANSCODER_A), D_ALL); MMIO_D(BCLRPAT(TRANSCODER_A), D_ALL); MMIO_D(VSYNCSHIFT(TRANSCODER_A), D_ALL); MMIO_D(PIPESRC(TRANSCODER_A), D_ALL); MMIO_D(HTOTAL(TRANSCODER_B), D_ALL); MMIO_D(HBLANK(TRANSCODER_B), D_ALL); MMIO_D(HSYNC(TRANSCODER_B), D_ALL); MMIO_D(VTOTAL(TRANSCODER_B), D_ALL); MMIO_D(VBLANK(TRANSCODER_B), D_ALL); MMIO_D(VSYNC(TRANSCODER_B), D_ALL); MMIO_D(BCLRPAT(TRANSCODER_B), D_ALL); MMIO_D(VSYNCSHIFT(TRANSCODER_B), D_ALL); MMIO_D(PIPESRC(TRANSCODER_B), D_ALL); MMIO_D(HTOTAL(TRANSCODER_C), D_ALL); MMIO_D(HBLANK(TRANSCODER_C), D_ALL); MMIO_D(HSYNC(TRANSCODER_C), D_ALL); MMIO_D(VTOTAL(TRANSCODER_C), D_ALL); MMIO_D(VBLANK(TRANSCODER_C), D_ALL); MMIO_D(VSYNC(TRANSCODER_C), D_ALL); MMIO_D(BCLRPAT(TRANSCODER_C), D_ALL); MMIO_D(VSYNCSHIFT(TRANSCODER_C), D_ALL); MMIO_D(PIPESRC(TRANSCODER_C), D_ALL); MMIO_D(HTOTAL(TRANSCODER_EDP), D_ALL); MMIO_D(HBLANK(TRANSCODER_EDP), D_ALL); MMIO_D(HSYNC(TRANSCODER_EDP), D_ALL); MMIO_D(VTOTAL(TRANSCODER_EDP), D_ALL); MMIO_D(VBLANK(TRANSCODER_EDP), D_ALL); MMIO_D(VSYNC(TRANSCODER_EDP), D_ALL); MMIO_D(BCLRPAT(TRANSCODER_EDP), D_ALL); MMIO_D(VSYNCSHIFT(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_DATA_M1(TRANSCODER_A), D_ALL); MMIO_D(PIPE_DATA_N1(TRANSCODER_A), D_ALL); MMIO_D(PIPE_DATA_M2(TRANSCODER_A), D_ALL); MMIO_D(PIPE_DATA_N2(TRANSCODER_A), D_ALL); MMIO_D(PIPE_LINK_M1(TRANSCODER_A), D_ALL); MMIO_D(PIPE_LINK_N1(TRANSCODER_A), D_ALL); MMIO_D(PIPE_LINK_M2(TRANSCODER_A), D_ALL); MMIO_D(PIPE_LINK_N2(TRANSCODER_A), D_ALL); MMIO_D(PIPE_DATA_M1(TRANSCODER_B), D_ALL); MMIO_D(PIPE_DATA_N1(TRANSCODER_B), D_ALL); MMIO_D(PIPE_DATA_M2(TRANSCODER_B), D_ALL); MMIO_D(PIPE_DATA_N2(TRANSCODER_B), D_ALL); MMIO_D(PIPE_LINK_M1(TRANSCODER_B), D_ALL); MMIO_D(PIPE_LINK_N1(TRANSCODER_B), D_ALL); MMIO_D(PIPE_LINK_M2(TRANSCODER_B), D_ALL); MMIO_D(PIPE_LINK_N2(TRANSCODER_B), D_ALL); MMIO_D(PIPE_DATA_M1(TRANSCODER_C), D_ALL); MMIO_D(PIPE_DATA_N1(TRANSCODER_C), D_ALL); MMIO_D(PIPE_DATA_M2(TRANSCODER_C), D_ALL); MMIO_D(PIPE_DATA_N2(TRANSCODER_C), D_ALL); MMIO_D(PIPE_LINK_M1(TRANSCODER_C), D_ALL); MMIO_D(PIPE_LINK_N1(TRANSCODER_C), D_ALL); MMIO_D(PIPE_LINK_M2(TRANSCODER_C), D_ALL); MMIO_D(PIPE_LINK_N2(TRANSCODER_C), D_ALL); MMIO_D(PIPE_DATA_M1(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_DATA_N1(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_DATA_M2(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_DATA_N2(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_LINK_M1(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_LINK_N1(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_LINK_M2(TRANSCODER_EDP), D_ALL); MMIO_D(PIPE_LINK_N2(TRANSCODER_EDP), D_ALL); MMIO_D(PF_CTL(PIPE_A), D_ALL); MMIO_D(PF_WIN_SZ(PIPE_A), D_ALL); MMIO_D(PF_WIN_POS(PIPE_A), D_ALL); MMIO_D(PF_VSCALE(PIPE_A), D_ALL); MMIO_D(PF_HSCALE(PIPE_A), D_ALL); MMIO_D(PF_CTL(PIPE_B), D_ALL); MMIO_D(PF_WIN_SZ(PIPE_B), D_ALL); MMIO_D(PF_WIN_POS(PIPE_B), D_ALL); MMIO_D(PF_VSCALE(PIPE_B), D_ALL); MMIO_D(PF_HSCALE(PIPE_B), D_ALL); MMIO_D(PF_CTL(PIPE_C), D_ALL); MMIO_D(PF_WIN_SZ(PIPE_C), D_ALL); MMIO_D(PF_WIN_POS(PIPE_C), D_ALL); MMIO_D(PF_VSCALE(PIPE_C), D_ALL); MMIO_D(PF_HSCALE(PIPE_C), D_ALL); MMIO_D(WM0_PIPEA_ILK, D_ALL); MMIO_D(WM0_PIPEB_ILK, D_ALL); MMIO_D(WM0_PIPEC_IVB, D_ALL); MMIO_D(WM1_LP_ILK, D_ALL); MMIO_D(WM2_LP_ILK, D_ALL); MMIO_D(WM3_LP_ILK, D_ALL); MMIO_D(WM1S_LP_ILK, D_ALL); MMIO_D(WM2S_LP_IVB, D_ALL); MMIO_D(WM3S_LP_IVB, D_ALL); MMIO_D(BLC_PWM_CPU_CTL2, D_ALL); MMIO_D(BLC_PWM_CPU_CTL, D_ALL); MMIO_D(BLC_PWM_PCH_CTL1, D_ALL); MMIO_D(BLC_PWM_PCH_CTL2, D_ALL); MMIO_D(0x48268, D_ALL); MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read, gmbus_mmio_write); MMIO_F(PCH_GPIOA, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL); MMIO_F(0xe4f00, 0x28, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(_PCH_DPB_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_PCH_DPC_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_PCH_DPD_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_RO(PCH_ADPA, D_ALL, 