/* * Analog Devices ADV7511 HDMI transmitter driver * * Copyright 2012 Analog Devices Inc. * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include #include #include #include #include "adv7511.h" struct adv7511 { struct i2c_client *i2c_main; struct i2c_client *i2c_edid; struct regmap *regmap; struct regmap *packet_memory_regmap; enum drm_connector_status status; bool powered; unsigned int f_tmds; unsigned int current_edid_segment; uint8_t edid_buf[256]; bool edid_read; wait_queue_head_t wq; struct drm_bridge bridge; struct drm_connector connector; bool embedded_sync; enum adv7511_sync_polarity vsync_polarity; enum adv7511_sync_polarity hsync_polarity; bool rgb; struct edid *edid; struct gpio_desc *gpio_pd; }; /* ADI recommended values for proper operation. */ static const struct reg_sequence adv7511_fixed_registers[] = { { 0x98, 0x03 }, { 0x9a, 0xe0 }, { 0x9c, 0x30 }, { 0x9d, 0x61 }, { 0xa2, 0xa4 }, { 0xa3, 0xa4 }, { 0xe0, 0xd0 }, { 0xf9, 0x00 }, { 0x55, 0x02 }, }; /* ----------------------------------------------------------------------------- * Register access */ static const uint8_t adv7511_register_defaults[] = { 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00 */ 0x00, 0x00, 0x01, 0x0e, 0xbc, 0x18, 0x01, 0x13, 0x25, 0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10 */ 0x46, 0x62, 0x04, 0xa8, 0x00, 0x00, 0x1c, 0x84, 0x1c, 0xbf, 0x04, 0xa8, 0x1e, 0x70, 0x02, 0x1e, /* 20 */ 0x00, 0x00, 0x04, 0xa8, 0x08, 0x12, 0x1b, 0xac, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 */ 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0xb0, 0x00, 0x50, 0x90, 0x7e, 0x79, 0x70, 0x00, 0x00, /* 40 */ 0x00, 0xa8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x0d, 0x00, 0x00, 0x00, 0x00, /* 50 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 60 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 70 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 80 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00, /* 90 */ 0x0b, 0x02, 0x00, 0x18, 0x5a, 0x60, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x08, 0x04, 0x00, 0x00, /* a0 */ 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c0 */ 0x00, 0x03, 0x00, 0x00, 0x02, 0x00, 0x01, 0x04, 0x30, 0xff, 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, /* d0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01, 0x80, 0x75, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, /* e0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x75, 0x11, 0x00, /* f0 */ 0x00, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static bool adv7511_register_volatile(struct device *dev, unsigned int reg) { switch (reg) { case ADV7511_REG_CHIP_REVISION: case ADV7511_REG_SPDIF_FREQ: case ADV7511_REG_CTS_AUTOMATIC1: case ADV7511_REG_CTS_AUTOMATIC2: case ADV7511_REG_VIC_DETECTED: case ADV7511_REG_VIC_SEND: case ADV7511_REG_AUX_VIC_DETECTED: case ADV7511_REG_STATUS: case ADV7511_REG_GC(1): case ADV7511_REG_INT(0): case ADV7511_REG_INT(1): case ADV7511_REG_PLL_STATUS: case ADV7511_REG_AN(0): case ADV7511_REG_AN(1): case ADV7511_REG_AN(2): case ADV7511_REG_AN(3): case ADV7511_REG_AN(4): case ADV7511_REG_AN(5): case ADV7511_REG_AN(6): case ADV7511_REG_AN(7): case ADV7511_REG_HDCP_STATUS: case ADV7511_REG_BCAPS: case ADV7511_REG_BKSV(0): case ADV7511_REG_BKSV(1): case ADV7511_REG_BKSV(2): case ADV7511_REG_BKSV(3): case ADV7511_REG_BKSV(4): case ADV7511_REG_DDC_STATUS: case