/**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2012-2013 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "net_driver.h" #include "ef10_regs.h" #include "io.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "nic.h" #include "workarounds.h" #include "selftest.h" #include "ef10_sriov.h" #include #include #include #include /* Hardware control for EF10 architecture including 'Huntington'. */ #define EFX_EF10_DRVGEN_EV 7 enum { EFX_EF10_TEST = 1, EFX_EF10_REFILL, }; /* The reserved RSS context value */ #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff /* The maximum size of a shared RSS context */ /* TODO: this should really be from the mcdi protocol export */ #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL /* The filter table(s) are managed by firmware and we have write-only * access. When removing filters we must identify them to the * firmware by a 64-bit handle, but this is too wide for Linux kernel * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to * be able to tell in advance whether a requested insertion will * replace an existing filter. Therefore we maintain a software hash * table, which should be at least as large as the hardware hash * table. * * Huntington has a single 8K filter table shared between all filter * types and both ports. */ #define HUNT_FILTER_TBL_ROWS 8192 #define EFX_EF10_FILTER_ID_INVALID 0xffff #define EFX_EF10_FILTER_DEV_UC_MAX 32 #define EFX_EF10_FILTER_DEV_MC_MAX 256 /* VLAN list entry */ struct efx_ef10_vlan { struct list_head list; u16 vid; }; enum efx_ef10_default_filters { EFX_EF10_BCAST, EFX_EF10_UCDEF, EFX_EF10_MCDEF, EFX_EF10_VXLAN4_UCDEF, EFX_EF10_VXLAN4_MCDEF, EFX_EF10_VXLAN6_UCDEF, EFX_EF10_VXLAN6_MCDEF, EFX_EF10_NVGRE4_UCDEF, EFX_EF10_NVGRE4_MCDEF, EFX_EF10_NVGRE6_UCDEF, EFX_EF10_NVGRE6_MCDEF, EFX_EF10_GENEVE4_UCDEF, EFX_EF10_GENEVE4_MCDEF, EFX_EF10_GENEVE6_UCDEF, EFX_EF10_GENEVE6_MCDEF, EFX_EF10_NUM_DEFAULT_FILTERS }; /* Per-VLAN filters information */ struct efx_ef10_filter_vlan { struct list_head list; u16 vid; u16 uc[EFX_EF10_FILTER_DEV_UC_MAX]; u16 mc[EFX_EF10_FILTER_DEV_MC_MAX]; u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS]; }; struct efx_ef10_dev_addr { u8 addr[ETH_ALEN]; }; struct efx_ef10_filter_table { /* The MCDI match masks supported by this fw & hw, in order of priority */ u32 rx_match_mcdi_flags[ MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2]; unsigned int rx_match_count; struct { unsigned long spec; /* pointer to spec plus flag bits */ /* BUSY flag indicates that an update is in progress. AUTO_OLD is * used to mark and sweep MAC filters for the device address lists. */ #define EFX_EF10_FILTER_FLAG_BUSY 1UL #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL #define EFX_EF10_FILTER_FLAGS 3UL u64 handle; /* firmware handle */ } *entry; wait_queue_head_t waitq; /* Shadow of net_device address lists, guarded by mac_lock */ struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX]; struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX]; int dev_uc_count; int dev_mc_count; bool uc_promisc; bool mc_promisc; /* Whether in multicast promiscuous mode when last changed */ bool mc_promisc_last; bool vlan_filter; struct list_head vlan_list; }; /* An arbitrary search limit for the software hash table */ #define EFX_EF10_FILTER_SEARCH_LIMIT 200 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx); static void efx_ef10_filter_table_remove(struct efx_nic *efx); static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid); static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan); static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid); static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) { efx_dword_t reg; efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; } static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) { int bar; bar = efx->type->mem_bar; return resource_size(&efx->pci_dev->resource[bar]); } static bool efx_ef10_is_vf(struct efx_nic *efx) { return efx->type->is_vf; } static int efx_ef10_get_pf_index(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) return -EIO; nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF); return 0; } #ifdef CONFIG_SFC_SRIOV static int efx_ef10_get_vf_index(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) return -EIO; nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF); return 0; } #endif static int efx_ef10_init_datapath_caps(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) { netif_err(efx, drv, efx->net_dev, "unable to read datapath firmware capabilities\n"); return -EIO; } nic_data->datapath_caps = MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) { nic_data->datapath_caps2 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V2_OUT_FLAGS2); nic_data->piobuf_size = MCDI_WORD(outbuf, GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF); } else { nic_data->datapath_caps2 = 0; nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE; } /* record the DPCPU firmware IDs to determine VEB vswitching support. */ nic_data->rx_dpcpu_fw_id = MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); nic_data->tx_dpcpu_fw_id = MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { netif_err(efx, probe, efx->net_dev, "current firmware does not support an RX prefix\n"); return -ENODEV; } return 0; } static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, outbuf, sizeof(outbuf), NULL); if (rc) return rc; rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); return rc > 0 ? rc : -ERANGE; } static int efx_ef10_get_timer_workarounds(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int implemented; unsigned int enabled; int rc; nic_data->workaround_35388 = false; nic_data->workaround_61265 = false; rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); if (rc == -ENOSYS) { /* Firmware without GET_WORKAROUNDS - not a problem. */ rc = 0; } else if (rc == 0) { /* Bug61265 workaround is always enabled if implemented. */ if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265) nic_data->workaround_61265 = true; if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { nic_data->workaround_35388 = true; } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { /* Workaround is implemented but not enabled. * Try to enable it. */ rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL); if (rc == 0) nic_data->workaround_35388 = true; /* If we failed to set the workaround just carry on. */ rc = 0; } } netif_dbg(efx, probe, efx->net_dev, "workaround for bug 35388 is %sabled\n", nic_data->workaround_35388 ? "en" : "dis"); netif_dbg(efx, probe, efx->net_dev, "workaround for bug 61265 is %sabled\n", nic_data->workaround_61265 ? "en" : "dis"); return rc; } static void efx_ef10_process_timer_config(struct efx_nic *efx, const efx_dword_t *data) { unsigned int max_count; if (EFX_EF10_WORKAROUND_61265(efx)) { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS); efx->timer_max_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS); } else if (EFX_EF10_WORKAROUND_35388(efx)) { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT); max_count = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT); efx->timer_max_ns = max_count * efx->timer_quantum_ns; } else { efx->timer_quantum_ns = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT); max_count = MCDI_DWORD(data, GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT); efx->timer_max_ns = max_count * efx->timer_quantum_ns; } netif_dbg(efx, probe, efx->net_dev, "got timer properties from MC: quantum %u ns; max %u ns\n", efx->timer_quantum_ns, efx->timer_max_ns); } static int efx_ef10_get_timer_config(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN); int rc; rc = efx_ef10_get_timer_workarounds(efx); if (rc) return rc; rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0, outbuf, sizeof(outbuf), NULL); if (rc == 0) { efx_ef10_process_timer_config(efx, outbuf); } else if (rc == -ENOSYS || rc == -EPERM) { /* Not available - fall back to Huntington defaults. */ unsigned int quantum; rc = efx_ef10_get_sysclk_freq(efx); if (rc < 0) return rc; quantum = 1536000 / rc; /* 1536 cycles */ efx->timer_quantum_ns = quantum; efx->timer_max_ns = efx->type->timer_period_max * quantum; rc = 0; } else { efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN, NULL, 0, rc); } return rc; } static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) return -EIO; ether_addr_copy(mac_address, MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); return 0; } static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); size_t outlen; int num_addrs, rc; MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) return -EIO; num_addrs = MCDI_DWORD(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT); WARN_ON(num_addrs != 1); ether_addr_copy(mac_address, MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR)); return 0; } static ssize_t efx_ef10_show_link_control_flag(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", ((efx->mcdi->fn_flags) & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) ? 1 : 0); } static ssize_t efx_ef10_show_primary_flag(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", ((efx->mcdi->fn_flags) & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) ? 1 : 0); } static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); list_for_each_entry(vlan, &nic_data->vlan_list, list) { if (vlan->vid == vid) return vlan; } return NULL; } static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; int rc; mutex_lock(&nic_data->vlan_lock); vlan = efx_ef10_find_vlan(efx, vid); if (vlan) { /* We add VID 0 on init. 8021q adds it on module init * for all interfaces with VLAN filtring feature. */ if (vid == 0) goto done_unlock; netif_warn(efx, drv, efx->net_dev, "VLAN %u already added\n", vid); rc = -EALREADY; goto fail_exist; } rc = -ENOMEM; vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); if (!vlan) goto fail_alloc; vlan->vid = vid; list_add_tail(&vlan->list, &nic_data->vlan_list); if (efx->filter_state) { mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); rc = efx_ef10_filter_add_vlan(efx, vlan->vid); up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); if (rc) goto fail_filter_add_vlan; } done_unlock: mutex_unlock(&nic_data->vlan_lock); return 0; fail_filter_add_vlan: list_del(&vlan->list); kfree(vlan); fail_alloc: fail_exist: mutex_unlock(&nic_data->vlan_lock); return rc; } static void efx_ef10_del_vlan_internal(struct efx_nic *efx, struct efx_ef10_vlan *vlan) { struct efx_ef10_nic_data *nic_data = efx->nic_data; WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); if (efx->filter_state) { down_write(&efx->filter_sem); efx_ef10_filter_del_vlan(efx, vlan->vid); up_write(&efx->filter_sem); } list_del(&vlan->list); kfree(vlan); } static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan; int rc = 0; /* 8021q removes VID 0 on module unload for all interfaces * with VLAN filtering feature. We need to keep it to receive * untagged traffic. */ if (vid == 0) return 0; mutex_lock(&nic_data->vlan_lock); vlan = efx_ef10_find_vlan(efx, vid); if (!vlan) { netif_err(efx, drv, efx->net_dev, "VLAN %u to be deleted not found\n", vid); rc = -ENOENT; } else { efx_ef10_del_vlan_internal(efx, vlan); } mutex_unlock(&nic_data->vlan_lock); return rc; } static void efx_ef10_cleanup_vlans(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_ef10_vlan *vlan, *next_vlan; mutex_lock(&nic_data->vlan_lock); list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list) efx_ef10_del_vlan_internal(efx, vlan); mutex_unlock(&nic_data->vlan_lock); } static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag, NULL); static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL); static int efx_ef10_probe(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data; int i, rc; /* We can have one VI for each 8K region. However, until we * use TX option descriptors we need two TX queues per channel. */ efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS, efx_ef10_mem_map_size(efx) / (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES)); efx->max_tx_channels = efx->max_channels; if (WARN_ON(efx->max_channels == 0)) return -EIO; nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; /* we assume later that we can copy from this buffer in dwords */ BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); if (rc) goto fail1; /* Get the MC's warm boot count. In case it's rebooting right * now, be prepared to retry. */ i = 0; for (;;) { rc = efx_ef10_get_warm_boot_count(efx); if (rc >= 0) break; if (++i == 5) goto fail2; ssleep(1); } nic_data->warm_boot_count = rc; nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; nic_data->vport_id = EVB_PORT_ID_ASSIGNED; /* In case we're recovering from a crash (kexec), we want to * cancel any outstanding request by the previous user of this * function. We send a special message using the least * significant bits of the 'high' (doorbell) register. */ _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); rc = efx_mcdi_init(efx); if (rc) goto fail2; /* Reset (most) configuration for this function */ rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); if (rc) goto fail3; /* Enable event logging */ rc = efx_mcdi_log_ctrl(efx, true, false, 0); if (rc) goto fail3; rc = device_create_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); if (rc) goto fail3; rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag); if (rc) goto fail4; rc = efx_ef10_get_pf_index(efx); if (rc) goto fail5; rc = efx_ef10_init_datapath_caps(efx); if (rc < 0) goto fail5; efx->rx_packet_len_offset = ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; rc = efx_mcdi_port_get_number(efx); if (rc < 0) goto fail5; efx->port_num = rc; rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr); if (rc) goto fail5; rc = efx_ef10_get_timer_config(efx); if (rc < 0) goto fail5; rc = efx_mcdi_mon_probe(efx); if (rc && rc != -EPERM) goto fail5; efx_ptp_probe(efx, NULL); #ifdef CONFIG_SFC_SRIOV if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) { struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); efx_pf->type->get_mac_address(efx_pf, nic_data->port_id); } else #endif ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr); INIT_LIST_HEAD(&nic_data->vlan_list); mutex_init(&nic_data->vlan_lock); /* Add unspecified VID to support VLAN filtering being disabled */ rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC); if (rc) goto fail_add_vid_unspec; /* If VLAN filtering is enabled, we need VID 0 to get untagged * traffic. It is added automatically if 8021q module is loaded, * but we can't rely on it since module may be not loaded. */ rc = efx_ef10_add_vlan(efx, 0); if (rc) goto fail_add_vid_0; return 0; fail_add_vid_0: efx_ef10_cleanup_vlans(efx); fail_add_vid_unspec: mutex_destroy(&nic_data->vlan_lock); efx_ptp_remove(efx); efx_mcdi_mon_remove(efx); fail5: device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); fail4: device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); fail3: efx_mcdi_fini(efx); fail2: efx_nic_free_buffer(efx, &nic_data->mcdi_buf); fail1: kfree(nic_data); efx->nic_data = NULL; return rc; } static int efx_ef10_free_vis(struct efx_nic *efx) { MCDI_DECLARE_BUF_ERR(outbuf); size_t outlen; int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0, outbuf, sizeof(outbuf), &outlen); /* -EALREADY means nothing to free, so ignore */ if (rc == -EALREADY) rc = 0; if (rc) efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen, rc); return rc; } #ifdef EFX_USE_PIO static void efx_ef10_free_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); unsigned int i; int rc; BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); for (i = 0; i < nic_data->n_piobufs; i++) { MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[i]); rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), NULL, 0, NULL); WARN_ON(rc); } nic_data->n_piobufs = 0; } static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); unsigned int i; size_t outlen; int rc = 0; BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); for (i = 0; i < n; i++) { rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) { /* Don't display the MC error if we didn't have space * for a VF. */ if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC)) efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF, 0, outbuf, outlen, rc); break; } if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = -EIO; break; } nic_data->piobuf_handle[i] = MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); netif_dbg(efx, probe, efx->net_dev, "allocated PIO buffer %u handle %x\n", i, nic_data->piobuf_handle[i]); } nic_data->n_piobufs = i; if (rc) efx_ef10_free_piobufs(efx); return rc; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; _MCDI_DECLARE_BUF(inbuf, max(MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_IN_LEN)); struct efx_channel *channel; struct efx_tx_queue *tx_queue; unsigned int offset, index; int rc; BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); memset(inbuf, 0, sizeof(inbuf)); /* Link a buffer to each VI in the write-combining mapping */ for (index = 0; index < nic_data->n_piobufs; ++index) { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", nic_data->pio_write_vi_base + index, index, rc); goto fail; } netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u\n", nic_data->pio_write_vi_base + index, index); } /* Link a buffer to each TX queue */ efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) { /* We assign the PIO buffers to queues in * reverse order to allow for the following * special case. */ offset = ((efx->tx_channel_offset + efx->n_tx_channels - tx_queue->channel->channel - 1) * efx_piobuf_size); index = offset / nic_data->piobuf_size; offset = offset % nic_data->piobuf_size; /* When the host page size is 4K, the first * host page in the WC mapping may be within * the same VI page as the last TX queue. We * can only link one buffer to each VI. */ if (tx_queue->queue == nic_data->pio_write_vi_base) { BUG_ON(index != 0); rc = 0; } else { MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, nic_data->piobuf_handle[index]); MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, tx_queue->queue); rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, NULL, 0, NULL); } if (rc) { /* This is non-fatal; the TX path just * won't use PIO for this queue */ netif_err(efx, drv, efx->net_dev, "failed to link VI %u to PIO buffer %u (%d)\n", tx_queue->queue, index, rc); tx_queue->piobuf = NULL; } else { tx_queue->piobuf = nic_data->pio_write_base + index * EFX_VI_PAGE_SIZE + offset; tx_queue->piobuf_offset = offset; netif_dbg(efx, probe, efx->net_dev, "linked VI %u to PIO buffer %u offset %x addr %p\n", tx_queue->queue, index, tx_queue->piobuf_offset, tx_queue->piobuf); } } } return 0; fail: while (index--) { MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, nic_data->pio_write_vi_base + index); efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, NULL, 0, NULL); } return rc; } static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; /* All our existing PIO buffers went away */ efx_for_each_channel(channel, efx) efx_for_each_channel_tx_queue(tx_queue, channel) tx_queue->piobuf = NULL; } #else /* !EFX_USE_PIO */ static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) { return n == 0 ? 