/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "hash.h" #include "transaction.h" #include "btrfs_inode.h" #include "volumes.h" #include "print-tree.h" #include "locking.h" #include "tree-log.h" #include "free-space-cache.h" #include "free-space-tree.h" #include "inode-map.h" #include "check-integrity.h" #include "rcu-string.h" #include "dev-replace.h" #include "raid56.h" #include "sysfs.h" #include "qgroup.h" #include "compression.h" #ifdef CONFIG_X86 #include #endif #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ BTRFS_HEADER_FLAG_RELOC |\ BTRFS_SUPER_FLAG_ERROR |\ BTRFS_SUPER_FLAG_SEEDING |\ BTRFS_SUPER_FLAG_METADUMP) static const struct extent_io_ops btree_extent_io_ops; static void end_workqueue_fn(struct btrfs_work *work); static void free_fs_root(struct btrfs_root *root); static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, int read_only); static void btrfs_destroy_ordered_extents(struct btrfs_root *root); static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, struct btrfs_fs_info *fs_info); static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, struct extent_io_tree *dirty_pages, int mark); static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, struct extent_io_tree *pinned_extents); static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); /* * btrfs_end_io_wq structs are used to do processing in task context when an IO * is complete. This is used during reads to verify checksums, and it is used * by writes to insert metadata for new file extents after IO is complete. */ struct btrfs_end_io_wq { struct bio *bio; bio_end_io_t *end_io; void *private; struct btrfs_fs_info *info; int error; enum btrfs_wq_endio_type metadata; struct list_head list; struct btrfs_work work; }; static struct kmem_cache *btrfs_end_io_wq_cache; int __init btrfs_end_io_wq_init(void) { btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", sizeof(struct btrfs_end_io_wq), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_end_io_wq_cache) return -ENOMEM; return 0; } void btrfs_end_io_wq_exit(void) { kmem_cache_destroy(btrfs_end_io_wq_cache); } /* * async submit bios are used to offload expensive checksumming * onto the worker threads. They checksum file and metadata bios * just before they are sent down the IO stack. */ struct async_submit_bio { struct inode *inode; struct bio *bio; struct list_head list; extent_submit_bio_hook_t *submit_bio_start; extent_submit_bio_hook_t *submit_bio_done; int mirror_num; unsigned long bio_flags; /* * bio_offset is optional, can be used if the pages in the bio * can't tell us where in the file the bio should go */ u64 bio_offset; struct btrfs_work work; int error; }; /* * Lockdep class keys for extent_buffer->lock's in this root. For a given * eb, the lockdep key is determined by the btrfs_root it belongs to and * the level the eb occupies in the tree. * * Different roots are used for different purposes and may nest inside each * other and they require separate keysets. As lockdep keys should be * static, assign keysets according to the purpose of the root as indicated * by btrfs_root->objectid. This ensures that all special purpose roots * have separate keysets. * * Lock-nesting across peer nodes is always done with the immediate parent * node locked thus preventing deadlock. As lockdep doesn't know this, use * subclass to avoid triggering lockdep warning in such cases. * * The key is set by the readpage_end_io_hook after the buffer has passed * csum validation but before the pages are unlocked. It is also set by * btrfs_init_new_buffer on freshly allocated blocks. * * We also add a check to make sure the highest level of the tree is the * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code * needs update as well. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # if BTRFS_MAX_LEVEL != 8 # error # endif static struct btrfs_lockdep_keyset { u64 id; /* root objectid */ const char *name_stem; /* lock name stem */ char names[BTRFS_MAX_LEVEL + 1][20]; struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; } btrfs_lockdep_keysets[] = { { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, { .id = 0, .name_stem = "tree" }, }; void __init btrfs_init_lockdep(void) { int i, j; /* initialize lockdep class names */ for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; for (j = 0; j < ARRAY_SIZE(ks->names); j++) snprintf(ks->names[j], sizeof(ks->names[j]), "btrfs-%s-%02d", ks->name_stem, j); } } void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level) { struct btrfs_lockdep_keyset *ks; BUG_ON(level >= ARRAY_SIZE(ks->keys)); /* find the matching keyset, id 0 is the default entry */ for (ks = btrfs_lockdep_keysets; ks->id; ks++) if (ks->id == objectid) break; lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]); } #endif /* * extents on the btree inode are pretty simple, there's one extent * that covers the entire device */ static struct extent_map *btree_get_extent(struct inode *inode, struct page *page, size_t pg_offset, u64 start, u64 len, int create) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_map *em; int ret; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (em) { em->bdev = fs_info->fs_devices->latest_bdev; read_unlock(&em_tree->lock); goto out; } read_unlock(&em_tree->lock); em = alloc_extent_map(); if (!em) { em = ERR_PTR(-ENOMEM); goto out; } em->start = 0; em->len = (u64)-1; em->block_len = (u64)-1; em->block_start = 0; em->bdev = fs_info->fs_devices->latest_bdev; write_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em, 0); if (ret == -EEXIST) { free_extent_map(em); em = lookup_extent_mapping(em_tree, start, len); if (!em) em = ERR_PTR(-EIO); } else if (ret) { free_extent_map(em); em = ERR_PTR(ret); } write_unlock(&em_tree->lock); out: return em; } u32 btrfs_csum_data(char *data, u32 seed, size_t len) { return btrfs_crc32c(seed, data, len); } void btrfs_csum_final(u32 crc, u8 *result) { put_unaligned_le32(~crc, result); } /* * compute the csum for a btree block, and either verify it or write it * into the csum field of the block. */ static int csum_tree_block(struct btrfs_fs_info *fs_info, struct extent_buffer *buf, int verify) { u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); char *result = NULL; unsigned long len; unsigned long cur_len; unsigned long offset = BTRFS_CSUM_SIZE; char *kaddr; unsigned long map_start; unsigned long map_len; int err; u32 crc = ~(u32)0; unsigned long inline_result; len = buf->len - offset; while (len > 0) { err = map_private_extent_buffer(buf, offset, 32, &kaddr, &map_start, &map_len); if (err) return err; cur_len = min(len, map_len - (offset - map_start)); crc = btrfs_csum_data(kaddr + offset - map_start, crc, cur_len); len -= cur_len; offset += cur_len; } if (csum_size > sizeof(inline_result)) { result = kzalloc(csum_size, GFP_NOFS); if (!result) return -ENOMEM; } else { result = (char *)&inline_result; } btrfs_csum_final(crc, result); if (verify) { if (memcmp_extent_buffer(buf, result, 0, csum_size)) { u32 val; u32 found = 0; memcpy(&found, result, csum_size); read_extent_buffer(buf, &val, 0, csum_size); btrfs_warn_rl(fs_info, "%s checksum verify failed on %llu wanted %X found %X level %d", fs_info->sb->s_id, buf->start, val, found, btrfs_header_level(buf)); if (result != (char *)&inline_result) kfree(result); return -EUCLEAN; } } else { write_extent_buffer(buf, result, 0, csum_size); } if (result != (char *)&inline_result) kfree(result); return 0; } /* * we can't consider a given block up to date unless the transid of the * block matches the transid in the parent node's pointer. This is how we * detect blocks that either didn't get written at all or got written * in the wrong place. */ static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid, int atomic) { struct extent_state *cached_state = NULL; int ret; bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 0; if (atomic) return -EAGAIN; if (need_lock) { btrfs_tree_read_lock(eb); btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); } lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); if (extent_buffer_uptodate(eb) && btrfs_header_generation(eb) == parent_transid) { ret = 0; goto out; } btrfs_err_rl(eb->fs_info, "parent transid verify failed on %llu wanted %llu found %llu", eb->start, parent_transid, btrfs_header_generation(eb)); ret = 1; /* * Things reading via commit roots that don't have normal protection, * like send, can have a really old block in cache that may point at a * block that has been freed and re-allocated. So don't clear uptodate * if we find an eb that is under IO (dirty/writeback) because we could * end up reading in the stale data and then writing it back out and * making everybody very sad. */ if (!extent_buffer_under_io(eb)) clear_extent_buffer_uptodate(eb); out: unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, &cached_state, GFP_NOFS); if (need_lock) btrfs_tree_read_unlock_blocking(eb); return ret; } /* * Return 0 if the superblock checksum type matches the checksum value of that * algorithm. Pass the raw disk superblock data. */ static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, char *raw_disk_sb) { struct btrfs_super_block *disk_sb = (struct btrfs_super_block *)raw_disk_sb; u16 csum_type = btrfs_super_csum_type(disk_sb); int ret = 0; if (csum_type == BTRFS_CSUM_TYPE_CRC32) { u32 crc = ~(u32)0; const int csum_size = sizeof(crc); char result[csum_size]; /* * The super_block structure does not span the whole * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space * is filled with zeros and is included in the checksum. */ crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, result); if (memcmp(raw_disk_sb, result, csum_size)) ret = 1; } if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { btrfs_err(fs_info, "unsupported checksum algorithm %u", csum_type); ret = 1; } return ret; } /* * helper to read a given tree block, doing retries as required when * the checksums don't match and we have alternate mirrors to try. */ static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, u64 parent_transid) { struct extent_io_tree *io_tree; int failed = 0; int ret; int num_copies = 0; int mirror_num = 0; int failed_mirror = 0; clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; while (1) { ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, btree_get_extent, mirror_num); if (!ret) { if (!verify_parent_transid(io_tree, eb, parent_transid, 0)) break; else ret = -EIO; } /* * This buffer's crc is fine, but its contents are corrupted, so * there is no reason to read the other copies, they won't be * any less wrong. */ if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) break; num_copies = btrfs_num_copies(fs_info, eb->start, eb->len); if (num_copies == 1) break; if (!failed_mirror) { failed = 1; failed_mirror = eb->read_mirror; } mirror_num++; if (mirror_num == failed_mirror) mirror_num++; if (mirror_num > num_copies) break; } if (failed && !ret && failed_mirror) repair_eb_io_failure(fs_info, eb, failed_mirror); return ret; } /* * checksum a dirty tree block before IO. This has extra checks to make sure * we only fill in the checksum field in the first page of a multi-page block */ static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) { u64 start = page_offset(page); u64 found_start; struct extent_buffer *eb; eb = (struct extent_buffer *)page->private; if (page != eb->pages[0]) return 0; found_start = btrfs_header_bytenr(eb); /* * Please do not consolidate these warnings into a single if. * It is useful to know what went wrong. */ if (WARN_ON(found_start != start)) return -EUCLEAN; if (WARN_ON(!PageUptodate(page))) return -EUCLEAN; ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); return csum_tree_block(fs_info, eb, 0); } static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; u8 fsid[BTRFS_UUID_SIZE]; int ret = 1; read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); while (fs_devices) { if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { ret = 0; break; } fs_devices = fs_devices->seed; } return ret; } #define CORRUPT(reason, eb, root, slot) \ btrfs_crit(root->fs_info, \ "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ btrfs_header_level(eb) == 0 ? "leaf" : "node", \ reason, btrfs_header_bytenr(eb), root->objectid, slot) static noinline int check_leaf(struct btrfs_root *root, struct extent_buffer *leaf) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct btrfs_key leaf_key; u32 nritems = btrfs_header_nritems(leaf); int slot; /* * Extent buffers from a relocation tree have a owner field that * corresponds to the subvolume tree they are based on. So just from an * extent buffer alone we can not find out what is the id of the * corresponding subvolume tree, so we can not figure out if the extent * buffer corresponds to the root of the relocation tree or not. So skip * this check for relocation trees. */ if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { struct btrfs_root *check_root; key.objectid = btrfs_header_owner(leaf); key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; check_root = btrfs_get_fs_root(fs_info, &key, false); /* * The only reason we also check NULL here is that during * open_ctree() some roots has not yet been set up. */ if (!IS_ERR_OR_NULL(check_root)) { struct extent_buffer *eb; eb = btrfs_root_node(check_root); /* if leaf is the root, then it's fine */ if (leaf != eb) { CORRUPT("non-root leaf's nritems is 0", leaf, check_root, 0); free_extent_buffer(eb); return -EIO; } free_extent_buffer(eb); } return 0; } if (nritems == 0) return 0; /* Check the 0 item */ if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(fs_info)) { CORRUPT("invalid item offset size pair", leaf, root, 0); return -EIO; } /* * Check to make sure each items keys are in the correct order and their * offsets make sense. We only have to loop through nritems-1 because * we check the current slot against the next slot, which verifies the * next slot's offset+size makes sense and that the current's slot * offset is correct. */ for (slot = 0; slot < nritems - 