/* * Copyright 2010 Matt Turner. * Copyright 2012 Red Hat * * This file is subject to the terms and conditions of the GNU General * Public License version 2. See the file COPYING in the main * directory of this archive for more details. * * Authors: Matthew Garrett * Matt Turner * Dave Airlie */ #include #include #include #include "mgag200_drv.h" #define MGAG200_LUT_SIZE 256 /* * This file contains setup code for the CRTC. */ static void mga_crtc_load_lut(struct drm_crtc *crtc) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; int i; if (!crtc->enabled) return; WREG8(DAC_INDEX + MGA1064_INDEX, 0); for (i = 0; i < MGAG200_LUT_SIZE; i++) { /* VGA registers */ WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]); WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]); } } static inline void mga_wait_vsync(struct mga_device *mdev) { unsigned int count = 0; unsigned int status = 0; do { status = RREG32(MGAREG_Status); count++; } while ((status & 0x08) && (count < 250000)); count = 0; status = 0; do { status = RREG32(MGAREG_Status); count++; } while (!(status & 0x08) && (count < 250000)); } static inline void mga_wait_busy(struct mga_device *mdev) { unsigned int count = 0; unsigned int status = 0; do { status = RREG8(MGAREG_Status + 2); count++; } while ((status & 0x01) && (count < 500000)); } /* * The core passes the desired mode to the CRTC code to see whether any * CRTC-specific modifications need to be made to it. We're in a position * to just pass that straight through, so this does nothing */ static bool mga_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int mga_g200se_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta, permitteddelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; m = n = p = 0; vcomax = 320000; vcomin = 160000; pllreffreq = 25000; delta = 0xffffffff; permitteddelta = clock * 5 / 1000; for (testp = 8; testp > 0; testp /= 2) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testn = 17; testn < 256; testn++) { for (testm = 1; testm < 32; testm++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = testm - 1; n = testn - 1; p = testp - 1; } } } } if (delta > permitteddelta) { printk(KERN_WARNING "PLL delta too large\n"); return 1; } WREG_DAC(MGA1064_PIX_PLLC_M, m); WREG_DAC(MGA1064_PIX_PLLC_N, n); WREG_DAC(MGA1064_PIX_PLLC_P, p); return 0; } static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta, permitteddelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; int i, j, tmpcount, vcount; bool pll_locked = false; u8 tmp; m = n = p = 0; vcomax = 550000; vcomin = 150000; pllreffreq = 48000; delta = 0xffffffff; permitteddelta = clock * 5 / 1000; for (testp = 1; testp < 9; testp++) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testm = 1; testm < 17; testm++) { for (testn = 1; testn < 151; testn++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = (testm - 1) | ((n >> 1) & 0x80); p = testp - 1; } } } } for (i = 0; i <= 32 && pll_locked == false; i++) { if (i > 0) { WREG8(MGAREG_CRTC_INDEX, 0x1e); tmp = RREG8(MGAREG_CRTC_DATA); if (tmp < 0xff) WREG8(MGAREG_CRTC_DATA, tmp+1); } /* set pixclkdis to 1 */ WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_REMHEADCTL_CLKDIS; WREG_DAC(MGA1064_REMHEADCTL, tmp); /* select PLL Set C */ tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); udelay(500); /* reset the PLL */ WREG8(DAC_INDEX, MGA1064_VREF_CTL); tmp = RREG8(DAC_DATA); tmp &= ~0x04; WREG_DAC(MGA1064_VREF_CTL, tmp); udelay(50); /* program pixel pll register */ WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); udelay(50); /* turn pll on */ WREG8(DAC_INDEX, MGA1064_VREF_CTL); tmp = RREG8(DAC_DATA); tmp |= 