ADV7511_REG_EDID_READ_CTRL: case ADV7511_REG_BSTATUS(0): case ADV7511_REG_BSTATUS(1): case ADV7511_REG_CHIP_ID_HIGH: case ADV7511_REG_CHIP_ID_LOW: return true; } return false; } static const struct regmap_config adv7511_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .cache_type = REGCACHE_RBTREE, .reg_defaults_raw = adv7511_register_defaults, .num_reg_defaults_raw = ARRAY_SIZE(adv7511_register_defaults), .volatile_reg = adv7511_register_volatile, }; /* ----------------------------------------------------------------------------- * Hardware configuration */ static void adv7511_set_colormap(struct adv7511 *adv7511, bool enable, const uint16_t *coeff, unsigned int scaling_factor) { unsigned int i; regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(1), ADV7511_CSC_UPDATE_MODE, ADV7511_CSC_UPDATE_MODE); if (enable) { for (i = 0; i < 12; ++i) { regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(i), 0x1f, coeff[i] >> 8); regmap_write(adv7511->regmap, ADV7511_REG_CSC_LOWER(i), coeff[i] & 0xff); } } if (enable) regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(0), 0xe0, 0x80 | (scaling_factor << 5)); else regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(0), 0x80, 0x00); regmap_update_bits(adv7511->regmap, ADV7511_REG_CSC_UPPER(1), ADV7511_CSC_UPDATE_MODE, 0); } static int adv7511_packet_enable(struct adv7511 *adv7511, unsigned int packet) { if (packet & 0xff) regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE0, packet, 0xff); if (packet & 0xff00) { packet >>= 8; regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1, packet, 0xff); } return 0; } static int adv7511_packet_disable(struct adv7511 *adv7511, unsigned int packet) { if (packet & 0xff) regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE0, packet, 0x00); if (packet & 0xff00) { packet >>= 8; regmap_update_bits(adv7511->regmap, ADV7511_REG_PACKET_ENABLE1, packet, 0x00); } return 0; } /* Coefficients for adv7511 color space conversion */ static const uint16_t adv7511_csc_ycbcr_to_rgb[] = { 0x0734, 0x04ad, 0x0000, 0x1c1b, 0x1ddc, 0x04ad, 0x1f24, 0x0135, 0x0000, 0x04ad, 0x087c, 0x1b77, }; static void adv7511_set_config_csc(struct adv7511 *adv7511, struct drm_connector *connector, bool rgb) { struct adv7511_video_config config; bool output_format_422, output_format_ycbcr; unsigned int mode; uint8_t infoframe[17]; if (adv7511->edid) config.hdmi_mode = drm_detect_hdmi_monitor(adv7511->edid); else config.hdmi_mode = false; hdmi_avi_infoframe_init(&config.avi_infoframe); config.avi_infoframe.scan_mode = HDMI_SCAN_MODE_UNDERSCAN; if (rgb) { config.csc_enable = false; config.avi_infoframe.colorspace = HDMI_COLORSPACE_RGB; } else { config.csc_scaling_factor = ADV7511_CSC_SCALING_4; config.csc_coefficents = adv7511_csc_ycbcr_to_rgb; if ((connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB422) && config.hdmi_mode) { config.csc_enable = false; config.avi_infoframe.colorspace = HDMI_COLORSPACE_YUV422; } else { config.csc_enable = true; config.avi_infoframe.colorspace = HDMI_COLORSPACE_RGB; } } if (config.hdmi_mode) { mode = ADV7511_HDMI_CFG_MODE_HDMI; switch (config.avi_infoframe.colorspace) { case HDMI_COLORSPACE_YUV444: output_format_422 = false; output_format_ycbcr = true; break; case HDMI_COLORSPACE_YUV422: output_format_422 = true; output_format_ycbcr = true; break; default: output_format_422 = false; output_format_ycbcr = false; break; } } else { mode = ADV7511_HDMI_CFG_MODE_DVI; output_format_422 = false; output_format_ycbcr = false; } adv7511_packet_disable(adv7511, ADV7511_PACKET_ENABLE_AVI_INFOFRAME); adv7511_set_colormap(adv7511, config.csc_enable, config.csc_coefficents, config.csc_scaling_factor); regmap_update_bits(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG1, 0x81, (output_format_422 << 7) | output_format_ycbcr); regmap_update_bits(adv7511->regmap, ADV7511_REG_HDCP_HDMI_CFG, ADV7511_HDMI_CFG_MODE_MASK, mode); hdmi_avi_infoframe_pack(&config.avi_infoframe, infoframe, sizeof(infoframe)); /* The AVI infoframe id is not configurable */ regmap_bulk_write(adv7511->regmap, ADV7511_REG_AVI_INFOFRAME_VERSION, infoframe + 1, sizeof(infoframe) - 1); adv7511_packet_enable(adv7511, ADV7511_PACKET_ENABLE_AVI_INFOFRAME); } static void adv7511_set_link_config(struct adv7511 *adv7511, const struct adv7511_link_config *config) { /* * The input style values documented in the datasheet don't match the * hardware register field values :-( */ static const unsigned int input_styles[4] = { 0, 2, 1, 3 }; unsigned int clock_delay; unsigned int color_depth; unsigned int input_id; clock_delay = (config->clock_delay + 1200) / 400; color_depth = config->input_color_depth == 8 ? 3 : (config->input_color_depth == 10 ? 1 : 2); /* TODO Support input ID 6 */ if (config->input_colorspace != HDMI_COLORSPACE_YUV422) input_id = config->input_clock == ADV7511_INPUT_CLOCK_DDR ? 5 : 0; else if (config->input_clock == ADV7511_INPUT_CLOCK_DDR) input_id = config->embedded_sync ? 8 : 7; else if (config->input_clock == ADV7511_INPUT_CLOCK_2X) input_id = config->embedded_sync ? 4 : 3; else input_id = config->embedded_sync ? 2 : 1; regmap_update_bits(adv7511->regmap, ADV7511_REG_I2C_FREQ_ID_CFG, 0xf, input_id); regmap_update_bits(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG1, 0x7e, (color_depth << 4) | (input_styles[config->input_style] << 2)); regmap_write(adv7511->regmap, ADV7511_REG_VIDEO_INPUT_CFG2, config->input_justification << 3); regmap_write(adv7511->regmap, ADV7511_REG_TIMING_GEN_SEQ, config->sync_pulse << 2); regmap_write(adv7511->regmap, 0xba, clock_delay << 5); adv7511->embedded_sync = config->embedded_sync; adv7511->hsync_polarity = config->hsync_polarity; adv7511->vsync_polarity = config->vsync_polarity; adv7511->rgb = config->input_colorspace == HDMI_COLORSPACE_RGB; } static void adv7511_power_on(struct adv7511 *adv7511) { adv7511->current_edid_segment = -1; regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER, ADV7511_POWER_POWER_DOWN, 0); if (adv7511->i2c_main->irq) { /* * Documentation says the INT_ENABLE registers are reset in * POWER_DOWN mode. My 7511w preserved the bits, however. * Still, let's be safe and stick to the documentation. */ regmap_write(adv7511->regmap, ADV7511_REG_INT_ENABLE(0), ADV7511_INT0_EDID_READY); regmap_write(adv7511->regmap, ADV7511_REG_INT_ENABLE(1), ADV7511_INT1_DDC_ERROR); } /* * Per spec it is allowed to pulse the HPD signal to indicate that the * EDID information has changed. Some monitors do this when they wakeup * from standby or are enabled. When the HPD goes low the adv7511 is * reset and the outputs are disabled which might cause the monitor to * go to standby again. To avoid this we ignore the HPD pin for the * first few seconds after enabling the output. */ regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2, ADV7511_REG_POWER2_HPD_SRC_MASK, ADV7511_REG_POWER2_HPD_SRC_NONE); /* * Most of the registers are reset during power down or when HPD is low. */ regcache_sync(adv7511->regmap); adv7511->powered = true; } static void adv7511_power_off(struct adv7511 *adv7511) { /* TODO: setup additional power down modes */ regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER, ADV7511_POWER_POWER_DOWN, ADV7511_POWER_POWER_DOWN); regcache_mark_dirty(adv7511->regmap); adv7511->powered = false; } /* ----------------------------------------------------------------------------- * Interrupt and hotplug detection */ static bool adv7511_hpd(struct adv7511 *adv7511) { unsigned int irq0; int ret; ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(0), &irq0); if (ret < 0) return false; if (irq0 & ADV7511_INT0_HPD) { regmap_write(adv7511->regmap, ADV7511_REG_INT(0), ADV7511_INT0_HPD); return true; } return false; } static int adv7511_irq_process(struct adv7511 *adv7511, bool process_hpd) { unsigned int irq0, irq1; int ret; ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(0), &irq0); if (ret < 0) return ret; ret = regmap_read(adv7511->regmap, ADV7511_REG_INT(1), &irq1); if (ret < 0) return ret; regmap_write(adv7511->regmap, ADV7511_REG_INT(0), irq0); regmap_write(adv7511->regmap, ADV7511_REG_INT(1), irq1); if (process_hpd && irq0 & ADV7511_INT0_HPD && adv7511->bridge.encoder) drm_helper_hpd_irq_event(adv7511->connector.dev); if (irq0 & ADV7511_INT0_EDID_READY || irq1 & ADV7511_INT1_DDC_ERROR) { adv7511->edid_read = true; if (adv7511->i2c_main->irq) wake_up_all(&adv7511->wq); } return 0; } static irqreturn_t adv7511_irq_handler(int irq, void *devid) { struct adv7511 *adv7511 = devid; int ret; ret = adv7511_irq_process(adv7511, true); return ret < 0 ? IRQ_NONE : IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * EDID retrieval */ static int adv7511_wait_for_edid(struct adv7511 *adv7511, int timeout) { int ret; if (adv7511->i2c_main->irq) { ret = wait_event_interruptible_timeout(adv7511->wq, adv7511->edid_read, msecs_to_jiffies(timeout)); } else { for (; timeout > 0; timeout -= 25) { ret = adv7511_irq_process(adv7511, false); if (ret < 0) break; if (adv7511->edid_read) break; msleep(25); } } return adv7511->edid_read ? 0 : -EIO; } static int adv7511_get_edid_block(void *data, u8 *buf, unsigned int block, size_t len) { struct adv7511 *adv7511 = data; struct i2c_msg xfer[2]; uint8_t offset; unsigned int i; int ret; if (len > 128) return -EINVAL; if (adv7511->current_edid_segment != block / 2) { unsigned int status; ret = regmap_read(adv7511->regmap, ADV7511_REG_DDC_STATUS, &status); if (ret < 0) return ret; if (status != 2) { adv7511->edid_read = false; regmap_write(adv7511->regmap, ADV7511_REG_EDID_SEGMENT, block); ret = adv7511_wait_for_edid(adv7511, 200); if (ret < 0) return ret; } /* Break this apart, hopefully more I2C controllers will * support 64 byte transfers than 256 byte transfers */ xfer[0].addr = adv7511->i2c_edid->addr; xfer[0].flags = 0; xfer[0].len = 1; xfer[0].buf = &offset; xfer[1].addr = adv7511->i2c_edid->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 64; xfer[1].buf = adv7511->edid_buf; offset = 0; for (i = 0; i < 4; ++i) { ret = i2c_transfer(adv7511->i2c_edid->adapter, xfer, ARRAY_SIZE(xfer)); if (ret < 0) return ret; else if (ret != 2) return -EIO; xfer[1].buf += 64; offset += 64; } adv7511->current_edid_segment = block / 2; } if (block % 2 == 0) memcpy(buf, adv7511->edid_buf, len); else memcpy(buf, adv7511->edid_buf + 128, len); return 0; } /* ----------------------------------------------------------------------------- * ADV75xx helpers */ static int adv7511_get_modes(struct adv7511 *adv7511, struct drm_connector *connector) { struct edid *edid; unsigned int count; /* Reading the EDID only works if the device is powered */ if (!adv7511->powered) { regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER, ADV7511_POWER_POWER_DOWN, 0); if (adv7511->i2c_main->irq) { regmap_write(adv7511->regmap, ADV7511_REG_INT_ENABLE(0), ADV7511_INT0_EDID_READY); regmap_write(adv7511->regmap, ADV7511_REG_INT_ENABLE(1), ADV7511_INT1_DDC_ERROR); } adv7511->current_edid_segment = -1; } edid = drm_do_get_edid(connector, adv7511_get_edid_block, adv7511); if (!adv7511->powered) regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER, ADV7511_POWER_POWER_DOWN, ADV7511_POWER_POWER_DOWN); kfree(adv7511->edid); adv7511->edid = edid; if (!edid) return 0; drm_mode_connector_update_edid_property(connector, edid); count = drm_add_edid_modes(connector, edid); adv7511_set_config_csc(adv7511, connector, adv7511->rgb); return count; } static enum drm_connector_status adv7511_detect(struct adv7511 *adv7511, struct drm_connector *connector) { enum drm_connector_status status; unsigned int val; bool hpd; int ret; ret = regmap_read(adv7511->regmap, ADV7511_REG_STATUS, &val); if (ret < 0) return connector_status_disconnected; if (val & ADV7511_STATUS_HPD) status = connector_status_connected; else status = connector_status_disconnected; hpd = adv7511_hpd(adv7511); /* The chip resets itself when the cable is disconnected, so in case * there is a pending HPD interrupt and the cable is connected there was * at least one transition from disconnected to connected and the chip * has to be reinitialized. */ if (status == connector_status_connected && hpd && adv7511->powered) { regcache_mark_dirty(adv7511->regmap); adv7511_power_on(adv7511); adv7511_get_modes(adv7511, connector); if (adv7511->status == connector_status_connected) status = connector_status_disconnected; } else { /* Renable HPD sensing */ regmap_update_bits(adv7511->regmap, ADV7511_REG_POWER2, ADV7511_REG_POWER2_HPD_SRC_MASK, ADV7511_REG_POWER2_HPD_SRC_BOTH); } adv7511->status = status; return status; } static int adv7511_mode_valid(struct adv7511 *adv7511, struct drm_display_mode *mode) { if (mode->clock > 165000) return MODE_CLOCK_HIGH; return MODE_OK; } static void adv7511_mode_set(struct adv7511 *adv7511, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { unsigned int low_refresh_rate; unsigned int hsync_polarity = 0; unsigned int vsync_polarity = 0; if (adv7511->embedded_sync) { unsigned int hsync_offset, hsync_len; unsigned int vsync_offset, vsync_len; hsync_offset = adj_mode->crtc_hsync_start - adj_mode->crtc_hdisplay; vsync_offset = adj_mode->crtc_vsync_start - adj_mode->crtc_vdisplay; hsync_len = adj_mode->crtc_hsync_end - adj_mode->crtc_hsync_start; vsync_len = adj_mode->crtc_vsync_end - adj_mode->crtc_vsync_start; /* The hardware vsync generator has a off-by-one bug */ vsync_offset += 1; regmap_write(adv7511->regmap, ADV7511_REG_HSYNC_PLACEMENT_MSB, ((hsync_offset >> 10) & 0x7) << 5); regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(0), (hsync_offset >> 2) & 0xff); regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(1), ((hsync_offset & 0x3) << 6) | ((hsync_len >> 4) & 0x3f)); regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(2), ((hsync_len & 0xf) << 4) | ((vsync_offset >> 6) & 0xf)); regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(3), ((vsync_offset & 0x3f) << 2) | ((vsync_len >> 8) & 0x3)); regmap_write(adv7511->regmap, ADV7511_REG_SYNC_DECODER(4), vsync_len & 0xff); hsync_polarity = !