// SPDX-License-Identifier: GPL-2.0 /* * EDAC driver for Intel(R) Xeon(R) Skylake processors * Copyright (c) 2016, Intel Corporation. */ #include #include #include #include #include #include "edac_module.h" #include "skx_common.h" #define EDAC_MOD_STR "skx_edac" /* * Debug macros */ #define skx_printk(level, fmt, arg...) \ edac_printk(level, "skx", fmt, ##arg) #define skx_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) static struct list_head *skx_edac_list; static u64 skx_tolm, skx_tohm; static int skx_num_sockets; static unsigned int nvdimm_count; #define MASK26 0x3FFFFFF /* Mask for 2^26 */ #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) { struct skx_dev *d; list_for_each_entry(d, skx_edac_list, list) { if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) return d; } return NULL; } enum munittype { CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD, ERRCHAN0, ERRCHAN1, ERRCHAN2, }; struct munit { u16 did; u16 devfn[SKX_NUM_IMC]; u8 busidx; u8 per_socket; enum munittype mtype; }; /* * List of PCI device ids that we need together with some device * number and function numbers to tell which memory controller the * device belongs to. */ static const struct munit skx_all_munits[] = { { 0x2054, { }, 1, 1, SAD_ALL }, { 0x2055, { }, 1, 1, UTIL_ALL }, { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 }, { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 }, { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 }, { 0x208e, { }, 1, 0, SAD }, { } }; static int get_all_munits(const struct munit *m) { struct pci_dev *pdev, *prev; struct skx_dev *d; u32 reg; int i = 0, ndev = 0; prev = NULL; for (;;) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); if (!pdev) break; ndev++; if (m->per_socket == SKX_NUM_IMC) { for (i = 0; i < SKX_NUM_IMC; i++) if (m->devfn[i] == pdev->devfn) break; if (i == SKX_NUM_IMC) goto fail; } d = get_skx_dev(pdev->bus, m->busidx); if (!d) goto fail; /* Be sure that the device is enabled */ if (unlikely(pci_enable_device(pdev) < 0)) { skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); goto fail; } switch (m->mtype) { case CHAN0: case CHAN1: case CHAN2: pci_dev_get(pdev); d->imc[i].chan[m->mtype].cdev = pdev; break; case ERRCHAN0: case ERRCHAN1: case ERRCHAN2: pci_dev_get(pdev); d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev; break; case SAD_ALL: pci_dev_get(pdev); d->sad_all = pdev; break; case UTIL_ALL: pci_dev_get(pdev); d->util_all = pdev; break; case SAD: /* * one of these devices per core, including cores * that don't exist on this SKU. Ignore any that * read a route table of zero, make sure all the * non-zero values match. */ pci_read_config_dword(pdev, 0xB4, ®); if (reg != 0) { if (d->mcroute == 0) { d->mcroute = reg; } else if (d->mcroute != reg) { skx_printk(KERN_ERR, "mcroute mismatch\n"); goto fail; } } ndev--; break; } prev = pdev; } return ndev; fail: pci_dev_put(pdev); return -ENODEV; } static const struct x86_cpu_id skx_cpuids[] = { { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, { } }; MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); #define SKX_GET_MTMTR(dev, reg) \ pci_read_config_dword((dev), 0x87c, &(reg)) static bool skx_check_ecc(struct pci_dev *pdev) { u32 mtmtr; SKX_GET_MTMTR(pdev, mtmtr); return !!GET_BITFIELD(mtmtr, 2, 2); } static int skx_get_dimm_config(struct mem_ctl_info *mci) { struct skx_pvt *pvt = mci->pvt_info; struct skx_imc *imc = pvt->imc; u32 mtr, amap, mcddrtcfg; struct dimm_info *dimm; int i, j; int ndimms; for (i = 0; i < SKX_NUM_CHANNELS; i++) { ndimms = 0; pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); for (j = 0; j < SKX_NUM_DIMMS; j++) { dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); pci_read_config_dword(imc->chan[i].cdev, 0x80 + 4 * j, &mtr); if (IS_DIMM_PRESENT(mtr)) { ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j); } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) { ndimms += skx_get_nvdimm_info(dimm, imc, i, j, EDAC_MOD_STR); nvdimm_count++; } } if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); return -ENODEV; } } return 0; } #define SKX_MAX_SAD 24 #define SKX_GET_SAD(d, i, reg) \ pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg)) #define SKX_GET_ILV(d, i, reg) \ pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg)) #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) #define SKX_ILV_TARGET(tgt) ((tgt) & 7) static void skx_show_retry_rd_err_log(struct decoded_addr *res, char *msg, int len) { u32 log0, log1, log2, log3, log4; u32 corr0, corr1, corr2, corr3; struct pci_dev *edev; int n; edev = res->dev->imc[res->imc].chan[res->channel].edev; pci_read_config_dword(edev, 0x154, &log0); pci_read_config_dword(edev, 0x148, &log1); pci_read_config_dword(edev, 0x150, &log2); pci_read_config_dword(edev, 0x15c, &log3); pci_read_config_dword(edev, 0x114, &log4); n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]", log0, log1, log2, log3, log4); pci_read_config_dword(edev, 0x104, &corr0); pci_read_config_dword(edev, 0x108, &corr1); pci_read_config_dword(edev, 0x10c, &corr2); pci_read_config_dword(edev, 0x110, &corr3); if (len - n > 