1; slot++) { btrfs_item_key_to_cpu(leaf, &leaf_key, slot); btrfs_item_key_to_cpu(leaf, &key, slot + 1); /* Make sure the keys are in the right order */ if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { CORRUPT("bad key order", leaf, root, slot); return -EIO; } /* * Make sure the offset and ends are right, remember that the * item data starts at the end of the leaf and grows towards the * front. */ if (btrfs_item_offset_nr(leaf, slot) != btrfs_item_end_nr(leaf, slot + 1)) { CORRUPT("slot offset bad", leaf, root, slot); return -EIO; } /* * Check to make sure that we don't point outside of the leaf, * just in case all the items are consistent to each other, but * all point outside of the leaf. */ if (btrfs_item_end_nr(leaf, slot) > BTRFS_LEAF_DATA_SIZE(fs_info)) { CORRUPT("slot end outside of leaf", leaf, root, slot); return -EIO; } } return 0; } static int check_node(struct btrfs_root *root, struct extent_buffer *node) { unsigned long nr = btrfs_header_nritems(node); struct btrfs_key key, next_key; int slot; u64 bytenr; int ret = 0; if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { btrfs_crit(root->fs_info, "corrupt node: block %llu root %llu nritems %lu", node->start, root->objectid, nr); return -EIO; } for (slot = 0; slot < nr - 1; slot++) { bytenr = btrfs_node_blockptr(node, slot); btrfs_node_key_to_cpu(node, &key, slot); btrfs_node_key_to_cpu(node, &next_key, slot + 1); if (!bytenr) { CORRUPT("invalid item slot", node, root, slot); ret = -EIO; goto out; } if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { CORRUPT("bad key order", node, root, slot); ret = -EIO; goto out; } } out: return ret; } static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, u64 phy_offset, struct page *page, u64 start, u64 end, int mirror) { u64 found_start; int found_level; struct extent_buffer *eb; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct btrfs_fs_info *fs_info = root->fs_info; int ret = 0; int reads_done; if (!page->private) goto out; eb = (struct extent_buffer *)page->private; /* the pending IO might have been the only thing that kept this buffer * in memory. Make sure we have a ref for all this other checks */ extent_buffer_get(eb); reads_done = atomic_dec_and_test(&eb->io_pages); if (!reads_done) goto err; eb->read_mirror = mirror; if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { ret = -EIO; goto err; } found_start = btrfs_header_bytenr(eb); if (found_start != eb->start) { btrfs_err_rl(fs_info, "bad tree block start %llu %llu", found_start, eb->start); ret = -EIO; goto err; } if (check_tree_block_fsid(fs_info, eb)) { btrfs_err_rl(fs_info, "bad fsid on block %llu", eb->start); ret = -EIO; goto err; } found_level = btrfs_header_level(eb); if (found_level >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "bad tree block level %d", (int)btrfs_header_level(eb)); ret = -EIO; goto err; } btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, found_level); ret = csum_tree_block(fs_info, eb, 1); if (ret) goto err; /* * If this is a leaf block and it is corrupt, set the corrupt bit so * that we don't try and read the other copies of this block, just * return -EIO. */ if (found_level == 0 && check_leaf(root, eb)) { set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); ret = -EIO; } if (found_level > 0 && check_node(root, eb)) ret = -EIO; if (!ret) set_extent_buffer_uptodate(eb); err: if (reads_done && test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) btree_readahead_hook(fs_info, eb, ret); if (ret) { /* * our io error hook is going to dec the io pages * again, we have to make sure it has something * to decrement */ atomic_inc(&eb->io_pages); clear_extent_buffer_uptodate(eb); } free_extent_buffer(eb); out: return ret; } static int btree_io_failed_hook(struct page *page, int failed_mirror) { struct extent_buffer *eb; eb = (struct extent_buffer *)page->private; set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); eb->read_mirror = failed_mirror; atomic_dec(&eb->io_pages); if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) btree_readahead_hook(eb->fs_info, eb, -EIO); return -EIO; /* we fixed nothing */ } static void end_workqueue_bio(struct bio *bio) { struct btrfs_end_io_wq *end_io_wq = bio->bi_private; struct btrfs_fs_info *fs_info; struct btrfs_workqueue *wq; btrfs_work_func_t func; fs_info = end_io_wq->info; end_io_wq->error = bio->bi_error; if (bio_op(bio) == REQ_OP_WRITE) { if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { wq = fs_info->endio_meta_write_workers; func = btrfs_endio_meta_write_helper; } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { wq = fs_info->endio_freespace_worker; func = btrfs_freespace_write_helper; } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { wq = fs_info->endio_raid56_workers; func = btrfs_endio_raid56_helper; } else { wq = fs_info->endio_write_workers; func = btrfs_endio_write_helper; } } else { if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) { wq = fs_info->endio_repair_workers; func = btrfs_endio_repair_helper; } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { wq = fs_info->endio_raid56_workers; func = btrfs_endio_raid56_helper; } else if (end_io_wq->metadata) { wq = fs_info->endio_meta_workers; func = btrfs_endio_meta_helper; } else { wq = fs_info->endio_workers; func = btrfs_endio_helper; } } btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); btrfs_queue_work(wq, &end_io_wq->work); } int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, enum btrfs_wq_endio_type metadata) { struct btrfs_end_io_wq *end_io_wq; end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); if (!end_io_wq) return -ENOMEM; end_io_wq->private = bio->bi_private; end_io_wq->end_io = bio->bi_end_io; end_io_wq->info = info; end_io_wq->error = 0; end_io_wq->bio = bio; end_io_wq->metadata = metadata; bio->bi_private = end_io_wq; bio->bi_end_io = end_workqueue_bio; return 0; } unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) { unsigned long limit = min_t(unsigned long, info->thread_pool_size, info->fs_devices->open_devices); return 256 * limit; } static void run_one_async_start(struct btrfs_work *work) { struct async_submit_bio *async; int ret; async = container_of(work, struct async_submit_bio, work); ret = async->submit_bio_start(async->inode, async->bio, async->mirror_num, async->bio_flags, async->bio_offset); if (ret) async->error = ret; } static void run_one_async_done(struct btrfs_work *work) { struct btrfs_fs_info *fs_info; struct async_submit_bio *async; int limit; async = container_of(work, struct async_submit_bio, work); fs_info = BTRFS_I(async->inode)->root->fs_info; limit = btrfs_async_submit_limit(fs_info); limit = limit * 2 / 3; /* * atomic_dec_return implies a barrier for waitqueue_active */ if (atomic_dec_return(&fs_info->nr_async_submits) < limit && waitqueue_active(&fs_info->async_submit_wait)) wake_up(&fs_info->async_submit_wait); /* If an error occurred we just want to clean up the bio and move on */ if (async->error) { async->bio->bi_error = async->error; bio_endio(async->bio); return; } async->submit_bio_done(async->inode, async->bio, async->mirror_num, async->bio_flags, async->bio_offset); } static void run_one_async_free(struct btrfs_work *work) { struct async_submit_bio *async; async = container_of(work, struct async_submit_bio, work); kfree(async); } int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset, extent_submit_bio_hook_t *submit_bio_start, extent_submit_bio_hook_t *submit_bio_done) { struct async_submit_bio *async; async = kmalloc(sizeof(*async), GFP_NOFS); if (!async) return -ENOMEM; async->inode = inode; async->bio = bio; async->mirror_num = mirror_num; async->submit_bio_start = submit_bio_start; async->submit_bio_done = submit_bio_done; btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, run_one_async_done, run_one_async_free); async->bio_flags = bio_flags; async->bio_offset = bio_offset; async->error = 0; atomic_inc(&fs_info->nr_async_submits); if (op_is_sync(bio->bi_opf)) btrfs_set_work_high_priority(&async->work); btrfs_queue_work(fs_info->workers, &async->work); while (atomic_read(&fs_info->async_submit_draining) && atomic_read(&fs_info->nr_async_submits)) { wait_event(fs_info->async_submit_wait, (atomic_read(&fs_info->nr_async_submits) == 0)); } return 0; } static int btree_csum_one_bio(struct bio *bio) { struct bio_vec *bvec; struct btrfs_root *root; int i, ret = 0; bio_for_each_segment_all(bvec, bio, i) { root = BTRFS_I(bvec->bv_page->mapping->host)->root; ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); if (ret) break; } return ret; } static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { /* * when we're called for a write, we're already in the async * submission context. Just jump into btrfs_map_bio */ return btree_csum_one_bio(bio); } static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { int ret; /* * when we're called for a write, we're already in the async * submission context. Just jump into btrfs_map_bio */ ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); if (ret) { bio->bi_error = ret; bio_endio(bio); } return ret; } static int check_async_write(unsigned long bio_flags) { if (bio_flags & EXTENT_BIO_TREE_LOG) return 0; #ifdef CONFIG_X86 if (static_cpu_has(X86_FEATURE_XMM4_2)) return 0; #endif return 1; } static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); int async = check_async_write(bio_flags); int ret; if (bio_op(bio) != REQ_OP_WRITE) { /* * called for a read, do the setup so that checksum validation * can happen in the async kernel threads */ ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_METADATA); if (ret) goto out_w_error; ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); } else if (!async) { ret = btree_csum_one_bio(bio); if (ret) goto out_w_error; ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); } else { /* * kthread helpers are used to submit writes so that * checksumming can happen in parallel across all CPUs */ ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, bio_offset, __btree_submit_bio_start, __btree_submit_bio_done); } if (ret) goto out_w_error; return 0; out_w_error: bio->bi_error = ret; bio_endio(bio); return ret; } #ifdef CONFIG_MIGRATION static int btree_migratepage(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { /* * we can't safely write a btree page from here, * we haven't done the locking hook */ if (PageDirty(page)) return -EAGAIN; /* * Buffers may be managed in a filesystem specific way. * We must have no buffers or drop them. */ if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; return migrate_page(mapping, newpage, page, mode); } #endif static int btree_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct btrfs_fs_info *fs_info; int ret; if (wbc->sync_mode == WB_SYNC_NONE) { if (wbc->for_kupdate) return 0; fs_info = BTRFS_I(mapping->host)->root->fs_info; /* this is a bit racy, but that's ok */ ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, BTRFS_DIRTY_METADATA_THRESH); if (ret < 0) return 0; } return btree_write_cache_pages(mapping, wbc); } static int btree_readpage(struct file *file, struct page *page) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_read_full_page(tree, page, btree_get_extent, 0); } static int btree_releasepage(struct page *page, gfp_t gfp_flags) { if (PageWriteback(page) || PageDirty(page)) return 0; return try_release_extent_buffer(page); } static void btree_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; extent_invalidatepage(tree, page, offset); btree_releasepage(page, GFP_NOFS); if (PagePrivate(page)) { btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, "page private not zero on page %llu", (unsigned long long)page_offset(page)); ClearPagePrivate(page); set_page_private(page, 0); put_page(page); } } static int btree_set_page_dirty(struct page *page) { #ifdef DEBUG struct extent_buffer *eb; BUG_ON(!PagePrivate(page)); eb = (struct extent_buffer *)page->private; BUG_ON(!eb); BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); BUG_ON(!atomic_read(&eb->refs)); btrfs_assert_tree_locked(eb); #endif return __set_page_dirty_nobuffers(page); } static const struct address_space_operations btree_aops = { .readpage = btree_readpage, .writepages = btree_writepages, .releasepage = btree_releasepage, .invalidatepage = btree_invalidatepage, #ifdef CONFIG_MIGRATION .migratepage = btree_migratepage, #endif .set_page_dirty = btree_set_page_dirty, }; void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) { struct extent_buffer *buf = NULL; struct inode *btree_inode = fs_info->btree_inode; buf = btrfs_find_create_tree_block(fs_info, bytenr); if (IS_ERR(buf)) return; read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf, WAIT_NONE, btree_get_extent, 0); free_extent_buffer(buf); } int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, int mirror_num, struct extent_buffer **eb) { struct extent_buffer *buf = NULL; struct inode *btree_inode = fs_info->btree_inode; struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; int ret; buf = btrfs_find_create_tree_block(fs_info, bytenr); if (IS_ERR(buf)) return 0; set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, btree_get_extent, mirror_num); if (ret) { free_extent_buffer(buf); return ret; } if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { free_extent_buffer(buf); return -EIO; } else if (extent_buffer_uptodate(buf)) { *eb = buf; } else { free_extent_buffer(buf); } return 0; } struct extent_buffer *btrfs_find_create_tree_block( struct btrfs_fs_info *fs_info, u64 bytenr) { if (btrfs_is_testing(fs_info)) return alloc_test_extent_buffer(fs_info, bytenr); return alloc_extent_buffer(fs_info, bytenr); } int btrfs_write_tree_block(struct extent_buffer *buf) { return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, buf->start + buf->len - 1); } int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) { return filemap_fdatawait_range(buf->pages[0]->mapping, buf->start, buf->start + buf->len - 1); } struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, u64 parent_transid) { struct extent_buffer *buf = NULL; int ret; buf = btrfs_find_create_tree_block(fs_info, bytenr); if (IS_ERR(buf)) return buf; ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); if (ret) { free_extent_buffer(buf); return ERR_PTR(ret); } return buf; } void clean_tree_block(struct btrfs_fs_info *fs_info, struct extent_buffer *buf) { if (btrfs_header_generation(buf) == fs_info->running_transaction->transid) { btrfs_assert_tree_locked(buf); if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { __percpu_counter_add(&fs_info->dirty_metadata_bytes, -buf->len, fs_info->dirty_metadata_batch); /* ugh, clear_extent_buffer_dirty needs to lock the page */ btrfs_set_lock_blocking(buf); clear_extent_buffer_dirty(buf); } } } static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) { struct btrfs_subvolume_writers *writers; int ret; writers = kmalloc(sizeof(*writers), GFP_NOFS); if (!writers) return ERR_PTR(-ENOMEM); ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); if (ret < 0) { kfree(writers); return ERR_PTR(ret); } init_waitqueue_head(&writers->wait); return writers; } static void btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) { percpu_counter_destroy(&writers->counter); kfree(writers); } static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); root->node = NULL; root->commit_root = NULL; root->state = 0; root->orphan_cleanup_state = 0; root->objectid = objectid; root->last_trans = 0; root->highest_objectid = 0; root->nr_delalloc_inodes = 0; root->nr_ordered_extents = 0; root->name = NULL; root->inode_tree = RB_ROOT; INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); root->block_rsv = NULL; root->orphan_block_rsv = NULL; INIT_LIST_HEAD(&root->dirty_list); INIT_LIST_HEAD(&root->root_list); INIT_LIST_HEAD(&root->delalloc_inodes); INIT_LIST_HEAD(&root->delalloc_root); INIT_LIST_HEAD(&root->ordered_extents); INIT_LIST_HEAD(&root->ordered_root); INIT_LIST_HEAD(&root->logged_list[0]); INIT_LIST_HEAD(&root->logged_list[1]); spin_lock_init(&root->orphan_lock); spin_lock_init(&root->inode_lock); spin_lock_init(&root->delalloc_lock); spin_lock_init(&root->ordered_extent_lock); spin_lock_init(&root->accounting_lock); spin_lock_init(&root->log_extents_lock[0]); spin_lock_init(&root->log_extents_lock[1]); mutex_init(&root->objectid_mutex); mutex_init(&root->log_mutex); mutex_init(&root->ordered_extent_mutex); mutex_init(&root->delalloc_mutex); init_waitqueue_head(&root->log_writer_wait); init_waitqueue_head(&root->log_commit_wait[0]); init_waitqueue_head(&root->log_commit_wait[1]); INIT_LIST_HEAD(&root->log_ctxs[0]); INIT_LIST_HEAD(&root->log_ctxs[1]); atomic_set(&root->log_commit[0], 0); atomic_set(&root->log_commit[1], 0); atomic_set(&root->log_writers, 0); atomic_set(&root->log_batch, 0); atomic_set(&root->orphan_inodes, 0); atomic_set(&root->refs, 1); atomic_set(&root->will_be_snapshoted, 0); atomic_set(&root->qgroup_meta_rsv, 0); root->log_transid = 0; root->log_transid_committed = -1; root->last_log_commit = 0; if (!dummy) extent_io_tree_init(&root->dirty_log_pages, fs_info->btree_inode->i_mapping); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); if (!dummy) root->defrag_trans_start = fs_info->generation; else root->defrag_trans_start = 0; root->root_key.objectid = objectid; root->anon_dev = 0; spin_lock_init(&root->root_item_lock); } static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, gfp_t flags) { struct btrfs_root *root = kzalloc(sizeof(*root), flags); if (root) root->fs_info = fs_info; return root; } #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS /* Should only be used by the testing infrastructure */ struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; if (!fs_info) return ERR_PTR(-EINVAL); root = btrfs_alloc_root(fs_info, GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); /* We don't use the stripesize in selftest, set it as sectorsize */ __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); root->alloc_bytenr = 0; return root; } #endif struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 objectid) { struct extent_buffer *leaf; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root; struct btrfs_key key; int ret = 0; uuid_le uuid; root = btrfs_alloc_root(fs_info, GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); __setup_root(root, fs_info, objectid); root->root_key.objectid = objectid; root->root_key.type = BTRFS_ROOT_ITEM_KEY; root->root_key.offset = 0; leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); if (IS_ERR(leaf)) { ret = PTR_ERR(leaf); leaf = NULL; goto fail; } memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); btrfs_set_header_bytenr(leaf, leaf->start); btrfs_set_header_generation(leaf, trans->transid); btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(leaf, objectid); root->node = leaf; write_extent_buffer_fsid(leaf, fs_info->fsid); write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); btrfs_mark_buffer_dirty(leaf); root->commit_root = btrfs_root_node(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); root->root_item.flags = 0; root->root_item.byte_limit = 0; btrfs_set_root_bytenr(&root->root_item, leaf->start); btrfs_set_root_generation(&root->root_item, trans->transid); btrfs_set_root_level(&root->root_item, 0); btrfs_set_root_refs(&root->root_item, 1); btrfs_set_root_used(&root->root_item, leaf->len); btrfs_set_root_last_snapshot(&root->root_item, 0); btrfs_set_root_dirid(&root->root_item, 0); uuid_le_gen(&uuid); memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); root->root_item.drop_level = 0; key.objectid = objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); if (ret) goto fail; btrfs_tree_unlock(leaf); return root; fail: if (leaf) { btrfs_tree_unlock(leaf); free_extent_buffer(root->commit_root); free_extent_buffer(leaf); } kfree(root); return ERR_PTR(ret); } static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct extent_buffer *leaf; root = btrfs_alloc_root(fs_info, GFP_NOFS); if (!root) return ERR_PTR(-ENOMEM); __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; root->root_key.type = BTRFS_ROOT_ITEM_KEY; root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; /* * DON'T set REF_COWS for log trees * * log trees do not get reference counted because they go away * before a real commit is actually done. They do store pointers * to file data extents, and those reference counts still get * updated (along with back refs to the log tree). */ leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); if (IS_ERR(leaf)) { kfree(root); return ERR_CAST(leaf); } memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); btrfs_set_header_bytenr(leaf, leaf->start); btrfs_set_header_generation(leaf, trans->transid); btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); root->node = leaf; write_extent_buffer_fsid(root->node, fs_info->fsid); btrfs_mark_buffer_dirty(root->node); btrfs_tree_unlock(root->node); return root; } int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *log_root; log_root = alloc_log_tree(trans, fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); WARN_ON(fs_info->log_root_tree); fs_info->log_root_tree = log_root; return 0; } int btrfs_add_log_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *log_root; struct btrfs_inode_item *inode_item; log_root = alloc_log_tree(trans, fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); log_root->last_trans = trans->transid; log_root->root_key.offset = root->root_key.objectid; inode_item = &log_root->root_item.inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, fs_info->nodesize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_node(&log_root->root_item, log_root->node); WARN_ON(root->log_root); root->log_root = log_root; root->log_transid = 0; root->log_transid_committed = -1; root->last_log_commit = 0; return 0; } static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, struct btrfs_key *key) { struct btrfs_root *root; struct btrfs_fs_info *fs_info = tree_root->fs_info; struct btrfs_path *path; u64 generation; int ret; path = btrfs_alloc_path(); if (!path) return ERR_PTR(-ENOMEM); root = btrfs_alloc_root(fs_info, GFP_NOFS); if (!root) { ret = -ENOMEM; goto alloc_fail; } __setup_root(root, fs_info, key->objectid); ret = btrfs_find_root(tree_root, key, path, &root->root_item, &root->root_key); if (ret) { if (ret > 0) ret = -ENOENT; goto find_fail; } generation = btrfs_root_generation(&root->root_item); root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), generation); if (IS_ERR(root->node)) { ret = PTR_ERR(root->node); goto find_fail; } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { ret = -EIO; free_extent_buffer(root->node); goto find_fail; } root->commit_root = btrfs_root_node(root); out: btrfs_free_path(path); return root; find_fail: kfree(root); alloc_fail: root = ERR_PTR(ret); goto out; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, struct btrfs_key *location) { struct btrfs_root *root; root = btrfs_read_tree_root(tree_root, location); if (IS_ERR(root)) return root; if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { set_bit(BTRFS_ROOT_REF_COWS, &root->state); btrfs_check_and_init_root_item(&root->root_item); } return root; } int btrfs_init_fs_root(struct btrfs_root *root) { int ret; struct btrfs_subvolume_writers *writers; root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), GFP_NOFS); if (!root->free_ino_pinned || !root->free_ino_ctl) { ret = -ENOMEM; goto fail; } writers = btrfs_alloc_subvolume_writers(); if (IS_ERR(writers)) { ret = PTR_ERR(writers); goto fail; } root->subv_writers = writers; btrfs_init_free_ino_ctl(root); spin_lock_init(&root->ino_cache_lock); init_waitqueue_head(&root->ino_cache_wait); ret = get_anon_bdev(&root->anon_dev); if (ret) goto fail; mutex_lock(&root->objectid_mutex); ret = btrfs_find_highest_objectid(root, &root->highest_objectid); if (ret) { mutex_unlock(&root->objectid_mutex); goto fail; } ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); mutex_unlock(&root->objectid_mutex); return 0; fail: /* the caller is responsible to call free_fs_root */ return ret; } struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, u64 root_id) { struct btrfs_root *root; spin_lock(&fs_info->fs_roots_radix_lock); root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)root_id); spin_unlock(&fs_info->fs_roots_radix_lock); return root; } int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { int ret; ret = radix_tree_preload(GFP_NOFS); if (ret) return ret; spin_lock(&fs_info->fs_roots_radix_lock); ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret == 0) set_bit(BTRFS_ROOT_IN_RADIX, &root->state); spin_unlock(&fs_info->fs_roots_radix_lock); radix_tree_preload_end(); return ret; } struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location, bool check_ref) { struct btrfs_root *root; struct btrfs_path *path; struct btrfs_key key; int ret; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return fs_info->tree_root; if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) return fs_info->extent_root; if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) return fs_info->chunk_root; if (location->objectid == BTRFS_DEV_TREE_OBJECTID) return fs_info->dev_root; if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) return fs_info->csum_root; if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) return fs_info->quota_root ? fs_info->quota_root : ERR_PTR(-ENOENT); if (location->objectid == BTRFS_UUID_TREE_OBJECTID) return fs_info->uuid_root ? fs_info->uuid_root : ERR_PTR(-ENOENT); if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) return fs_info->free_space_root ? fs_info->free_space_root : ERR_PTR(-ENOENT); again: root = btrfs_lookup_fs_root(fs_info, location->objectid); if (root) { if (check_ref && btrfs_root_refs(&root->root_item) == 0) return ERR_PTR(-ENOENT); return root; } root = btrfs_read_fs_root(fs_info->tree_root, location); if (IS_ERR(root)) return root; if (check_ref && btrfs_root_refs(&root->root_item) == 0) { ret = -ENOENT; goto fail; } ret = btrfs_init_fs_root(root); if (ret) goto fail; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto fail; } key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = location->objectid; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); btrfs_free_path(path); if (ret < 0) goto fail; if (ret == 0) set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); ret = btrfs_insert_fs_root(fs_info, root); if (ret) { if (ret == -EEXIST) { free_fs_root(root); goto again; } goto fail; } return root; fail: free_fs_root(root); return ERR_PTR(ret); } static int btrfs_congested_fn(void *congested_data, int bdi_bits) { struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; int ret = 0; struct btrfs_device *device; struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { if (!device->bdev) continue; bdi = blk_get_backing_dev_info(device->bdev); if (bdi_congested(bdi, bdi_bits)) { ret = 1; break; } } rcu_read_unlock(); return ret; } static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) { int err; err = bdi_setup_and_register(bdi, "btrfs"); if (err) return err; bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; bdi->congested_fn = btrfs_congested_fn; bdi->congested_data = info; bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; return 0; } /* * called by the kthread helper functions to finally call the bio end_io * functions. This is where read checksum verification actually happens */ static void end_workqueue_fn(struct btrfs_work *work) { struct bio *bio; struct btrfs_end_io_wq *end_io_wq; end_io_wq = container_of(work, struct btrfs_end_io_wq, work); bio = end_io_wq->bio; bio->bi_error = end_io_wq->error; bio->bi_private = end_io_wq->private; bio->bi_end_io = end_io_wq->end_io; kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); bio_endio(bio); } static int cleaner_kthread(void *arg) { struct btrfs_root *root = arg; struct btrfs_fs_info *fs_info = root->fs_info; int again; struct btrfs_trans_handle *trans; do { again = 0; /* Make the cleaner go to sleep early. */ if (btrfs_need_cleaner_sleep(fs_info)) goto sleep; /* * Do not