0, ADPA_CRT_HOTPLUG_MONITOR_MASK, NULL, pch_adpa_mmio_write); MMIO_DH(_PCH_TRANSACONF, D_ALL, NULL, transconf_mmio_write); MMIO_DH(_PCH_TRANSBCONF, D_ALL, NULL, transconf_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write); MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); MMIO_D(_PCH_TRANS_HTOTAL_A, D_ALL); MMIO_D(_PCH_TRANS_HBLANK_A, D_ALL); MMIO_D(_PCH_TRANS_HSYNC_A, D_ALL); MMIO_D(_PCH_TRANS_VTOTAL_A, D_ALL); MMIO_D(_PCH_TRANS_VBLANK_A, D_ALL); MMIO_D(_PCH_TRANS_VSYNC_A, D_ALL); MMIO_D(_PCH_TRANS_VSYNCSHIFT_A, D_ALL); MMIO_D(_PCH_TRANS_HTOTAL_B, D_ALL); MMIO_D(_PCH_TRANS_HBLANK_B, D_ALL); MMIO_D(_PCH_TRANS_HSYNC_B, D_ALL); MMIO_D(_PCH_TRANS_VTOTAL_B, D_ALL); MMIO_D(_PCH_TRANS_VBLANK_B, D_ALL); MMIO_D(_PCH_TRANS_VSYNC_B, D_ALL); MMIO_D(_PCH_TRANS_VSYNCSHIFT_B, D_ALL); MMIO_D(_PCH_TRANSA_DATA_M1, D_ALL); MMIO_D(_PCH_TRANSA_DATA_N1, D_ALL); MMIO_D(_PCH_TRANSA_DATA_M2, D_ALL); MMIO_D(_PCH_TRANSA_DATA_N2, D_ALL); MMIO_D(_PCH_TRANSA_LINK_M1, D_ALL); MMIO_D(_PCH_TRANSA_LINK_N1, D_ALL); MMIO_D(_PCH_TRANSA_LINK_M2, D_ALL); MMIO_D(_PCH_TRANSA_LINK_N2, D_ALL); MMIO_D(TRANS_DP_CTL(PIPE_A), D_ALL); MMIO_D(TRANS_DP_CTL(PIPE_B), D_ALL); MMIO_D(TRANS_DP_CTL(PIPE_C), D_ALL); MMIO_D(TVIDEO_DIP_CTL(PIPE_A), D_ALL); MMIO_D(TVIDEO_DIP_DATA(PIPE_A), D_ALL); MMIO_D(TVIDEO_DIP_GCP(PIPE_A), D_ALL); MMIO_D(TVIDEO_DIP_CTL(PIPE_B), D_ALL); MMIO_D(TVIDEO_DIP_DATA(PIPE_B), D_ALL); MMIO_D(TVIDEO_DIP_GCP(PIPE_B), D_ALL); MMIO_D(TVIDEO_DIP_CTL(PIPE_C), D_ALL); MMIO_D(TVIDEO_DIP_DATA(PIPE_C), D_ALL); MMIO_D(TVIDEO_DIP_GCP(PIPE_C), D_ALL); MMIO_D(_FDI_RXA_MISC, D_ALL); MMIO_D(_FDI_RXB_MISC, D_ALL); MMIO_D(_FDI_RXA_TUSIZE1, D_ALL); MMIO_D(_FDI_RXA_TUSIZE2, D_ALL); MMIO_D(_FDI_RXB_TUSIZE1, D_ALL); MMIO_D(_FDI_RXB_TUSIZE2, D_ALL); MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write); MMIO_D(PCH_PP_DIVISOR, D_ALL); MMIO_D(PCH_PP_STATUS, D_ALL); MMIO_D(PCH_LVDS, D_ALL); MMIO_D(_PCH_DPLL_A, D_ALL); MMIO_D(_PCH_DPLL_B, D_ALL); MMIO_D(_PCH_FPA0, D_ALL); MMIO_D(_PCH_FPA1, D_ALL); MMIO_D(_PCH_FPB0, D_ALL); MMIO_D(_PCH_FPB1, D_ALL); MMIO_D(PCH_DREF_CONTROL, D_ALL); MMIO_D(PCH_RAWCLK_FREQ, D_ALL); MMIO_D(PCH_DPLL_SEL, D_ALL); MMIO_D(0x61208, D_ALL); MMIO_D(0x6120c, D_ALL); MMIO_D(PCH_PP_ON_DELAYS, D_ALL); MMIO_D(PCH_PP_OFF_DELAYS, D_ALL); MMIO_DH(0xe651c, D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(0xe661c, D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(0xe671c, D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(0xe681c, D_ALL, dpy_reg_mmio_read, NULL); MMIO_DH(0xe6c04, D_ALL, dpy_reg_mmio_read_2, NULL); MMIO_DH(0xe6e1c, D_ALL, dpy_reg_mmio_read_3, NULL); MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0, PORTA_HOTPLUG_STATUS_MASK | PORTB_HOTPLUG_STATUS_MASK | PORTC_HOTPLUG_STATUS_MASK | PORTD_HOTPLUG_STATUS_MASK, NULL, NULL); MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write); MMIO_D(FUSE_STRAP, D_ALL); MMIO_D(DIGITAL_PORT_HOTPLUG_CNTRL, D_ALL); MMIO_D(DISP_ARB_CTL, D_ALL); MMIO_D(DISP_ARB_CTL2, D_ALL); MMIO_D(ILK_DISPLAY_CHICKEN1, D_ALL); MMIO_D(ILK_DISPLAY_CHICKEN2, D_ALL); MMIO_D(ILK_DSPCLK_GATE_D, D_ALL); MMIO_D(SOUTH_CHICKEN1, D_ALL); MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write); MMIO_D(_TRANSA_CHICKEN1, D_ALL); MMIO_D(_TRANSB_CHICKEN1, D_ALL); MMIO_D(SOUTH_DSPCLK_GATE_D, D_ALL); MMIO_D(_TRANSA_CHICKEN2, D_ALL); MMIO_D(_TRANSB_CHICKEN2, D_ALL); MMIO_D(ILK_DPFC_CB_BASE, D_ALL); MMIO_D(ILK_DPFC_CONTROL, D_ALL); MMIO_D(ILK_DPFC_RECOMP_CTL, D_ALL); MMIO_D(ILK_DPFC_STATUS, D_ALL); MMIO_D(ILK_DPFC_FENCE_YOFF, D_ALL); MMIO_D(ILK_DPFC_CHICKEN, D_ALL); MMIO_D(ILK_FBC_RT_BASE, D_ALL); MMIO_D(IPS_CTL, D_ALL); MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_BY(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_BU(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_BV(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_MODE(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_A), D_ALL); MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_BY(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_BU(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_BV(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_MODE(