0 : -ENOBUFS; } static int efx_ef10_link_piobufs(struct efx_nic *efx) { return 0; } static void efx_ef10_free_piobufs(struct efx_nic *efx) { } static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) { } #endif /* EFX_USE_PIO */ static void efx_ef10_remove(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; #ifdef CONFIG_SFC_SRIOV struct efx_ef10_nic_data *nic_data_pf; struct pci_dev *pci_dev_pf; struct efx_nic *efx_pf; struct ef10_vf *vf; if (efx->pci_dev->is_virtfn) { pci_dev_pf = efx->pci_dev->physfn; if (pci_dev_pf) { efx_pf = pci_get_drvdata(pci_dev_pf); nic_data_pf = efx_pf->nic_data; vf = nic_data_pf->vf + nic_data->vf_index; vf->efx = NULL; } else netif_info(efx, drv, efx->net_dev, "Could not get the PF id from VF\n"); } #endif efx_ef10_cleanup_vlans(efx); mutex_destroy(&nic_data->vlan_lock); efx_ptp_remove(efx); efx_mcdi_mon_remove(efx); efx_ef10_rx_free_indir_table(efx); if (nic_data->wc_membase) iounmap(nic_data->wc_membase); rc = efx_ef10_free_vis(efx); WARN_ON(rc != 0); if (!nic_data->must_restore_piobufs) efx_ef10_free_piobufs(efx); device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); efx_mcdi_fini(efx); efx_nic_free_buffer(efx, &nic_data->mcdi_buf); kfree(nic_data); } static int efx_ef10_probe_pf(struct efx_nic *efx) { return efx_ef10_probe(efx); } int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, u32 *port_flags, u32 *vadaptor_flags, unsigned int *vlan_tags) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN); size_t outlen; int rc; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) { MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID, port_id); rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < sizeof(outbuf)) { rc = -EIO; return rc; } } if (port_flags) *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS); if (vadaptor_flags) *vadaptor_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS); if (vlan_tags) *vlan_tags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS); return 0; } int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN); MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN); MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vport_add_mac(struct efx_nic *efx, unsigned int port_id, u8 *mac) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN); MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id); ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac); return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf, sizeof(inbuf), NULL, 0, NULL); } int efx_ef10_vport_del_mac(struct efx_nic *efx, unsigned int port_id, u8 *mac) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN); MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id); ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac); return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf, sizeof(inbuf), NULL, 0, NULL); } #ifdef CONFIG_SFC_SRIOV static int efx_ef10_probe_vf(struct efx_nic *efx) { int rc; struct pci_dev *pci_dev_pf; /* If the parent PF has no VF data structure, it doesn't know about this * VF so fail probe. The VF needs to be re-created. This can happen * if the PF driver is unloaded while the VF is assigned to a guest. */ pci_dev_pf = efx->pci_dev->physfn; if (pci_dev_pf) { struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data; if (!nic_data_pf->vf) { netif_info(efx, drv, efx->net_dev, "The VF cannot link to its parent PF; " "please destroy and re-create the VF\n"); return -EBUSY; } } rc = efx_ef10_probe(efx); if (rc) return rc; rc = efx_ef10_get_vf_index(efx); if (rc) goto fail; if (efx->pci_dev->is_virtfn) { if (efx->pci_dev->physfn) { struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn); struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data; struct efx_ef10_nic_data *nic_data = efx->nic_data; nic_data_p->vf[nic_data->vf_index].efx = efx; nic_data_p->vf[nic_data->vf_index].pci_dev = efx->pci_dev; } else netif_info(efx, drv, efx->net_dev, "Could not get the PF id from VF\n"); } return 0; fail: efx_ef10_remove(efx); return rc; } #else static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused))) { return 0; } #endif static int efx_ef10_alloc_vis(struct efx_nic *efx, unsigned int min_vis, unsigned int max_vis) { MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis); MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis); rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN) return -EIO; netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n", MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE)); nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE); nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT); return 0; } /* Note that the failure path of this function does not free * resources, as this will be done by efx_ef10_remove(). */ static int efx_ef10_dimension_resources(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int uc_mem_map_size, wc_mem_map_size; unsigned int min_vis = max(EFX_TXQ_TYPES, efx_separate_tx_channels ? 2 : 1); unsigned int channel_vis, pio_write_vi_base, max_vis; void __iomem *membase; int rc; channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); #ifdef EFX_USE_PIO /* Try to allocate PIO buffers if wanted and if the full * number of PIO buffers would be sufficient to allocate one * copy-buffer per TX channel. Failure is non-fatal, as there * are only a small number of PIO buffers shared between all * functions of the controller. */ if (efx_piobuf_size != 0 && nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= efx->n_tx_channels) { unsigned int n_piobufs = DIV_ROUND_UP(efx->n_tx_channels, nic_data->piobuf_size / efx_piobuf_size); rc = efx_ef10_alloc_piobufs(efx, n_piobufs); if (rc == -ENOSPC) netif_dbg(efx, probe, efx->net_dev, "out of PIO buffers; cannot allocate more\n"); else if (rc == -EPERM) netif_dbg(efx, probe, efx->net_dev, "not permitted to allocate PIO buffers\n"); else if (rc) netif_err(efx, probe, efx->net_dev, "failed to allocate PIO buffers (%d)\n", rc); else netif_dbg(efx, probe, efx->net_dev, "allocated %u PIO buffers\n", n_piobufs); } #else nic_data->n_piobufs = 0; #endif /* PIO buffers should be mapped with write-combining enabled, * and we want to make single UC and WC mappings rather than * several of each (in fact that's the only option if host * page size is >4K). So we may allocate some extra VIs just * for writing PIO buffers through. * * The UC mapping contains (channel_vis - 1) complete VIs and the * first half of the next VI. Then the WC mapping begins with * the second half of this last VI. */ uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF); if (nic_data->n_piobufs) { /* pio_write_vi_base rounds down to give the number of complete * VIs inside the UC mapping. */ pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE; wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + nic_data->n_piobufs) * EFX_VI_PAGE_SIZE) - uc_mem_map_size); max_vis = pio_write_vi_base + nic_data->n_piobufs; } else { pio_write_vi_base = 0; wc_mem_map_size = 0; max_vis = channel_vis; } /* In case the last attached driver failed to free VIs, do it now */ rc = efx_ef10_free_vis(efx); if (rc != 0) return rc; rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); if (rc != 0) return rc; if (nic_data->n_allocated_vis < channel_vis) { netif_info(efx, drv, efx->net_dev, "Could not allocate enough VIs to satisfy RSS" " requirements. Performance may not be optimal.\n"); /* We didn't get the VIs to populate our channels. * We could keep what we got but then we'd have more * interrupts than we need. * Instead calculate new max_channels and restart */ efx->max_channels = nic_data->n_allocated_vis; efx->max_tx_channels = nic_data->n_allocated_vis / EFX_TXQ_TYPES; efx_ef10_free_vis(efx); return -EAGAIN; } /* If we didn't get enough VIs to map all the PIO buffers, free the * PIO buffers */ if (nic_data->n_piobufs && nic_data->n_allocated_vis < pio_write_vi_base + nic_data->n_piobufs) { netif_dbg(efx, probe, efx->net_dev, "%u VIs are not sufficient to map %u PIO buffers\n", nic_data->n_allocated_vis, nic_data->n_piobufs); efx_ef10_free_piobufs(efx); } /* Shrink the original UC mapping of the memory BAR */ membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size); if (!membase) { netif_err(efx, probe, efx->net_dev, "could not shrink memory BAR to %x\n", uc_mem_map_size); return -ENOMEM; } iounmap(efx->membase); efx->membase = membase; /* Set up the WC mapping if needed */ if (wc_mem_map_size) { nic_data->wc_membase = ioremap_wc(efx->membase_phys + uc_mem_map_size, wc_mem_map_size); if (!nic_data->wc_membase) { netif_err(efx, probe, efx->net_dev, "could not allocate WC mapping of size %x\n", wc_mem_map_size); return -ENOMEM; } nic_data->pio_write_vi_base = pio_write_vi_base; nic_data->pio_write_base = nic_data->wc_membase + (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF - uc_mem_map_size); rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", &efx->membase_phys, efx->membase, uc_mem_map_size, nic_data->wc_membase, wc_mem_map_size); return 0; } static int efx_ef10_init_nic(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; if (nic_data->must_check_datapath_caps) { rc = efx_ef10_init_datapath_caps(efx); if (rc) return rc; nic_data->must_check_datapath_caps = false; } if (nic_data->must_realloc_vis) { /* We cannot let the number of VIs change now */ rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, nic_data->n_allocated_vis); if (rc) return rc; nic_data->must_realloc_vis = false; } if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); if (rc == 0) { rc = efx_ef10_link_piobufs(efx); if (rc) efx_ef10_free_piobufs(efx); } /* Log an error on failure, but this is non-fatal. * Permission errors are less important - we've presumably * had the PIO buffer licence removed. */ if (rc == -EPERM) netif_dbg(efx, drv, efx->net_dev, "not permitted to restore PIO buffers\n"); else if (rc) netif_err(efx, drv, efx->net_dev, "failed to restore PIO buffers (%d)\n", rc); nic_data->must_restore_piobufs = false; } /* don't fail init if RSS setup doesn't work */ rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL); efx->rss_active = (rc == 0); return 0; } static void efx_ef10_reset_mc_allocations(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; #ifdef CONFIG_SFC_SRIOV unsigned int i; #endif /* All our allocations have been reset */ nic_data->must_realloc_vis = true; nic_data->must_restore_filters = true; nic_data->must_restore_piobufs = true; efx_ef10_forget_old_piobufs(efx); nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; /* Driver-created vswitches and vports must be re-created */ nic_data->must_probe_vswitching = true; nic_data->vport_id = EVB_PORT_ID_ASSIGNED; #ifdef CONFIG_SFC_SRIOV if (nic_data->vf) for (i = 0; i < efx->vf_count; i++) nic_data->vf[i].vport_id = 0; #endif } static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason) { if (reason == RESET_TYPE_MC_FAILURE) return RESET_TYPE_DATAPATH; return efx_mcdi_map_reset_reason(reason); } static int efx_ef10_map_reset_flags(u32 *flags) { enum { EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT), EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | ETH_RESET_OFFLOAD | ETH_RESET_MAC | ETH_RESET_PHY | ETH_RESET_MGMT) << ETH_RESET_SHARED_SHIFT) }; /* We assume for now that our PCI function is permitted to * reset everything. */ if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { *flags &= ~EF10_RESET_MC; return RESET_TYPE_WORLD; } if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { *flags &= ~EF10_RESET_PORT; return RESET_TYPE_ALL; } /* no invisible reset implemented */ return -EINVAL; } static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) { int rc = efx_mcdi_reset(efx, reset_type); /* Unprivileged functions return -EPERM, but need to return success * here so that the datapath is brought back up. */ if (reset_type == RESET_TYPE_WORLD && rc == -EPERM) rc = 0; /* If it was a port reset, trigger reallocation of MC resources. * Note that on an MC reset nothing needs to be done now because we'll * detect the MC reset later and handle it then. * For an FLR, we never get an MC reset event, but the MC has reset all * resources assigned to us, so we have to trigger reallocation now. */ if ((reset_type == RESET_TYPE_ALL || reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) efx_ef10_reset_mc_allocations(efx); return rc; } #define EF10_DMA_STAT(ext_name, mcdi_name) \ [EF10_STAT_ ## ext_name] = \ { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ [EF10_STAT_ ## int_name] = \ { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } #define EF10_OTHER_STAT(ext_name) \ [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } #define GENERIC_SW_STAT(ext_name) \ [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { EF10_DMA_STAT(port_tx_bytes, TX_BYTES), EF10_DMA_STAT(port_tx_packets, TX_PKTS), EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS), EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), EF10_DMA_STAT(port_tx_64, TX_64_PKTS), EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(port_rx_bytes, RX_BYTES), EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES), EF10_OTHER_STAT(port_rx_good_bytes), EF10_OTHER_STAT(port_rx_bad_bytes), EF10_DMA_STAT(port_rx_packets, RX_PKTS), EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS), EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS), EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), EF10_DMA_STAT(port_rx_64, RX_64_PKTS), EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), GENERIC_SW_STAT(rx_nodesc_trunc), GENERIC_SW_STAT(rx_noskb_drops), EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB), EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB), EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING), EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS), EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS), EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS), EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS), EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES), EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS), EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES), EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS), EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES), EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS), EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES), EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW), EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS), EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES), EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS), EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES), EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS), EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES), EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS), EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES), EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW), }; #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \ (1ULL << EF10_STAT_port_tx_packets) | \ (1ULL << EF10_STAT_port_tx_pause) | \ (1ULL << EF10_STAT_port_tx_unicast) | \ (1ULL << EF10_STAT_port_tx_multicast) | \ (1ULL << EF10_STAT_port_tx_broadcast) | \ (1ULL << EF10_STAT_port_rx_bytes) | \ (1ULL << \ EF10_STAT_port_rx_bytes_minus_good_bytes) | \ (1ULL << EF10_STAT_port_rx_good_bytes) | \ (1ULL << EF10_STAT_port_rx_bad_bytes) | \ (1ULL << EF10_STAT_port_rx_packets) | \ (1ULL << EF10_STAT_port_rx_good) | \ (1ULL << EF10_STAT_port_rx_bad) | \ (1ULL << EF10_STAT_port_rx_pause) | \ (1ULL << EF10_STAT_port_rx_control) | \ (1ULL << EF10_STAT_port_rx_unicast) | \ (1ULL << EF10_STAT_port_rx_multicast) | \ (1ULL << EF10_STAT_port_rx_broadcast) | \ (1ULL << EF10_STAT_port_rx_lt64) | \ (1ULL << EF10_STAT_port_rx_64) | \ (1ULL << EF10_STAT_port_rx_65_to_127) | \ (1ULL << EF10_STAT_port_rx_128_to_255) | \ (1ULL << EF10_STAT_port_rx_256_to_511) | \ (1ULL << EF10_STAT_port_rx_512_to_1023) |\ (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\ (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\ (1ULL << EF10_STAT_port_rx_gtjumbo) | \ (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\ (1ULL << EF10_STAT_port_rx_overflow) | \ (1ULL << EF10_STAT_port_rx_nodesc_drops) |\ (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ (1ULL << GENERIC_STAT_rx_noskb_drops)) /* On 7000 series NICs, these statistics are only provided by the 10G MAC. * For a 10G/40G switchable port we do not expose these because they might * not include all the packets they should. * On 8000 series NICs these statistics are always provided. */ #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \ (1ULL << EF10_STAT_port_tx_lt64) | \ (1ULL << EF10_STAT_port_tx_64) | \ (1ULL << EF10_STAT_port_tx_65_to_127) |\ (1ULL << EF10_STAT_port_tx_128_to_255) |\ (1ULL << EF10_STAT_port_tx_256_to_511) |\ (1ULL << EF10_STAT_port_tx_512_to_1023) |\ (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\ (1ULL << EF10_STAT_port_tx_15xx_to_jumbo)) /* These statistics are only provided by the 40G MAC. For a 10G/40G * switchable port we do expose these because the errors will otherwise * be silent. */ #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\ (1ULL << EF10_STAT_port_rx_length_error)) /* These statistics are only provided if the firmware supports the * capability PM_AND_RXDP_COUNTERS. */ #define HUNT_PM_AND_RXDP_STAT_MASK ( \ (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \ (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \ (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \ (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \ (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \ (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \ (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \ (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \ (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \ (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \ (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \ (1ULL << EF10_STAT_port_rx_dp_hlb_wait)) static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) { u64 raw_mask = HUNT_COMMON_STAT_MASK; u32 port_caps = efx_mcdi_phy_get_caps(efx); struct efx_ef10_nic_data *nic_data = efx->nic_data; if (!