(adj_mode->flags & DRM_MODE_FLAG_PHSYNC); vsync_polarity = !(adj_mode->flags & DRM_MODE_FLAG_PVSYNC); } else { enum adv7511_sync_polarity mode_hsync_polarity; enum adv7511_sync_polarity mode_vsync_polarity; /** * If the input signal is always low or always high we want to * invert or let it passthrough depending on the polarity of the * current mode. **/ if (adj_mode->flags & DRM_MODE_FLAG_NHSYNC) mode_hsync_polarity = ADV7511_SYNC_POLARITY_LOW; else mode_hsync_polarity = ADV7511_SYNC_POLARITY_HIGH; if (adj_mode->flags & DRM_MODE_FLAG_NVSYNC) mode_vsync_polarity = ADV7511_SYNC_POLARITY_LOW; else mode_vsync_polarity = ADV7511_SYNC_POLARITY_HIGH; if (adv7511->hsync_polarity != mode_hsync_polarity && adv7511->hsync_polarity != ADV7511_SYNC_POLARITY_PASSTHROUGH) hsync_polarity = 1; if (adv7511->vsync_polarity != mode_vsync_polarity && adv7511->vsync_polarity != ADV7511_SYNC_POLARITY_PASSTHROUGH) vsync_polarity = 1; } if (mode->vrefresh <= 24000) low_refresh_rate = ADV7511_LOW_REFRESH_RATE_24HZ; else if (mode->vrefresh <= 25000) low_refresh_rate = ADV7511_LOW_REFRESH_RATE_25HZ; else if (mode->vrefresh <= 30000) low_refresh_rate = ADV7511_LOW_REFRESH_RATE_30HZ; else low_refresh_rate = ADV7511_LOW_REFRESH_RATE_NONE; regmap_update_bits(adv7511->regmap, 0xfb, 0x6, low_refresh_rate << 1); regmap_update_bits(adv7511->regmap, 0x17, 0x60, (vsync_polarity << 6) | (hsync_polarity << 5)); /* * TODO Test first order 4:2:2 to 4:4:4 up conversion method, which is * supposed to give better results. */ adv7511->f_tmds = mode->clock; } /* Connector funcs */ static struct adv7511 *connector_to_adv7511(struct drm_connector *connector) { return container_of(connector, struct adv7511, connector); } static int adv7511_connector_get_modes(struct drm_connector *connector) { struct adv7511 *adv = connector_to_adv7511(connector); return adv7511_get_modes(adv, connector); } static enum drm_mode_status adv7511_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct adv7511 *adv = connector_to_adv7511(connector); return adv7511_mode_valid(adv, mode); } static struct drm_connector_helper_funcs adv7511_connector_helper_funcs = { .get_modes = adv7511_connector_get_modes, .mode_valid = adv7511_connector_mode_valid, }; static enum drm_connector_status adv7511_connector_detect(struct drm_connector *connector, bool force) { struct adv7511 *adv = connector_to_adv7511(connector); return adv7511_detect(adv, connector); } static struct drm_connector_funcs adv7511_connector_funcs = { .dpms = drm_atomic_helper_connector_dpms, .fill_modes = drm_helper_probe_single_connector_modes, .detect = adv7511_connector_detect, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; /* Bridge funcs */ static struct adv7511 *bridge_to_adv7511(struct drm_bridge *bridge) { return container_of(bridge, struct adv7511, bridge); } static void adv7511_bridge_enable(struct drm_bridge *bridge) { struct adv7511 *adv = bridge_to_adv7511(bridge); adv7511_power_on(adv); } static