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_B), D_ALL); MMIO_D(PIPE_CSC_COEFF_RY_GY(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_COEFF_BY(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_COEFF_RU_GU(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_COEFF_BU(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_COEFF_RV_GV(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_COEFF_BV(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_MODE(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_PREOFF_HI(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_PREOFF_ME(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_PREOFF_LO(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_HI(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_ME(PIPE_C), D_ALL); MMIO_D(PIPE_CSC_POSTOFF_LO(PIPE_C), D_ALL); MMIO_D(PREC_PAL_INDEX(PIPE_A), D_ALL); MMIO_D(PREC_PAL_DATA(PIPE_A), D_ALL); MMIO_F(PREC_PAL_GC_MAX(PIPE_A, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(PREC_PAL_INDEX(PIPE_B), D_ALL); MMIO_D(PREC_PAL_DATA(PIPE_B), D_ALL); MMIO_F(PREC_PAL_GC_MAX(PIPE_B, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(PREC_PAL_INDEX(PIPE_C), D_ALL); MMIO_D(PREC_PAL_DATA(PIPE_C), D_ALL); MMIO_F(PREC_PAL_GC_MAX(PIPE_C, 0), 4 * 3, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(0x60110, D_ALL); MMIO_D(0x61110, D_ALL); MMIO_F(0x70400, 0x40, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x71400, 0x40, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x72400, 0x40, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x70440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_F(0x71440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_F(0x72440, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_F(0x7044c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_F(0x7144c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_F(0x7244c, 0xc, 0, 0, 0, D_PRE_SKL, NULL, NULL); MMIO_D(PIPE_WM_LINETIME(PIPE_A), D_ALL); MMIO_D(PIPE_WM_LINETIME(PIPE_B), D_ALL); MMIO_D(PIPE_WM_LINETIME(PIPE_C), D_ALL); MMIO_D(SPLL_CTL, D_ALL); MMIO_D(_WRPLL_CTL1, D_ALL); MMIO_D(_WRPLL_CTL2, D_ALL); MMIO_D(PORT_CLK_SEL(PORT_A), D_ALL); MMIO_D(PORT_CLK_SEL(PORT_B), D_ALL); MMIO_D(PORT_CLK_SEL(PORT_C), D_ALL); MMIO_D(PORT_CLK_SEL(PORT_D), D_ALL); MMIO_D(PORT_CLK_SEL(PORT_E), D_ALL); MMIO_D(TRANS_CLK_SEL(TRANSCODER_A), D_ALL); MMIO_D(TRANS_CLK_SEL(TRANSCODER_B), D_ALL); MMIO_D(TRANS_CLK_SEL(TRANSCODER_C), D_ALL); MMIO_D(HSW_NDE_RSTWRN_OPT, D_ALL); MMIO_D(0x46508, D_ALL); MMIO_D(0x49080, D_ALL); MMIO_D(0x49180, D_ALL); MMIO_D(0x49280, D_ALL); MMIO_F(0x49090, 0x14, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x49190, 0x14, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x49290, 0x14, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(GAMMA_MODE(PIPE_A), D_ALL); MMIO_D(GAMMA_MODE(PIPE_B), D_ALL); MMIO_D(GAMMA_MODE(PIPE_C), D_ALL); MMIO_D(PIPE_MULT(PIPE_A), D_ALL); MMIO_D(PIPE_MULT(PIPE_B), D_ALL); MMIO_D(PIPE_MULT(PIPE_C), D_ALL); MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_A), D_ALL); MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_B), D_ALL); MMIO_D(HSW_TVIDEO_DIP_CTL(TRANSCODER_C), D_ALL); MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL); MMIO_D(SBI_ADDR, D_ALL); MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL); MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write); MMIO_D(PIXCLK_GATE, D_ALL); MMIO_F(_DPA_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_ALL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write); MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL); MMIO_F(_DDI_BUF_TRANS_A, 0x50, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x64e60, 0x50, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x64eC0, 0x50, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x64f20, 0x50, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x64f80, 