(efx->mcdi->fn_flags & 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) return 0; if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) { raw_mask |= HUNT_40G_EXTRA_STAT_MASK; /* 8000 series have everything even at 40G */ if (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN)) raw_mask |= HUNT_10G_ONLY_STAT_MASK; } else { raw_mask |= HUNT_10G_ONLY_STAT_MASK; } if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; return raw_mask; } static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 raw_mask[2]; raw_mask[0] = efx_ef10_raw_stat_mask(efx); /* Only show vadaptor stats when EVB capability is present */ if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) { raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1); raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1; } else { raw_mask[1] = 0; } #if BITS_PER_LONG == 64 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2); mask[0] = raw_mask[0]; mask[1] = raw_mask[1]; #else BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3); mask[0] = raw_mask[0] & 0xffffffff; mask[1] = raw_mask[0] >> 32; mask[2] = raw_mask[1] & 0xffffffff; #endif } static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); efx_ef10_get_stat_mask(efx, mask); return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, names); } static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { DECLARE_BITMAP(mask, EF10_STAT_COUNT); struct efx_ef10_nic_data *nic_data = efx->nic_data; u64 *stats = nic_data->stats; size_t stats_count = 0, index; efx_ef10_get_stat_mask(efx, mask); if (full_stats) { for_each_set_bit(index, mask, EF10_STAT_COUNT) { if (efx_ef10_stat_desc[index].name) { *full_stats++ = stats[index]; ++stats_count; } } } if (!core_stats) return stats_count; if (nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) { /* Use vadaptor stats. */ core_stats->rx_packets = stats[EF10_STAT_rx_unicast] + stats[EF10_STAT_rx_multicast] + stats[EF10_STAT_rx_broadcast]; core_stats->tx_packets = stats[EF10_STAT_tx_unicast] + stats[EF10_STAT_tx_multicast] + stats[EF10_STAT_tx_broadcast]; core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] + stats[EF10_STAT_rx_multicast_bytes] + stats[EF10_STAT_rx_broadcast_bytes]; core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] + stats[EF10_STAT_tx_multicast_bytes] + stats[EF10_STAT_tx_broadcast_bytes]; core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF10_STAT_rx_multicast]; core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; core_stats->rx_errors = core_stats->rx_crc_errors; core_stats->tx_errors = stats[EF10_STAT_tx_bad]; } else { /* Use port stats. */ core_stats->rx_packets = stats[EF10_STAT_port_rx_packets]; core_stats->tx_packets = stats[EF10_STAT_port_tx_packets]; core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes]; core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes]; core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] + stats[GENERIC_STAT_rx_nodesc_trunc] + stats[GENERIC_STAT_rx_noskb_drops]; core_stats->multicast = stats[EF10_STAT_port_rx_multicast]; core_stats->rx_length_errors = stats[EF10_STAT_port_rx_gtjumbo] + stats[EF10_STAT_port_rx_length_error]; core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad]; core_stats->rx_frame_errors = stats[EF10_STAT_port_rx_align_error]; core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow]; core_stats->rx_errors = (core_stats->rx_length_errors + core_stats->rx_crc_errors + core_stats->rx_frame_errors); } return stats_count; } static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF10_STAT_COUNT); __le64 generation_start, generation_end; u64 *stats = nic_data->stats; __le64 *dma_stats; efx_ef10_get_stat_mask(efx, mask); dma_stats = efx->stats_buffer.addr; generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) return 0; rmb(); efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, stats, efx->stats_buffer.addr, false); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end != generation_start) return -EAGAIN; /* Update derived statistics */ efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_port_rx_nodesc_drops]); stats[EF10_STAT_port_rx_good_bytes] = stats[EF10_STAT_port_rx_bytes] - stats[EF10_STAT_port_rx_bytes_minus_good_bytes]; efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes], stats[EF10_STAT_port_rx_bytes_minus_good_bytes]); efx_update_sw_stats(efx, stats); return 0; } static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { int retry; /* If we're unlucky enough to read statistics during the DMA, wait * up to 10ms for it to finish (typically takes <500us) */ for (retry = 0; retry < 100; ++retry) { if (efx_ef10_try_update_nic_stats_pf(efx) == 0) break; udelay(100); } return efx_ef10_update_stats_common(efx, full_stats, core_stats); } static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; DECLARE_BITMAP(mask, EF10_STAT_COUNT); __le64 generation_start, generation_end; u64 *stats = nic_data->stats; u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64); struct efx_buffer stats_buf; __le64 *dma_stats; int rc; spin_unlock_bh(&efx->stats_lock); if (in_interrupt()) { /* If in atomic context, cannot update stats. Just update the * software stats and return so the caller can continue. */ spin_lock_bh(&efx->stats_lock); efx_update_sw_stats(efx, stats); return 0; } efx_ef10_get_stat_mask(efx, mask); rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC); if (rc) { spin_lock_bh(&efx->stats_lock); return rc; } dma_stats = stats_buf.addr; dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID; MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr); MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, 1); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->stats_lock); if (rc) { /* Expect ENOENT if DMA queues have not been set up */ if (rc != -ENOENT || atomic_read(&efx->active_queues)) efx_mcdi_display_error(efx, MC_CMD_MAC_STATS, sizeof(inbuf), NULL, 0, rc); goto out; } generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; if (generation_end == EFX_MC_STATS_GENERATION_INVALID) { WARN_ON_ONCE(1); goto out; } rmb(); efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, stats, stats_buf.addr, false); rmb(); generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; if (generation_end != generation_start) { rc = -EAGAIN; goto out; } efx_update_sw_stats(efx, stats); out: efx_nic_free_buffer(efx, &stats_buf); return rc; } static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats) { if (efx_ef10_try_update_nic_stats_vf(efx)) return 0; return efx_ef10_update_stats_common(efx, full_stats, core_stats); } static void efx_ef10_push_irq_moderation(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned int mode, usecs; efx_dword_t timer_cmd; if (channel->irq_moderation_us) { mode = 3; usecs = channel->irq_moderation_us; } else { mode = 0; usecs = 0; } if (EFX_EF10_WORKAROUND_61265(efx)) { MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN); unsigned int ns = usecs * 1000; MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE, channel->channel); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns); MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode); efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR, inbuf, sizeof(inbuf), 0, NULL, 0); } else if (EFX_EF10_WORKAROUND_35388(efx)) { unsigned int ticks = efx_usecs_to_ticks(efx, usecs); EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, ticks); efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, channel->channel); } else { unsigned int ticks = efx_usecs_to_ticks(efx, usecs); EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, ticks); efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, channel->channel); } } static void efx_ef10_get_wol_vf(struct efx_nic *efx, struct ethtool_wolinfo *wol) {} static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type) { return -EOPNOTSUPP; } static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) { wol->supported = 0; wol->wolopts = 0; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) { if (type != 0) return -EINVAL; return 0; } static void efx_ef10_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u8 *pdu = nic_data->mcdi_buf.addr; memcpy(pdu, hdr, hdr_len); memcpy(pdu + hdr_len, sdu, sdu_len); wmb(); /* The hardware provides 'low' and 'high' (doorbell) registers * for passing the 64-bit address of an MCDI request to * firmware. However the dwords are swapped by firmware. The * least significant bits of the doorbell are then 0 for all * MCDI requests due to alignment. */ _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), ER_DZ_MC_DB_LWRD); _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), ER_DZ_MC_DB_HWRD); } static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; rmb(); return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); } static void efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen) { struct efx_ef10_nic_data *nic_data = efx->nic_data; const u8 *pdu = nic_data->mcdi_buf.addr; memcpy(outbuf, pdu + offset, outlen); } static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* All our allocations have been reset */ efx_ef10_reset_mc_allocations(efx); /* The datapath firmware might have been changed */ nic_data->must_check_datapath_caps = true; /* MAC statistics have been cleared on the NIC; clear the local * statistic that we update with efx_update_diff_stat(). */ nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0; } static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; rc = efx_ef10_get_warm_boot_count(efx); if (rc < 0) { /* The firmware is presumably in the process of * rebooting. However, we are supposed to report each * reboot just once, so we must only do that once we * can read and store the updated warm boot count. */ return 0; } if (rc == nic_data->warm_boot_count) return 0; nic_data->warm_boot_count = rc; efx_ef10_mcdi_reboot_detected(efx); return -EIO; } /* Handle an MSI interrupt * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) { struct efx_msi_context *context = dev_id; struct efx_nic *efx = context->efx; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) { /* Note test interrupts */ if (context->index == efx->irq_level) efx->last_irq_cpu = raw_smp_processor_id(); /* Schedule processing of the channel */ efx_schedule_channel_irq(efx->channel[context->index]); } return IRQ_HANDLED; } static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) { struct efx_nic *efx = dev_id; bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled); struct efx_channel *channel; efx_dword_t reg; u32 queues; /* Read the ISR which also ACKs the interrupts */ efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); if (queues == 0) return IRQ_NONE; if (likely(soft_enabled)) { /* Note test interrupts */ if (queues & (1U << efx->irq_level)) efx->last_irq_cpu = raw_smp_processor_id(); efx_for_each_channel(channel, efx) { if (queues & 1) efx_schedule_channel_irq(channel); queues >>= 1; } } netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); return IRQ_HANDLED; } static int efx_ef10_irq_test_generate(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true, NULL) == 0) return -ENOTSUPP; BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, inbuf, sizeof(inbuf), NULL, 0, NULL); } static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) { return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf, (tx_queue->ptr_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } /* This writes to the TX_DESC_WPTR and also pushes data */ static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, const efx_qword_t *txd) { unsigned int write_ptr; efx_oword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); reg.qword[0] = *txd; efx_writeo_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD, tx_queue->queue); } /* Add Firmware-Assisted TSO v2 option descriptors to a queue. */ static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb, bool *data_mapped) { struct efx_tx_buffer *buffer; struct tcphdr *tcp; struct iphdr *ip; u16 ipv4_id; u32 seqnum; u32 mss; EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2); mss = skb_shinfo(skb)->gso_size; if (unlikely(mss < 4)) { WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss); return -EINVAL; } ip = ip_hdr(skb); if (ip->version == 4) { /* Modify IPv4 header if needed. */ ip->tot_len = 0; ip->check = 0; ipv4_id = ip->id; } else { /* Modify IPv6 header if needed. */ struct ipv6hdr *ipv6 = ipv6_hdr(skb); ipv6->payload_len = 0; ipv4_id = 0; } tcp = tcp_hdr(skb); seqnum = ntohl(tcp->seq); buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->flags = EFX_TX_BUF_OPTION; buffer->len = 0; buffer->unmap_len = 0; EFX_POPULATE_QWORD_5(buffer->option, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, seqnum ); ++tx_queue->insert_count; buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->flags = EFX_TX_BUF_OPTION; buffer->len = 0; buffer->unmap_len = 0; EFX_POPULATE_QWORD_4(buffer->option, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, ESF_DZ_TX_TSO_TCP_MSS, mss ); ++tx_queue->insert_count; return 0; } static u32 efx_ef10_tso_versions(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u32 tso_versions = 0; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) tso_versions |= BIT(1); if (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) tso_versions |= BIT(2); return tso_versions; } static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / EFX_BUF_SIZE)); bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE; struct efx_channel *channel = tx_queue->channel; struct efx_nic *efx = tx_queue->efx; struct efx_ef10_nic_data *nic_data = efx->nic_data; bool tso_v2 = false; size_t inlen; dma_addr_t dma_addr; efx_qword_t *txd; int rc; int i; BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0); /* TSOv2 is a limited resource that can only be configured on a limited * number of queues. TSO without checksum offload is not really a thing, * so we only enable it for those queues. */ if (csum_offload && (nic_data->datapath_caps2 & (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) { tso_v2 = true; netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n", channel->channel); } MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0); MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id); dma_addr = tx_queue->txd.buf.dma_addr; netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n", tx_queue->queue, entries, (u64)dma_addr); for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_TXQ_IN_LEN(entries); do { MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS, /* This flag was removed from mcdi_pcol.h for * the non-_EXT version of INIT_TXQ. However, * firmware still honours it. */ INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2, INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload, INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen, NULL, 0, NULL); if (rc == -ENOSPC && tso_v2) { /* Retry without TSOv2 if we're short on contexts. */ tso_v2 = false; netif_warn(efx, probe, efx->net_dev, "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n"); } else if (rc) { efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ, MC_CMD_INIT_TXQ_EXT_IN_LEN, NULL, 0, rc); goto fail; } } while (rc); /* A previous user of this TX queue might have set us up the * bomb by writing a descriptor to the TX push collector but * not the doorbell. (Each collector belongs to a port, not a * queue or function, so cannot easily be reset.) We must * attempt to push a no-op descriptor in its place. */ tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; tx_queue->insert_count = 1; txd = efx_tx_desc(tx_queue, 0); EFX_POPULATE_QWORD_4(*txd, ESF_DZ_TX_DESC_IS_OPT, true, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM, ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, ESF_DZ_TX_OPTION_IP_CSUM, csum_offload); tx_queue->write_count = 1; if (tso_v2) { tx_queue->handle_tso = efx_ef10_tx_tso_desc; tx_queue->tso_version = 2; } else if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) { tx_queue->tso_version = 1; } wmb(); efx_ef10_push_tx_desc(tx_queue, txd); return; fail: netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", tx_queue->queue); } static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN); MCDI_DECLARE_BUF_ERR(outbuf); struct efx_nic *efx = tx_queue->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE, tx_queue->queue); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN, outbuf, outlen, rc); } static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue) { efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf); } /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned int write_ptr; efx_dword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); efx_writed_page(tx_queue->efx, ®, ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); } #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len) { if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) { /* If we need to break across multiple descriptors we should * stop at a page boundary. This assumes the length limit is * greater than the page size. */ dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN; BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE); len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr; } return len; } static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) { unsigned int old_write_count = tx_queue->write_count; struct efx_tx_buffer *buffer; unsigned int write_ptr; efx_qword_t *txd; tx_queue->xmit_more_available = false; if (unlikely(tx_queue->write_count == tx_queue->insert_count)) return; do { write_ptr = tx_queue->write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = efx_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; /* Create TX descriptor ring entry */ if (buffer->flags & EFX_TX_BUF_OPTION) { *txd = buffer->option; if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1) /* PIO descriptor */ tx_queue->packet_write_count = tx_queue->write_count; } else { tx_queue->packet_write_count = tx_queue->write_count; BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); EFX_POPULATE_QWORD_3( *txd, ESF_DZ_TX_KER_CONT, buffer->flags & EFX_TX_BUF_CONT, ESF_DZ_TX_KER_BYTE_CNT, buffer->len, ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); } } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { txd = efx_tx_desc(tx_queue, old_write_count & tx_queue->ptr_mask); efx_ef10_push_tx_desc(tx_queue, txd); ++tx_queue->pushes; } else { efx_ef10_notify_tx_desc(tx_queue); } } #define RSS_MODE_HASH_ADDRS (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\ 1 << RSS_MODE_HASH_DST_ADDR_LBN) #define RSS_MODE_HASH_PORTS (1 << RSS_MODE_HASH_SRC_PORT_LBN |\ 1 << RSS_MODE_HASH_DST_PORT_LBN) #define RSS_CONTEXT_FLAGS_DEFAULT (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\ 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\ 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\ 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\ (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\ RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\ RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\ (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\ RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\ RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN) static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags) { /* Firmware had a bug (sfc bug 61952) where it would not actually * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS. * This meant that it would always contain whatever was previously * in the MCDI buffer. Fortunately, all firmware versions with * this bug have the same default flags value for a newly-allocated * RSS context, and the only time we want to get the flags is just * after allocating. Moreover, the response has a 32-bit hole * where the context ID would be in the request, so we can use an * overlength buffer in the request and pre-fill the flags field * with what we believe the default to be. Thus if the firmware * has the bug, it will leave our pre-filled value in the flags * field of the response, and we will get the right answer. * * However, this does mean that this function should NOT be used if * the RSS context flags might not be their defaults - it is ONLY * reliably correct for a newly-allocated RSS context. */ MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN); size_t outlen; int rc; /* Check we have a hole for the context ID */ BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS, RSS_CONTEXT_FLAGS_DEFAULT); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc == 0) { if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN) rc = -EIO; else *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS); } return rc; } /* Attempt to enable 4-tuple UDP hashing on the specified RSS context. * If we fail, we just leave the RSS context at its default hash settings, * which is safe but may slightly reduce performance. * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we * just need to set the UDP ports flags (for both IP versions). */ static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context) { MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN); u32 flags; BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0); if (efx_ef10_get_rss_flags(efx, context, &flags) != 0) return; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context); flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN; flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags); if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf), NULL, 0, NULL)) /* Succeeded, so UDP 4-tuple is now enabled */ efx->rx_hash_udp_4tuple = true; } static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context, bool exclusive, unsigned *context_size) { MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t outlen; int rc; u32 alloc_type = exclusive ? MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE : MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED; unsigned rss_spread = exclusive ? efx->rss_spread : min(rounddown_pow_of_two(efx->rss_spread), EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE); if (!exclusive && rss_spread == 1) { *context = EFX_EF10_RSS_CONTEXT_INVALID; if (context_size) *context_size = 1; return 0; } if (nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN) return -EOPNOTSUPP; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID, nic_data->vport_id); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type); MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN) return -EIO; *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID); if (context_size) *context_size = rss_spread; if (nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN) efx_ef10_set_rss_flags(efx, *context); return 0; } static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context) { MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN); int rc; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID, context); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf), NULL, 0, NULL); WARN_ON(rc != 0); } static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context, const u32 *rx_indir_table, const u8 *key) { MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN); MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN); int i, rc; MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID, context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN); /* This iterates over the length of efx->rx_indir_table, but copies * bytes from rx_indir_table. That's because the latter is a pointer * rather than an array, but should have the same length. * The efx->rx_hash_key loop below is similar. */ for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i) MCDI_PTR(tablebuf, RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] = (u8) rx_indir_table[i]; rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf, sizeof(tablebuf), NULL, 0, NULL); if (rc != 0) return rc; MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID, context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) != MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i) MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i]; return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf, sizeof(keybuf), NULL, 0, NULL); } static void efx_ef10_rx_free_indir_table(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID) efx_ef10_free_rss_context(efx, nic_data->rx_rss_context); nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID; } static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx, unsigned *context_size) { u32 new_rx_rss_context; struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context, false, context_size); if (rc != 0) return rc; nic_data->rx_rss_context = new_rx_rss_context; nic_data->rx_rss_context_exclusive = false; efx_set_default_rx_indir_table(efx); return 0; } static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx, const u32 *rx_indir_table, const u8 *key) { struct efx_ef10_nic_data *nic_data = efx->nic_data; int rc; u32 new_rx_rss_context; if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID || !nic_data->rx_rss_context_exclusive) { rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context, true, NULL); if (rc == -EOPNOTSUPP) return rc; else if (rc != 0) goto fail1; } else { new_rx_rss_context = nic_data->rx_rss_context; } rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context, rx_indir_table, key); if (rc != 0) goto fail2; if (nic_data->rx_rss_context != new_rx_rss_context) efx_ef10_rx_free_indir_table(efx); nic_data->rx_rss_context = new_rx_rss_context; nic_data->rx_rss_context_exclusive = true; if (rx_indir_table != efx->rx_indir_table) memcpy(efx->rx_indir_table, rx_indir_table, sizeof(efx->rx_indir_table)); if (key != efx->rx_hash_key) memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size); return 0; fail2: if (new_rx_rss_context != nic_data->rx_rss_context) efx_ef10_free_rss_context(efx, new_rx_rss_context); fail1: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN); MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN); MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN); size_t outlen; int rc, i; BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN != MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN); if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) return -ENOENT; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID, nic_data->rx_rss_context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf), tablebuf, sizeof(tablebuf), &outlen); if (rc != 0) return rc; if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN)) return -EIO; for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) efx->rx_indir_table[i] = MCDI_PTR(tablebuf, RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i]; MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID, nic_data->rx_rss_context); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) != MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf), keybuf, sizeof(keybuf), &outlen); if (rc != 0) return rc; if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN)) return -EIO; for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i) efx->rx_hash_key[i] = MCDI_PTR( keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i]; return 0; } static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user, const u32 *rx_indir_table, const u8 *key) { int rc; if (efx->rss_spread == 1) return 0; if (!key) key = efx->rx_hash_key; rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key); if (rc == -ENOBUFS && !user) { unsigned context_size; bool mismatch = false; size_t i; for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch; i++) mismatch = rx_indir_table[i] != ethtool_rxfh_indir_default(i, efx->rss_spread); rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size); if (rc == 0) { if (context_size != efx->rss_spread) netif_warn(efx, probe, efx->net_dev, "Could not allocate an exclusive RSS" " context; allocated a shared one of" " different size." " Wanted %u, got %u.\n", efx->rss_spread, context_size); else if (mismatch) netif_warn(efx, probe, efx->net_dev, "Could not allocate an exclusive RSS" " context; allocated a shared one but" " could not apply custom" " indirection.\n"); else netif_info(efx, probe, efx->net_dev, "Could not allocate an exclusive RSS" " context; allocated a shared one.\n"); } } return rc; } static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user, const u32 *rx_indir_table __attribute__ ((unused)), const u8 *key __attribute__ ((unused))) { struct efx_ef10_nic_data *nic_data = efx->nic_data; if (user) return -EOPNOTSUPP; if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID) return 0; return efx_ef10_rx_push_shared_rss_config(efx, NULL); } static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue) { return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf, (rx_queue->ptr_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 / EFX_BUF_SIZE)); struct efx_channel *channel = efx_rx_queue_channel(rx_queue); size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE; struct efx_nic *efx = rx_queue->efx; struct efx_ef10_nic_data *nic_data = efx->nic_data; size_t inlen; dma_addr_t dma_addr; int rc; int i; BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0); rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue)); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE, efx_rx_queue_index(rx_queue)); MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS, INIT_RXQ_IN_FLAG_PREFIX, 1, INIT_RXQ_IN_FLAG_TIMESTAMP, 1); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0); MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id); dma_addr = rx_queue->rxd.buf.dma_addr; netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n", efx_rx_queue_index(rx_queue), entries, (u64)dma_addr); for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_RXQ_IN_LEN(entries); rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen, NULL, 0, NULL); if (rc) netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n", efx_rx_queue_index(rx_queue)); } static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN); MCDI_DECLARE_BUF_ERR(outbuf); struct efx_nic *efx = rx_queue->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE, efx_rx_queue_index(rx_queue)); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN, outbuf, outlen, rc); } static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue) { efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf); } /* This creates an entry in the RX descriptor queue */ static inline void efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { struct efx_rx_buffer *rx_buf; efx_qword_t *rxd; rxd = efx_rx_desc(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index); EFX_POPULATE_QWORD_2(*rxd, ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int write_count; efx_dword_t reg; /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ write_count = rx_queue->added_count & ~7; if (rx_queue->notified_count == write_count) return; do efx_ef10_build_rx_desc( rx_queue, rx_queue->notified_count & rx_queue->ptr_mask); while (++rx_queue->notified_count != write_count); wmb(); EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, write_count & rx_queue->ptr_mask); efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, efx_rx_queue_index(rx_queue)); } static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) { struct efx_channel *channel = efx_rx_queue_channel(rx_queue); MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); efx_qword_t event; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_REFILL); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 0, efx_ef10_rx_defer_refill_complete, 0); } static void efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual) { /* nothing to do */ } static int efx_ef10_ev_probe(struct efx_channel *channel) { return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, (channel->eventq_mask + 1) * sizeof(efx_qword_t), GFP_KERNEL); } static void efx_ef10_ev_fini(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN); MCDI_DECLARE_BUF_ERR(outbuf); struct efx_nic *efx = channel->efx; size_t outlen; int rc; MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc && rc != -EALREADY) goto fail; return; fail: efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN, outbuf, outlen, rc); } static int efx_ef10_ev_init(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 / EFX_BUF_SIZE)); MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN); size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE; struct efx_nic *efx = channel->efx; struct efx_ef10_nic_data *nic_data; size_t inlen, outlen; unsigned int enabled, implemented; dma_addr_t dma_addr; int rc; int i; nic_data = efx->nic_data; /* Fill event queue with all ones (i.e. empty events) */ memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel); /* INIT_EVQ expects index in vector table, not absolute */ MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0); if (nic_data->datapath_caps2 & 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) { /* Use the new generic approach to specifying event queue * configuration, requesting lower latency or higher throughput. * The options that actually get used appear in the output. */ MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS, INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_V2_IN_FLAG_TYPE, MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO); } else { bool cut_thru = !(nic_data->datapath_caps & 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1, INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru); } dma_addr = channel->eventq.buf.dma_addr; for (i = 0; i < entries; ++i) { MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr); dma_addr += EFX_BUF_SIZE; } inlen = MC_CMD_INIT_EVQ_IN_LEN(entries); rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen, outbuf, sizeof(outbuf), &outlen); if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN) netif_dbg(efx, drv, efx->net_dev, "Channel %d using event queue flags %08x\n", channel->channel, MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS)); /* IRQ return is ignored */ if (channel->channel || rc) return rc; /* Successfully created event queue on channel 0 */ rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); if (rc == -ENOSYS) { /* GET_WORKAROUNDS was implemented before this workaround, * thus it must be unavailable in this firmware. */ nic_data->workaround_26807 = false; rc = 0; } else if (rc) { goto fail; } else { nic_data->workaround_26807 = !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807); if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 && !nic_data->workaround_26807) { unsigned int flags; rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG26807, true, &flags); if (!rc) { if (flags & 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) { netif_info(efx, drv, efx->net_dev, "other functions on NIC have been reset\n"); /* With MCFW v4.6.x and earlier, the * boot count will have incremented, * so re-read the warm_boot_count * value now to ensure this function * doesn't think it has changed next * time it checks. */ rc = efx_ef10_get_warm_boot_count(efx); if (rc >= 0) { nic_data->warm_boot_count = rc; rc = 0; } } nic_data->workaround_26807 = true; } else if (rc == -EPERM) { rc = 0; } } } if (!rc) return 0; fail: efx_ef10_ev_fini(channel); return rc; } static void efx_ef10_ev_remove(struct efx_channel *channel) { efx_nic_free_buffer(channel->efx, &channel->eventq.buf); } static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, unsigned int rx_queue_label) { struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "rx event arrived on queue %d labeled as queue %u\n", efx_rx_queue_index(rx_queue), rx_queue_label); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } static void efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, unsigned int actual, unsigned int expected) { unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; struct efx_nic *efx = rx_queue->efx; netif_info(efx, hw, efx->net_dev, "dropped %d events (index=%d expected=%d)\n", dropped, actual, expected); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } /* partially received RX was aborted. clean up. */ static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) { unsigned int rx_desc_ptr; netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, "scattered RX aborted (dropping %u buffers)\n", rx_queue->scatter_n); rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; } static int efx_ef10_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) { unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class; unsigned int n_descs, n_packets, i; struct efx_nic *efx = channel->efx; struct efx_rx_queue *rx_queue; bool rx_cont; u16 flags = 0; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return 0; /* Basic packet information */ rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS); rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); rx_queue = efx_channel_get_rx_queue(channel); if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); n_descs = ((next_ptr_lbits - rx_queue->removed_count) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); if (n_descs != rx_queue->scatter_n + 1) { struct efx_ef10_nic_data *nic_data = efx->nic_data; /* detect rx abort */ if (unlikely(n_descs == rx_queue->scatter_n)) { if (rx_queue->scatter_n == 0 || rx_bytes != 0) netdev_WARN(efx->net_dev, "invalid RX abort: scatter_n=%u event=" EFX_QWORD_FMT "\n", rx_queue->scatter_n, EFX_QWORD_VAL(*event)); efx_ef10_handle_rx_abort(rx_queue); return 0; } /* Check that RX completion merging is valid, i.e. * the current firmware supports it and this is a * non-scattered packet. */ if (!(nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || rx_queue->scatter_n != 0 || rx_cont) { efx_ef10_handle_rx_bad_lbits( rx_queue, next_ptr_lbits, (rx_queue->removed_count + rx_queue->scatter_n + 1) & ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); return 0; } /* Merged completion for multiple non-scattered packets */ rx_queue->scatter_n = 1; rx_queue->scatter_len = 0; n_packets = n_descs; ++channel->n_rx_merge_events; channel->n_rx_merge_packets += n_packets; flags |= EFX_RX_PKT_PREFIX_LEN; } else { ++rx_queue->scatter_n; rx_queue->scatter_len += rx_bytes; if (rx_cont) return 0; n_packets = 1; } if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR))) flags |= EFX_RX_PKT_DISCARD; if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) { channel->n_rx_ip_hdr_chksum_err += n_packets; } else if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR))) { channel->n_rx_tcp_udp_chksum_err += n_packets; } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP || rx_l4_class == ESE_DZ_L4_CLASS_UDP) { flags |= EFX_RX_PKT_CSUMMED; } if (rx_l4_class == ESE_DZ_L4_CLASS_TCP) flags |= EFX_RX_PKT_TCP; channel->irq_mod_score += 2 * n_packets; /* Handle received packet(s) */ for (i = 0; i < n_packets; i++) { efx_rx_packet(rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, rx_queue->scatter_len, flags); rx_queue->removed_count += rx_queue->scatter_n; } rx_queue->scatter_n = 0; rx_queue->scatter_len = 0; return n_packets; } static int efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; struct efx_tx_queue *tx_queue; unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; int tx_descs = 0; if (unlikely(ACCESS_ONCE(efx->reset_pending))) return 0; if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) return 0; /* Transmit completion */ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); tx_queue = efx_channel_get_tx_queue(channel, tx_ev_q_label % EFX_TXQ_TYPES); tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) & tx_queue->ptr_mask); efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); return tx_descs; } static void efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; int subcode; subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); switch (subcode) { case ESE_DZ_DRV_TIMER_EV: case ESE_DZ_DRV_WAKE_UP_EV: break; case ESE_DZ_DRV_START_UP_EV: /* event queue init complete. ok. */ break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, subcode, EFX_QWORD_VAL(*event)); } } static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; u32 subcode; subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); switch (subcode) { case EFX_EF10_TEST: channel->event_test_cpu = raw_smp_processor_id(); break; case EFX_EF10_REFILL: /* The queue must be empty, so we won't receive any rx * events, so efx_process_channel() won't refill the * queue. Refill it here */ efx_fast_push_rx_descriptors(&channel->rx_queue, true); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown driver event type %u" " (data " EFX_QWORD_FMT ")\n", channel->channel, (unsigned) subcode, EFX_QWORD_VAL(*event)); } } static int efx_ef10_ev_process(struct efx_channel *channel, int quota) { struct efx_nic *efx = channel->efx; efx_qword_t event, *p_event; unsigned int read_ptr; int ev_code; int tx_descs = 0; int spent = 0; if (quota <= 0) return spent; read_ptr = channel->eventq_read_ptr; for (;;) { p_event = efx_event(channel, read_ptr); event = *p_event; if (!efx_event_present(&event)) break; EFX_SET_QWORD(*p_event); ++read_ptr; ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); netif_vdbg(efx, drv, efx->net_dev, "processing event on %d " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(event)); switch (ev_code) { case ESE_DZ_EV_CODE_MCDI_EV: efx_mcdi_process_event(channel, &event); break; case ESE_DZ_EV_CODE_RX_EV: spent += efx_ef10_handle_rx_event(channel, &event); if (spent >= quota) { /* XXX can we split a merged event to * avoid going over-quota? */ spent = quota; goto out; } break; case ESE_DZ_EV_CODE_TX_EV: tx_descs += efx_ef10_handle_tx_event(channel, &event); if (tx_descs > efx->txq_entries) { spent = quota; goto out; } else if (++spent == quota) { goto out; } break; case ESE_DZ_EV_CODE_DRIVER_EV: efx_ef10_handle_driver_event(channel, &event); if (++spent == quota) goto out; break; case EFX_EF10_DRVGEN_EV: efx_ef10_handle_driver_generated_event(channel, &event); break; default: netif_err(efx, hw, efx->net_dev, "channel %d unknown event type %d" " (data " EFX_QWORD_FMT ")\n", channel->channel, ev_code, EFX_QWORD_VAL(event)); } } out: channel->eventq_read_ptr = read_ptr; return spent; } static void efx_ef10_ev_read_ack(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; efx_dword_t rptr; if (EFX_EF10_WORKAROUND_35388(efx)) { BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (channel->eventq_read_ptr & channel->eventq_mask) >> ERF_DD_EVQ_IND_RPTR_WIDTH); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, channel->eventq_read_ptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, channel->channel); } else { EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, channel->eventq_read_ptr & channel->eventq_mask); efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); } } static void efx_ef10_ev_test_generate(struct efx_channel *channel) { MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); struct efx_nic *efx = channel->efx; efx_qword_t event; int rc; EFX_POPULATE_QWORD_2(event, ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, ESF_DZ_EV_DATA, EFX_EF10_TEST); MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has * already swapped the data to little-endian order. */ memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], sizeof(efx_qword_t)); rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) goto fail; return; fail: WARN_ON(true); netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); } void efx_ef10_handle_drain_event(struct efx_nic *efx) { if (atomic_dec_and_test(&efx->active_queues)) wake_up(&efx->flush_wq); WARN_ON(atomic_read(&efx->active_queues) < 0); } static int efx_ef10_fini_dmaq(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int pending; /* If the MC has just rebooted, the TX/RX queues will have already been * torn down, but efx->active_queues needs to be set to zero. */ if (nic_data->must_realloc_vis) { atomic_set(&efx->active_queues, 0); return 0; } /* Do not attempt to write to the NIC during EEH recovery */ if (efx->state != STATE_RECOVERY) { efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) efx_ef10_rx_fini(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_ef10_tx_fini(tx_queue); } wait_event_timeout(efx->flush_wq, atomic_read(&efx->active_queues) == 0, msecs_to_jiffies(EFX_MAX_FLUSH_TIME)); pending = atomic_read(&efx->active_queues); if (pending) { netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n", pending); return -ETIMEDOUT; } } return 0; } static void efx_ef10_prepare_flr(struct efx_nic *efx) { atomic_set(&efx->active_queues, 0); } static bool efx_ef10_filter_equal(const struct efx_filter_spec *left, const struct efx_filter_spec *right) { if ((left->match_flags ^ right->match_flags) | ((left->flags ^ right->flags) & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) return false; return memcmp(&left->outer_vid, &right->outer_vid, sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, outer_vid)) == 0; } static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec) { BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); return jhash2((const u32 *)&spec->outer_vid, (sizeof(struct efx_filter_spec) - offsetof(struct efx_filter_spec, outer_vid)) / 4, 0); /* XXX should we randomise the initval? */ } /* Decide whether a filter should be exclusive or else should allow * delivery to additional recipients. Currently we decide that * filters for specific local unicast MAC and IP addresses are * exclusive. */ static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec) { if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC && !is_multicast_ether_addr(spec->loc_mac)) return true; if ((spec->match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if (spec->ether_type == htons(ETH_P_IP) && !ipv4_is_multicast(spec->loc_host[0])) return true; if (spec->ether_type == htons(ETH_P_IPV6) && ((const u8 *)spec->loc_host)[0] != 0xff) return true; } return false; } static struct efx_filter_spec * efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table, unsigned int filter_idx) { return (struct efx_filter_spec *)(table->entry[filter_idx].spec & ~EFX_EF10_FILTER_FLAGS); } static unsigned int efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table, unsigned int filter_idx) { return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS; } static void efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table, unsigned int filter_idx, const struct efx_filter_spec *spec, unsigned int flags) { table->entry[filter_idx].spec = (unsigned long)spec | flags; } static void efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx, const struct efx_filter_spec *spec, efx_dword_t *inbuf) { enum efx_encap_type encap_type = efx_filter_get_encap_type(spec); u32 match_fields = 0, uc_match, mc_match; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_INSERT : MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE); /* Convert match flags and values. Unlike almost * everything else in MCDI, these fields are in * network byte order. */ #define COPY_VALUE(value, mcdi_field) \ do { \ match_fields |= \ 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \ mcdi_field ## _LBN; \ BUILD_BUG_ON( \ MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \ sizeof(value)); \ memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \ &value, sizeof(value)); \ } while (0) #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \ if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \ COPY_VALUE(spec->gen_field, mcdi_field); \ } /* Handle encap filters first. They will always be mismatch * (unknown UC or MC) filters */ if (encap_type) { /* ether_type and outer_ip_proto need to be variables * because COPY_VALUE wants to memcpy them */ __be16 ether_type = htons(encap_type & EFX_ENCAP_FLAG_IPV6 ? ETH_P_IPV6 : ETH_P_IP); u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE; u8 outer_ip_proto; switch (encap_type & EFX_ENCAP_TYPES_MASK) { case EFX_ENCAP_TYPE_VXLAN: vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN; /* fallthrough */ case EFX_ENCAP_TYPE_GENEVE: COPY_VALUE(ether_type, ETHER_TYPE); outer_ip_proto = IPPROTO_UDP; COPY_VALUE(outer_ip_proto, IP_PROTO); /* We always need to set the type field, even * though we're not matching on the TNI. */ MCDI_POPULATE_DWORD_1(inbuf, FILTER_OP_EXT_IN_VNI_OR_VSID, FILTER_OP_EXT_IN_VNI_TYPE, vni_type); break; case EFX_ENCAP_TYPE_NVGRE: COPY_VALUE(ether_type, ETHER_TYPE); outer_ip_proto = IPPROTO_GRE; COPY_VALUE(outer_ip_proto, IP_PROTO); break; default: WARN_ON(1); } uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN; mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN; } else { uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN; mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN; } if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) match_fields |= is_multicast_ether_addr(spec->loc_mac) ? 1 << mc_match : 1 << uc_match; COPY_FIELD(REM_HOST, rem_host, SRC_IP); COPY_FIELD(LOC_HOST, loc_host, DST_IP); COPY_FIELD(REM_MAC, rem_mac, SRC_MAC); COPY_FIELD(REM_PORT, rem_port, SRC_PORT); COPY_FIELD(LOC_MAC, loc_mac, DST_MAC); COPY_FIELD(LOC_PORT, loc_port, DST_PORT); COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE); COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN); COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN); COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO); #undef COPY_FIELD #undef COPY_VALUE MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS, match_fields); } static void efx_ef10_filter_push_prep(struct efx_nic *efx, const struct efx_filter_spec *spec, efx_dword_t *inbuf, u64 handle, bool replacing) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u32 flags = spec->flags; memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN); /* Remove RSS flag if we don't have an RSS context. */ if (flags & EFX_FILTER_FLAG_RX_RSS && spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT && nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) flags &= ~EFX_FILTER_FLAG_RX_RSS; if (replacing) { MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REPLACE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle); } else { efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf); } MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST, spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? MC_CMD_FILTER_OP_IN_RX_DEST_DROP : MC_CMD_FILTER_OP_IN_RX_DEST_HOST); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST, MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ? 0 : spec->dmaq_id); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE, (flags & EFX_FILTER_FLAG_RX_RSS) ? MC_CMD_FILTER_OP_IN_RX_MODE_RSS : MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE); if (flags & EFX_FILTER_FLAG_RX_RSS) MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT ? spec->rss_context : nic_data->rx_rss_context); } static int efx_ef10_filter_push(struct efx_nic *efx, const struct efx_filter_spec *spec, u64 *handle, bool replacing) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN); int rc; efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); if (rc == 0) *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE); if (rc == -ENOSPC) rc = -EBUSY; /* to match efx_farch_filter_insert() */ return rc; } static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec) { enum efx_encap_type encap_type = efx_filter_get_encap_type(spec); unsigned int match_flags = spec->match_flags; unsigned int uc_match, mc_match; u32 mcdi_flags = 0; #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) { \ unsigned int old_match_flags = match_flags; \ match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \ if (match_flags != old_match_flags) \ mcdi_flags |= \ (1 << ((encap) ? \ MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \ mcdi_field ## _LBN : \ MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\ mcdi_field ## _LBN)); \ } /* inner or outer based on encap type */ MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type); MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type); MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type); MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type); MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type); MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type); MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type); MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type); /* always outer */ MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false); MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false); #undef MAP_FILTER_TO_MCDI_FLAG /* special handling for encap type, and mismatch */ if (encap_type) { match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE; mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN); mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN); uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN; mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN; } else { uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN; mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN; } if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) { match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG; mcdi_flags |= is_multicast_ether_addr(spec->loc_mac) ? 1 << mc_match : 1 << uc_match; } /* Did we map them all? */ WARN_ON_ONCE(match_flags); return mcdi_flags; } static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table, const struct efx_filter_spec *spec) { u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec); unsigned int match_pri; for (match_pri = 0; match_pri < table->rx_match_count; match_pri++) if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags) return match_pri; return -EPROTONOSUPPORT; } static s32 efx_ef10_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec, bool replace_equal) { struct efx_ef10_filter_table *table = efx->filter_state; DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); struct efx_filter_spec *saved_spec; unsigned int match_pri, hash; unsigned int priv_flags; bool replacing = false; int ins_index = -1; DEFINE_WAIT(wait); bool is_mc_recip; s32 rc; /* For now, only support RX filters */ if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) != EFX_FILTER_FLAG_RX) return -EINVAL; rc = efx_ef10_filter_pri(table, spec); if (rc < 0) return rc; match_pri = rc; hash = efx_ef10_filter_hash(spec); is_mc_recip = efx_filter_is_mc_recipient(spec); if (is_mc_recip) bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT); /* Find any existing filters with the same match tuple or * else a free slot to insert at. If any of them are busy, * we have to wait and retry. */ for (;;) { unsigned int depth = 1; unsigned int i; spin_lock_bh(&efx->filter_lock); for (;;) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); if (!saved_spec) { if (ins_index < 0) ins_index = i; } else if (efx_ef10_filter_equal(spec, saved_spec)) { if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) break; if (spec->priority < saved_spec->priority && spec->priority != EFX_FILTER_PRI_AUTO) { rc = -EPERM; goto out_unlock; } if (!is_mc_recip) { /* This is the only one */ if (spec->priority == saved_spec->priority && !replace_equal) { rc = -EEXIST; goto out_unlock; } ins_index = i; goto found; } else if (spec->priority > saved_spec->priority || (spec->priority == saved_spec->priority && replace_equal)) { if (ins_index < 0) ins_index = i; else __set_bit(depth, mc_rem_map); } } /* Once we reach the maximum search depth, use * the first suitable slot or return -EBUSY if * there was none */ if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = -EBUSY; goto out_unlock; } goto found; } ++depth; } prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&efx->filter_lock); schedule(); } found: /* Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ saved_spec = efx_ef10_filter_entry_spec(table, ins_index); if (saved_spec) { if (spec->priority == EFX_FILTER_PRI_AUTO && saved_spec->priority >= EFX_FILTER_PRI_AUTO) { /* Just make sure it won't be removed */ if (saved_spec->priority > EFX_FILTER_PRI_AUTO) saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; table->entry[ins_index].