void adv7511_bridge_disable(struct drm_bridge *bridge) { struct adv7511 *adv = bridge_to_adv7511(bridge); adv7511_power_off(adv); } static void adv7511_bridge_mode_set(struct drm_bridge *bridge, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { struct adv7511 *adv = bridge_to_adv7511(bridge); adv7511_mode_set(adv, mode, adj_mode); } static int adv7511_bridge_attach(struct drm_bridge *bridge) { struct adv7511 *adv = bridge_to_adv7511(bridge); int ret; if (!bridge->encoder) { DRM_ERROR("Parent encoder object not found"); return -ENODEV; } adv->connector.polled = DRM_CONNECTOR_POLL_HPD; ret = drm_connector_init(bridge->dev, &adv->connector, &adv7511_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(&adv->connector, &adv7511_connector_helper_funcs); drm_mode_connector_attach_encoder(&adv->connector, bridge->encoder); return ret; } static struct drm_bridge_funcs adv7511_bridge_funcs = { .enable = adv7511_bridge_enable, .disable = adv7511_bridge_disable, .mode_set = adv7511_bridge_mode_set, .attach = adv7511_bridge_attach, }; /* ----------------------------------------------------------------------------- * Probe & remove */ static int adv7511_parse_dt(struct device_node *np, struct adv7511_link_config *config) { const char *str; int ret; memset(config, 0, sizeof(*config)); of_property_read_u32(np, "adi,input-depth", &config->input_color_depth); if (config->input_color_depth != 8 && config->input_color_depth != 10 && config->input_color_depth != 12) return -EINVAL; ret = of_property_read_string(np, "adi,input-colorspace", &str); if (ret < 0) return ret; if (!strcmp(str, "rgb")) config->input_colorspace = HDMI_COLORSPACE_RGB; else if (!strcmp(str, "yuv422")) config->input_colorspace = HDMI_COLORSPACE_YUV422; else if (!strcmp(str, "yuv444")) config->input_colorspace = HDMI_COLORSPACE_YUV444; else return -EINVAL; ret = of_property_read_string(np, "adi,input-clock", &str); if (ret < 0) return ret; if (!strcmp(str, "1x")) config->input_clock = ADV7511_INPUT_CLOCK_1X; else if (!strcmp(str, "2x")) config->input_clock = ADV7511_INPUT_CLOCK_2X; else if (!strcmp(str, "ddr")) config->input_clock = ADV7511_INPUT_CLOCK_DDR; else return -EINVAL; if (config->input_colorspace == HDMI_COLORSPACE_YUV422 || config->input_clock != ADV7511_INPUT_CLOCK_1X) { ret = of_property_read_u32(np, "adi,input-style", &config->input_style); if (ret) return ret; if (config->input_style < 1 || config->input_style > 3) return -EINVAL; ret = of_property_read_string(np, "adi,input-justification", &str); if (ret < 0) return ret; if (!strcmp(str, "left")) config->input_justification = ADV7511_INPUT_JUSTIFICATION_LEFT; else if (!strcmp(str, "evenly")) config->input_justification = ADV7511_INPUT_JUSTIFICATION_EVENLY; else if (!strcmp(str, "right")) config->input_justification = ADV7511_INPUT_JUSTIFICATION_RIGHT; else return -EINVAL; } else { config->input_style = 1; config->input_justification = ADV7511_INPUT_JUSTIFICATION_LEFT; } of_property_read_u32(np, "adi,clock-delay", &config->clock_delay); if (config->clock_delay < -1200 || config->clock_delay > 1600) return -EINVAL; config->embedded_sync = of_property_read_bool(np, "adi,embedded-sync"); /* Hardcode the sync pulse configurations for now. */ config->sync_pulse = ADV7511_INPUT_SYNC_PULSE_NONE; config->vsync_polarity = ADV7511_SYNC_POLARITY_PASSTHROUGH; config->hsync_polarity = ADV7511_SYNC_POLARITY_PASSTHROUGH; return 