0x50, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(HSW_AUD_CFG(PIPE_A), D_ALL); MMIO_D(HSW_AUD_PIN_ELD_CP_VLD, D_ALL); MMIO_DH(_TRANS_DDI_FUNC_CTL_A, D_ALL, NULL, NULL); MMIO_DH(_TRANS_DDI_FUNC_CTL_B, D_ALL, NULL, NULL); MMIO_DH(_TRANS_DDI_FUNC_CTL_C, D_ALL, NULL, NULL); MMIO_DH(_TRANS_DDI_FUNC_CTL_EDP, D_ALL, NULL, NULL); MMIO_D(_TRANSA_MSA_MISC, D_ALL); MMIO_D(_TRANSB_MSA_MISC, D_ALL); MMIO_D(_TRANSC_MSA_MISC, D_ALL); MMIO_D(_TRANS_EDP_MSA_MISC, D_ALL); MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL); MMIO_D(FORCEWAKE_ACK, D_ALL); MMIO_D(GEN6_GT_CORE_STATUS, D_ALL); MMIO_D(GEN6_GT_THREAD_STATUS_REG, D_ALL); MMIO_D(GTFIFODBG, D_ALL); MMIO_D(GTFIFOCTL, D_ALL); MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_HSW, D_HSW | D_BDW, NULL, NULL); MMIO_D(ECOBUS, D_ALL); MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL); MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL); MMIO_D(GEN6_RPNSWREQ, D_ALL); MMIO_D(GEN6_RC_VIDEO_FREQ, D_ALL); MMIO_D(GEN6_RP_DOWN_TIMEOUT, D_ALL); MMIO_D(GEN6_RP_INTERRUPT_LIMITS, D_ALL); MMIO_D(GEN6_RPSTAT1, D_ALL); MMIO_D(GEN6_RP_CONTROL, D_ALL); MMIO_D(GEN6_RP_UP_THRESHOLD, D_ALL); MMIO_D(GEN6_RP_DOWN_THRESHOLD, D_ALL); MMIO_D(GEN6_RP_CUR_UP_EI, D_ALL); MMIO_D(GEN6_RP_CUR_UP, D_ALL); MMIO_D(GEN6_RP_PREV_UP, D_ALL); MMIO_D(GEN6_RP_CUR_DOWN_EI, D_ALL); MMIO_D(GEN6_RP_CUR_DOWN, D_ALL); MMIO_D(GEN6_RP_PREV_DOWN, D_ALL); MMIO_D(GEN6_RP_UP_EI, D_ALL); MMIO_D(GEN6_RP_DOWN_EI, D_ALL); MMIO_D(GEN6_RP_IDLE_HYSTERSIS, D_ALL); MMIO_D(GEN6_RC1_WAKE_RATE_LIMIT, D_ALL); MMIO_D(GEN6_RC6_WAKE_RATE_LIMIT, D_ALL); MMIO_D(GEN6_RC6pp_WAKE_RATE_LIMIT, D_ALL); MMIO_D(GEN6_RC_EVALUATION_INTERVAL, D_ALL); MMIO_D(GEN6_RC_IDLE_HYSTERSIS, D_ALL); MMIO_D(GEN6_RC_SLEEP, D_ALL); MMIO_D(GEN6_RC1e_THRESHOLD, D_ALL); MMIO_D(GEN6_RC6_THRESHOLD, D_ALL); MMIO_D(GEN6_RC6p_THRESHOLD, D_ALL); MMIO_D(GEN6_RC6pp_THRESHOLD, D_ALL); MMIO_D(GEN6_PMINTRMSK, D_ALL); MMIO_DH(HSW_PWR_WELL_BIOS, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_DRIVER, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_KVMR, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_DEBUG, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL5, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_DH(HSW_PWR_WELL_CTL6, D_HSW | D_BDW, NULL, power_well_ctl_mmio_write); MMIO_D(RSTDBYCTL, D_ALL); MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write); MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write); MMIO_F(VGT_PVINFO_PAGE, VGT_PVINFO_SIZE, F_UNALIGN, 0, 0, D_ALL, pvinfo_mmio_read, pvinfo_mmio_write); MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write); MMIO_F(MCHBAR_MIRROR_BASE_SNB, 0x40000, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(TILECTL, D_ALL); MMIO_D(GEN6_UCGCTL1, D_ALL); MMIO_D(GEN6_UCGCTL2, D_ALL); MMIO_F(0x4f000, 0x90, 0, 0, 0, D_ALL, NULL, NULL); MMIO_D(GEN6_PCODE_MAILBOX, D_PRE_SKL); MMIO_D(GEN6_PCODE_DATA, D_ALL); MMIO_D(0x13812c, D_ALL); MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL); MMIO_D(HSW_EDRAM_CAP, D_ALL); MMIO_D(HSW_IDICR, D_ALL); MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL); MMIO_D(0x3c, D_ALL); MMIO_D(0x860, D_ALL); MMIO_D(ECOSKPD, D_ALL); MMIO_D(0x121d0, D_ALL); MMIO_D(GEN6_BLITTER_ECOSKPD, D_ALL); MMIO_D(0x41d0, D_ALL); MMIO_D(GAC_ECO_BITS, D_ALL); MMIO_D(0x6200, D_ALL); MMIO_D(0x6204, D_ALL); MMIO_D(0x6208, D_ALL); MMIO_D(0x7118, D_ALL); MMIO_D(0x7180, D_ALL); MMIO_D(0x7408, D_ALL); MMIO_D(0x7c00, D_ALL); MMIO_D(GEN6_MBCTL, D_ALL); MMIO_D(0x911c, D_ALL); MMIO_D(0x9120, D_ALL); MMIO_D(GAB_CTL, D_ALL); MMIO_D(0x48800, D_ALL); MMIO_D(0xce044, D_ALL); MMIO_D(0xe6500, D_ALL); MMIO_D(0xe6504, D_ALL); MMIO_D(0xe6600, D_ALL); MMIO_D(0xe6604, D_ALL); MMIO_D(0xe6700, D_ALL); MMIO_D(0xe6704, D_ALL); MMIO_D(0xe6800, D_ALL); MMIO_D(0xe6804, D_ALL); MMIO_D(PCH_GMBUS4, D_ALL); MMIO_D(PCH_GMBUS5, D_ALL); MMIO_D(0x902c, D_ALL); MMIO_D(0xec008, D_ALL); MMIO_D(0xec00c, D_ALL); MMIO_D(0xec008 + 0x18, D_ALL); MMIO_D(0xec00c + 0x18, D_ALL); MMIO_D(0xec008 + 0x18 * 2, D_ALL); MMIO_D(0xec00c + 0x18 * 2, D_ALL); MMIO_D(0xec008 + 0x18 * 3, D_ALL); MMIO_D(0xec00c + 0x18 * 3, D_ALL); MMIO_D(0xec408, D_ALL); MMIO_D(0xec40c, D_ALL); MMIO_D(0xec408 + 0x18, D_ALL); MMIO_D(0xec40c + 0x18, D_ALL); MMIO_D(0xec408 + 0x18 * 2, D_ALL); MMIO_D(0xec40c + 0x18 * 