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD; rc = ins_index; goto out_unlock; } replacing = true; priv_flags = efx_ef10_filter_entry_flags(table, ins_index); } else { saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC); if (!saved_spec) { rc = -ENOMEM; goto out_unlock; } *saved_spec = *spec; priv_flags = 0; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags | EFX_EF10_FILTER_FLAG_BUSY); /* Mark lower-priority multicast recipients busy prior to removal */ if (is_mc_recip) { unsigned int depth, i; for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); if (test_bit(depth, mc_rem_map)) table->entry[i].spec |= EFX_EF10_FILTER_FLAG_BUSY; } } spin_unlock_bh(&efx->filter_lock); rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle, replacing); /* Finalise the software table entry */ spin_lock_bh(&efx->filter_lock); if (rc == 0) { if (replacing) { /* Update the fields that may differ */ if (saved_spec->priority == EFX_FILTER_PRI_AUTO) saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; saved_spec->priority = spec->priority; saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO; saved_spec->flags |= spec->flags; saved_spec->rss_context = spec->rss_context; saved_spec->dmaq_id = spec->dmaq_id; } } else if (!replacing) { kfree(saved_spec); saved_spec = NULL; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags); /* Remove and finalise entries for lower-priority multicast * recipients */ if (is_mc_recip) { MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); unsigned int depth, i; memset(inbuf, 0, sizeof(inbuf)); for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) { if (!test_bit(depth, mc_rem_map)) continue; i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); priv_flags = efx_ef10_filter_entry_flags(table, i); if (rc == 0) { spin_unlock_bh(&efx->filter_lock); MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[i].handle); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->filter_lock); } if (rc == 0) { kfree(saved_spec); saved_spec = NULL; priv_flags = 0; } else { priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY; } efx_ef10_filter_set_entry(table, i, saved_spec, priv_flags); } } /* If successful, return the inserted filter ID */ if (rc == 0) rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index; wake_up_all(&table->waitq); out_unlock: spin_unlock_bh(&efx->filter_lock); finish_wait(&table->waitq, &wait); return rc; } static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx) { /* no need to do anything here on EF10 */ } /* Remove a filter. * If !by_index, remove by ID * If by_index, remove by index * Filter ID may come from userland and must be range-checked. */ static int efx_ef10_filter_remove_internal(struct efx_nic *efx, unsigned int priority_mask, u32 filter_id, bool by_index) { unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS; struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_HANDLE_OFST + MC_CMD_FILTER_OP_IN_HANDLE_LEN); struct efx_filter_spec *spec; DEFINE_WAIT(wait); int rc; /* Find the software table entry and mark it busy. Don't * remove it yet; any attempt to update while we're waiting * for the firmware must find the busy entry. */ for (;;) { spin_lock_bh(&efx->filter_lock); if (!(table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY)) break; prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&efx->filter_lock); schedule(); } spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec || (!by_index && efx_ef10_filter_pri(table, spec) != filter_id / HUNT_FILTER_TBL_ROWS)) { rc = -ENOENT; goto out_unlock; } if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO && priority_mask == (1U << EFX_FILTER_PRI_AUTO)) { /* Just remove flags */ spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO; table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD; rc = 0; goto out_unlock; } if (!(priority_mask & (1U << spec->priority))) { rc = -ENOENT; goto out_unlock; } table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; spin_unlock_bh(&efx->filter_lock); if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { /* Reset to an automatic filter */ struct efx_filter_spec new_spec = *spec; new_spec.priority = EFX_FILTER_PRI_AUTO; new_spec.flags = (EFX_FILTER_FLAG_RX | (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0)); new_spec.dmaq_id = 0; new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT; rc = efx_ef10_filter_push(efx, &new_spec, &table->entry[filter_idx].handle, true); spin_lock_bh(&efx->filter_lock); if (rc == 0) *spec = new_spec; } else { /* Really remove the filter */ MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_REMOVE : MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); spin_lock_bh(&efx->filter_lock); if (rc == 0) { kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } } table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; wake_up_all(&table->waitq); out_unlock: spin_unlock_bh(&efx->filter_lock); finish_wait(&table->waitq, &wait); return rc; } static int efx_ef10_filter_remove_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id) { return efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, false); } static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id) { return filter_id % HUNT_FILTER_TBL_ROWS; } static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id) { if (filter_id == EFX_EF10_FILTER_ID_INVALID) return; efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true); } static int efx_ef10_filter_get_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id, struct efx_filter_spec *spec) { unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS; struct efx_ef10_filter_table *table = efx->filter_state; const struct efx_filter_spec *saved_spec; int rc; spin_lock_bh(&efx->filter_lock); saved_spec = efx_ef10_filter_entry_spec(table, filter_idx); if (saved_spec && saved_spec->priority == priority && efx_ef10_filter_pri(table, saved_spec) == filter_id / HUNT_FILTER_TBL_ROWS) { *spec = *saved_spec; rc = 0; } else { rc = -ENOENT; } spin_unlock_bh(&efx->filter_lock); return rc; } static int efx_ef10_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority) { unsigned int priority_mask; unsigned int i; int rc; priority_mask = (((1U << (priority + 1)) - 1) & ~(1U << EFX_FILTER_PRI_AUTO)); for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { rc = efx_ef10_filter_remove_internal(efx, priority_mask, i, true); if (rc && rc != -ENOENT) return rc; } return 0; } static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx, enum efx_filter_priority priority) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int filter_idx; s32 count = 0; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { if (table->entry[filter_idx].spec && efx_ef10_filter_entry_spec(table, filter_idx)->priority == priority) ++count; } spin_unlock_bh(&efx->filter_lock); return count; } static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; return table->rx_match_count * HUNT_FILTER_TBL_ROWS; } static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx, enum efx_filter_priority priority, u32 *buf, u32 size) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec; unsigned int filter_idx; s32 count = 0; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (spec && spec->priority == priority) { if (count == size) { count = -EMSGSIZE; break; } buf[count++] = (efx_ef10_filter_pri(table, spec) * HUNT_FILTER_TBL_ROWS + filter_idx); } } spin_unlock_bh(&efx->filter_lock); return count; } #ifdef CONFIG_RFS_ACCEL static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete; static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx, struct efx_filter_spec *spec) { struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); struct efx_filter_spec *saved_spec; unsigned int hash, i, depth = 1; bool replacing = false; int ins_index = -1; u64 cookie; s32 rc; /* Must be an RX filter without RSS and not for a multicast * destination address (RFS only works for connected sockets). * These restrictions allow us to pass only a tiny amount of * data through to the completion function. */ EFX_WARN_ON_PARANOID(spec->flags != (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER)); EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT); EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec)); hash = efx_ef10_filter_hash(spec); spin_lock_bh(&efx->filter_lock); /* Find any existing filter with the same match tuple or else * a free slot to insert at. If an existing filter is busy, * we have to give up. */ for (;;) { i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1); saved_spec = efx_ef10_filter_entry_spec(table, i); if (!saved_spec) { if (ins_index < 0) ins_index = i; } else if (efx_ef10_filter_equal(spec, saved_spec)) { if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) { rc = -EBUSY; goto fail_unlock; } if (spec->priority < saved_spec->priority) { rc = -EPERM; goto fail_unlock; } ins_index = i; break; } /* Once we reach the maximum search depth, use the * first suitable slot or return -EBUSY if there was * none */ if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = -EBUSY; goto fail_unlock; } break; } ++depth; } /* Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ saved_spec = efx_ef10_filter_entry_spec(table, ins_index); if (saved_spec) { replacing = true; } else { saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC); if (!saved_spec) { rc = -ENOMEM; goto fail_unlock; } *saved_spec = *spec; } efx_ef10_filter_set_entry(table, ins_index, saved_spec, EFX_EF10_FILTER_FLAG_BUSY); spin_unlock_bh(&efx->filter_lock); /* Pack up the variables needed on completion */ cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id; efx_ef10_filter_push_prep(efx, spec, inbuf, table->entry[ins_index].handle, replacing); efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), MC_CMD_FILTER_OP_OUT_LEN, efx_ef10_filter_rfs_insert_complete, cookie); return ins_index; fail_unlock: spin_unlock_bh(&efx->filter_lock); return rc; } static void efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie, int rc, efx_dword_t *outbuf, size_t outlen_actual) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int ins_index, dmaq_id; struct efx_filter_spec *spec; bool replacing; /* Unpack the cookie */ replacing = cookie >> 31; ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1); dmaq_id = cookie & 0xffff; spin_lock_bh(&efx->filter_lock); spec = efx_ef10_filter_entry_spec(table, ins_index); if (rc == 0) { table->entry[ins_index].handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE); if (replacing) spec->dmaq_id = dmaq_id; } else if (!replacing) { kfree(spec); spec = NULL; } efx_ef10_filter_set_entry(table, ins_index, spec, 0); spin_unlock_bh(&efx->filter_lock); wake_up_all(&table->waitq); } static void efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx, unsigned long filter_idx, int rc, efx_dword_t *outbuf, size_t outlen_actual); static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, unsigned int filter_idx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec = efx_ef10_filter_entry_spec(table, filter_idx); MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_HANDLE_OFST + MC_CMD_FILTER_OP_IN_HANDLE_LEN); if (!spec || (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) || spec->priority != EFX_FILTER_PRI_HINT || !rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, filter_idx)) return false; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REMOVE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0, efx_ef10_filter_rfs_expire_complete, filter_idx)) return false; table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; return true; } static void efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx, unsigned long filter_idx, int rc, efx_dword_t *outbuf, size_t outlen_actual) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_filter_spec *spec = efx_ef10_filter_entry_spec(table, filter_idx); spin_lock_bh(&efx->filter_lock); if (rc == 0) { kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; wake_up_all(&table->waitq); spin_unlock_bh(&efx->filter_lock); } #endif /* CONFIG_RFS_ACCEL */ static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags) { int match_flags = 0; #define MAP_FLAG(gen_flag, mcdi_field) do { \ u32 old_mcdi_flags = mcdi_flags; \ mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ## \ mcdi_field ## _LBN); \ if (mcdi_flags != old_mcdi_flags) \ match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \ } while (0) if (encap) { /* encap filters must specify encap type */ match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; /* and imply ethertype and ip proto */ mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN); mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN); /* VLAN tags refer to the outer packet */ MAP_FLAG(INNER_VID, INNER_VLAN); MAP_FLAG(OUTER_VID, OUTER_VLAN); /* everything else refers to the inner packet */ MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST); MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST); MAP_FLAG(REM_HOST, IFRM_SRC_IP); MAP_FLAG(LOC_HOST, IFRM_DST_IP); MAP_FLAG(REM_MAC, IFRM_SRC_MAC); MAP_FLAG(REM_PORT, IFRM_SRC_PORT); MAP_FLAG(LOC_MAC, IFRM_DST_MAC); MAP_FLAG(LOC_PORT, IFRM_DST_PORT); MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE); MAP_FLAG(IP_PROTO, IFRM_IP_PROTO); } else { MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST); MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST); MAP_FLAG(REM_HOST, SRC_IP); MAP_FLAG(LOC_HOST, DST_IP); MAP_FLAG(REM_MAC, SRC_MAC); MAP_FLAG(REM_PORT, SRC_PORT); MAP_FLAG(LOC_MAC, DST_MAC); MAP_FLAG(LOC_PORT, DST_PORT); MAP_FLAG(ETHER_TYPE, ETHER_TYPE); MAP_FLAG(INNER_VID, INNER_VLAN); MAP_FLAG(OUTER_VID, OUTER_VLAN); MAP_FLAG(IP_PROTO, IP_PROTO); } #undef MAP_FLAG /* Did we map them all? */ if (mcdi_flags) return -EINVAL; return match_flags; } static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_filter_vlan *vlan, *next_vlan; /* See comment in efx_ef10_filter_table_remove() */ if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return; if (!table) return; list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list) efx_ef10_filter_del_vlan_internal(efx, vlan); } static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table, bool encap, enum efx_filter_match_flags match_flags) { unsigned int match_pri; int mf; for (match_pri = 0; match_pri < table->rx_match_count; match_pri++) { mf = efx_ef10_filter_match_flags_from_mcdi(encap, table->rx_match_mcdi_flags[match_pri]); if (mf == match_flags) return true; } return false; } static int efx_ef10_filter_table_probe_matches(struct efx_nic *efx, struct efx_ef10_filter_table *table, bool encap) { MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX); unsigned int pd_match_pri, pd_match_count; size_t outlen; int rc; /* Find out which RX filter types are supported, and their priorities */ MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP, encap ? MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES : MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES); rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; pd_match_count = MCDI_VAR_ARRAY_LEN( outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES); for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) { u32 mcdi_flags = MCDI_ARRAY_DWORD( outbuf, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES, pd_match_pri); rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags); if (rc < 0) { netif_dbg(efx, probe, efx->net_dev, "%s: fw flags %#x pri %u not supported in driver\n", __func__, mcdi_flags, pd_match_pri); } else { netif_dbg(efx, probe, efx->net_dev, "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n", __func__, mcdi_flags, pd_match_pri, rc, table->rx_match_count); table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags; table->rx_match_count++; } } return 0; } static int efx_ef10_filter_table_probe(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; struct net_device *net_dev = efx->net_dev; struct efx_ef10_filter_table *table; struct efx_ef10_vlan *vlan; int rc; if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return -EINVAL; if (efx->filter_state) /* already probed */ return 0; table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; table->rx_match_count = 0; rc = efx_ef10_filter_table_probe_matches(efx, table, false); if (rc) goto fail; if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) rc = efx_ef10_filter_table_probe_matches(efx, table, true); if (rc) goto fail; if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) && !(efx_ef10_filter_match_supported(table, false, (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) && efx_ef10_filter_match_supported(table, false, (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) { netif_info(efx, probe, net_dev, "VLAN filters are not supported in this firmware variant\n"); net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; } table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry)); if (!table->entry) { rc = -ENOMEM; goto fail; } table->mc_promisc_last = false; table->vlan_filter = !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER); INIT_LIST_HEAD(&table->vlan_list); efx->filter_state = table; init_waitqueue_head(&table->waitq); list_for_each_entry(vlan, &nic_data->vlan_list, list) { rc = efx_ef10_filter_add_vlan(efx, vlan->vid); if (rc) goto fail_add_vlan; } return 0; fail_add_vlan: efx_ef10_filter_cleanup_vlans(efx); efx->filter_state = NULL; fail: kfree(table); return rc; } /* Caller must hold efx->filter_sem for read if race against * efx_ef10_filter_table_remove() is possible */ static void efx_ef10_filter_table_restore(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_nic_data *nic_data = efx->nic_data; unsigned int invalid_filters = 0, failed = 0; struct efx_ef10_filter_vlan *vlan; struct efx_filter_spec *spec; unsigned int filter_idx; u32 mcdi_flags; int match_pri; int rc, i; WARN_ON(!rwsem_is_locked(&efx->filter_sem)); if (!nic_data->must_restore_filters) return; if (!table) return; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec) continue; mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec); match_pri = 0; while (match_pri < table->rx_match_count && table->rx_match_mcdi_flags[match_pri] != mcdi_flags) ++match_pri; if (match_pri >= table->rx_match_count) { invalid_filters++; goto not_restored; } if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT && spec->rss_context != nic_data->rx_rss_context) netif_warn(efx, drv, efx->net_dev, "Warning: unable to restore a filter with specific RSS context.