0x04; WREG_DAC(MGA1064_VREF_CTL, tmp); udelay(500); /* select the pixel pll */ WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; WREG_DAC(MGA1064_REMHEADCTL, tmp); /* reset dotclock rate bit */ WREG8(MGAREG_SEQ_INDEX, 1); tmp = RREG8(MGAREG_SEQ_DATA); tmp &= ~0x8; WREG8(MGAREG_SEQ_DATA, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); vcount = RREG8(MGAREG_VCOUNT); for (j = 0; j < 30 && pll_locked == false; j++) { tmpcount = RREG8(MGAREG_VCOUNT); if (tmpcount < vcount) vcount = 0; if ((tmpcount - vcount) > 2) pll_locked = true; else udelay(5); } } WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_REMHEADCTL_CLKDIS; WREG_DAC(MGA1064_REMHEADCTL, tmp); return 0; } static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta, permitteddelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; u8 tmp; m = n = p = 0; vcomax = 550000; vcomin = 150000; pllreffreq = 50000; delta = 0xffffffff; permitteddelta = clock * 5 / 1000; for (testp = 16; testp > 0; testp--) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testn = 1; testn < 257; testn++) { for (testm = 1; testm < 17; testm++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = testm - 1; p = testp - 1; } } } } WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); tmp = RREG8(DAC_DATA); WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); udelay(50); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); udelay(500); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); tmp = RREG8(DAC_DATA); WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= (0x3 << 2); WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); return 0; } static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta, permitteddelta; unsigned int testp, testm, testn; unsigned int p, m, n; unsigned int computed; int i, j, tmpcount, vcount; u8 tmp; bool pll_locked = false; m = n = p = 0; vcomax = 800000; vcomin = 400000; pllreffreq = 33333; delta = 0xffffffff; permitteddelta = clock * 5 / 1000; for (testp = 16; testp > 0; testp >>= 1) { if (clock * testp > vcomax) continue; if (clock * testp < vcomin) continue; for (testm = 1; testm < 33; testm++) { for (testn = 17; testn < 257; testn++) { computed = (pllreffreq * testn) / (testm * testp); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; n = testn - 1; m = (testm - 1); p = testp - 1; } if ((clock * testp) >= 600000) p |= 0x80; } } } for (i = 0; i <= 32 && pll_locked == false; i++) { WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= 0x3 << 2; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); udelay(500); WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); udelay(500); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); vcount = RREG8(MGAREG_VCOUNT); for (j = 0; j < 30 && pll_locked == false; j++) { tmpcount = RREG8(MGAREG_VCOUNT); if (tmpcount < vcount) vcount = 0; if ((tmpcount - vcount) > 2) pll_locked = true; else udelay(5); } } return 0; } static int mga_g200er_set_plls(struct mga_device *mdev, long clock) { unsigned int vcomax, vcomin, pllreffreq; unsigned int delta, tmpdelta; int testr, testn, testm, testo; unsigned int p, m, n; unsigned int computed, vco; int tmp; const unsigned int m_div_val[] = { 1, 2, 4, 8 }; m = n = p = 0; vcomax = 1488000; vcomin = 1056000; pllreffreq = 48000; delta = 0xffffffff; for (testr = 0; testr < 4; testr++) { if (delta == 0) break; for (testn = 5; testn < 129; testn++) { if (delta == 0) break; for (testm = 3; testm >= 0; testm--) { if (delta == 0) break; for (testo = 5; testo < 33; testo++) { vco = pllreffreq * (testn + 1) / (testr + 1); if (vco < vcomin) continue; if (vco > vcomax) continue; computed = vco / (m_div_val[testm] * (testo + 1)); if (computed > clock) tmpdelta = computed - clock; else tmpdelta = clock - computed; if (tmpdelta < delta) { delta = tmpdelta; m = testm | (testo << 3); n = testn; p = testr | (testr << 3); } } } } } WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp); WREG8(DAC_INDEX, MGA1064_REMHEADCTL); tmp = RREG8(DAC_DATA); tmp |= MGA1064_REMHEADCTL_CLKDIS; WREG_DAC(MGA1064_REMHEADCTL, tmp); tmp = RREG8(MGAREG_MEM_MISC_READ); tmp |= (0x3<<2) | 0xc0; WREG8(MGAREG_MEM_MISC_WRITE, tmp); WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); tmp = RREG8(DAC_DATA); tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; WREG_DAC(MGA1064_PIX_CLK_CTL, tmp); udelay(500); WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); udelay(50); return 0; } static int mga_crtc_set_plls(struct mga_device *mdev, long clock) { switch(mdev->type) { case G200_SE_A: case G200_SE_B: return mga_g200se_set_plls(mdev, clock); break; case G200_WB: return mga_g200wb_set_plls(mdev, clock); break; case G200_EV: return mga_g200ev_set_plls(mdev, clock); break; case G200_EH: return mga_g200eh_set_plls(mdev, clock); break; case G200_ER: return mga_g200er_set_plls(mdev, clock); break; } return 0; } static void mga_g200wb_prepare(struct drm_crtc *crtc) { struct mga_device *mdev = crtc->dev->dev_private; u8 tmp; int iter_max; /* 1- The first step is to warn the BMC of an upcoming mode change. * We are putting the misc<0> to output.*/ WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); tmp = RREG8(DAC_DATA); tmp |= 0x10; WREG_DAC(MGA1064_GEN_IO_CTL, tmp); /* we are putting a 1 on the misc<0> line */ WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); tmp = RREG8(DAC_DATA); tmp |= 0x10; WREG_DAC(MGA1064_GEN_IO_DATA, tmp); /* 2- Second step to mask and further scan request * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) */ WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); tmp |= 0x80; WREG_DAC(MGA1064_SPAREREG, tmp); /* 3a- the third step is to verifu if there is an active scan * We are searching for a 0 on remhsyncsts ) */ iter_max = 300; while (!(tmp & 0x1) && iter_max) { WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); udelay(1000); iter_max--; } /* 3b- this step occurs only if the remove is actually scanning * we are waiting for the end of the frame which is a 1 on * remvsyncsts (XSPAREREG<1>) */ if (iter_max) { iter_max = 300; while ((tmp & 0x2) && iter_max) { WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); udelay(1000); iter_max--; } } } static void mga_g200wb_commit(struct drm_crtc *crtc) { u8 tmp; struct mga_device *mdev = crtc->dev->dev_private; /* 1- The first step is to ensure that the vrsten and hrsten are set */ WREG8(MGAREG_CRTCEXT_INDEX, 1); tmp = RREG8(MGAREG_CRTCEXT_DATA); WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); /* 2- second step is to assert the rstlvl2 */ WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); tmp = RREG8(DAC_DATA); tmp |= 0x8; WREG8(DAC_DATA, tmp); /* wait 10 us */ udelay(10); /* 3- deassert rstlvl2 */ tmp &= ~0x08; WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); WREG8(DAC_DATA, tmp); /* 4- remove mask of scan request */ WREG8(DAC_INDEX, MGA1064_SPAREREG); tmp = RREG8(DAC_DATA); tmp &= ~0x80; WREG8(DAC_DATA, tmp); /* 5- put back a 0 on the misc<0> line */ WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); tmp = RREG8(DAC_DATA); tmp &= ~0x10; WREG_DAC(MGA1064_GEN_IO_DATA, tmp); } void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) { struct mga_device *mdev = crtc->dev->dev_private; u32 addr; int count; while (RREG8(0x1fda) & 0x08); while (!