// SPDX-License-Identifier: GPL-2.0 /* * Self tests for device tree subsystem */ #define pr_fmt(fmt) "### dt-test ### " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "of_private.h" static struct unittest_results { int passed; int failed; } unittest_results; #define unittest(result, fmt, ...) ({ \ bool failed = !(result); \ if (failed) { \ unittest_results.failed++; \ pr_err("FAIL %s():%i " fmt, __func__, __LINE__, ##__VA_ARGS__); \ } else { \ unittest_results.passed++; \ pr_debug("pass %s():%i\n", __func__, __LINE__); \ } \ failed; \ }) static void __init of_unittest_find_node_by_name(void) { struct device_node *np; const char *options, *name; np = of_find_node_by_path("/testcase-data"); name = kasprintf(GFP_KERNEL, "%pOF", np); unittest(np && !strcmp("/testcase-data", name), "find /testcase-data failed\n"); of_node_put(np); kfree(name); /* Test if trailing '/' works */ np = of_find_node_by_path("/testcase-data/"); unittest(!np, "trailing '/' on /testcase-data/ should fail\n"); np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); name = kasprintf(GFP_KERNEL, "%pOF", np); unittest(np && !strcmp("/testcase-data/phandle-tests/consumer-a", name), "find /testcase-data/phandle-tests/consumer-a failed\n"); of_node_put(np); kfree(name); np = of_find_node_by_path("testcase-alias"); name = kasprintf(GFP_KERNEL, "%pOF", np); unittest(np && !strcmp("/testcase-data", name), "find testcase-alias failed\n"); of_node_put(np); kfree(name); /* Test if trailing '/' works on aliases */ np = of_find_node_by_path("testcase-alias/"); unittest(!np, "trailing '/' on testcase-alias/ should fail\n"); np = of_find_node_by_path("testcase-alias/phandle-tests/consumer-a"); name = kasprintf(GFP_KERNEL, "%pOF", np); unittest(np && !strcmp("/testcase-data/phandle-tests/consumer-a", name), "find testcase-alias/phandle-tests/consumer-a failed\n"); of_node_put(np); kfree(name); np = of_find_node_by_path("/testcase-data/missing-path"); unittest(!np, "non-existent path returned node %pOF\n", np); of_node_put(np); np = of_find_node_by_path("missing-alias"); unittest(!np, "non-existent alias returned node %pOF\n", np); of_node_put(np); np = of_find_node_by_path("testcase-alias/missing-path"); unittest(!np, "non-existent alias with relative path returned node %pOF\n", np); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:testoption", &options); unittest(np && !strcmp("testoption", options), "option path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:test/option", &options); unittest(np && !strcmp("test/option", options), "option path test, subcase #1 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data/testcase-device1:test/option", &options); unittest(np && !strcmp("test/option", options), "option path test, subcase #2 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("/testcase-data:testoption", NULL); unittest(np, "NULL option path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:testaliasoption", &options); unittest(np && !strcmp("testaliasoption", options), "option alias path test failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:test/alias/option", &options); unittest(np && !strcmp("test/alias/option", options), "option alias path test, subcase #1 failed\n"); of_node_put(np); np = of_find_node_opts_by_path("testcase-alias:testaliasoption", NULL); unittest(np, "NULL option alias path test failed\n"); of_node_put(np); options = "testoption"; np = of_find_node_opts_by_path("testcase-alias", &options); unittest(np && !options, "option clearing test failed\n"); of_node_put(np); options = "testoption"; np = of_find_node_opts_by_path("/", &options); unittest(np && !options, "option clearing root node test failed\n"); of_node_put(np); } static void __init of_unittest_dynamic(void) { struct device_node *np; struct property *prop; np = of_find_node_by_path("/testcase-data"); if (!np) { pr_err("missing testcase data\n"); return; } /* Array of 4 properties for the purpose of testing */ prop = kcalloc(4, sizeof(*prop), GFP_KERNEL); if (!prop) { unittest(0, "kzalloc() failed\n"); return; } /* Add a new property - should pass*/ prop->name = "new-property"; prop->value = "new-property-data"; prop->length = strlen(prop->value) + 1; unittest(of_add_property(np, prop) == 0, "Adding a new property failed\n"); /* Try to add an existing property - should fail */ prop++; prop->name = "new-property"; prop->value = "new-property-data-should-fail"; prop->length = strlen(prop->value) + 1; unittest(of_add_property(np, prop) != 0, "Adding an existing property should have failed\n"); /* Try to modify an existing property - should pass */ prop->value = "modify-property-data-should-pass"; prop->length = strlen(prop->value) + 1; unittest(of_update_property(np, prop) == 0, "Updating an existing property should have passed\n"); /* Try to modify non-existent property - should pass*/ prop++; prop->name = "modify-property"; prop->value = "modify-missing-property-data-should-pass"; prop->length = strlen(prop->value) + 1; unittest(of_update_property(np, prop) == 0, "Updating a missing property should have passed\n"); /* Remove property - should pass */ unittest(of_remove_property(np, prop) == 0, "Removing a property should have passed\n"); /* Adding very large property - should pass */ prop++; prop->name = "large-property-PAGE_SIZEx8"; prop->length = PAGE_SIZE * 8; prop->value = kzalloc(prop->length, GFP_KERNEL); unittest(prop->value != NULL, "Unable to allocate large buffer\n"); if (prop->value) unittest(of_add_property(np, prop) == 0, "Adding a large property should have passed\n"); } static int __init of_unittest_check_node_linkage(struct device_node *np) { struct device_node *child; int count = 0, rc; for_each_child_of_node(np, child) { if (child->parent != np) { pr_err("Child node %pOFn links to wrong parent %pOFn\n", child, np); rc = -EINVAL; goto put_child; } rc = of_unittest_check_node_linkage(child); if (rc < 0) goto put_child; count += rc; } return count + 1; put_child: of_node_put(child); return rc; } static void __init of_unittest_check_tree_linkage(void) { struct device_node *np; int allnode_count = 0, child_count; if (!of_root) return; for_each_of_allnodes(np) allnode_count++; child_count = of_unittest_check_node_linkage(of_root); unittest(child_count > 0, "Device node data structure is corrupted\n"); unittest(child_count == allnode_count, "allnodes list size (%i) doesn't match sibling lists size (%i)\n", allnode_count, child_count); pr_debug("allnodes list size (%i); sibling lists size (%i)\n", allnode_count, child_count); } static void __init of_unittest_printf_one(struct device_node *np, const char *fmt, const char *expected) { unsigned char *buf; int buf_size; int size, i; buf_size = strlen(expected) + 10; buf = kmalloc(buf_size, GFP_KERNEL); if (!buf) return; /* Baseline; check conversion with a large size limit */ memset(buf, 0xff, buf_size); size = snprintf(buf, buf_size - 2, fmt, np); /* use strcmp() instead of strncmp() here to be absolutely sure strings match */ unittest((strcmp(buf, expected) == 0) && (buf[size+1] == 0xff), "sprintf failed; fmt='%s' expected='%s' rslt='%s'\n", fmt, expected, buf); /* Make sure length limits work */ size++; for (i = 0; i < 2; i++, size--) { /* Clear the buffer, and make sure it works correctly still */ memset(buf, 0xff, buf_size); snprintf(buf, size+1, fmt, np); unittest(strncmp(buf, expected, size) == 0 && (buf[size+1] == 0xff), "snprintf failed; size=%i fmt='%s' expected='%s' rslt='%s'\n", size, fmt, expected, buf); } kfree(buf); } static void __init of_unittest_printf(void) { struct device_node *np; const char *full_name = "/testcase-data/platform-tests/test-device@1/dev@100"; char phandle_str[16] = ""; np = of_find_node_by_path(full_name); if (!np) { unittest(np, "testcase data missing\n"); return; } num_to_str(phandle_str, sizeof(phandle_str), np->phandle, 