0; } static const int edid_i2c_addr = 0x7e; static const int packet_i2c_addr = 0x70; static const int cec_i2c_addr = 0x78; static int adv7511_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct adv7511_link_config link_config; struct adv7511 *adv7511; struct device *dev = &i2c->dev; unsigned int val; int ret; if (!dev->of_node) return -EINVAL; adv7511 = devm_kzalloc(dev, sizeof(*adv7511), GFP_KERNEL); if (!adv7511) return -ENOMEM; adv7511->powered = false; adv7511->status = connector_status_disconnected; ret = adv7511_parse_dt(dev->of_node, &link_config); if (ret) return ret; /* * The power down GPIO is optional. If present, toggle it from active to * inactive to wake up the encoder. */ adv7511->gpio_pd = devm_gpiod_get_optional(dev, "pd", GPIOD_OUT_HIGH); if (IS_ERR(adv7511->gpio_pd)) return PTR_ERR(adv7511->gpio_pd); if (adv7511->gpio_pd) { mdelay(5); gpiod_set_value_cansleep(adv7511->gpio_pd, 0); } adv7511->regmap = devm_regmap_init_i2c(i2c, &adv7511_regmap_config); if (IS_ERR(adv7511->regmap)) return PTR_ERR(adv7511->regmap); ret = regmap_read(adv7511->regmap, ADV7511_REG_CHIP_REVISION, &val); if (ret) return ret; dev_dbg(dev, "Rev. %d\n", val); ret = regmap_register_patch(adv7511->regmap, adv7511_fixed_registers, ARRAY_SIZE(adv7511_fixed_registers)); if (ret) return ret; regmap_write(adv7511->regmap, ADV7511_REG_EDID_I2C_ADDR, edid_i2c_addr); regmap_write(adv7511->regmap, ADV7511_REG_PACKET_I2C_ADDR, packet_i2c_addr); regmap_write(adv7511->regmap, ADV7511_REG_CEC_I2C_ADDR, cec_i2c_addr); adv7511_packet_disable(adv7511, 0xffff); adv7511->i2c_main = i2c; adv7511->i2c_edid = i2c_new_dummy(i2c->adapter, edid_i2c_addr >> 1); if (!adv7511->i2c_edid) return -ENOMEM; if (i2c->irq) { init_waitqueue_head(&adv7511->wq); ret = devm_request_threaded_irq(dev, i2c->irq, NULL, adv7511_irq_handler, IRQF_ONESHOT, dev_name(dev), adv7511); if (ret) goto err_i2c_unregister_device; } /* CEC is unused for now */ regmap_write(adv7511->regmap, ADV7511_REG_CEC_CTRL, ADV7511_CEC_CTRL_POWER_DOWN); adv7511_power_off(adv7511); i2c_set_clientdata(i2c, adv7511); adv7511_set_link_config(adv7511, &link_config); adv7511->bridge.funcs = &adv7511_bridge_funcs; adv7511->bridge.of_node = dev->of_node; ret = drm_bridge_add(&adv7511->bridge); if (ret) { dev_err(dev, "failed to add adv7511 bridge\n"); goto err_i2c_unregister_device; } return 0; err_i2c_unregister_device: i2c_unregister_device(adv7511->i2c_edid); return ret; } static int adv7511_remove(struct i2c_client *i2c) { struct adv7511 *adv7511 = i2c_get_clientdata(i2c); drm_bridge_remove(&adv7511->bridge); i2c_unregister_device(adv7511->i2c_edid); kfree(adv7511->edid); return 0; } static const struct i2c_device_id adv7511_i2c_ids[] = { { "adv7511", 0 }, { "adv7511w", 0 }, { "adv7513", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adv7511_i2c_ids); static const struct of_device_id adv7511_of_ids[] = { { .compatible = "adi,adv7511", }, { .compatible = "adi,adv7511w", }, { .compatible = "adi,adv7513", }, { } }; MODULE_DEVICE_TABLE(of, adv7511_of_ids); static struct i2c_driver adv7511_driver = { .driver = { .name = "adv7511", .of_match_table = adv7511_of_ids, }, .id_table = adv7511_i2c_ids, .probe = adv7511_probe, .remove = adv7511_remove, }; module_i2c_driver(adv7511_driver); MODULE_AUTHOR("Lars-Peter Clausen "); MODULE_DESCRIPTION("ADV7511 HDMI transmitter driver"); MODULE_LICENSE("GPL");