2, D_ALL); MMIO_D(0xec408 + 0x18 * 3, D_ALL); MMIO_D(0xec40c + 0x18 * 3, D_ALL); MMIO_D(0xfc810, D_ALL); MMIO_D(0xfc81c, D_ALL); MMIO_D(0xfc828, D_ALL); MMIO_D(0xfc834, D_ALL); MMIO_D(0xfcc00, D_ALL); MMIO_D(0xfcc0c, D_ALL); MMIO_D(0xfcc18, D_ALL); MMIO_D(0xfcc24, D_ALL); MMIO_D(0xfd000, D_ALL); MMIO_D(0xfd00c, D_ALL); MMIO_D(0xfd018, D_ALL); MMIO_D(0xfd024, D_ALL); MMIO_D(0xfd034, D_ALL); MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write); MMIO_D(0x2054, D_ALL); MMIO_D(0x12054, D_ALL); MMIO_D(0x22054, D_ALL); MMIO_D(0x1a054, D_ALL); MMIO_D(0x44070, D_ALL); MMIO_D(0x215c, D_HSW_PLUS); MMIO_DFH(0x2178, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(0x217c, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(0x12178, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(0x1217c, D_ALL, F_CMD_ACCESS, NULL, NULL); MMIO_F(0x2290, 8, 0, 0, 0, D_HSW_PLUS, NULL, NULL); MMIO_D(OACONTROL, D_HSW); MMIO_D(0x2b00, D_BDW_PLUS); MMIO_D(0x2360, D_BDW_PLUS); MMIO_F(0x5200, 32, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x5240, 32, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(0x5280, 16, 0, 0, 0, D_ALL, NULL, NULL); MMIO_DFH(0x1c17c, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_DFH(0x1c178, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_D(BCS_SWCTRL, D_ALL); MMIO_F(HS_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(DS_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(IA_VERTICES_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(IA_PRIMITIVES_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(VS_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(GS_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(GS_PRIMITIVES_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(CL_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(CL_PRIMITIVES_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(PS_INVOCATION_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_F(PS_DEPTH_COUNT, 8, 0, 0, 0, D_ALL, NULL, NULL); MMIO_DH(0x4260, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(0x4264, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(0x4268, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(0x426c, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DH(0x4270, D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); MMIO_DFH(0x4094, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); return 0; } static int init_broadwell_mmio_info(struct intel_gvt *gvt) { struct drm_i915_private *dev_priv = gvt->dev_priv; int ret; MMIO_DH(RING_IMR(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_GT_ISR(0), D_BDW_PLUS); MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_GT_ISR(1), D_BDW_PLUS); MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_GT_ISR(2), D_BDW_PLUS); MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_GT_ISR(3), D_BDW_PLUS); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_DE_PIPE_ISR(PIPE_A), D_BDW_PLUS); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_DE_PIPE_ISR(PIPE_B), D_BDW_PLUS); MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_DE_PIPE_ISR(PIPE_C), D_BDW_PLUS); MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_DE_PORT_ISR, D_BDW_PLUS); MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_DE_MISC_ISR, D_BDW_PLUS); MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); MMIO_D(GEN8_PCU_ISR, D_BDW_PLUS); MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL, intel_vgpu_reg_master_irq_handler); MMIO_D(RING_HWSTAM(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_D(0x1c134, D_BDW_PLUS); MMIO_D(RING_TAIL(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_D(RING_HEAD(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_GM(RING_START(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, NULL); MMIO_D(RING_CTL(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_D(RING_ACTHD(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_D(RING_ACTHD_UDW(GEN8_BSD2_RING_BASE), D_BDW_PLUS); MMIO_DFH(0x1c29c, D_BDW_PLUS, F_MODE_MASK, NULL, ring_mode_mmio_write); MMIO_DFH(RING_MI_MODE(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(RING_INSTPM(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(RING_TIMESTAMP(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_CMD_ACCESS, ring_timestamp_mmio_read, NULL); MMIO_RING_D(RING_ACTHD_UDW, D_BDW_PLUS); #define