(RREG8(0x1fda) & 0x08)); count = RREG8(MGAREG_VCOUNT) + 2; while (RREG8(MGAREG_VCOUNT) < count); addr = offset >> 2; WREG_CRT(0x0d, (u8)(addr & 0xff)); WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf); } /* ast is different - we will force move buffers out of VRAM */ static int mga_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct mga_device *mdev = crtc->dev->dev_private; struct drm_gem_object *obj; struct mga_framebuffer *mga_fb; struct mgag200_bo *bo; int ret; u64 gpu_addr; /* push the previous fb to system ram */ if (!atomic && fb) { mga_fb = to_mga_framebuffer(fb); obj = mga_fb->obj; bo = gem_to_mga_bo(obj); ret = mgag200_bo_reserve(bo, false); if (ret) return ret; mgag200_bo_push_sysram(bo); mgag200_bo_unreserve(bo); } mga_fb = to_mga_framebuffer(crtc->fb); obj = mga_fb->obj; bo = gem_to_mga_bo(obj); ret = mgag200_bo_reserve(bo, false); if (ret) return ret; ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); if (ret) { mgag200_bo_unreserve(bo); return ret; } if (&mdev->mfbdev->mfb == mga_fb) { /* if pushing console in kmap it */ ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); if (ret) DRM_ERROR("failed to kmap fbcon\n"); } mgag200_bo_unreserve(bo); DRM_INFO("mga base %llx\n", gpu_addr); mga_set_start_address(crtc, (u32)gpu_addr); return 0; } static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); } static int mga_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; int hdisplay, hsyncstart, hsyncend, htotal; int vdisplay, vsyncstart, vsyncend, vtotal; int pitch; int option = 0, option2 = 0; int i; unsigned char misc = 0; unsigned char ext_vga[6]; unsigned char ext_vga_index24; unsigned char dac_index90 = 0; u8 bppshift; static unsigned char dacvalue[] = { /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 }; bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1]; switch (mdev->type) { case G200_SE_A: case G200_SE_B: dacvalue[MGA1064_VREF_CTL] = 0x03; dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; if (mdev->has_sdram) option = 0x40049120; else option = 0x4004d120; option2 = 0x00008000; break; case G200_WB: dacvalue[MGA1064_VREF_CTL] = 0x07; option = 0x41049120; option2 = 0x0000b000; break; case G200_EV: dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; option = 0x00000120; option2 = 0x0000b000; break; case G200_EH: dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | MGA1064_MISC_CTL_DAC_RAM_CS; option = 0x00000120; option2 = 0x0000b000; break; case G200_ER: dac_index90 = 0; break; } switch (crtc->fb->bits_per_pixel) { case 8: dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; break; case 16: if (crtc->fb->depth == 15) dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; else dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; break; case 24: dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; break; case 32: dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; break; } if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= 0x40; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= 0x80; for (i = 0; i < sizeof(dacvalue); i++) { if ((i <= 0x03) || (i == 0x07) || (i == 0x0b) || (i == 0x0f) || ((i >= 0x13) && (i <= 0x17)) || (i == 0x1b) || (i == 0x1c) || ((i >= 0x1f) && (i <= 0x29)) || ((i >= 0x30) && (i <= 0x37))) continue; if (IS_G200_SE(mdev) && ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) continue; if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) && (i >= 0x44) && (i <= 0x4e)) continue; WREG_DAC(i, dacvalue[i]); } if (mdev->type == G200_ER) { WREG_DAC(0x90, dac_index90); } if (option) pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); if (option2) pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); WREG_SEQ(2, 0xf); WREG_SEQ(3, 0); WREG_SEQ(4, 0xe); pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8); if (crtc->fb->bits_per_pixel == 24) pitch = pitch >> (4 - bppshift); else pitch = pitch >> (4 - bppshift); hdisplay = mode->hdisplay / 8 - 1; hsyncstart = mode->hsync_start / 8 - 1; hsyncend = mode->hsync_end / 8 - 1; htotal = mode->htotal / 8 - 1; /* Work around hardware quirk */ if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) htotal++; vdisplay = mode->vdisplay - 1; vsyncstart = mode->vsync_start - 1; vsyncend = mode->vsync_end - 1; vtotal = mode->vtotal - 2; WREG_GFX(0, 0); WREG_GFX(1, 0); WREG_GFX(2, 0); WREG_GFX(3, 0); WREG_GFX(4, 0); WREG_GFX(5, 0x40); WREG_GFX(6, 0x5); WREG_GFX(7, 0xf); WREG_GFX(8, 0xf); WREG_CRT(0, htotal - 4); WREG_CRT(1, hdisplay); WREG_CRT(2, hdisplay); WREG_CRT(3, (htotal & 0x1F) | 0x80); WREG_CRT(4, hsyncstart); WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); WREG_CRT(6, vtotal & 0xFF); WREG_CRT(7, ((vtotal & 0x100) >> 8) | ((vdisplay & 0x100) >> 7) | ((vsyncstart & 0x100) >> 6) | ((vdisplay & 0x100) >> 5) | ((vdisplay & 0x100) >> 4) | /* linecomp */ ((vtotal & 0x200) >> 4)| ((vdisplay & 0x200) >> 3) | ((vsyncstart & 0x200) >> 2)); WREG_CRT(9, ((vdisplay & 0x200) >> 4) | ((vdisplay & 0x200) >> 3)); WREG_CRT(10, 0); WREG_CRT(11, 0); WREG_CRT(12, 0); WREG_CRT(13, 0); WREG_CRT(14, 0); WREG_CRT(15, 0); WREG_CRT(16, vsyncstart & 0xFF); WREG_CRT(17, (vsyncend & 0x0F) | 0x20); WREG_CRT(18, vdisplay & 0xFF); WREG_CRT(19, pitch & 0xFF); WREG_CRT(20, 0); WREG_CRT(21, vdisplay & 0xFF); WREG_CRT(22, (vtotal + 1) & 0xFF); WREG_CRT(23, 0xc3); WREG_CRT(24, vdisplay & 0xFF); ext_vga[0] = 0; ext_vga[5] = 0; /* TODO interlace */ ext_vga[0] |= (pitch & 0x300) >> 4; ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | ((hdisplay & 0x100) >> 7) | ((hsyncstart & 0x100) >> 6) | (htotal & 0x40); ext_vga[2] = ((vtotal & 0xc00) >> 10) | ((vdisplay & 0x400) >> 8) | ((vdisplay & 0xc00) >> 7) | ((vsyncstart & 0xc00) >> 5) | ((vdisplay & 0x400) >> 3); if (crtc->fb->bits_per_pixel == 24) ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; else ext_vga[3] = ((1 << bppshift) - 1) | 0x80; ext_vga[4] = 0; if (mdev->type == G200_WB) ext_vga[1] |= 0x88; ext_vga_index24 = 0x05; /* Set pixel clocks */ misc = 0x2d; WREG8(MGA_MISC_OUT, misc); mga_crtc_set_plls(mdev, mode->clock); for (i = 0; i < 6; i++) { WREG_ECRT(i, ext_vga[i]); } if (mdev->type == G200_ER) WREG_ECRT(24, ext_vga_index24); if (mdev->type == G200_EV) { WREG_ECRT(6, 0); } WREG_ECRT(0, ext_vga[0]); /* Enable mga pixel clock */ misc = 0x2d; WREG8(MGA_MISC_OUT, misc); if (adjusted_mode) memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); mga_crtc_do_set_base(crtc, old_fb, x, y, 0); /* reset tagfifo */ if (mdev->type == G200_ER) { u32 mem_ctl = RREG32(MGAREG_MEMCTL); u8 seq1; /* screen off */ WREG8(MGAREG_SEQ_INDEX, 0x01); seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; WREG8(MGAREG_SEQ_DATA, seq1); WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); udelay(1000); WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); } if (IS_G200_SE(mdev)) { if (mdev->reg_1e24 >= 0x02) { u8 hi_pri_lvl; u32 bpp; u32 mb; if (crtc->fb->bits_per_pixel > 16) bpp = 32; else if (crtc->fb->bits_per_pixel > 8) bpp = 16; else bpp = 8; mb = (mode->clock * bpp) / 1000; if (mb > 3100) hi_pri_lvl = 0; else if (mb > 2600) hi_pri_lvl = 1; else if (mb > 1900) hi_pri_lvl = 2; else if (mb > 1160) hi_pri_lvl = 3; else if (mb > 440) hi_pri_lvl = 4; else hi_pri_lvl = 5; WREG8(0x1fde, 0x06); WREG8(0x1fdf, hi_pri_lvl); } else { if (mdev->reg_1e24 >= 0x01) WREG8(0x1fdf, 0x03); else WREG8(0x1fdf, 0x04); } } return 0; } #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ static int mga_suspend(struct drm_crtc *crtc) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; struct pci_dev *pdev = dev->pdev; int option; if (mdev->suspended) return 0; WREG_SEQ(1, 0x20); WREG_ECRT(1, 0x30); /* Disable the pixel clock */ WREG_DAC(0x1a, 0x05); /* Power down the DAC */ WREG_DAC(0x1e, 0x18); /* Power down the pixel PLL */ WREG_DAC(0x1a, 0x0d); /* Disable PLLs and clocks */ pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); option &= ~(0x1F8024); pci_write_config_dword(pdev, PCI_MGA_OPTION, option); pci_set_power_state(pdev, PCI_D3hot); pci_disable_device(pdev); mdev->suspended = true; return 0; } static int mga_resume(struct drm_crtc *crtc) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; struct pci_dev *pdev = dev->pdev; int option; if (!mdev->suspended) return 0; pci_set_power_state(pdev, PCI_D0); pci_enable_device(pdev); /* Disable sysclk */ pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); option &= ~(0x4); pci_write_config_dword(pdev, PCI_MGA_OPTION, option); mdev->suspended = false; return 0; } #endif static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; u8 seq1 = 0, crtcext1 = 0; switch (mode) { case DRM_MODE_DPMS_ON: seq1 = 0; crtcext1 = 0; mga_crtc_load_lut(crtc); break; case DRM_MODE_DPMS_STANDBY: seq1 = 0x20; crtcext1 = 0x10; break; case DRM_MODE_DPMS_SUSPEND: seq1 = 0x20; crtcext1 = 0x20; break; case DRM_MODE_DPMS_OFF: seq1 = 0x20; crtcext1 = 0x30; break; } #if 0 if (mode == DRM_MODE_DPMS_OFF) { mga_suspend(crtc); } #endif WREG8(MGAREG_SEQ_INDEX, 0x01); seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; mga_wait_vsync(mdev); mga_wait_busy(mdev); WREG8(MGAREG_SEQ_DATA, seq1); msleep(20); WREG8(MGAREG_CRTCEXT_INDEX, 0x01); crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; WREG8(MGAREG_CRTCEXT_DATA, crtcext1); #if 0 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { mga_resume(crtc); drm_helper_resume_force_mode(dev); } #endif } /* * This is called before a mode is programmed. A typical use might be to * enable DPMS during the programming to avoid seeing intermediate stages, * but that's not relevant to us */ static void mga_crtc_prepare(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; u8 tmp; /* mga_resume(crtc);*/ WREG8(MGAREG_CRTC_INDEX, 0x11); tmp = RREG8(MGAREG_CRTC_DATA); WREG_CRT(0x11, tmp | 0x80); if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { WREG_SEQ(0, 1); msleep(50); WREG_SEQ(1, 0x20); msleep(20); } else { WREG8(MGAREG_SEQ_INDEX, 0x1); tmp = RREG8(MGAREG_SEQ_DATA); /* start sync reset */ WREG_SEQ(0, 1); WREG_SEQ(1, tmp | 0x20); } if (mdev->type == G200_WB) mga_g200wb_prepare(crtc); WREG_CRT(17, 0); } /* * This is called after a mode is programmed. It should reverse anything done * by the prepare function */ static void mga_crtc_commit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mga_device *mdev = dev->dev_private; struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; u8 tmp; if (mdev->type == G200_WB) mga_g200wb_commit(crtc); if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { msleep(50); WREG_SEQ(1, 0x0); msleep(20); WREG_SEQ(0, 0x3); } else { WREG8(MGAREG_SEQ_INDEX, 0x1); tmp = RREG8(MGAREG_SEQ_DATA); tmp &= ~0x20; WREG_SEQ(0x1, tmp); WREG_SEQ(0, 3); } crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); } /* * The core can pass us a set of gamma values to program. We actually only * use this for 8-bit mode so can't perform smooth fades on deeper modes, * but it's a requirement that we provide the function */ static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t start, uint32_t size) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size; int i; for (i = start; i < end; i++) { mga_crtc->lut_r[i] = red[i] >> 