do anything if we might cause open_ctree() to block * before we have finished mounting the filesystem. */ if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) goto sleep; if (!mutex_trylock(&fs_info->cleaner_mutex)) goto sleep; /* * Avoid the problem that we change the status of the fs * during the above check and trylock. */ if (btrfs_need_cleaner_sleep(fs_info)) { mutex_unlock(&fs_info->cleaner_mutex); goto sleep; } mutex_lock(&fs_info->cleaner_delayed_iput_mutex); btrfs_run_delayed_iputs(fs_info); mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); again = btrfs_clean_one_deleted_snapshot(root); mutex_unlock(&fs_info->cleaner_mutex); /* * The defragger has dealt with the R/O remount and umount, * needn't do anything special here. */ btrfs_run_defrag_inodes(fs_info); /* * Acquires fs_info->delete_unused_bgs_mutex to avoid racing * with relocation (btrfs_relocate_chunk) and relocation * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) * after acquiring fs_info->delete_unused_bgs_mutex. So we * can't hold, nor need to, fs_info->cleaner_mutex when deleting * unused block groups. */ btrfs_delete_unused_bgs(fs_info); sleep: if (!again) { set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop()) schedule(); __set_current_state(TASK_RUNNING); } } while (!kthread_should_stop()); /* * Transaction kthread is stopped before us and wakes us up. * However we might have started a new transaction and COWed some * tree blocks when deleting unused block groups for example. So * make sure we commit the transaction we started to have a clean * shutdown when evicting the btree inode - if it has dirty pages * when we do the final iput() on it, eviction will trigger a * writeback for it which will fail with null pointer dereferences * since work queues and other resources were already released and * destroyed by the time the iput/eviction/writeback is made. */ trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) != -ENOENT) btrfs_err(fs_info, "cleaner transaction attach returned %ld", PTR_ERR(trans)); } else { int ret; ret = btrfs_commit_transaction(trans); if (ret) btrfs_err(fs_info, "cleaner open transaction commit returned %d", ret); } return 0; } static int transaction_kthread(void *arg) { struct btrfs_root *root = arg; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_trans_handle *trans; struct btrfs_transaction *cur; u64 transid; unsigned long now; unsigned long delay; bool cannot_commit; do { cannot_commit = false; delay = HZ * fs_info->commit_interval; mutex_lock(&fs_info->transaction_kthread_mutex); spin_lock(&fs_info->trans_lock); cur = fs_info->running_transaction; if (!cur) { spin_unlock(&fs_info->trans_lock); goto sleep; } now = get_seconds(); if (cur->state < TRANS_STATE_BLOCKED && (now < cur->start_time || now - cur->start_time < fs_info->commit_interval)) { spin_unlock(&fs_info->trans_lock); delay = HZ * 5; goto sleep; } transid = cur->transid; spin_unlock(&fs_info->trans_lock); /* If the file system is aborted, this will always fail. */ trans = btrfs_attach_transaction(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) != -ENOENT) cannot_commit = true; goto sleep; } if (transid == trans->transid) { btrfs_commit_transaction(trans); } else { btrfs_end_transaction(trans); } sleep: wake_up_process(fs_info->cleaner_kthread); mutex_unlock(&fs_info->transaction_kthread_mutex); if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))) btrfs_cleanup_transaction(fs_info); set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop() && (!btrfs_transaction_blocked(fs_info) || cannot_commit)) schedule_timeout(delay); __set_current_state(TASK_RUNNING); } while (!kthread_should_stop()); return 0; } /* * this will find the highest generation in the array of * root backups. The index of the highest array is returned, * or -1 if we can't find anything. * * We check to make sure the array is valid by comparing the * generation of the latest root in the array with the generation * in the super block. If they don't match we pitch it. */ static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) { u64 cur; int newest_index = -1; struct btrfs_root_backup *root_backup; int i; for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { root_backup = info->super_copy->super_roots + i; cur = btrfs_backup_tree_root_gen(root_backup); if (cur == newest_gen) newest_index = i; } /* check to see if we actually wrapped around */ if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { root_backup = info->super_copy->super_roots; cur = btrfs_backup_tree_root_gen(root_backup); if (cur == newest_gen) newest_index = 0; } return newest_index; } /* * find the oldest backup so we know where to store new entries * in the backup array. This will set the backup_root_index * field in the fs_info struct */ static void find_oldest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) { int newest_index = -1; newest_index = find_newest_super_backup(info, newest_gen); /* if there was garbage in there, just move along */ if (newest_index == -1) { info->backup_root_index = 0; } else { info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; } } /* * copy all the root pointers into the super backup array. * this will bump the backup pointer by one when it is * done */ static void backup_super_roots(struct btrfs_fs_info *info) { int next_backup; struct btrfs_root_backup *root_backup; int last_backup; next_backup = info->backup_root_index; last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % BTRFS_NUM_BACKUP_ROOTS; /* * just overwrite the last backup if we're at the same generation * this happens only at umount */ root_backup = info->super_for_commit->super_roots + last_backup; if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) next_backup = last_backup; root_backup = info->super_for_commit->super_roots + next_backup; /* * make sure all of our padding and empty slots get zero filled * regardless of which ones we use today */ memset(root_backup, 0, sizeof(*root_backup)); info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); btrfs_set_backup_tree_root_gen(root_backup, btrfs_header_generation(info->tree_root->node)); btrfs_set_backup_tree_root_level(root_backup, btrfs_header_level(info->tree_root->node)); btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); btrfs_set_backup_chunk_root_gen(root_backup, btrfs_header_generation(info->chunk_root->node)); btrfs_set_backup_chunk_root_level(root_backup, btrfs_header_level(info->chunk_root->node)); btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); btrfs_set_backup_extent_root_gen(root_backup, btrfs_header_generation(info->extent_root->node)); btrfs_set_backup_extent_root_level(root_backup, btrfs_header_level(info->extent_root->node)); /* * we might commit during log recovery, which happens before we set * the fs_root. Make sure it is valid before we fill it in. */ if (info->fs_root && info->fs_root->node) { btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start); btrfs_set_backup_fs_root_gen(root_backup, btrfs_header_generation(info->fs_root->node)); btrfs_set_backup_fs_root_level(root_backup, btrfs_header_level(info->fs_root->node)); } btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); btrfs_set_backup_dev_root_gen(root_backup, btrfs_header_generation(info->dev_root->node)); btrfs_set_backup_dev_root_level(root_backup, btrfs_header_level(info->dev_root->node)); btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); btrfs_set_backup_csum_root_gen(root_backup, btrfs_header_generation(info->csum_root->node)); btrfs_set_backup_csum_root_level(root_backup, btrfs_header_level(info->csum_root->node)); btrfs_set_backup_total_bytes(root_backup, btrfs_super_total_bytes(info->super_copy)); btrfs_set_backup_bytes_used(root_backup, btrfs_super_bytes_used(info->super_copy)); btrfs_set_backup_num_devices(root_backup, btrfs_super_num_devices(info->super_copy)); /* * if we don't copy this out to the super_copy, it won't get remembered * for the next commit */ memcpy(&info->super_copy->super_roots, &info->super_for_commit->super_roots, sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); } /* * this copies info out of the root backup array and back into * the in-memory super block. It is meant to help iterate through * the array, so you send it the number of backups you've already * tried and the last backup index you used. * * this returns -1 when it has tried all the backups */ static noinline int next_root_backup(struct btrfs_fs_info *info, struct btrfs_super_block *super, int *num_backups_tried, int *backup_index) { struct btrfs_root_backup *root_backup; int newest = *backup_index; if (*num_backups_tried == 0) { u64 gen = btrfs_super_generation(super); newest = find_newest_super_backup(info, gen); if (newest == -1) return -1; *backup_index = newest; *num_backups_tried = 1; } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { /* we've tried all the backups, all done */ return -1; } else { /* jump to the next oldest backup */ newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % BTRFS_NUM_BACKUP_ROOTS; *backup_index = newest; *num_backups_tried += 1; } root_backup = super->super_roots + newest; btrfs_set_super_generation(super, btrfs_backup_tree_root_gen(root_backup)); btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); btrfs_set_super_root_level(super, btrfs_backup_tree_root_level(root_backup)); btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); /* * fixme: the total bytes and num_devices need to match or we should * need a fsck */ btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); return 0; } /* helper to cleanup workers */ static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) { btrfs_destroy_workqueue(fs_info->fixup_workers); btrfs_destroy_workqueue(fs_info->delalloc_workers); btrfs_destroy_workqueue(fs_info->workers); btrfs_destroy_workqueue(fs_info->endio_workers); btrfs_destroy_workqueue(fs_info->endio_meta_workers); btrfs_destroy_workqueue(fs_info->endio_raid56_workers); btrfs_destroy_workqueue(fs_info->endio_repair_workers); btrfs_destroy_workqueue(fs_info->rmw_workers); btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); btrfs_destroy_workqueue(fs_info->endio_write_workers); btrfs_destroy_workqueue(fs_info->endio_freespace_worker); btrfs_destroy_workqueue(fs_info->submit_workers); btrfs_destroy_workqueue(fs_info->delayed_workers); btrfs_destroy_workqueue(fs_info->caching_workers); btrfs_destroy_workqueue(fs_info->readahead_workers); btrfs_destroy_workqueue(fs_info->flush_workers); btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); btrfs_destroy_workqueue(fs_info->extent_workers); } static void free_root_extent_buffers(struct btrfs_root *root) { if (root) { free_extent_buffer(root->node); free_extent_buffer(root->commit_root); root->node = NULL; root->commit_root = NULL; } } /* helper to cleanup tree roots */ static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) { free_root_extent_buffers(info->tree_root); free_root_extent_buffers(info->dev_root); free_root_extent_buffers(info->extent_root); free_root_extent_buffers(info->csum_root); free_root_extent_buffers(info->quota_root); free_root_extent_buffers(info->uuid_root); if (chunk_root) free_root_extent_buffers(info->chunk_root); free_root_extent_buffers(info->free_space_root); } void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while (!list_empty(&fs_info->dead_roots)) { gang[0] = list_entry(fs_info->dead_roots.next, struct btrfs_root, root_list); list_del(&gang[0]->root_list); if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { btrfs_drop_and_free_fs_root(fs_info, gang[0]); } else { free_extent_buffer(gang[0]->node); free_extent_buffer(gang[0]->commit_root); btrfs_put_fs_root(gang[0]); } } while (1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) btrfs_drop_and_free_fs_root(fs_info, gang[i]); } if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { btrfs_free_log_root_tree(NULL, fs_info); btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); } } static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) { mutex_init(&fs_info->scrub_lock); atomic_set(&fs_info->scrubs_running, 0); atomic_set(&fs_info->scrub_pause_req, 0); atomic_set(&fs_info->scrubs_paused, 0); atomic_set(&fs_info->scrub_cancel_req, 0); init_waitqueue_head(&fs_info->scrub_pause_wait); fs_info->scrub_workers_refcnt = 0; } static void btrfs_init_balance(struct btrfs_fs_info *fs_info) { spin_lock_init(&fs_info->balance_lock); mutex_init(&fs_info->balance_mutex); atomic_set(&fs_info->balance_running, 0); atomic_set(&fs_info->balance_pause_req, 0); atomic_set(&fs_info->balance_cancel_req, 0); fs_info->balance_ctl = NULL; init_waitqueue_head(&fs_info->balance_wait_q); } static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) { struct inode *inode = fs_info->btree_inode; inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; set_nlink(inode, 1); /* * we set the i_size on the btree inode to the max possible int. * the real end of the address space is determined by all of * the devices in the system */ inode->i_size = OFFSET_MAX; inode->i_mapping->a_ops = &btree_aops; RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping); BTRFS_I(inode)->io_tree.track_uptodate = 0; extent_map_tree_init(&BTRFS_I(inode)->extent_tree); BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; BTRFS_I(inode)->root = fs_info->tree_root; memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); btrfs_insert_inode_hash(inode); } static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) { fs_info->dev_replace.lock_owner = 0; atomic_set(&fs_info->dev_replace.nesting_level, 0); mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); rwlock_init(&fs_info->dev_replace.lock); atomic_set(&fs_info->dev_replace.read_locks, 0); atomic_set(&fs_info->dev_replace.blocking_readers, 0); init_waitqueue_head(&fs_info->replace_wait); init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); } static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) { spin_lock_init(&fs_info->qgroup_lock); mutex_init(&fs_info->qgroup_ioctl_lock); fs_info->qgroup_tree = RB_ROOT; fs_info->qgroup_op_tree = RB_ROOT; INIT_LIST_HEAD(&fs_info->dirty_qgroups); fs_info->qgroup_seq = 1; fs_info->qgroup_ulist = NULL; fs_info->qgroup_rescan_running = false; mutex_init(&fs_info->qgroup_rescan_lock); } static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, struct btrfs_fs_devices *fs_devices) { int max_active = fs_info->thread_pool_size; unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; fs_info->workers = btrfs_alloc_workqueue(fs_info, "worker", flags | WQ_HIGHPRI, max_active, 16); fs_info->delalloc_workers = btrfs_alloc_workqueue(fs_info, "delalloc", flags, max_active, 2); fs_info->flush_workers = btrfs_alloc_workqueue(fs_info, "flush_delalloc", flags, max_active, 0); fs_info->caching_workers = btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); /* * a higher idle thresh on the submit workers makes it much more * likely that bios will be send down in a sane order to the * devices */ fs_info->submit_workers = btrfs_alloc_workqueue(fs_info, "submit", flags, min_t(u64, fs_devices->num_devices, max_active), 64); fs_info->fixup_workers = btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); /* * endios are largely parallel and should have a very * low idle thresh */ fs_info->endio_workers = btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); fs_info->endio_meta_workers = btrfs_alloc_workqueue(fs_info, "endio-meta", flags, max_active, 4); fs_info->endio_meta_write_workers = btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, max_active, 2); fs_info->endio_raid56_workers = btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, max_active, 4); fs_info->endio_repair_workers = btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); fs_info->rmw_workers = btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); fs_info->endio_write_workers = btrfs_alloc_workqueue(fs_info, "endio-write", flags, max_active, 2); fs_info->endio_freespace_worker = btrfs_alloc_workqueue(fs_info, "freespace-write", flags, max_active, 0); fs_info->delayed_workers = btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, max_active, 0); fs_info->readahead_workers = btrfs_alloc_workqueue(fs_info, "readahead", flags, max_active, 2); fs_info->qgroup_rescan_workers = btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); fs_info->extent_workers = btrfs_alloc_workqueue(fs_info, "extent-refs", flags, min_t(u64, fs_devices->num_devices, max_active), 8); if (!(fs_info->workers && fs_info->delalloc_workers && fs_info->submit_workers && fs_info->flush_workers && fs_info->endio_workers && fs_info->endio_meta_workers && fs_info->endio_meta_write_workers && fs_info->endio_repair_workers && fs_info->endio_write_workers && fs_info->endio_raid56_workers && fs_info->endio_freespace_worker && fs_info->rmw_workers && fs_info->caching_workers && fs_info->readahead_workers && fs_info->fixup_workers && fs_info->delayed_workers && fs_info->extent_workers && fs_info->qgroup_rescan_workers)) { return -ENOMEM; } return 0; } static int btrfs_replay_log(struct btrfs_fs_info *fs_info, struct btrfs_fs_devices *fs_devices) { int ret; struct btrfs_root *log_tree_root; struct btrfs_super_block *disk_super = fs_info->super_copy; u64 bytenr = btrfs_super_log_root(disk_super); if (fs_devices->rw_devices == 0) { btrfs_warn(fs_info, "log replay required on RO media"); return -EIO; } log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); if (!log_tree_root) return -ENOMEM; __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); log_tree_root->node = read_tree_block(fs_info, bytenr, fs_info->generation + 1); if (IS_ERR(log_tree_root->node)) { btrfs_warn(fs_info, "failed to read log tree"); ret = PTR_ERR(log_tree_root->node); kfree(log_tree_root); return ret; } else if (!extent_buffer_uptodate(log_tree_root->node)) { btrfs_err(fs_info, "failed to read log tree"); free_extent_buffer(log_tree_root->node); kfree(log_tree_root); return -EIO; } /* returns with log_tree_root freed on success */ ret = btrfs_recover_log_trees(log_tree_root); if (ret) { btrfs_handle_fs_error(fs_info, ret, "Failed to recover log tree"); free_extent_buffer(log_tree_root->node); kfree(log_tree_root); return ret; } if (fs_info->sb->s_flags & MS_RDONLY) { ret = btrfs_commit_super(fs_info); if (ret) return ret; } return 0; } static int btrfs_read_roots(struct btrfs_fs_info *fs_info) { struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *root; struct btrfs_key location; int ret; BUG_ON(!fs_info->tree_root); location.objectid = BTRFS_EXTENT_TREE_OBJECTID; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = 0; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) return PTR_ERR(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->extent_root = root; location.objectid = BTRFS_DEV_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) return PTR_ERR(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->dev_root = root; btrfs_init_devices_late(fs_info); location.objectid = BTRFS_CSUM_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) return PTR_ERR(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->csum_root = root; location.objectid = BTRFS_QUOTA_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (!IS_ERR(root)) { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); fs_info->quota_root = root; } location.objectid = BTRFS_UUID_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) { ret = PTR_ERR(root); if (ret != -ENOENT) return ret; } else { set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->uuid_root = root; } if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; root = btrfs_read_tree_root(tree_root, &location); if (IS_ERR(root)) return PTR_ERR(root); set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); fs_info->free_space_root = root; } return 0; } int open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, char *options) { u32 sectorsize; u32 nodesize; u32 stripesize; u64 generation; u64 features; struct btrfs_key location; struct buffer_head *bh; struct btrfs_super_block *disk_super; struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *tree_root; struct btrfs_root *chunk_root; int ret; int err = -EINVAL; int num_backups_tried = 0; int backup_index = 0; int max_active; int clear_free_space_tree = 0; tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); if (!tree_root || !chunk_root) { err = -ENOMEM; goto fail; } ret = init_srcu_struct(&fs_info->subvol_srcu); if (ret) { err = ret; goto fail; } ret = setup_bdi(fs_info, &fs_info->bdi); if (ret) { err = ret; goto fail_srcu; } ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); if (ret) { err = ret; goto fail_bdi; } fs_info->dirty_metadata_batch = PAGE_SIZE * (1 + ilog2(nr_cpu_ids)); ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); if (ret) { err = ret; goto fail_dirty_metadata_bytes; } ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); if (ret) { err = ret; goto fail_delalloc_bytes; } fs_info->btree_inode = new_inode(sb); if (!fs_info->btree_inode) { err = -ENOMEM; goto fail_bio_counter; } mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); INIT_LIST_HEAD(&fs_info->trans_list); INIT_LIST_HEAD(&fs_info->dead_roots); INIT_LIST_HEAD(&fs_info->delayed_iputs); INIT_LIST_HEAD(&fs_info->delalloc_roots); INIT_LIST_HEAD(&fs_info->caching_block_groups); spin_lock_init(&fs_info->delalloc_root_lock); spin_lock_init(&fs_info->trans_lock); spin_lock_init(&fs_info->fs_roots_radix_lock); spin_lock_init(&fs_info->delayed_iput_lock); spin_lock_init(&fs_info->defrag_inodes_lock); spin_lock_init(&fs_info->free_chunk_lock); spin_lock_init(&fs_info->tree_mod_seq_lock); spin_lock_init(&fs_info->super_lock); spin_lock_init(&fs_info->qgroup_op_lock); spin_lock_init(&fs_info->buffer_lock); spin_lock_init(&fs_info->unused_bgs_lock); rwlock_init(&fs_info->tree_mod_log_lock); mutex_init(&fs_info->unused_bg_unpin_mutex); mutex_init(&fs_info->delete_unused_bgs_mutex); mutex_init(&fs_info->reloc_mutex); mutex_init(&fs_info->delalloc_root_mutex); mutex_init(&fs_info->cleaner_delayed_iput_mutex); seqlock_init(&fs_info->profiles_lock); INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); INIT_LIST_HEAD(&fs_info->unused_bgs); btrfs_mapping_init(&fs_info->mapping_tree); btrfs_init_block_rsv(&fs_info->global_block_rsv, BTRFS_BLOCK_RSV_GLOBAL); btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, BTRFS_BLOCK_RSV_DELALLOC); btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); btrfs_init_block_rsv(&fs_info->delayed_block_rsv, BTRFS_BLOCK_RSV_DELOPS); atomic_set(&fs_info->nr_async_submits, 0); atomic_set(&fs_info->async_delalloc_pages, 0); atomic_set(&fs_info->async_submit_draining, 0); atomic_set(&fs_info->nr_async_bios, 0); atomic_set(&fs_info->defrag_running, 0); atomic_set(&fs_info->qgroup_op_seq, 0); atomic_set(&fs_info->reada_works_cnt, 0); atomic64_set(&fs_info->tree_mod_seq, 0); fs_info->fs_frozen = 0; fs_info->sb = sb; fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; fs_info->metadata_ratio = 0; fs_info->defrag_inodes = RB_ROOT; fs_info->free_chunk_space = 0; fs_info->tree_mod_log = RB_ROOT; fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ /* readahead state */ INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); spin_lock_init(&fs_info->reada_lock); fs_info->thread_pool_size = min_t(unsigned long, num_online_cpus() + 2, 8); INIT_LIST_HEAD(&fs_info->ordered_roots); spin_lock_init(&fs_info->ordered_root_lock); fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), GFP_KERNEL); if (!fs_info->delayed_root) { err = -ENOMEM; goto fail_iput; } btrfs_init_delayed_root(fs_info->delayed_root); btrfs_init_scrub(fs_info); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY fs_info->check_integrity_print_mask = 0; #endif btrfs_init_balance(fs_info); btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); sb->s_blocksize = 4096; sb->s_blocksize_bits = blksize_bits(4096); sb->s_bdi = &fs_info->bdi; btrfs_init_btree_inode(fs_info); spin_lock_init(&fs_info->block_group_cache_lock); fs_info->block_group_cache_tree = RB_ROOT; fs_info->first_logical_byte = (u64)-1; extent_io_tree_init(&fs_info->freed_extents[0], fs_info->btree_inode->i_mapping); extent_io_tree_init(&fs_info->freed_extents[1], fs_info->btree_inode->i_mapping); fs_info->pinned_extents = &fs_info->freed_extents[0]; set_bit(BTRFS_FS_BARRIER, &fs_info->flags); mutex_init(&fs_info->ordered_operations_mutex); mutex_init(&fs_info->tree_log_mutex); mutex_init(&fs_info->chunk_mutex); mutex_init(&fs_info->transaction_kthread_mutex); mutex_init(&fs_info->cleaner_mutex); mutex_init(&fs_info->volume_mutex); mutex_init(&fs_info->ro_block_group_mutex); init_rwsem(&fs_info->commit_root_sem); init_rwsem(&fs_info->cleanup_work_sem); init_rwsem(&fs_info->subvol_sem); sema_init(&fs_info->uuid_tree_rescan_sem, 1); btrfs_init_dev_replace_locks(fs_info); btrfs_init_qgroup(fs_info); btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); btrfs_init_free_cluster(&fs_info->data_alloc_cluster); init_waitqueue_head(&fs_info->transaction_throttle); init_waitqueue_head(&fs_info->transaction_wait); init_waitqueue_head(&fs_info->transaction_blocked_wait); init_waitqueue_head(&fs_info->async_submit_wait); INIT_LIST_HEAD(&fs_info->pinned_chunks); /* Usable values until the real ones are cached from the superblock */ fs_info->nodesize = 4096; fs_info->sectorsize = 4096; fs_info->stripesize = 4096; ret = btrfs_alloc_stripe_hash_table(fs_info); if (ret) { err = ret; goto fail_alloc; } __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); invalidate_bdev(fs_devices->latest_bdev); /* * Read super block and check the signature bytes only */ bh = btrfs_read_dev_super(fs_devices->latest_bdev); if (IS_ERR(bh)) { err = PTR_ERR(bh); goto fail_alloc; } /* * We want to check superblock checksum, the type is stored inside. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). */ if (btrfs_check_super_csum(fs_info, bh->b_data)) { btrfs_err(fs_info, "superblock checksum mismatch"); err = -EINVAL; brelse(bh); goto fail_alloc; } /* * super_copy is zeroed at allocation time and we never touch the * following bytes up to INFO_SIZE, the checksum is calculated from * the whole block of INFO_SIZE */ memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); memcpy(fs_info->super_for_commit, fs_info->super_copy, sizeof(*fs_info->super_for_commit)); brelse(bh); memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); if (ret) { btrfs_err(fs_info, "superblock contains fatal errors"); err = -EINVAL; goto fail_alloc; } disk_super = fs_info->super_copy; if (!btrfs_super_root(disk_super)) goto fail_alloc; /* check FS state, whether FS is broken. */ if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); /* * run through our array of backup supers and setup * our ring pointer to the oldest one */ generation = btrfs_super_generation(disk_super); find_oldest_super_backup(fs_info, generation); /* * In the long term, we'll store the compression type in the super * block, and it'll be used for per file compression control. */ fs_info->compress_type = BTRFS_COMPRESS_ZLIB; ret = btrfs_parse_options(fs_info, options, sb->s_flags); if (ret) { err = ret; goto fail_alloc; } features = btrfs_super_incompat_flags(disk_super) & ~BTRFS_FEATURE_INCOMPAT_SUPP; if (features) { btrfs_err(fs_info, "cannot mount because of unsupported optional features (%llx)", features); err = -EINVAL; goto fail_alloc; } features = btrfs_super_incompat_flags(disk_super); features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; if (fs_info->compress_type == BTRFS_COMPRESS_LZO) features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) btrfs_info(fs_info, "has skinny extents"); /* * flag our filesystem as having big metadata blocks if * they are bigger than the page size */ if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) btrfs_info(fs_info, "flagging fs with big metadata feature"); features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; } nodesize = btrfs_super_nodesize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = sectorsize; fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); /* Cache block sizes */ fs_info->nodesize = nodesize; fs_info->sectorsize = sectorsize; fs_info->stripesize = stripesize; /* * mixed block groups end up with duplicate but slightly offset * extent buffers for the same range. It leads to corruptions */ if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && (sectorsize != nodesize)) { btrfs_err(fs_info, "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", nodesize, sectorsize); goto fail_alloc; } /* * Needn't use the lock because there is no other task which will * update the flag. */ btrfs_set_super_incompat_flags(disk_super, features); features = btrfs_super_compat_ro_flags(disk_super) & ~BTRFS_FEATURE_COMPAT_RO_SUPP; if (!