RING_REG(base) (base + 0x230) MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write); MMIO_DH(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS, NULL, elsp_mmio_write); #undef RING_REG #define RING_REG(base) (base + 0x234) MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 4, F_RO, 0, ~0LL, D_BDW_PLUS, NULL, NULL); #undef RING_REG #define RING_REG(base) (base + 0x244) MMIO_RING_D(RING_REG, D_BDW_PLUS); MMIO_D(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS); #undef RING_REG #define RING_REG(base) (base + 0x370) MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); #undef RING_REG #define RING_REG(base) (base + 0x3a0) MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(RING_REG(GEN8_BSD2_RING_BASE), D_BDW_PLUS, F_MODE_MASK, NULL, NULL); #undef RING_REG MMIO_D(PIPEMISC(PIPE_A), D_BDW_PLUS); MMIO_D(PIPEMISC(PIPE_B), D_BDW_PLUS); MMIO_D(PIPEMISC(PIPE_C), D_BDW_PLUS); MMIO_D(0x1c1d0, D_BDW_PLUS); MMIO_D(GEN6_MBCUNIT_SNPCR, D_BDW_PLUS); MMIO_D(GEN7_MISCCPCTL, D_BDW_PLUS); MMIO_D(0x1c054, D_BDW_PLUS); MMIO_D(GEN8_PRIVATE_PAT_LO, D_BDW_PLUS); MMIO_D(GEN8_PRIVATE_PAT_HI, D_BDW_PLUS); MMIO_D(GAMTARBMODE, D_BDW_PLUS); #define RING_REG(base) (base + 0x270) MMIO_RING_F(RING_REG, 32, 0, 0, 0, D_BDW_PLUS, NULL, NULL); MMIO_F(RING_REG(GEN8_BSD2_RING_BASE), 32, 0, 0, 0, D_BDW_PLUS, NULL, NULL); #undef RING_REG MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, NULL); MMIO_GM(0x1c080, D_BDW_PLUS, NULL, NULL); MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_D(CHICKEN_PIPESL_1(PIPE_A), D_BDW); MMIO_D(CHICKEN_PIPESL_1(PIPE_B), D_BDW); MMIO_D(CHICKEN_PIPESL_1(PIPE_C), D_BDW); MMIO_D(WM_MISC, D_BDW); MMIO_D(BDW_EDP_PSR_BASE, D_BDW); MMIO_D(0x66c00, D_BDW_PLUS); MMIO_D(0x66c04, D_BDW_PLUS); MMIO_D(HSW_GTT_CACHE_EN, D_BDW_PLUS); MMIO_D(GEN8_EU_DISABLE0, D_BDW_PLUS); MMIO_D(GEN8_EU_DISABLE1, D_BDW_PLUS); MMIO_D(GEN8_EU_DISABLE2, D_BDW_PLUS); MMIO_D(0xfdc, D_BDW); MMIO_D(GEN8_ROW_CHICKEN, D_BDW_PLUS); MMIO_D(GEN7_ROW_CHICKEN2, D_BDW_PLUS); MMIO_D(GEN8_UCGCTL6, D_BDW_PLUS); MMIO_D(0xb1f0, D_BDW); MMIO_D(0xb1c0, D_BDW); MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); MMIO_D(0xb100, D_BDW); MMIO_D(0xb10c, D_BDW); MMIO_D(0xb110, D_BDW); MMIO_DH(0x24d0, D_BDW_PLUS, NULL, NULL); MMIO_DH(0x24d4, D_BDW_PLUS, NULL, NULL); MMIO_DH(0x24d8, D_BDW_PLUS, NULL, NULL); MMIO_DH(0x24dc, D_BDW_PLUS, NULL, NULL); MMIO_D(0x83a4, D_BDW); MMIO_D(GEN8_L3_LRA_1_GPGPU, D_BDW_PLUS); MMIO_D(0x8430, D_BDW); MMIO_D(0x110000, D_BDW_PLUS); MMIO_D(0x48400, D_BDW_PLUS); MMIO_D(0x6e570, D_BDW_PLUS); MMIO_D(0x65f10, D_BDW_PLUS); MMIO_DFH(0xe194, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(0xe188, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(0xe180, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_DFH(0x2580, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); MMIO_D(0x2248, D_BDW); return 0; } static int init_skl_mmio_info(struct intel_gvt *gvt) { struct drm_i915_private *dev_priv = gvt->dev_priv; int ret; MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_DH(FORCEWAKE_BLITTER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_BLITTER_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL); MMIO_F(_DPB_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_DPC_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_F(_DPD_AUX_CH_CTL, 6 * 4, 0, 0, 