0); of_unittest_printf_one(np, "%pOF", full_name); of_unittest_printf_one(np, "%pOFf", full_name); of_unittest_printf_one(np, "%pOFp", phandle_str); of_unittest_printf_one(np, "%pOFP", "dev@100"); of_unittest_printf_one(np, "ABC %pOFP ABC", "ABC dev@100 ABC"); of_unittest_printf_one(np, "%10pOFP", " dev@100"); of_unittest_printf_one(np, "%-10pOFP", "dev@100 "); of_unittest_printf_one(of_root, "%pOFP", "/"); of_unittest_printf_one(np, "%pOFF", "----"); of_unittest_printf_one(np, "%pOFPF", "dev@100:----"); of_unittest_printf_one(np, "%pOFPFPc", "dev@100:----:dev@100:test-sub-device"); of_unittest_printf_one(np, "%pOFc", "test-sub-device"); of_unittest_printf_one(np, "%pOFC", "\"test-sub-device\",\"test-compat2\",\"test-compat3\""); } struct node_hash { struct hlist_node node; struct device_node *np; }; static DEFINE_HASHTABLE(phandle_ht, 8); static void __init of_unittest_check_phandles(void) { struct device_node *np; struct node_hash *nh; struct hlist_node *tmp; int i, dup_count = 0, phandle_count = 0; for_each_of_allnodes(np) { if (!np->phandle) continue; hash_for_each_possible(phandle_ht, nh, node, np->phandle) { if (nh->np->phandle == np->phandle) { pr_info("Duplicate phandle! %i used by %pOF and %pOF\n", np->phandle, nh->np, np); dup_count++; break; } } nh = kzalloc(sizeof(*nh), GFP_KERNEL); if (WARN_ON(!nh)) return; nh->np = np; hash_add(phandle_ht, &nh->node, np->phandle); phandle_count++; } unittest(dup_count == 0, "Found %i duplicates in %i phandles\n", dup_count, phandle_count); /* Clean up */ hash_for_each_safe(phandle_ht, i, tmp, nh, node) { hash_del(&nh->node); kfree(nh); } } static void __init of_unittest_parse_phandle_with_args(void) { struct device_node *np; struct of_phandle_args args; int i, rc; np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_err("missing testcase data\n"); return; } rc = of_count_phandle_with_args(np, "phandle-list", "#phandle-cells"); unittest(rc == 7, "of_count_phandle_with_args() returned %i, expected 7\n", rc); for (i = 0; i < 8; i++) { bool passed = true; rc = of_parse_phandle_with_args(np, "phandle-list", "#phandle-cells", i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); break; case 1: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 0); break; case 2: passed &= (rc == -ENOENT); break; case 3: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 4); passed &= (args.args[2] == 3); break; case 4: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == (i + 1)); passed &= (args.args[1] == 100); break; case 5: passed &= !rc; passed &= (args.args_count == 0); break; case 6: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); break; case 7: passed &= (rc == -ENOENT); break; default: passed = false; } unittest(passed, "index %i - data error on node %pOF rc=%i\n", i, args.np, rc); } /* Check for missing list property */ rc = of_parse_phandle_with_args(np, "phandle-list-missing", "#phandle-cells", 0, &args); unittest(rc == -ENOENT, "expected:%i got:%i\n", -ENOENT, rc); rc = of_count_phandle_with_args(np, "phandle-list-missing", "#phandle-cells"); unittest(rc == -ENOENT, "expected:%i got:%i\n", -ENOENT, rc); /* Check for missing cells property */ rc = of_parse_phandle_with_args(np, "phandle-list", "#phandle-cells-missing", 0, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list", "#phandle-cells-missing"); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for bad phandle in list */ rc = of_parse_phandle_with_args(np, "phandle-list-bad-phandle", "#phandle-cells", 0, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list-bad-phandle", "#phandle-cells"); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for incorrectly formed argument list */ rc = of_parse_phandle_with_args(np, "phandle-list-bad-args", "#phandle-cells", 1, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); rc = of_count_phandle_with_args(np, "phandle-list-bad-args", "#phandle-cells"); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); } static void __init of_unittest_parse_phandle_with_args_map(void) { struct device_node *np, *p0, *p1, *p2, *p3; struct