8; mga_crtc->lut_g[i] = green[i] >> 8; mga_crtc->lut_b[i] = blue[i] >> 8; } mga_crtc_load_lut(crtc); } /* Simple cleanup function */ static void mga_crtc_destroy(struct drm_crtc *crtc) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); drm_crtc_cleanup(crtc); kfree(mga_crtc); } /* These provide the minimum set of functions required to handle a CRTC */ static const struct drm_crtc_funcs mga_crtc_funcs = { .gamma_set = mga_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .destroy = mga_crtc_destroy, }; static const struct drm_crtc_helper_funcs mga_helper_funcs = { .dpms = mga_crtc_dpms, .mode_fixup = mga_crtc_mode_fixup, .mode_set = mga_crtc_mode_set, .mode_set_base = mga_crtc_mode_set_base, .prepare = mga_crtc_prepare, .commit = mga_crtc_commit, .load_lut = mga_crtc_load_lut, }; /* CRTC setup */ static void mga_crtc_init(struct mga_device *mdev) { struct mga_crtc *mga_crtc; int i; mga_crtc = kzalloc(sizeof(struct mga_crtc) + (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (mga_crtc == NULL) return; drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs); drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); mdev->mode_info.crtc = mga_crtc; for (i = 0; i < MGAG200_LUT_SIZE; i++) { mga_crtc->lut_r[i] = i; mga_crtc->lut_g[i] = i; mga_crtc->lut_b[i] = i; } drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); } /** Sets the color ramps on behalf of fbcon */ void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, u16 blue, int regno) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); mga_crtc->lut_r[regno] = red >> 8; mga_crtc->lut_g[regno] = green >> 8; mga_crtc->lut_b[regno] = blue >> 8; } /** Gets the color ramps on behalf of fbcon */ void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, int regno) { struct mga_crtc *mga_crtc = to_mga_crtc(crtc); *red = (u16)mga_crtc->lut_r[regno] << 8; *green = (u16)mga_crtc->lut_g[regno] << 8; *blue = (u16)mga_crtc->lut_b[regno] << 8; } /* * The encoder comes after the CRTC in the output pipeline, but before * the connector. It's responsible for ensuring that the digital * stream is appropriately converted into the output format. Setup is * very simple in this case - all we have to do is inform qemu of the * colour depth in order to ensure that it displays appropriately */ /* * These functions are analagous to those in the CRTC code, but are intended * to handle any encoder-specific limitations */ static bool mga_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static void mga_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { } static void mga_encoder_dpms(struct drm_encoder *encoder, int state) { return; } static void mga_encoder_prepare(struct drm_encoder *encoder) { } static void mga_encoder_commit(struct drm_encoder *encoder) { } void mga_encoder_destroy(struct drm_encoder *encoder) { struct mga_encoder *mga_encoder = to_mga_encoder(encoder); drm_encoder_cleanup(encoder); kfree(mga_encoder); } static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { .dpms = mga_encoder_dpms, .mode_fixup = mga_encoder_mode_fixup, .mode_set = mga_encoder_mode_set, .prepare = mga_encoder_prepare, .commit = mga_encoder_commit, }; static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { .destroy = mga_encoder_destroy, }; static struct drm_encoder *mga_encoder_init(struct drm_device *dev) { struct drm_encoder *encoder; struct mga_encoder *mga_encoder; mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); if (!mga_encoder) return NULL; encoder = &mga_encoder->base; encoder->possible_crtcs = 0x1; drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, DRM_MODE_ENCODER_DAC); drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); return