(sb->s_flags & MS_RDONLY) && features) { btrfs_err(fs_info, "cannot mount read-write because of unsupported optional features (%llx)", features); err = -EINVAL; goto fail_alloc; } max_active = fs_info->thread_pool_size; ret = btrfs_init_workqueues(fs_info, fs_devices); if (ret) { err = ret; goto fail_sb_buffer; } fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, SZ_4M / PAGE_SIZE); sb->s_blocksize = sectorsize; sb->s_blocksize_bits = blksize_bits(sectorsize); mutex_lock(&fs_info->chunk_mutex); ret = btrfs_read_sys_array(fs_info); mutex_unlock(&fs_info->chunk_mutex); if (ret) { btrfs_err(fs_info, "failed to read the system array: %d", ret); goto fail_sb_buffer; } generation = btrfs_super_chunk_root_generation(disk_super); __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); chunk_root->node = read_tree_block(fs_info, btrfs_super_chunk_root(disk_super), generation); if (IS_ERR(chunk_root->node) || !extent_buffer_uptodate(chunk_root->node)) { btrfs_err(fs_info, "failed to read chunk root"); if (!IS_ERR(chunk_root->node)) free_extent_buffer(chunk_root->node); chunk_root->node = NULL; goto fail_tree_roots; } btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); chunk_root->commit_root = btrfs_root_node(chunk_root); read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); ret = btrfs_read_chunk_tree(fs_info); if (ret) { btrfs_err(fs_info, "failed to read chunk tree: %d", ret); goto fail_tree_roots; } /* * keep the device that is marked to be the target device for the * dev_replace procedure */ btrfs_close_extra_devices(fs_devices, 0); if (!fs_devices->latest_bdev) { btrfs_err(fs_info, "failed to read devices"); goto fail_tree_roots; } retry_root_backup: generation = btrfs_super_generation(disk_super); tree_root->node = read_tree_block(fs_info, btrfs_super_root(disk_super), generation); if (IS_ERR(tree_root->node) || !extent_buffer_uptodate(tree_root->node)) { btrfs_warn(fs_info, "failed to read tree root"); if (!IS_ERR(tree_root->node)) free_extent_buffer(tree_root->node); tree_root->node = NULL; goto recovery_tree_root; } btrfs_set_root_node(&tree_root->root_item, tree_root->node); tree_root->commit_root = btrfs_root_node(tree_root); btrfs_set_root_refs(&tree_root->root_item, 1); mutex_lock(&tree_root->objectid_mutex); ret = btrfs_find_highest_objectid(tree_root, &tree_root->highest_objectid); if (ret) { mutex_unlock(&tree_root->objectid_mutex); goto recovery_tree_root; } ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); mutex_unlock(&tree_root->objectid_mutex); ret = btrfs_read_roots(fs_info); if (ret) goto recovery_tree_root; fs_info->generation = generation; fs_info->last_trans_committed = generation; ret = btrfs_recover_balance(fs_info); if (ret) { btrfs_err(fs_info, "failed to recover balance: %d", ret); goto fail_block_groups; } ret = btrfs_init_dev_stats(fs_info); if (ret) { btrfs_err(fs_info, "failed to init dev_stats: %d", ret); goto fail_block_groups; } ret = btrfs_init_dev_replace(fs_info); if (ret) { btrfs_err(fs_info, "failed to init dev_replace: %d", ret); goto fail_block_groups; } btrfs_close_extra_devices(fs_devices, 1); ret = btrfs_sysfs_add_fsid(fs_devices, NULL); if (ret) { btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", ret); goto fail_block_groups; } ret = btrfs_sysfs_add_device(fs_devices); if (ret) { btrfs_err(fs_info, "failed to init sysfs device interface: %d", ret); goto fail_fsdev_sysfs; } ret = btrfs_sysfs_add_mounted(fs_info); if (ret) { btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); goto fail_fsdev_sysfs; } ret = btrfs_init_space_info(fs_info); if (ret) { btrfs_err(fs_info, "failed to initialize space info: %d", ret); goto fail_sysfs; } ret = btrfs_read_block_groups(fs_info); if (ret) { btrfs_err(fs_info, "failed to read block groups: %d", ret); goto fail_sysfs; } fs_info->num_tolerated_disk_barrier_failures = btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); if (fs_info->fs_devices->missing_devices > fs_info->num_tolerated_disk_barrier_failures && !(sb->s_flags & MS_RDONLY)) { btrfs_warn(fs_info, "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", fs_info->fs_devices->missing_devices, fs_info->num_tolerated_disk_barrier_failures); goto fail_sysfs; } fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, "btrfs-cleaner"); if (IS_ERR(fs_info->cleaner_kthread)) goto fail_sysfs; fs_info->transaction_kthread = kthread_run(transaction_kthread, tree_root, "btrfs-transaction"); if (IS_ERR(fs_info->transaction_kthread)) goto fail_cleaner; if (!btrfs_test_opt(fs_info, SSD) && !btrfs_test_opt(fs_info, NOSSD) && !fs_info->fs_devices->rotating) { btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); btrfs_set_opt(fs_info->mount_opt, SSD); } /* * Mount does not set all options immediately, we can do it now and do * not have to wait for transaction commit */ btrfs_apply_pending_changes(fs_info); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { ret = btrfsic_mount(fs_info, fs_devices, btrfs_test_opt(fs_info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 1 : 0, fs_info->check_integrity_print_mask); if (ret) btrfs_warn(fs_info, "failed to initialize integrity check module: %d", ret); } #endif ret = btrfs_read_qgroup_config(fs_info); if (ret) goto fail_trans_kthread; /* do not make disk changes in broken FS or nologreplay is given */ if (btrfs_super_log_root(disk_super) != 0 && !btrfs_test_opt(fs_info, NOLOGREPLAY)) { ret = btrfs_replay_log(fs_info, fs_devices); if (ret) { err = ret; goto fail_qgroup; } } ret = btrfs_find_orphan_roots(fs_info); if (ret) goto fail_qgroup; if (!(sb->s_flags & MS_RDONLY)) { ret = btrfs_cleanup_fs_roots(fs_info); if (ret) goto fail_qgroup; mutex_lock(&fs_info->cleaner_mutex); ret = btrfs_recover_relocation(tree_root); mutex_unlock(&fs_info->cleaner_mutex); if (ret < 0) { btrfs_warn(fs_info, "failed to recover relocation: %d", ret); err = -EINVAL; goto fail_qgroup; } } location.objectid = BTRFS_FS_TREE_OBJECTID; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = 0; fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); if (IS_ERR(fs_info->fs_root)) { err = PTR_ERR(fs_info->fs_root); goto fail_qgroup; } if (sb->s_flags & MS_RDONLY) return 0; if (btrfs_test_opt(fs_info, CLEAR_CACHE) && btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { clear_free_space_tree = 1; } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { btrfs_warn(fs_info, "free space tree is invalid"); clear_free_space_tree = 1; } if (clear_free_space_tree) { btrfs_info(fs_info, "clearing free space tree"); ret = btrfs_clear_free_space_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to clear free space tree: %d", ret); close_ctree(fs_info); return ret; } } if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { btrfs_info(fs_info, "creating free space tree"); ret = btrfs_create_free_space_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to create free space tree: %d", ret); close_ctree(fs_info); return ret; } } down_read(&fs_info->cleanup_work_sem); if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { up_read(&fs_info->cleanup_work_sem); close_ctree(fs_info); return ret; } up_read(&fs_info->cleanup_work_sem); ret = btrfs_resume_balance_async(fs_info); if (ret) { btrfs_warn(fs_info, "failed to resume balance: %d", ret); close_ctree(fs_info); return ret; } ret = btrfs_resume_dev_replace_async(fs_info); if (ret) { btrfs_warn(fs_info, "failed to resume device replace: %d", ret); close_ctree(fs_info); return ret; } btrfs_qgroup_rescan_resume(fs_info); if (!fs_info->uuid_root) { btrfs_info(fs_info, "creating UUID tree"); ret = btrfs_create_uuid_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to create the UUID tree: %d", ret); close_ctree(fs_info); return ret; } } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || fs_info->generation != btrfs_super_uuid_tree_generation(disk_super)) { btrfs_info(fs_info, "checking UUID tree"); ret = btrfs_check_uuid_tree(fs_info); if (ret) { btrfs_warn(fs_info, "failed to check the UUID tree: %d", ret); close_ctree(fs_info); return ret; } } else { set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); } set_bit(BTRFS_FS_OPEN, &fs_info->flags); /* * backuproot only affect mount behavior, and if open_ctree succeeded, * no need to keep the flag */ btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); return 0; fail_qgroup: btrfs_free_qgroup_config(fs_info); fail_trans_kthread: kthread_stop(fs_info->transaction_kthread); btrfs_cleanup_transaction(fs_info); btrfs_free_fs_roots(fs_info); fail_cleaner: kthread_stop(fs_info->cleaner_kthread); /* * make sure we're done with the btree inode before we stop our * kthreads */ filemap_write_and_wait(fs_info->btree_inode->i_mapping); fail_sysfs: btrfs_sysfs_remove_mounted(fs_info); fail_fsdev_sysfs: btrfs_sysfs_remove_fsid(fs_info->fs_devices); fail_block_groups: btrfs_put_block_group_cache(fs_info); btrfs_free_block_groups(fs_info); fail_tree_roots: free_root_pointers(fs_info, 1); invalidate_inode_pages2(fs_info->btree_inode->i_mapping); fail_sb_buffer: btrfs_stop_all_workers(fs_info); fail_alloc: fail_iput: btrfs_mapping_tree_free(&fs_info->mapping_tree); iput(fs_info->btree_inode); fail_bio_counter: percpu_counter_destroy(&fs_info->bio_counter); fail_delalloc_bytes: percpu_counter_destroy(&fs_info->delalloc_bytes); fail_dirty_metadata_bytes: percpu_counter_destroy(&fs_info->dirty_metadata_bytes); fail_bdi: bdi_destroy(&fs_info->bdi); fail_srcu: cleanup_srcu_struct(&fs_info->subvol_srcu); fail: btrfs_free_stripe_hash_table(fs_info); btrfs_close_devices(fs_info->fs_devices); return err; recovery_tree_root: if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) goto fail_tree_roots; free_root_pointers(fs_info, 0); /* don't use the log in recovery mode, it won't be valid */ btrfs_set_super_log_root(disk_super, 0); /* we can't trust the free space cache either */ btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); ret = next_root_backup(fs_info, fs_info->super_copy, &num_backups_tried, &backup_index); if (ret == -1) goto fail_block_groups; goto retry_root_backup; } static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) { if (uptodate) { set_buffer_uptodate(bh); } else { struct btrfs_device *device = (struct btrfs_device *) bh->b_private; btrfs_warn_rl_in_rcu(device->fs_info, "lost page write due to IO error on %s", rcu_str_deref(device->name)); /* note, we don't set_buffer_write_io_error because we have * our own ways of dealing with the IO errors */ clear_buffer_uptodate(bh); btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); } unlock_buffer(bh); put_bh(bh); } int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, struct buffer_head **bh_ret) { struct buffer_head *bh; struct btrfs_super_block *super; u64 bytenr; bytenr = btrfs_sb_offset(copy_num); if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) return -EINVAL; bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); /* * If we fail to read from the underlying devices, as of now * the best option we have is to mark it EIO. */ if (!bh) return -EIO; super = (struct btrfs_super_block *)bh->b_data; if (btrfs_super_bytenr(super) != bytenr || btrfs_super_magic(super) != BTRFS_MAGIC) { brelse(bh); return -EINVAL; } *bh_ret = bh; return 0; } struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) { struct buffer_head *bh; struct buffer_head *latest = NULL; struct btrfs_super_block *super; int i; u64 transid = 0; int ret = -EINVAL; /* we would like to check all the supers, but that would make * a btrfs mount succeed after a mkfs from a different FS. * So, we need to add a special mount option to scan for * later supers, using BTRFS_SUPER_MIRROR_MAX instead */ for (i = 0; i < 1; i++) { ret = btrfs_read_dev_one_super(bdev, i, &bh); if (ret) continue; super = (struct btrfs_super_block *)bh->b_data; if (!latest || btrfs_super_generation(super) > transid) { brelse(latest); latest = bh; transid = btrfs_super_generation(super); } else { brelse(bh); } } if (!latest) return ERR_PTR(ret); return latest; } /* * this should be called twice, once with wait == 0 and * once with wait == 1. When wait == 0 is done, all the buffer heads * we write are pinned. * * They are released when wait == 1 is done. * max_mirrors must be the same for both runs, and it indicates how * many supers on this one device should be written. * * max_mirrors == 0 means to write them all. */ static int write_dev_supers(struct btrfs_device *device, struct btrfs_super_block *sb, int wait, int max_mirrors) { struct buffer_head *bh; int i; int ret; int errors = 0; u32 crc; u64 bytenr; if (max_mirrors == 0) max_mirrors = BTRFS_SUPER_MIRROR_MAX; for (i = 0; i < max_mirrors; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->commit_total_bytes) break; if (wait) { bh = __find_get_block(device->bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); if (!bh) { errors++; continue; } wait_on_buffer(bh); if (!buffer_uptodate(bh)) errors++; /* drop our reference */ brelse(bh); /* drop the reference from the wait == 0 run */ brelse(bh); continue; } else { btrfs_set_super_bytenr(sb, bytenr); crc = ~(u32)0; crc = btrfs_csum_data((char *)sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, sb->csum); /* * one reference for us, and we leave it for the * caller */ bh = __getblk(device->bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); if (!bh) { btrfs_err(device->fs_info, "couldn't get super buffer head for bytenr %llu", bytenr); errors++; continue; } memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); /* one reference for submit_bh */ get_bh(bh); set_buffer_uptodate(bh); lock_buffer(bh); bh->b_end_io = btrfs_end_buffer_write_sync; bh->b_private = device; } /* * we fua the first super. The others we allow * to go down lazy. */ if (i == 0) ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh); else ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); if (ret) errors++; } return errors < i ? 