0, D_SKL, NULL, dp_aux_ch_ctl_mmio_write); MMIO_D(HSW_PWR_WELL_BIOS, D_SKL); MMIO_DH(HSW_PWR_WELL_DRIVER, D_SKL, NULL, skl_power_well_ctl_write); MMIO_DH(GEN6_PCODE_MAILBOX, D_SKL, NULL, mailbox_write); MMIO_D(0xa210, D_SKL_PLUS); MMIO_D(GEN9_MEDIA_PG_IDLE_HYSTERESIS, D_SKL_PLUS); MMIO_D(GEN9_RENDER_PG_IDLE_HYSTERESIS, D_SKL_PLUS); MMIO_DH(0x4ddc, D_SKL, NULL, skl_misc_ctl_write); MMIO_DH(0x42080, D_SKL, NULL, skl_misc_ctl_write); MMIO_D(0x45504, D_SKL); MMIO_D(0x45520, D_SKL); MMIO_D(0x46000, D_SKL); MMIO_DH(0x46010, D_SKL, NULL, skl_lcpll_write); MMIO_DH(0x46014, D_SKL, NULL, skl_lcpll_write); MMIO_D(0x6C040, D_SKL); MMIO_D(0x6C048, D_SKL); MMIO_D(0x6C050, D_SKL); MMIO_D(0x6C044, D_SKL); MMIO_D(0x6C04C, D_SKL); MMIO_D(0x6C054, D_SKL); MMIO_D(0x6c058, D_SKL); MMIO_D(0x6c05c, D_SKL); MMIO_DH(0X6c060, D_SKL, dpll_status_read, NULL); MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL, NULL, pf_write); MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL, NULL, pf_write); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL, NULL, NULL); MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_A, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_A, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_A, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_B, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_B, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_B, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_C, 0, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_C, 1, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(PLANE_WM(PIPE_C, 2, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(CUR_WM(PIPE_A, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(CUR_WM(PIPE_B, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(CUR_WM(PIPE_C, 0), 4 * 8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL, NULL, NULL); MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL, NULL, NULL); MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_A, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_A, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_A, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_A, 4), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_B, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_B, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_B, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_B, 4), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_C, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_C, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_C, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C0(PIPE_C, 4), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_A, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_A, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_A, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_A, 4), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_B, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_B, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_B, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_B, 4), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_C, 1), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_C, 2), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_C, 3), D_SKL, NULL, NULL); MMIO_DH(_REG_701C4(PIPE_C, 4), D_SKL, NULL, NULL); MMIO_D(0x70380, D_SKL); MMIO_D(0x71380, D_SKL); MMIO_D(0x72380, D_SKL); MMIO_D(0x7039c, D_SKL); MMIO_F(0x80000, 0x3000, 0, 0, 0, D_SKL, NULL, NULL); MMIO_D(0x8f074, D_SKL); MMIO_D(0x8f004, D_SKL); MMIO_D(0x8f034, D_SKL); MMIO_D(0xb11c, D_SKL); MMIO_D(0x51000, D_SKL); MMIO_D(0x6c00c, D_SKL); MMIO_F(0xc800, 0x7f8, 0, 0, 0, D_SKL, NULL, NULL); MMIO_F(0xb020, 0x80, 0, 0, 0, D_SKL, NULL, NULL); MMIO_D(0xd08, D_SKL); MMIO_D(0x20e0, D_SKL); MMIO_D(0x20ec, D_SKL); /* TRTT */ MMIO_D(0x4de0, D_SKL); MMIO_D(0x4de4, D_SKL); MMIO_D(0x4de8, D_SKL); MMIO_D(0x4dec, D_SKL); MMIO_D(0x4df0, D_SKL); MMIO_DH(0x4df4, D_SKL, NULL, gen9_trtte_write); MMIO_DH(0x4dfc, D_SKL, NULL, gen9_trtt_chicken_write); MMIO_D(0x45008, D_SKL); MMIO_D(0x46430, D_SKL); MMIO_D(0x46520, D_SKL); MMIO_D(0xc403c, D_SKL); MMIO_D(0xb004, D_SKL); MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write); MMIO_D(0x65900, D_SKL); MMIO_D(0x1082c0, D_SKL); MMIO_D(0x4068, D_SKL); MMIO_D(0x67054, D_SKL); MMIO_D(0x6e560, D_SKL); MMIO_D(0x6e554, D_SKL); MMIO_D(0x2b20, D_SKL); MMIO_D(0x65f00, D_SKL); MMIO_D(0x65f08, D_SKL); MMIO_D(0x320f0, D_SKL); MMIO_D(_REG_VCS2_EXCC, D_SKL); MMIO_D(0x70034, D_SKL); MMIO_D(0x71034, D_SKL); MMIO_D(0x72034, D_SKL); MMIO_D(_PLANE_KEYVAL_1(PIPE_A), D_SKL); MMIO_D(_PLANE_KEYVAL_1(PIPE_B), D_SKL); MMIO_D(_PLANE_KEYVAL_1(PIPE_C), D_SKL); MMIO_D(_PLANE_KEYMSK_1(PIPE_A), D_SKL); MMIO_D(_PLANE_KEYMSK_1(PIPE_B), D_SKL); MMIO_D(_PLANE_KEYMSK_1(PIPE_C), D_SKL); MMIO_D(0x44500, D_SKL); return 