encoder; } static int mga_vga_get_modes(struct drm_connector *connector) { struct mga_connector *mga_connector = to_mga_connector(connector); struct edid *edid; int ret = 0; edid = drm_get_edid(connector, &mga_connector->i2c->adapter); if (edid) { drm_mode_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); } return ret; } static int mga_vga_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct drm_device *dev = connector->dev; struct mga_device *mdev = (struct mga_device*)dev->dev_private; struct mga_fbdev *mfbdev = mdev->mfbdev; struct drm_fb_helper *fb_helper = &mfbdev->helper; struct drm_fb_helper_connector *fb_helper_conn = NULL; int bpp = 32; int i = 0; /* FIXME: Add bandwidth and g200se limitations */ if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { return MODE_BAD; } /* Validate the mode input by the user */ for (i = 0; i < fb_helper->connector_count; i++) { if (fb_helper->connector_info[i]->connector == connector) { /* Found the helper for this connector */ fb_helper_conn = fb_helper->connector_info[i]; if (fb_helper_conn->cmdline_mode.specified) { if (fb_helper_conn->cmdline_mode.bpp_specified) { bpp = fb_helper_conn->cmdline_mode.bpp; } } } } if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { if (fb_helper_conn) fb_helper_conn->cmdline_mode.specified = false; return MODE_BAD; } return MODE_OK; } struct drm_encoder *mga_connector_best_encoder(struct drm_connector *connector) { int enc_id = connector->encoder_ids[0]; struct drm_mode_object *obj; struct drm_encoder *encoder; /* pick the encoder ids */ if (enc_id) { obj = drm_mode_object_find(connector->dev, enc_id, DRM_MODE_OBJECT_ENCODER); if (!obj) return NULL; encoder = obj_to_encoder(obj); return encoder; } return NULL; } static enum drm_connector_status mga_vga_detect(struct drm_connector *connector, bool force) { return connector_status_connected; } static void mga_connector_destroy(struct drm_connector *connector) { struct mga_connector *mga_connector = to_mga_connector(connector); mgag200_i2c_destroy(mga_connector->i2c); drm_connector_cleanup(connector); kfree(connector); } struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { .get_modes = mga_vga_get_modes, .mode_valid = mga_vga_mode_valid, .best_encoder = mga_connector_best_encoder, }; struct drm_connector_funcs mga_vga_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = mga_vga_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = mga_connector_destroy, }; static struct drm_connector *mga_vga_init(struct drm_device *dev) { struct drm_connector *connector; struct mga_connector *mga_connector; mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); if (!mga_connector) return NULL; connector = &mga_connector->base; drm_connector_init(dev, connector, &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); mga_connector->i2c = mgag200_i2c_create(dev); if (!mga_connector->i2c) DRM_ERROR("failed to add ddc bus\n"); return connector; } int mgag200_modeset_init(struct mga_device *mdev) { struct drm_encoder *encoder; struct drm_connector *connector; int ret; mdev->mode_info.mode_config_initialized = true; mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; mdev->dev->mode_config.fb_base = mdev->mc.vram_base; mga_crtc_init(mdev); encoder = mga_encoder_init(mdev->dev); if (!encoder) { DRM_ERROR("mga_encoder_init failed\n"); return -1; } connector = mga_vga_init(mdev->dev); if (!connector) { DRM_ERROR("mga_vga_init failed\n"); return -1; } drm_mode_connector_attach_encoder(connector, encoder); ret = mgag200_fbdev_init(mdev); if (ret) { DRM_ERROR("mga_fbdev_init failed\n"); return ret; } return 0; } void mgag200_modeset_fini(struct mga_device *mdev) { }