0 : -1; } /* * endio for the write_dev_flush, this will wake anyone waiting * for the barrier when it is done */ static void btrfs_end_empty_barrier(struct bio *bio) { if (bio->bi_private) complete(bio->bi_private); bio_put(bio); } /* * trigger flushes for one the devices. If you pass wait == 0, the flushes are * sent down. With wait == 1, it waits for the previous flush. * * any device where the flush fails with eopnotsupp are flagged as not-barrier * capable */ static int write_dev_flush(struct btrfs_device *device, int wait) { struct bio *bio; int ret = 0; if (device->nobarriers) return 0; if (wait) { bio = device->flush_bio; if (!bio) return 0; wait_for_completion(&device->flush_wait); if (bio->bi_error) { ret = bio->bi_error; btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); } /* drop the reference from the wait == 0 run */ bio_put(bio); device->flush_bio = NULL; return ret; } /* * one reference for us, and we leave it for the * caller */ device->flush_bio = NULL; bio = btrfs_io_bio_alloc(GFP_NOFS, 0); if (!bio) return -ENOMEM; bio->bi_end_io = btrfs_end_empty_barrier; bio->bi_bdev = device->bdev; bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; init_completion(&device->flush_wait); bio->bi_private = &device->flush_wait; device->flush_bio = bio; bio_get(bio); btrfsic_submit_bio(bio); return 0; } /* * send an empty flush down to each device in parallel, * then wait for them */ static int barrier_all_devices(struct btrfs_fs_info *info) { struct list_head *head; struct btrfs_device *dev; int errors_send = 0; int errors_wait = 0; int ret; /* send down all the barriers */ head = &info->fs_devices->devices; list_for_each_entry_rcu(dev, head, dev_list) { if (dev->missing) continue; if (!dev->bdev) { errors_send++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_flush(dev, 0); if (ret) errors_send++; } /* wait for all the barriers */ list_for_each_entry_rcu(dev, head, dev_list) { if (dev->missing) continue; if (!dev->bdev) { errors_wait++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_flush(dev, 1); if (ret) errors_wait++; } if (errors_send > info->num_tolerated_disk_barrier_failures || errors_wait > info->num_tolerated_disk_barrier_failures) return -EIO; return 0; } int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) { int raid_type; int min_tolerated = INT_MAX; if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) min_tolerated = min(min_tolerated, btrfs_raid_array[BTRFS_RAID_SINGLE]. tolerated_failures); for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { if (raid_type == BTRFS_RAID_SINGLE) continue; if (!(flags & btrfs_raid_group[raid_type])) continue; min_tolerated = min(min_tolerated, btrfs_raid_array[raid_type]. tolerated_failures); } if (min_tolerated == INT_MAX) { pr_warn("BTRFS: unknown raid flag: %llu", flags); min_tolerated = 0; } return min_tolerated; } int btrfs_calc_num_tolerated_disk_barrier_failures( struct btrfs_fs_info *fs_info) { struct btrfs_ioctl_space_info space; struct btrfs_space_info *sinfo; u64 types[] = {BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_BLOCK_GROUP_METADATA, BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; int i; int c; int num_tolerated_disk_barrier_failures = (int)fs_info->fs_devices->num_devices; for (i = 0; i < ARRAY_SIZE(types); i++) { struct btrfs_space_info *tmp; sinfo = NULL; rcu_read_lock(); list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { if (tmp->flags == types[i]) { sinfo = tmp; break; } } rcu_read_unlock(); if (!sinfo) continue; down_read(&sinfo->groups_sem); for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { u64 flags; if (list_empty(&sinfo->block_groups[c])) continue; btrfs_get_block_group_info(&sinfo->block_groups[c], &space); if (space.total_bytes == 0 || space.used_bytes == 0) continue; flags = space.flags; num_tolerated_disk_barrier_failures = min( num_tolerated_disk_barrier_failures, btrfs_get_num_tolerated_disk_barrier_failures( flags)); } up_read(&sinfo->groups_sem); } return num_tolerated_disk_barrier_failures; } int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) { struct list_head *head; struct btrfs_device *dev; struct btrfs_super_block *sb; struct btrfs_dev_item *dev_item; int ret; int do_barriers; int max_errors; int total_errors = 0; u64 flags; do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); backup_super_roots(fs_info); sb = fs_info->super_for_commit; dev_item = &sb->dev_item; mutex_lock(&fs_info->fs_devices->device_list_mutex); head = &fs_info->fs_devices->devices; max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; if (do_barriers) { ret = barrier_all_devices(fs_info); if (ret) { mutex_unlock( &fs_info->fs_devices->device_list_mutex); btrfs_handle_fs_error(fs_info, ret, "errors while submitting device barriers."); return ret; } } list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) { total_errors++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; btrfs_set_stack_device_generation(dev_item, 0); btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->commit_total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->commit_bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); flags = btrfs_super_flags(sb); btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); ret = write_dev_supers(dev, sb, 0, max_mirrors); if (ret) total_errors++; } if (total_errors > max_errors) { btrfs_err(fs_info, "%d errors while writing supers", total_errors); mutex_unlock(&fs_info->fs_devices->device_list_mutex); /* FUA is masked off if unsupported and can't be the reason */ btrfs_handle_fs_error(fs_info, -EIO, "%d errors while writing supers", total_errors); return -EIO; } total_errors = 0; list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) continue; if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_supers(dev, sb, 1, max_mirrors); if (ret) total_errors++; } mutex_unlock(&fs_info->fs_devices->device_list_mutex); if (total_errors > max_errors) { btrfs_handle_fs_error(fs_info, -EIO, "%d errors while writing supers", total_errors); return -EIO; } return 0; } /* Drop a fs root from the radix tree and free it. */ void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { spin_lock(&fs_info->fs_roots_radix_lock); radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); spin_unlock(&fs_info->fs_roots_radix_lock); if (btrfs_root_refs(&root->root_item) == 0) synchronize_srcu(&fs_info->subvol_srcu); if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { btrfs_free_log(NULL, root); if (root->reloc_root) { free_extent_buffer(root->reloc_root->node); free_extent_buffer(root->reloc_root->commit_root); btrfs_put_fs_root(root->reloc_root); root->reloc_root = NULL; } } if (root->free_ino_pinned) __btrfs_remove_free_space_cache(root->free_ino_pinned); if (root->free_ino_ctl) __btrfs_remove_free_space_cache(root->free_ino_ctl); free_fs_root(root); } static void free_fs_root(struct btrfs_root *root) { iput(root->ino_cache_inode); WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); root->orphan_block_rsv = NULL; if (root->anon_dev) free_anon_bdev(root->anon_dev); if (root->subv_writers) btrfs_free_subvolume_writers(root->subv_writers); free_extent_buffer(root->node); free_extent_buffer(root->commit_root); kfree(root->free_ino_ctl); kfree(root->free_ino_pinned); kfree(root->name); btrfs_put_fs_root(root); } void btrfs_free_fs_root(struct btrfs_root *root) { free_fs_root(root); } int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) { u64 root_objectid = 0; struct btrfs_root *gang[8]; int i = 0; int err = 0; unsigned int ret = 0; int index; while (1) { index = srcu_read_lock(&fs_info->subvol_srcu); ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, root_objectid, ARRAY_SIZE(gang)); if (!ret) { srcu_read_unlock(&fs_info->subvol_srcu, index); break; } root_objectid = gang[ret - 1]->root_key.objectid + 1; for (i = 0; i < ret; i++) { /* Avoid to grab roots in dead_roots */ if (btrfs_root_refs(&gang[i]->root_item) == 0) { gang[i] = NULL; continue; } /* grab all the search result for later use */ gang[i] = btrfs_grab_fs_root(gang[i]); } srcu_read_unlock(&fs_info->subvol_srcu, index); for (i = 0; i < ret; i++) { if (!gang[i]) continue; root_objectid = gang[i]->root_key.objectid; err = btrfs_orphan_cleanup(gang[i]); if (err) break; btrfs_put_fs_root(gang[i]); } root_objectid++; } /* release the uncleaned roots due to error */ for (; i < ret; i++) { if (gang[i]) btrfs_put_fs_root(gang[i]); } return err; } int btrfs_commit_super(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_trans_handle *trans; mutex_lock(&fs_info->cleaner_mutex); btrfs_run_delayed_iputs(fs_info); mutex_unlock(&fs_info->cleaner_mutex); wake_up_process(fs_info->cleaner_kthread); /* wait until ongoing cleanup work done */ down_write(&fs_info->cleanup_work_sem); up_write(&fs_info->cleanup_work_sem); trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); return btrfs_commit_transaction(trans); } void close_ctree(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; int ret; set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); /* wait for the qgroup rescan worker to stop */ btrfs_qgroup_wait_for_completion(fs_info, false); /* wait for the uuid_scan task to finish */ down(&fs_info->uuid_tree_rescan_sem); /* avoid complains from lockdep et al., set sem back to initial state */ up(&fs_info->uuid_tree_rescan_sem); /* pause restriper - we want to resume on mount */ btrfs_pause_balance(fs_info); btrfs_dev_replace_suspend_for_unmount(fs_info); btrfs_scrub_cancel(fs_info); /* wait for any defraggers to finish */ wait_event(fs_info->transaction_wait, (atomic_read(&fs_info->defrag_running) == 0)); /* clear out the rbtree of defraggable inodes */ btrfs_cleanup_defrag_inodes(fs_info); cancel_work_sync(&fs_info->async_reclaim_work); if (!(fs_info->sb->s_flags & MS_RDONLY)) { /* * If the cleaner thread is stopped and there are * block groups queued for removal, the deletion will be * skipped when we quit the cleaner thread. */ btrfs_delete_unused_bgs(fs_info); ret = btrfs_commit_super(fs_info); if (ret) btrfs_err(fs_info, "commit super ret %d", ret); } if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) btrfs_error_commit_super(fs_info); kthread_stop(fs_info->transaction_kthread); kthread_stop(fs_info->cleaner_kthread); set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); btrfs_free_qgroup_config(fs_info); if (percpu_counter_sum(&fs_info->delalloc_bytes)) { btrfs_info(fs_info, "at unmount delalloc count %lld", percpu_counter_sum(&fs_info->delalloc_bytes)); } btrfs_sysfs_remove_mounted(fs_info); btrfs_sysfs_remove_fsid(fs_info->fs_devices); btrfs_free_fs_roots(fs_info); btrfs_put_block_group_cache(fs_info); btrfs_free_block_groups(fs_info); /* * we must make sure there is not any read request to * submit after we stopping all workers. */ invalidate_inode_pages2(fs_info->btree_inode->i_mapping); btrfs_stop_all_workers(fs_info); clear_bit(BTRFS_FS_OPEN, &fs_info->flags); free_root_pointers(fs_info, 1); iput(fs_info->btree_inode); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) btrfsic_unmount(fs_info->fs_devices); #endif btrfs_close_devices(fs_info->fs_devices); btrfs_mapping_tree_free(&fs_info->mapping_tree); percpu_counter_destroy(&fs_info->dirty_metadata_bytes); percpu_counter_destroy(&fs_info->delalloc_bytes); percpu_counter_destroy(&fs_info->bio_counter); bdi_destroy(&fs_info->bdi); cleanup_srcu_struct(&fs_info->subvol_srcu); btrfs_free_stripe_hash_table(fs_info); __btrfs_free_block_rsv(root->orphan_block_rsv); root->orphan_block_rsv = NULL; mutex_lock(&fs_info->chunk_mutex); while (!list_empty(&fs_info->pinned_chunks)) { struct extent_map *em; em = list_first_entry(&fs_info->pinned_chunks, struct extent_map, list); list_del_init(&em->list); free_extent_map(em); } mutex_unlock(&fs_info->chunk_mutex); } int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, int atomic) { int ret; struct inode *btree_inode = buf->pages[0]->mapping->host; ret = extent_buffer_uptodate(buf); if (!ret) return ret; ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, parent_transid, atomic); if (ret == -EAGAIN) return ret; return !ret; } void btrfs_mark_buffer_dirty(struct extent_buffer *buf) { struct btrfs_fs_info *fs_info; struct btrfs_root *root; u64 transid = btrfs_header_generation(buf); int was_dirty; #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS /* * This is a fast path so only do this check if we have sanity tests * enabled. Normal people shouldn't be marking dummy buffers as dirty * outside of the sanity tests. */ if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) return; #endif root = BTRFS_I(buf->pages[0]->mapping->host)->root; fs_info = root->fs_info; btrfs_assert_tree_locked(buf); if (transid != fs_info->generation) WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", buf->start, transid, fs_info->generation); was_dirty = set_extent_buffer_dirty(buf); if (!was_dirty) __percpu_counter_add(&fs_info->dirty_metadata_bytes, buf->len, fs_info->dirty_metadata_batch); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { btrfs_print_leaf(fs_info, buf); ASSERT(0); } #endif } static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, int flush_delayed) { /* * looks as though older kernels can get into trouble with * this code, they end up stuck in balance_dirty_pages forever */ int ret; if (current->flags & PF_MEMALLOC) return; if (flush_delayed) btrfs_balance_delayed_items(fs_info); ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, BTRFS_DIRTY_METADATA_THRESH); if (ret > 0) { balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); } } void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) { __btrfs_btree_balance_dirty(fs_info, 1); } void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) { __btrfs_btree_balance_dirty(fs_info, 0); } int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct btrfs_fs_info *fs_info = root->fs_info; return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); } static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, int read_only) { struct btrfs_super_block *sb = fs_info->super_copy; u64 nodesize = btrfs_super_nodesize(sb); u64 sectorsize = btrfs_super_sectorsize(sb); int ret = 0; if (btrfs_super_magic(sb) != BTRFS_MAGIC) { btrfs_err(fs_info, "no valid FS found"); ret = -EINVAL; } if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) btrfs_warn(fs_info, "unrecognized super flag: %llu", btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "tree_root level too big: %d >= %d", btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "chunk_root level too big: %d >= %d", btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { btrfs_err(fs_info, "log_root level too big: %d >= %d", btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); ret = -EINVAL; } /* * Check sectorsize and nodesize first, other check will need it. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. */ if (!is_power_of_2(sectorsize) || sectorsize < 4096 || sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); ret = -EINVAL; } /* Only PAGE SIZE is supported yet */ if (sectorsize != PAGE_SIZE) { btrfs_err(fs_info, "sectorsize %llu not supported yet, only support %lu", sectorsize, PAGE_SIZE); ret = -EINVAL; } if (!is_power_of_2(nodesize) || nodesize < sectorsize || nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { btrfs_err(fs_info, "invalid nodesize %llu", nodesize); ret = -EINVAL; } if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { btrfs_err(fs_info, "invalid leafsize %u, should be %llu", le32_to_cpu(sb->__unused_leafsize), nodesize); ret = -EINVAL; } /* Root alignment check */ if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { btrfs_warn(fs_info, "tree_root block unaligned: %llu", btrfs_super_root(sb)); ret = -EINVAL; } if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { btrfs_warn(fs_info, "chunk_root block unaligned: %llu", btrfs_super_chunk_root(sb)); ret = -EINVAL; } if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { btrfs_warn(fs_info, "log_root block unaligned: %llu", btrfs_super_log_root(sb)); ret = -EINVAL; } if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { btrfs_err(fs_info, "dev_item UUID does not match fsid: %pU != %pU", fs_info->fsid, sb->dev_item.fsid); ret = -EINVAL; } /* * Hint to catch really bogus numbers, bitflips or so, more exact checks are * done later */ if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { btrfs_err(fs_info, "bytes_used is too small %llu", btrfs_super_bytes_used(sb)); ret = -EINVAL; } if (!is_power_of_2(btrfs_super_stripesize(sb))) { btrfs_err(fs_info, "invalid stripesize %u", btrfs_super_stripesize(sb)); ret = -EINVAL; } if (btrfs_super_num_devices(sb) > (1UL << 31)) btrfs_warn(fs_info, "suspicious number of devices: %llu", btrfs_super_num_devices(sb)); if (btrfs_super_num_devices(sb) == 0) { btrfs_err(fs_info, "number of devices is 0"); ret = -EINVAL; } if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { btrfs_err(fs_info, "super offset mismatch %llu != %u", btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); ret = -EINVAL; } /* * Obvious sys_chunk_array corruptions, it must hold at least one key * and one chunk */ if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { btrfs_err(fs_info, "system chunk array too big %u > %u", btrfs_super_sys_array_size(sb), BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); ret = -EINVAL; } if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) + sizeof(struct btrfs_chunk)) { btrfs_err(fs_info, "system chunk array too small %u < %zu", btrfs_super_sys_array_size(sb), sizeof(struct btrfs_disk_key) + sizeof(struct btrfs_chunk)); ret = -EINVAL; } /* * The generation is a global counter, we'll trust it more than the others * but it's still possible that it's the one that's wrong. */ if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) btrfs_warn(fs_info, "suspicious: generation < chunk_root_generation: %llu < %llu", btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) && btrfs_super_cache_generation(sb) != (u64)-1) btrfs_warn(fs_info, "suspicious: generation < cache_generation: %llu < %llu", btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); return ret; } static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) { mutex_lock(&fs_info->cleaner_mutex); btrfs_run_delayed_iputs(fs_info); mutex_unlock(&fs_info->cleaner_mutex); down_write(&fs_info->cleanup_work_sem); up_write(&fs_info->cleanup_work_sem); /* cleanup FS via transaction */ btrfs_cleanup_transaction(fs_info); } static void btrfs_destroy_ordered_extents(struct btrfs_root *root) { struct btrfs_ordered_extent *ordered; spin_lock(&root->ordered_extent_lock); /* * This will just short circuit the ordered completion stuff which will * make sure the ordered extent gets properly cleaned up. */ list_for_each_entry(ordered, &root->ordered_extents, root_extent_list) set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); spin_unlock(&root->ordered_extent_lock); } static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct list_head splice; INIT_LIST_HEAD(&splice); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice)) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); btrfs_destroy_ordered_extents(root); cond_resched(); spin_lock(&fs_info->ordered_root_lock); } spin_unlock(&fs_info->ordered_root_lock); } static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, struct btrfs_fs_info *fs_info) { struct rb_node *node; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_delayed_ref_node *ref; int ret = 0; delayed_refs = &trans->delayed_refs; spin_lock(&delayed_refs->lock); if (atomic_read(&delayed_refs->num_entries) == 0) { spin_unlock(&delayed_refs->lock); btrfs_info(fs_info, "delayed_refs has NO entry"); return ret; } while ((node = rb_first(&delayed_refs->href_root)) != NULL) { struct btrfs_delayed_ref_head *head; struct btrfs_delayed_ref_node *tmp; bool pin_bytes = false; head = rb_entry(node, struct btrfs_delayed_ref_head, href_node); if (!mutex_trylock(&head->mutex)) { atomic_inc(&head->node.refs); spin_unlock(&delayed_refs->lock); mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref(&head->node); spin_lock(&delayed_refs->lock); continue; } spin_lock(&head->lock); list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, list) { ref->in_tree = 0; list_del(&ref->list); if (!list_empty(&ref->add_list)) list_del(&ref->add_list); atomic_dec(&delayed_refs->num_entries); btrfs_put_delayed_ref(ref); } if (head->must_insert_reserved) pin_bytes = true; btrfs_free_delayed_extent_op(head->extent_op); delayed_refs->num_heads--; if (head->processing == 0) delayed_refs->num_heads_ready--; atomic_dec(&delayed_refs->num_entries); head->node.in_tree = 0; rb_erase(&head->href_node, &delayed_refs->href_root); spin_unlock(&head->lock); spin_unlock(&delayed_refs->lock); mutex_unlock(&head->mutex); if (pin_bytes) btrfs_pin_extent(fs_info, head->node.bytenr, head->node.num_bytes, 1); btrfs_put_delayed_ref(&head->node); cond_resched(); spin_lock(&delayed_refs->lock); } spin_unlock(&delayed_refs->lock); return ret; } static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) { struct btrfs_inode *btrfs_inode; struct list_head splice; INIT_LIST_HEAD(&splice); spin_lock(&root->delalloc_lock); list_splice_init(&root->delalloc_inodes, &splice); while (!list_empty(&splice)) { btrfs_inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); list_del_init(&btrfs_inode->delalloc_inodes); clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, &btrfs_inode->runtime_flags); spin_unlock(&root->delalloc_lock); btrfs_invalidate_inodes(btrfs_inode->root); spin_lock(&root->delalloc_lock); } spin_unlock(&root->delalloc_lock); } static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct list_head splice; INIT_LIST_HEAD(&splice); spin_lock(&fs_info->delalloc_root_lock); list_splice_init(&fs_info->delalloc_roots, &splice); while (!list_empty(&splice)) { root = list_first_entry(&splice, struct btrfs_root, delalloc_root); list_del_init(&root->delalloc_root); root = btrfs_grab_fs_root(root); BUG_ON(!root); spin_unlock(&fs_info->delalloc_root_lock); btrfs_destroy_delalloc_inodes(root); btrfs_put_fs_root(root); spin_lock(&fs_info->delalloc_root_lock); } spin_unlock(&fs_info->delalloc_root_lock); } static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, struct extent_io_tree *dirty_pages, int mark) { int ret; struct extent_buffer *eb; u64 start = 0; u64 end; while (1) { ret = find_first_extent_bit(dirty_pages, start, &start, &end, mark, NULL); if (ret) break; clear_extent_bits(dirty_pages, start, end, mark); while (start <= end) { eb = find_extent_buffer(fs_info, start); start += fs_info->nodesize; if (!eb) continue; wait_on_extent_buffer_writeback(eb); if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) clear_extent_buffer_dirty(eb); free_extent_buffer_stale(eb); } } return ret; } static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, struct extent_io_tree *pinned_extents) { struct extent_io_tree *unpin; u64 start; u64 end; int ret; bool loop = true; unpin = pinned_extents; again: while (1) { ret = find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, NULL); if (ret) break; clear_extent_dirty(unpin, start, end); btrfs_error_unpin_extent_range(fs_info, start, end); cond_resched(); } if (loop) { if (unpin == &fs_info->freed_extents[0]) unpin = &fs_info->freed_extents[1]; else unpin = &fs_info->freed_extents[0]; loop = false; goto again; } return 0; } static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) { struct inode *inode; inode = cache->io_ctl.inode; if (inode) { invalidate_inode_pages2(inode->i_mapping); BTRFS_I(inode)->generation = 0; cache->io_ctl.inode = NULL; iput(inode); } btrfs_put_block_group(cache); } void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, struct btrfs_fs_info *fs_info) { struct btrfs_block_group_cache *cache; spin_lock(&cur_trans->dirty_bgs_lock); while (!list_empty(&cur_trans->dirty_bgs)) { cache = list_first_entry(&cur_trans->dirty_bgs, struct btrfs_block_group_cache, dirty_list); if (!cache) { btrfs_err(fs_info, "orphan block group dirty_bgs list"); spin_unlock(&cur_trans->dirty_bgs_lock); return; } if (!list_empty(&cache->io_list)) { spin_unlock(&cur_trans->dirty_bgs_lock); list_del_init(&cache->io_list); btrfs_cleanup_bg_io(cache); spin_lock(&cur_trans->dirty_bgs_lock); } list_del_init(&cache->dirty_list); spin_lock(&cache->lock); cache->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&cache->lock); spin_unlock(&cur_trans->dirty_bgs_lock); btrfs_put_block_group(cache); spin_lock(&cur_trans->dirty_bgs_lock); } spin_unlock(&cur_trans->dirty_bgs_lock); while (!list_empty(&cur_trans->io_bgs)) { cache = list_first_entry(&cur_trans->io_bgs, struct btrfs_block_group_cache, io_list); if (!cache) { btrfs_err(fs_info, "orphan block group on io_bgs list"); return; } list_del_init(&cache->io_list); spin_lock(&cache->lock); cache->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&cache->lock); btrfs_cleanup_bg_io(cache); } } void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, struct btrfs_fs_info *fs_info) { btrfs_cleanup_dirty_bgs(cur_trans, fs_info); ASSERT(list_empty(&cur_trans->dirty_bgs)); ASSERT(list_empty(&cur_trans->io_bgs)); btrfs_destroy_delayed_refs(cur_trans, fs_info); cur_trans->state = TRANS_STATE_COMMIT_START; wake_up(&fs_info->transaction_blocked_wait); cur_trans->state = TRANS_STATE_UNBLOCKED; wake_up(&fs_info->transaction_wait); btrfs_destroy_delayed_inodes(fs_info); btrfs_assert_delayed_root_empty(fs_info); btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, EXTENT_DIRTY); btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); cur_trans->state =TRANS_STATE_COMPLETED; wake_up(&cur_trans->commit_wait); /* memset(cur_trans, 0, sizeof(*cur_trans)); kmem_cache_free(btrfs_transaction_cachep, cur_trans); */ } static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) { struct btrfs_transaction *t; mutex_lock(&fs_info->transaction_kthread_mutex); spin_lock(&fs_info->trans_lock); while (!list_empty(&fs_info->trans_list)) { t = list_first_entry(&fs_info->trans_list, struct btrfs_transaction, list); if (t->state >= TRANS_STATE_COMMIT_START) { atomic_inc(&t->use_count); spin_unlock(&fs_info->trans_lock); btrfs_wait_for_commit(fs_info, t->transid); btrfs_put_transaction(t); spin_lock(&fs_info->trans_lock); continue; } if (t == fs_info->running_transaction) { t->state = TRANS_STATE_COMMIT_DOING; spin_unlock(&fs_info->trans_lock); /* * We wait for 0 num_writers since we don't hold a trans * handle open currently for this transaction. */ wait_event(t->writer_wait, atomic_read(&t->num_writers) == 0); } else { spin_unlock(&fs_info->trans_lock); } btrfs_cleanup_one_transaction(t, fs_info); spin_lock(&fs_info->trans_lock); if (t == fs_info->running_transaction) fs_info->running_transaction = NULL; list_del_init(&t->list); spin_unlock(&fs_info->trans_lock); btrfs_put_transaction(t); trace_btrfs_transaction_commit(fs_info->tree_root); spin_lock(&fs_info->trans_lock); } spin_unlock(&fs_info->trans_lock); btrfs_destroy_all_ordered_extents(fs_info); btrfs_destroy_delayed_inodes(fs_info); btrfs_assert_delayed_root_empty(fs_info); btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); btrfs_destroy_all_delalloc_inodes(fs_info); mutex_unlock(&fs_info->transaction_kthread_mutex); return 0; } static const struct extent_io_ops btree_extent_io_ops = { .readpage_end_io_hook = btree_readpage_end_io_hook, .readpage_io_failed_hook = btree_io_failed_hook, .submit_bio_hook = btree_submit_bio_hook, /* note we're sharing with inode.c for the merge bio hook */ .merge_bio_hook = btrfs_merge_bio_hook, };