0) snprintf(msg + n, len - n, " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", corr0 & 0xffff, corr0 >> 16, corr1 & 0xffff, corr1 >> 16, corr2 & 0xffff, corr2 >> 16, corr3 & 0xffff, corr3 >> 16); } static bool skx_sad_decode(struct decoded_addr *res) { struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list); u64 addr = res->addr; int i, idx, tgt, lchan, shift; u32 sad, ilv; u64 limit, prev_limit; int remote = 0; /* Simple sanity check for I/O space or out of range */ if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { edac_dbg(0, "Address 0x%llx out of range\n", addr); return false; } restart: prev_limit = 0; for (i = 0; i < SKX_MAX_SAD; i++) { SKX_GET_SAD(d, i, sad); limit = SKX_SAD_LIMIT(sad); if (SKX_SAD_ENABLE(sad)) { if (addr >= prev_limit && addr <= limit) goto sad_found; } prev_limit = limit + 1; } edac_dbg(0, "No SAD entry for 0x%llx\n", addr); return false; sad_found: SKX_GET_ILV(d, i, ilv); switch (SKX_SAD_INTERLEAVE(sad)) { case 0: idx = GET_BITFIELD(addr, 6, 8); break; case 1: idx = GET_BITFIELD(addr, 8, 10); break; case 2: idx = GET_BITFIELD(addr, 12, 14); break; case 3: idx = GET_BITFIELD(addr, 30, 32); break; } tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); /* If point to another node, find it and start over */ if (SKX_ILV_REMOTE(tgt)) { if (remote) { edac_dbg(0, "Double remote!\n"); return false; } remote = 1; list_for_each_entry(d, skx_edac_list, list) { if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) goto restart; } edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); return false; } if (SKX_SAD_MOD3(sad) == 0) { lchan = SKX_ILV_TARGET(tgt); } else { switch (SKX_SAD_MOD3MODE(sad)) { case 0: shift = 6; break; case 1: shift = 8; break; case 2: shift = 12; break; default: edac_dbg(0, "illegal mod3mode\n"); return false; } switch (SKX_SAD_MOD3ASMOD2(sad)) { case 0: lchan = (addr >> shift) % 3; break; case 1: lchan = (addr >> shift) % 2; break; case 2: lchan = (addr >> shift) % 2; lchan = (lchan << 1) | !lchan; break; case 3: lchan = ((addr >> shift) % 2) << 1; break; } lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); } res->dev = d; res->socket = d->imc[0].src_id; res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n", res->addr, res->socket, res->imc, res->channel); return true; } #define SKX_MAX_TAD 8 #define SKX_GET_TADBASE(d, mc, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg)) #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg)) #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg)) #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) /* which bit used for both socket and channel interleave */ static int skx_granularity[] = { 6, 8, 12, 30 }; static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) { addr >>= shift; addr /= ways; addr <<= shift; return addr | (lowbits & ((1ull << shift) - 1)); } static bool skx_tad_decode(struct decoded_addr *res) { int i; u32 base, wayness, chnilvoffset; int skt_interleave_bit, chn_interleave_bit; u64 channel_addr; for (i = 0; i < SKX_MAX_TAD; i++) { SKX_GET_TADBASE(res->dev, res->imc, i, base); SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) goto tad_found; } edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr); return false; tad_found: res->sktways = SKX_TAD_SKTWAYS(wayness); res->chanways = SKX_TAD_CHNWAYS(wayness); skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { /* Must handle channel first, then socket */ channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, res->chanways, channel_addr); channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, res->sktways, channel_addr); } else { /* Handle socket then channel. Preserve low bits from original address */ channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, res->sktways, res->addr); channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, res->chanways, res->addr); } res->chan_addr = channel_addr; edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n", res->addr, res->chan_addr, res->sktways, res->chanways); return true; } #define SKX_MAX_RIR 4 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 0x108 + 4 * (i), &(reg)) #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 0x120 + 16 * (idx) + 4 * (i), &(reg)) #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) static bool skx_rir_decode(struct decoded_addr *res) { int i, idx, chan_rank; int shift; u32 rirway, rirlv; u64 rank_addr, prev_limit = 0, limit; if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) shift = 6; else shift = 13; for (i = 0; i < SKX_MAX_RIR; i++) { SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); limit = SKX_RIR_LIMIT(rirway); if (SKX_RIR_VALID(rirway)) { if (prev_limit <= res->chan_addr && res->chan_addr <= limit) goto rir_found; } prev_limit = limit; } edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr); return false; rir_found: rank_addr = res->chan_addr >> shift; rank_addr /= SKX_RIR_WAYS(rirway); rank_addr <<= shift; rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); res->rank_address = rank_addr; idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); chan_rank = SKX_RIR_CHAN_RANK(rirlv); res->channel_rank = chan_rank; res->dimm = chan_rank / 4; res->rank = chan_rank % 4; edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n", res->addr, res->dimm, res->rank, res->channel_rank, res->rank_address); return true; } static u8 skx_close_row[] = { 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 }; static u8 skx_close_column[] = { 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 }; static u8 skx_open_row[] = { 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 }; static u8 skx_open_column[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static u8 skx_open_fine_column[] = { 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 }; static int skx_bits(u64 addr, int nbits, u8 *bits) { int i, res = 0; for (i = 0; i < nbits; i++) res |= ((addr >> bits[i]) & 1) << i; return res; } static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) { int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); if (do_xor) ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); return ret; } static bool skx_mad_decode(struct decoded_addr *r) { struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; int bg0 = dimm->fine_grain_bank ? 6 : 13; if (dimm->close_pg) { r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); r->column |= 0x400; /* C10 is autoprecharge, always set */ r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); } else { r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); if (dimm->fine_grain_bank) r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); else r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); } r->row &= (1u << dimm->rowbits) - 1; edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n", r->addr, r->row, r->column, r->bank_address, r->bank_group); return true; } static bool skx_decode(struct decoded_addr *res) { return skx_sad_decode(res) && skx_tad_decode(res) && skx_rir_decode(res) && skx_mad_decode(res); } static struct notifier_block skx_mce_dec = { .notifier_call = skx_mce_check_error, .priority = MCE_PRIO_EDAC, }; #ifdef CONFIG_EDAC_DEBUG /* * Debug feature. * Exercise the address decode logic by writing an address to * /sys/kernel/debug/edac/skx_test/addr. */ static struct dentry *skx_test; static int debugfs_u64_set(void *data, u64 val) { struct mce m; pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); memset(&m, 0, sizeof(m)); /* ADDRV + MemRd + Unknown channel */ m.status = MCI_STATUS_ADDRV + 0x90; /* One corrected error */ m.status |= BIT_ULL(38); m.addr = val; skx_mce_check_error(NULL, 0, &m); return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static void setup_skx_debug(void) { skx_test = edac_debugfs_create_dir("skx_test"); if (!skx_test) return; if (!edac_debugfs_create_file("addr", 0200, skx_test, NULL, &fops_u64_wo)) { debugfs_remove(skx_test); skx_test = NULL; } } static void teardown_skx_debug(void) { debugfs_remove_recursive(skx_test); } #else static inline void setup_skx_debug(void) {} static inline void teardown_skx_debug(void) {} #endif /*CONFIG_EDAC_DEBUG*/ /* * skx_init: * make sure we are running on the correct cpu model * search for all the devices we need * check which DIMMs are present. */ static int __init skx_init(void) { const struct x86_cpu_id *id; const struct munit *m; const char *owner; int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8}; u8 mc = 0, src_id, node_id; struct skx_dev *d; edac_dbg(2, "\n"); owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; id = x86_match_cpu(skx_cpuids); if (!id) return -ENODEV; rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm); if (rc) return rc; rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list); if (rc < 0) goto fail; if (rc == 0) { edac_dbg(2, "No memory controllers found\n"); return -ENODEV; } skx_num_sockets = rc; for (m = skx_all_munits; m->did; m++) { rc = get_all_munits(m); if (rc < 0) goto fail; if (rc != m->per_socket * skx_num_sockets) { edac_dbg(2, "Expected %d, got %d of 0x%x\n", m->per_socket * skx_num_sockets, rc, m->did); rc = -ENODEV; goto fail; } } list_for_each_entry(d, skx_edac_list, list) { rc = skx_get_src_id(d, 0xf0, &src_id); if (rc < 0) goto fail; rc = skx_get_node_id(d, &node_id); if (rc < 0) goto fail; edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); for (i = 0; i < SKX_NUM_IMC; i++) { d->imc[i].mc = mc++; d->imc[i].lmc = i; d->imc[i].src_id = src_id; d->imc[i].node_id = node_id; rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev, "Skylake Socket", EDAC_MOD_STR, skx_get_dimm_config); if (rc < 0) goto fail; } } skx_set_decode(skx_decode, skx_show_retry_rd_err_log); if (nvdimm_count && skx_adxl_get() == -ENODEV) skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); setup_skx_debug(); mce_register_decode_chain(&skx_mce_dec); return 0; fail: skx_remove(); return rc; } static void __exit skx_exit(void) { edac_dbg(2, "\n"); mce_unregister_decode_chain(&skx_mce_dec); teardown_skx_debug(); if (nvdimm_count) skx_adxl_put(); skx_remove(); } module_init(skx_init); module_exit(skx_exit); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tony Luck"); MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");