\n"); table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY; spin_unlock_bh(&efx->filter_lock); rc = efx_ef10_filter_push(efx, spec, &table->entry[filter_idx].handle, false); if (rc) failed++; spin_lock_bh(&efx->filter_lock); if (rc) { not_restored: list_for_each_entry(vlan, &table->vlan_list, list) for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i) if (vlan->default_filters[i] == filter_idx) vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID; kfree(spec); efx_ef10_filter_set_entry(table, filter_idx, NULL, 0); } else { table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY; } } spin_unlock_bh(&efx->filter_lock); /* This can happen validly if the MC's capabilities have changed, so * is not an error. */ if (invalid_filters) netif_dbg(efx, drv, efx->net_dev, "Did not restore %u filters that are now unsupported.\n", invalid_filters); if (failed) netif_err(efx, hw, efx->net_dev, "unable to restore %u filters\n", failed); else nic_data->must_restore_filters = false; } static void efx_ef10_filter_table_remove(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN); struct efx_filter_spec *spec; unsigned int filter_idx; int rc; efx_ef10_filter_cleanup_vlans(efx); efx->filter_state = NULL; /* If we were called without locking, then it's not safe to free * the table as others might be using it. So we just WARN, leak * the memory, and potentially get an inconsistent filter table * state. * This should never actually happen. */ if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return; if (!table) return; for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) { spec = efx_ef10_filter_entry_spec(table, filter_idx); if (!spec) continue; MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP, efx_ef10_filter_is_exclusive(spec) ? MC_CMD_FILTER_OP_IN_OP_REMOVE : MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, table->entry[filter_idx].handle); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc) netif_info(efx, drv, efx->net_dev, "%s: filter %04x remove failed\n", __func__, filter_idx); kfree(spec); } vfree(table->entry); kfree(table); } static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int filter_idx; if (*id != EFX_EF10_FILTER_ID_INVALID) { filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id); if (!table->entry[filter_idx].spec) netif_dbg(efx, drv, efx->net_dev, "marked null spec old %04x:%04x\n", *id, filter_idx); table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; *id = EFX_EF10_FILTER_ID_INVALID; } } /* Mark old per-VLAN filters that may need to be removed */ static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan) { struct efx_ef10_filter_table *table = efx->filter_state; unsigned int i; for (i = 0; i < table->dev_uc_count; i++) efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]); for (i = 0; i < table->dev_mc_count; i++) efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]); for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]); } /* Mark old filters that may need to be removed. * Caller must hold efx->filter_sem for read if race against * efx_ef10_filter_table_remove() is possible */ static void efx_ef10_filter_mark_old(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_filter_vlan *vlan; spin_lock_bh(&efx->filter_lock); list_for_each_entry(vlan, &table->vlan_list, list) _efx_ef10_filter_vlan_mark_old(efx, vlan); spin_unlock_bh(&efx->filter_lock); } static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct net_device *net_dev = efx->net_dev; struct netdev_hw_addr *uc; int addr_count; unsigned int i; addr_count = netdev_uc_count(net_dev); table->uc_promisc = !!(net_dev->flags & IFF_PROMISC); table->dev_uc_count = 1 + addr_count; ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr); i = 1; netdev_for_each_uc_addr(uc, net_dev) { if (i >= EFX_EF10_FILTER_DEV_UC_MAX) { table->uc_promisc = true; break; } ether_addr_copy(table->dev_uc_list[i].addr, uc->addr); i++; } } static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct net_device *net_dev = efx->net_dev; struct netdev_hw_addr *mc; unsigned int i, addr_count; table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)); addr_count = netdev_mc_count(net_dev); i = 0; netdev_for_each_mc_addr(mc, net_dev) { if (i >= EFX_EF10_FILTER_DEV_MC_MAX) { table->mc_promisc = true; break; } ether_addr_copy(table->dev_mc_list[i].addr, mc->addr); i++; } table->dev_mc_count = i; } static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan, bool multicast, bool rollback) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_dev_addr *addr_list; enum efx_filter_flags filter_flags; struct efx_filter_spec spec; u8 baddr[ETH_ALEN]; unsigned int i, j; int addr_count; u16 *ids; int rc; if (multicast) { addr_list = table->dev_mc_list; addr_count = table->dev_mc_count; ids = vlan->mc; } else { addr_list = table->dev_uc_list; addr_count = table->dev_uc_count; ids = vlan->uc; } filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0; /* Insert/renew filters */ for (i = 0; i < addr_count; i++) { efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { if (rollback) { netif_info(efx, drv, efx->net_dev, "efx_ef10_filter_insert failed rc=%d\n", rc); /* Fall back to promiscuous */ for (j = 0; j < i; j++) { efx_ef10_filter_remove_unsafe( efx, EFX_FILTER_PRI_AUTO, ids[j]); ids[j] = EFX_EF10_FILTER_ID_INVALID; } return rc; } else { /* mark as not inserted, and carry on */ rc = EFX_EF10_FILTER_ID_INVALID; } } ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc); } if (multicast && rollback) { /* Also need an Ethernet broadcast filter */ EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] != EFX_EF10_FILTER_ID_INVALID); efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); eth_broadcast_addr(baddr); efx_filter_set_eth_local(&spec, vlan->vid, baddr); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { netif_warn(efx, drv, efx->net_dev, "Broadcast filter insert failed rc=%d\n", rc); /* Fall back to promiscuous */ for (j = 0; j < i; j++) { efx_ef10_filter_remove_unsafe( efx, EFX_FILTER_PRI_AUTO, ids[j]); ids[j] = EFX_EF10_FILTER_ID_INVALID; } return rc; } else { vlan->default_filters[EFX_EF10_BCAST] = efx_ef10_filter_get_unsafe_id(efx, rc); } } return 0; } static int efx_ef10_filter_insert_def(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan, enum efx_encap_type encap_type, bool multicast, bool rollback) { struct efx_ef10_nic_data *nic_data = efx->nic_data; enum efx_filter_flags filter_flags; struct efx_filter_spec spec; u8 baddr[ETH_ALEN]; int rc; u16 *id; filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0; efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); if (multicast) efx_filter_set_mc_def(&spec); else efx_filter_set_uc_def(&spec); if (encap_type) { if (nic_data->datapath_caps & (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) efx_filter_set_encap_type(&spec, encap_type); else /* don't insert encap filters on non-supporting * platforms. ID will be left as INVALID. */ return 0; } if (vlan->vid != EFX_FILTER_VID_UNSPEC) efx_filter_set_eth_local(&spec, vlan->vid, NULL); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { const char *um = multicast ? "Multicast" : "Unicast"; const char *encap_name = ""; const char *encap_ipv = ""; if ((encap_type & EFX_ENCAP_TYPES_MASK) == EFX_ENCAP_TYPE_VXLAN) encap_name = "VXLAN "; else if ((encap_type & EFX_ENCAP_TYPES_MASK) == EFX_ENCAP_TYPE_NVGRE) encap_name = "NVGRE "; else if ((encap_type & EFX_ENCAP_TYPES_MASK) == EFX_ENCAP_TYPE_GENEVE) encap_name = "GENEVE "; if (encap_type & EFX_ENCAP_FLAG_IPV6) encap_ipv = "IPv6 "; else if (encap_type) encap_ipv = "IPv4 "; /* unprivileged functions can't insert mismatch filters * for encapsulated or unicast traffic, so downgrade * those warnings to debug. */ netif_cond_dbg(efx, drv, efx->net_dev, rc == -EPERM && (encap_type || !multicast), warn, "%s%s%s mismatch filter insert failed rc=%d\n", encap_name, encap_ipv, um, rc); } else if (multicast) { /* mapping from encap types to default filter IDs (multicast) */ static enum efx_ef10_default_filters map[] = { [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF, [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF, [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF, [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF, [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_VXLAN6_MCDEF, [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_NVGRE6_MCDEF, [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_GENEVE6_MCDEF, }; /* quick bounds check (BCAST result impossible) */ BUILD_BUG_ON(EFX_EF10_BCAST != 0); if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) { WARN_ON(1); return -EINVAL; } /* then follow map */ id = &vlan->default_filters[map[encap_type]]; EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID); *id = efx_ef10_filter_get_unsafe_id(efx, rc); if (!nic_data->workaround_26807 && !encap_type) { /* Also need an Ethernet broadcast filter */ efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0); eth_broadcast_addr(baddr); efx_filter_set_eth_local(&spec, vlan->vid, baddr); rc = efx_ef10_filter_insert(efx, &spec, true); if (rc < 0) { netif_warn(efx, drv, efx->net_dev, "Broadcast filter insert failed rc=%d\n", rc); if (rollback) { /* Roll back the mc_def filter */ efx_ef10_filter_remove_unsafe( efx, EFX_FILTER_PRI_AUTO, *id); *id = EFX_EF10_FILTER_ID_INVALID; return rc; } } else { EFX_WARN_ON_PARANOID( vlan->default_filters[EFX_EF10_BCAST] != EFX_EF10_FILTER_ID_INVALID); vlan->default_filters[EFX_EF10_BCAST] = efx_ef10_filter_get_unsafe_id(efx, rc); } } rc = 0; } else { /* mapping from encap types to default filter IDs (unicast) */ static enum efx_ef10_default_filters map[] = { [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF, [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF, [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF, [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF, [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_VXLAN6_UCDEF, [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_NVGRE6_UCDEF, [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] = EFX_EF10_GENEVE6_UCDEF, }; /* quick bounds check (BCAST result impossible) */ BUILD_BUG_ON(EFX_EF10_BCAST != 0); if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) { WARN_ON(1); return -EINVAL; } /* then follow map */ id = &vlan->default_filters[map[encap_type]]; EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID); *id = rc; rc = 0; } return rc; } /* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD * flag or removes these filters, we don't need to hold the filter_lock while * scanning for these filters. */ static void efx_ef10_filter_remove_old(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; int remove_failed = 0; int remove_noent = 0; int rc; int i; for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) { if (ACCESS_ONCE(table->entry[i].spec) & EFX_EF10_FILTER_FLAG_AUTO_OLD) { rc = efx_ef10_filter_remove_internal(efx, 1U << EFX_FILTER_PRI_AUTO, i, true); if (rc == -ENOENT) remove_noent++; else if (rc) remove_failed++; } } if (remove_failed) netif_info(efx, drv, efx->net_dev, "%s: failed to remove %d filters\n", __func__, remove_failed); if (remove_noent) netif_info(efx, drv, efx->net_dev, "%s: failed to remove %d non-existent filters\n", __func__, remove_noent); } static int efx_ef10_vport_set_mac_address(struct efx_nic *efx) { struct efx_ef10_nic_data *nic_data = efx->nic_data; u8 mac_old[ETH_ALEN]; int rc, rc2; /* Only reconfigure a PF-created vport */ if (is_zero_ether_addr(nic_data->vport_mac)) return 0; efx_device_detach_sync(efx); efx_net_stop(efx->net_dev); down_write(&efx->filter_sem); efx_ef10_filter_table_remove(efx); up_write(&efx->filter_sem); rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id); if (rc) goto restore_filters; ether_addr_copy(mac_old, nic_data->vport_mac); rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id, nic_data->vport_mac); if (rc) goto restore_vadaptor; rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id, efx->net_dev->dev_addr); if (!rc) { ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr); } else { rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old); if (rc2) { /* Failed to add original MAC, so clear vport_mac */ eth_zero_addr(nic_data->vport_mac); goto reset_nic; } } restore_vadaptor: rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id); if (rc2) goto reset_nic; restore_filters: down_write(&efx->filter_sem); rc2 = efx_ef10_filter_table_probe(efx); up_write(&efx->filter_sem); if (rc2) goto reset_nic; rc2 = efx_net_open(efx->net_dev); if (rc2) goto reset_nic; netif_device_attach(efx->net_dev); return rc; reset_nic: netif_err(efx, drv, efx->net_dev, "Failed to restore when changing MAC address - scheduling reset\n"); efx_schedule_reset(efx, RESET_TYPE_DATAPATH); return rc ? rc : rc2; } /* Caller must hold efx->filter_sem for read if race against * efx_ef10_filter_table_remove() is possible */ static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_nic_data *nic_data = efx->nic_data; /* Do not install unspecified VID if VLAN filtering is enabled. * Do not install all specified VIDs if VLAN filtering is disabled. */ if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter) return; /* Insert/renew unicast filters */ if (table->uc_promisc) { efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, false, false); efx_ef10_filter_insert_addr_list(efx, vlan, false, false); } else { /* If any of the filters failed to insert, fall back to * promiscuous mode - add in the uc_def filter. But keep * our individual unicast filters. */ if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false)) efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, false, false); } efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN, false, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6, false, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE, false, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6, false, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE, false, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6, false, false); /* Insert/renew multicast filters */ /* If changing promiscuous state with cascaded multicast filters, remove * old filters first, so that packets are dropped rather than duplicated */ if (nic_data->workaround_26807 && table->mc_promisc_last != table->mc_promisc) efx_ef10_filter_remove_old(efx); if (table->mc_promisc) { if (nic_data->workaround_26807) { /* If we failed to insert promiscuous filters, rollback * and fall back to individual multicast filters */ if (efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, true, true)) { /* Changing promisc state, so remove old filters */ efx_ef10_filter_remove_old(efx); efx_ef10_filter_insert_addr_list(efx, vlan, true, false); } } else { /* If we failed to insert promiscuous filters, don't * rollback. Regardless, also insert the mc_list */ efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, true, false); efx_ef10_filter_insert_addr_list(efx, vlan, true, false); } } else { /* If any filters failed to insert, rollback and fall back to * promiscuous mode - mc_def filter and maybe broadcast. If * that fails, roll back again and insert as many of our * individual multicast filters as we can. */ if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) { /* Changing promisc state, so remove old filters */ if (nic_data->workaround_26807) efx_ef10_filter_remove_old(efx); if (efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE, true, true)) efx_ef10_filter_insert_addr_list(efx, vlan, true, false); } } efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN, true, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6, true, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE, true, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6, true, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE, true, false); efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6, true, false); } /* Caller must hold efx->filter_sem for read if race against * efx_ef10_filter_table_remove() is possible */ static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx) { struct efx_ef10_filter_table *table = efx->filter_state; struct net_device *net_dev = efx->net_dev; struct efx_ef10_filter_vlan *vlan; bool vlan_filter; if (!efx_dev_registered(efx)) return; if (!table) return; efx_ef10_filter_mark_old(efx); /* Copy/convert the address lists; add the primary station * address and broadcast address */ netif_addr_lock_bh(net_dev); efx_ef10_filter_uc_addr_list(efx); efx_ef10_filter_mc_addr_list(efx); netif_addr_unlock_bh(net_dev); /* If VLAN filtering changes, all old filters are finally removed. * Do it in advance to avoid conflicts for unicast untagged and * VLAN 0 tagged filters. */ vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER); if (table->vlan_filter != vlan_filter) { table->vlan_filter = vlan_filter; efx_ef10_filter_remove_old(efx); } list_for_each_entry(vlan, &table->vlan_list, list) efx_ef10_filter_vlan_sync_rx_mode(efx, vlan); efx_ef10_filter_remove_old(efx); table->mc_promisc_last = table->mc_promisc; } static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_filter_vlan *vlan; WARN_ON(!rwsem_is_locked(&efx->filter_sem)); list_for_each_entry(vlan, &table->vlan_list, list) { if (vlan->vid == vid) return vlan; } return NULL; } static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_filter_table *table = efx->filter_state; struct efx_ef10_filter_vlan *vlan; unsigned int i; if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return -EINVAL; vlan = efx_ef10_filter_find_vlan(efx, vid); if (WARN_ON(vlan)) { netif_err(efx, drv, efx->net_dev, "VLAN %u already added\n", vid); return -EALREADY; } vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); if (!vlan) return -ENOMEM; vlan->vid = vid; for (i = 0; i < ARRAY_SIZE(vlan->uc); i++) vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID; for (i = 0; i < ARRAY_SIZE(vlan->mc); i++) vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID; for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID; list_add_tail(&vlan->list, &table->vlan_list); if (efx_dev_registered(efx)) efx_ef10_filter_vlan_sync_rx_mode(efx, vlan); return 0; } static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx, struct efx_ef10_filter_vlan *vlan) { unsigned int i; /* See comment in efx_ef10_filter_table_remove() */ if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return; list_del(&vlan->list); for (i = 0; i < ARRAY_SIZE(vlan->uc); i++) efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->uc[i]); for (i = 0; i < ARRAY_SIZE(vlan->mc); i++) efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mc[i]); for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++) if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID) efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->default_filters[i]); kfree(vlan); } static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid) { struct efx_ef10_filter_vlan *vlan; /* See comment in efx_ef10_filter_table_remove() */ if (!efx_rwsem_assert_write_locked(&efx->filter_sem)) return; vlan = efx_ef10_filter_find_vlan(efx, vid); if (!vlan) { netif_err(efx, drv, efx->net_dev, "VLAN %u not found in filter state\n", vid); return; } efx_ef10_filter_del_vlan_internal(efx, vlan); } static int efx_ef10_set_mac_address(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN); struct efx_ef10_nic_data *nic_data = efx->nic_data; bool was_enabled = efx->port_enabled; int rc; efx_device_detach_sync(efx); efx_net_stop(efx->net_dev); mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); efx_ef10_filter_table_remove(efx); ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR), efx->net_dev->dev_addr); MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, nic_data->vport_id); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf, sizeof(inbuf), NULL, 0, NULL); efx_ef10_filter_table_probe(efx); up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); if (was_enabled) efx_net_open(efx->net_dev); netif_device_attach(efx->net_dev); #ifdef CONFIG_SFC_SRIOV if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) { struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; if (rc == -EPERM) { struct efx_nic *efx_pf; /* Switch to PF and change MAC address on vport */ efx_pf = pci_get_drvdata(pci_dev_pf); rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, efx->net_dev->dev_addr); } else if (!rc) { struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); struct efx_ef10_nic_data *nic_data = efx_pf->nic_data; unsigned int i; /* MAC address successfully changed by VF (with MAC * spoofing) so update the parent PF if possible. */ for (i = 0; i < efx_pf->vf_count; ++i) { struct ef10_vf *vf = nic_data->vf + i; if (vf->efx == efx) { ether_addr_copy(vf->mac, efx->net_dev->dev_addr); return 0; } } } } else #endif if (rc == -EPERM) { netif_err(efx, drv, efx->net_dev, "Cannot change MAC address; use sfboot to enable" " mac-spoofing on this interface\n"); } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) { /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC * fall-back to the method of changing the MAC address on the * vport. This only applies to PFs because such versions of * MCFW do not support VFs. */ rc = efx_ef10_vport_set_mac_address(efx); } else { efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC, sizeof(inbuf), NULL, 0, rc); } return rc; } static int efx_ef10_mac_reconfigure(struct efx_nic *efx) { efx_ef10_filter_sync_rx_mode(efx); return efx_mcdi_set_mac(efx); } static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx) { efx_ef10_filter_sync_rx_mode(efx); return 0; } static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), NULL, 0, NULL); } /* MC BISTs follow a different poll mechanism to phy BISTs. * The BIST is done in the poll handler on the MC, and the MCDI command * will block until the BIST is done. */ static int efx_ef10_poll_bist(struct efx_nic *efx) { int rc; MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); size_t outlen; u32 result; rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc != 0) return rc; if (outlen < MC_CMD_POLL_BIST_OUT_LEN) return -EIO; result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); switch (result) { case MC_CMD_POLL_BIST_PASSED: netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); return 0; case MC_CMD_POLL_BIST_TIMEOUT: netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); return -EIO; case MC_CMD_POLL_BIST_FAILED: netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); return -EIO; default: netif_err(efx, hw, efx->net_dev, "BIST returned unknown result %u", result); return -EIO; } } static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) { int rc; netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); rc = efx_ef10_start_bist(efx, bist_type); if (rc != 0) return rc; return efx_ef10_poll_bist(efx); } static int efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) { int rc, rc2; efx_reset_down(efx, RESET_TYPE_WORLD); rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, NULL, 0, NULL, 0, NULL); if (rc != 0) goto out; tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); out: if (rc == -EPERM) rc = 0; rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); return rc ? rc : rc2; } #ifdef CONFIG_SFC_MTD struct efx_ef10_nvram_type_info { u16 type, type_mask; u8 port; const char *name; }; static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, }; static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, struct efx_mcdi_mtd_partition *part, unsigned int type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); const struct efx_ef10_nvram_type_info *info; size_t size, erase_size, outlen; bool protected; int rc; for (info = efx_ef10_nvram_types; ; info++) { if (info == efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types)) return -ENODEV; if ((type & ~info->type_mask) == info->type) break; } if (info->port != efx_port_num(efx)) return -ENODEV; rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); if (rc) return rc; if (protected) return -ENODEV; /* hide it */ part->nvram_type = type; MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) return -EIO; if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) part->fw_subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE); part->common.dev_type_name = "EF10 NVRAM manager"; part->common.type_name = info->name; part->common.mtd.type = MTD_NORFLASH; part->common.mtd.flags = MTD_CAP_NORFLASH; part->common.mtd.size = size; part->common.mtd.erasesize = erase_size; return 0; } static int efx_ef10_mtd_probe(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); struct efx_mcdi_mtd_partition *parts; size_t outlen, n_parts_total, i, n_parts; unsigned int type; int rc; ASSERT_RTNL(); BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) return -EIO; n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); if (n_parts_total > MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) return -EIO; parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); if (!parts) return -ENOMEM; n_parts = 0; for (i = 0; i < n_parts_total; i++) { type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, i); rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type); if (rc == 0) n_parts++; else if (rc != -ENODEV) goto fail; } rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); fail: if (rc) kfree(parts); return rc; } #endif /* CONFIG_SFC_MTD */ static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) { _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); } static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, u32 host_time) {} static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || channel->sync_events_state == SYNC_EVENTS_VALID || (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) return 0; channel->sync_events_state = SYNC_EVENTS_REQUESTED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); if (rc != 0) channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; return rc; } static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, bool temp) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); int rc; if (channel->sync_events_state == SYNC_EVENTS_DISABLED || (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) return 0; if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { channel->sync_events_state = SYNC_EVENTS_DISABLED; return 0; } channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : SYNC_EVENTS_DISABLED; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, channel->channel); rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, bool temp) { int (*set)(struct efx_channel *channel, bool temp); struct efx_channel *channel; set = en ? efx_ef10_rx_enable_timestamping : efx_ef10_rx_disable_timestamping; efx_for_each_channel(channel, efx) { int rc = set(channel, temp); if (en && rc != 0) { efx_ef10_ptp_set_ts_sync_events(efx, false, temp); return rc; } } return 0; } static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, struct hwtstamp_config *init) { return -EOPNOTSUPP; } static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, struct hwtstamp_config *init) { int rc; switch (init->rx_filter) { case HWTSTAMP_FILTER_NONE: efx_ef10_ptp_set_ts_sync_events(efx, false, false); /* if TX timestamping is still requested then leave PTP on */ return efx_ptp_change_mode(efx, init->tx_type != HWTSTAMP_TX_OFF, 0); case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: init->rx_filter = HWTSTAMP_FILTER_ALL; rc = efx_ptp_change_mode(efx, true, 0); if (!rc) rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); if (rc) efx_ptp_change_mode(efx, false, 0); return rc; default: return -ERANGE; } } static int efx_ef10_get_phys_port_id(struct efx_nic *efx, struct netdev_phys_item_id *ppid) { struct efx_ef10_nic_data *nic_data = efx->nic_data; if (!is_valid_ether_addr(nic_data->port_id)) return -EOPNOTSUPP; ppid->id_len = ETH_ALEN; memcpy(ppid->id, nic_data->port_id, ppid->id_len); return 0; } static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid) { if (proto != htons(ETH_P_8021Q)) return -EINVAL; return efx_ef10_add_vlan(efx, vid); } static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid) { if (proto != htons(ETH_P_8021Q)) return -EINVAL; return efx_ef10_del_vlan(efx, vid); } #define EF10_OFFLOAD_FEATURES \ (NETIF_F_IP_CSUM | \ NETIF_F_HW_VLAN_CTAG_FILTER | \ NETIF_F_IPV6_CSUM | \ NETIF_F_RXHASH | \ NETIF_F_NTUPLE) const struct efx_nic_type efx_hunt_a0_vf_nic_type = { .is_vf = true, .mem_bar = EFX_MEM_VF_BAR, .mem_map_size = efx_ef10_mem_map_size, .probe = efx_ef10_probe_vf, .remove = efx_ef10_remove, .dimension_resources = efx_ef10_dimension_resources, .init = efx_ef10_init_nic, .fini = efx_port_dummy_op_void, .map_reset_reason = efx_ef10_map_reset_reason, .map_reset_flags = efx_ef10_map_reset_flags, .reset = efx_ef10_reset, .probe_port = efx_mcdi_port_probe, .remove_port = efx_mcdi_port_remove, .fini_dmaq = efx_ef10_fini_dmaq, .prepare_flr = efx_ef10_prepare_flr, .finish_flr = efx_port_dummy_op_void, .describe_stats = efx_ef10_describe_stats, .update_stats = efx_ef10_update_stats_vf, .start_stats = efx_port_dummy_op_void, .pull_stats = efx_port_dummy_op_void, .stop_stats = efx_port_dummy_op_void, .set_id_led = efx_mcdi_set_id_led, .push_irq_moderation = efx_ef10_push_irq_moderation, .reconfigure_mac = efx_ef10_mac_reconfigure_vf, .check_mac_fault = efx_mcdi_mac_check_fault, .reconfigure_port = efx_mcdi_port_reconfigure, .get_wol = efx_ef10_get_wol_vf, .set_wol = efx_ef10_set_wol_vf, .resume_wol = efx_port_dummy_op_void, .mcdi_request = efx_ef10_mcdi_request, .mcdi_poll_response = efx_ef10_mcdi_poll_response, .mcdi_read_response = efx_ef10_mcdi_read_response, .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef10_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .irq_handle_msi = efx_ef10_msi_interrupt, .irq_handle_legacy = efx_ef10_legacy_interrupt, .tx_probe = efx_ef10_tx_probe, .tx_init = efx_ef10_tx_init, .tx_remove = efx_ef10_tx_remove, .tx_write = efx_ef10_tx_write, .tx_limit_len = efx_ef10_tx_limit_len, .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config, .rx_pull_rss_config = efx_ef10_rx_pull_rss_config, .rx_probe = efx_ef10_rx_probe, .rx_init = efx_ef10_rx_init, .rx_remove = efx_ef10_rx_remove, .rx_write = efx_ef10_rx_write, .rx_defer_refill = efx_ef10_rx_defer_refill, .ev_probe = efx_ef10_ev_probe, .ev_init = efx_ef10_ev_init, .ev_fini = efx_ef10_ev_fini, .ev_remove = efx_ef10_ev_remove, .ev_process = efx_ef10_ev_process, .ev_read_ack = efx_ef10_ev_read_ack, .ev_test_generate = efx_ef10_ev_test_generate, .filter_table_probe = efx_ef10_filter_table_probe, .filter_table_restore = efx_ef10_filter_table_restore, .filter_table_remove = efx_ef10_filter_table_remove, .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter, .filter_insert = efx_ef10_filter_insert, .filter_remove_safe = efx_ef10_filter_remove_safe, .filter_get_safe = efx_ef10_filter_get_safe, .filter_clear_rx = efx_ef10_filter_clear_rx, .filter_count_rx_used = efx_ef10_filter_count_rx_used, .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit, .filter_get_rx_ids = efx_ef10_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_insert = efx_ef10_filter_rfs_insert, .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_MTD .mtd_probe = efx_port_dummy_op_int, #endif .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf, .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf, .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, #ifdef CONFIG_SFC_SRIOV .vswitching_probe = efx_ef10_vswitching_probe_vf, .vswitching_restore = efx_ef10_vswitching_restore_vf, .vswitching_remove = efx_ef10_vswitching_remove_vf, #endif .get_mac_address = efx_ef10_get_mac_address_vf, .set_mac_address = efx_ef10_set_mac_address, .get_phys_port_id = efx_ef10_get_phys_port_id, .revision = EFX_REV_HUNT_A0, .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, .can_rx_scatter = true, .always_rx_scatter = true, .max_interrupt_mode = EFX_INT_MODE_MSIX, .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, .offload_features = EF10_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS, .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 1 << HWTSTAMP_FILTER_ALL, .rx_hash_key_size = 40, }; const struct efx_nic_type efx_hunt_a0_nic_type = { .is_vf = false, .mem_bar = EFX_MEM_BAR, .mem_map_size = efx_ef10_mem_map_size, .probe = efx_ef10_probe_pf, .remove = efx_ef10_remove, .dimension_resources = efx_ef10_dimension_resources, .init = efx_ef10_init_nic, .fini = efx_port_dummy_op_void, .map_reset_reason = efx_ef10_map_reset_reason, .map_reset_flags = efx_ef10_map_reset_flags, .reset = efx_ef10_reset, .probe_port = efx_mcdi_port_probe, .remove_port = efx_mcdi_port_remove, .fini_dmaq = efx_ef10_fini_dmaq, .prepare_flr = efx_ef10_prepare_flr, .finish_flr = efx_port_dummy_op_void, .describe_stats = efx_ef10_describe_stats, .update_stats = efx_ef10_update_stats_pf, .start_stats = efx_mcdi_mac_start_stats, .pull_stats = efx_mcdi_mac_pull_stats, .stop_stats = efx_mcdi_mac_stop_stats, .set_id_led = efx_mcdi_set_id_led, .push_irq_moderation = efx_ef10_push_irq_moderation, .reconfigure_mac = efx_ef10_mac_reconfigure, .check_mac_fault = efx_mcdi_mac_check_fault, .reconfigure_port = efx_mcdi_port_reconfigure, .get_wol = efx_ef10_get_wol, .set_wol = efx_ef10_set_wol, .resume_wol = efx_port_dummy_op_void, .test_chip = efx_ef10_test_chip, .test_nvram = efx_mcdi_nvram_test_all, .mcdi_request = efx_ef10_mcdi_request, .mcdi_poll_response = efx_ef10_mcdi_poll_response, .mcdi_read_response = efx_ef10_mcdi_read_response, .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_test_generate = efx_ef10_irq_test_generate, .irq_disable_non_ev = efx_port_dummy_op_void, .irq_handle_msi = efx_ef10_msi_interrupt, .irq_handle_legacy = efx_ef10_legacy_interrupt, .tx_probe = efx_ef10_tx_probe, .tx_init = efx_ef10_tx_init, .tx_remove = efx_ef10_tx_remove, .tx_write = efx_ef10_tx_write, .tx_limit_len = efx_ef10_tx_limit_len, .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config, .rx_pull_rss_config = efx_ef10_rx_pull_rss_config, .rx_probe = efx_ef10_rx_probe, .rx_init = efx_ef10_rx_init, .rx_remove = efx_ef10_rx_remove, .rx_write = efx_ef10_rx_write, .rx_defer_refill = efx_ef10_rx_defer_refill, .ev_probe = efx_ef10_ev_probe, .ev_init = efx_ef10_ev_init, .ev_fini = efx_ef10_ev_fini, .ev_remove = efx_ef10_ev_remove, .ev_process = efx_ef10_ev_process, .ev_read_ack = efx_ef10_ev_read_ack, .ev_test_generate = efx_ef10_ev_test_generate, .filter_table_probe = efx_ef10_filter_table_probe, .filter_table_restore = efx_ef10_filter_table_restore, .filter_table_remove = efx_ef10_filter_table_remove, .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter, .filter_insert = efx_ef10_filter_insert, .filter_remove_safe = efx_ef10_filter_remove_safe, .filter_get_safe = efx_ef10_filter_get_safe, .filter_clear_rx = efx_ef10_filter_clear_rx, .filter_count_rx_used = efx_ef10_filter_count_rx_used, .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit, .filter_get_rx_ids = efx_ef10_filter_get_rx_ids, #ifdef CONFIG_RFS_ACCEL .filter_rfs_insert = efx_ef10_filter_rfs_insert, .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one, #endif #ifdef CONFIG_SFC_MTD .mtd_probe = efx_ef10_mtd_probe, .mtd_rename = efx_mcdi_mtd_rename, .mtd_read = efx_mcdi_mtd_read, .mtd_erase = efx_mcdi_mtd_erase, .mtd_write = efx_mcdi_mtd_write, .mtd_sync = efx_mcdi_mtd_sync, #endif .ptp_write_host_time = efx_ef10_ptp_write_host_time, .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, #ifdef CONFIG_SFC_SRIOV .sriov_configure = efx_ef10_sriov_configure, .sriov_init = efx_ef10_sriov_init, .sriov_fini = efx_ef10_sriov_fini, .sriov_wanted = efx_ef10_sriov_wanted, .sriov_reset = efx_ef10_sriov_reset, .sriov_flr = efx_ef10_sriov_flr, .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state, .vswitching_probe = efx_ef10_vswitching_probe_pf, .vswitching_restore = efx_ef10_vswitching_restore_pf, .vswitching_remove = efx_ef10_vswitching_remove_pf, #endif .get_mac_address = efx_ef10_get_mac_address_pf, .set_mac_address = efx_ef10_set_mac_address, .tso_versions = efx_ef10_tso_versions, .get_phys_port_id = efx_ef10_get_phys_port_id, .revision = EFX_REV_HUNT_A0, .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, .can_rx_scatter = true, .always_rx_scatter = true, .option_descriptors = true, .max_interrupt_mode = EFX_INT_MODE_MSIX, .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, .offload_features = EF10_OFFLOAD_FEATURES, .mcdi_max_ver = 2, .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS, .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 1 << HWTSTAMP_FILTER_ALL, .rx_hash_key_size = 40, };