0; } /** * intel_gvt_find_mmio_info - find MMIO information entry by aligned offset * @gvt: GVT device * @offset: register offset * * This function is used to find the MMIO information entry from hash table * * Returns: * pointer to MMIO information entry, NULL if not exists */ struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt, unsigned int offset) { struct intel_gvt_mmio_info *e; WARN_ON(!IS_ALIGNED(offset, 4)); hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) { if (e->offset == offset) return e; } return NULL; } /** * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device * @gvt: GVT device * * This function is called at the driver unloading stage, to clean up the MMIO * information table of GVT device * */ void intel_gvt_clean_mmio_info(struct intel_gvt *gvt) { struct hlist_node *tmp; struct intel_gvt_mmio_info *e; int i; hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node) kfree(e); vfree(gvt->mmio.mmio_attribute); gvt->mmio.mmio_attribute = NULL; } /** * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device * @gvt: GVT device * * This function is called at the initialization stage, to setup the MMIO * information table for GVT device * * Returns: * zero on success, negative if failed. */ int intel_gvt_setup_mmio_info(struct intel_gvt *gvt) { struct intel_gvt_device_info *info = &gvt->device_info; struct drm_i915_private *dev_priv = gvt->dev_priv; int ret; gvt->mmio.mmio_attribute = vzalloc(info->mmio_size); if (!gvt->mmio.mmio_attribute) return -ENOMEM; ret = init_generic_mmio_info(gvt); if (ret) goto err; if (IS_BROADWELL(dev_priv)) { ret = init_broadwell_mmio_info(gvt); if (ret) goto err; } else if (IS_SKYLAKE(dev_priv)) { ret = init_broadwell_mmio_info(gvt); if (ret) goto err; ret = init_skl_mmio_info(gvt); if (ret) goto err; } return 0; err: intel_gvt_clean_mmio_info(gvt); return ret; } /** * intel_gvt_mmio_set_accessed - mark a MMIO has been accessed * @gvt: a GVT device * @offset: register offset * */ void intel_gvt_mmio_set_accessed(struct intel_gvt *gvt, unsigned int offset) { gvt->mmio.mmio_attribute[offset >> 2] |= F_ACCESSED; } /** * intel_gvt_mmio_is_cmd_accessed - mark a MMIO could be accessed by command * @gvt: a GVT device * @offset: register offset * */ bool intel_gvt_mmio_is_cmd_access(struct intel_gvt *gvt, unsigned int offset) { return gvt->mmio.mmio_attribute[offset >> 2] & F_CMD_ACCESS; } /** * intel_gvt_mmio_is_unalign - mark a MMIO could be accessed unaligned * @gvt: a GVT device * @offset: register offset * */ bool intel_gvt_mmio_is_unalign(struct intel_gvt *gvt, unsigned int offset) { return gvt->mmio.mmio_attribute[offset >> 2] & F_UNALIGN; } /** * intel_gvt_mmio_set_cmd_accessed - mark a MMIO has been accessed by command * @gvt: a GVT device * @offset: register offset * */ void intel_gvt_mmio_set_cmd_accessed(struct intel_gvt *gvt, unsigned int offset) { gvt->mmio.mmio_attribute[offset >> 2] |= F_CMD_ACCESSED; } /** * intel_gvt_mmio_has_mode_mask - if a MMIO has a mode mask * @gvt: a GVT device * @offset: register offset * * Returns: * True if a MMIO has a mode mask in its higher 16 bits, false if it isn't. * */ bool intel_gvt_mmio_has_mode_mask(struct intel_gvt *gvt, unsigned int offset) { return gvt->mmio.mmio_attribute[offset >> 2] & F_MODE_MASK; } /** * intel_vgpu_default_mmio_read - default MMIO read handler * @vgpu: a vGPU * @offset: access offset * @p_data: data return buffer * @bytes: access data length * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { read_vreg(vgpu, offset, p_data, bytes); return 0; } /** * intel_t_default_mmio_write - default MMIO write handler * @vgpu: a vGPU * @offset: access offset * @p_data: write data buffer * @bytes: access data length * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { write_vreg(vgpu, offset, p_data, bytes); return 0; }