of_phandle_args args; int i, rc; np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-b"); if (!np) { pr_err("missing testcase data\n"); return; } p0 = of_find_node_by_path("/testcase-data/phandle-tests/provider0"); if (!p0) { pr_err("missing testcase data\n"); return; } p1 = of_find_node_by_path("/testcase-data/phandle-tests/provider1"); if (!p1) { pr_err("missing testcase data\n"); return; } p2 = of_find_node_by_path("/testcase-data/phandle-tests/provider2"); if (!p2) { pr_err("missing testcase data\n"); return; } p3 = of_find_node_by_path("/testcase-data/phandle-tests/provider3"); if (!p3) { pr_err("missing testcase data\n"); return; } rc = of_count_phandle_with_args(np, "phandle-list", "#phandle-cells"); unittest(rc == 7, "of_count_phandle_with_args() returned %i, expected 7\n", rc); for (i = 0; i < 8; i++) { bool passed = true; rc = of_parse_phandle_with_args_map(np, "phandle-list", "phandle", i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.np == p1); passed &= (args.args_count == 1); passed &= (args.args[0] == 1); break; case 1: passed &= !rc; passed &= (args.np == p3); passed &= (args.args_count == 3); passed &= (args.args[0] == 2); passed &= (args.args[1] == 5); passed &= (args.args[2] == 3); break; case 2: passed &= (rc == -ENOENT); break; case 3: passed &= !rc; passed &= (args.np == p0); passed &= (args.args_count == 0); break; case 4: passed &= !rc; passed &= (args.np == p1); passed &= (args.args_count == 1); passed &= (args.args[0] == 3); break; case 5: passed &= !rc; passed &= (args.np == p0); passed &= (args.args_count == 0); break; case 6: passed &= !rc; passed &= (args.np == p2); passed &= (args.args_count == 2); passed &= (args.args[0] == 15); passed &= (args.args[1] == 0x20); break; case 7: passed &= (rc == -ENOENT); break; default: passed = false; } unittest(passed, "index %i - data error on node %s rc=%i\n", i, args.np->full_name, rc); } /* Check for missing list property */ rc = of_parse_phandle_with_args_map(np, "phandle-list-missing", "phandle", 0, &args); unittest(rc == -ENOENT, "expected:%i got:%i\n", -ENOENT, rc); /* Check for missing cells,map,mask property */ rc = of_parse_phandle_with_args_map(np, "phandle-list", "phandle-missing", 0, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for bad phandle in list */ rc = of_parse_phandle_with_args_map(np, "phandle-list-bad-phandle", "phandle", 0, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); /* Check for incorrectly formed argument list */ rc = of_parse_phandle_with_args_map(np, "phandle-list-bad-args", "phandle", 1, &args); unittest(rc == -EINVAL, "expected:%i got:%i\n", -EINVAL, rc); } static void __init of_unittest_property_string(void) { const char *strings[4]; struct device_node *np; int rc; np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_err("No testcase data in device tree\n"); return; } rc = of_property_match_string(np, "phandle-list-names", "first"); unittest(rc == 0, "first expected:0 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "second"); unittest(rc == 1, "second expected:1 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "third"); unittest(rc == 2, "third expected:2 got:%i\n", rc); rc = of_property_match_string(np, "phandle-list-names", "fourth"); unittest(rc == -ENODATA, "unmatched string; rc=%i\n", rc); rc = of_property_match_string(np, "missing-property", "blah"); unittest(rc == -EINVAL, "missing property; rc=%i\n", rc); rc = of_property_match_string(np, "empty-property", "blah"); unittest(rc == -ENODATA, "empty property; rc=%i\n", rc); rc = of_property_match_string(np, "unterminated-string", "blah"); unittest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); /* of_property_count_strings() tests */ rc = of_property_count_strings(np, "string-property"); unittest(rc == 1, "Incorrect string count; rc=%i\n", rc); rc = of_property_count_strings(np, "phandle-list-names"); unittest(rc == 3, "Incorrect string count; rc=%i\n", rc); rc = of_property_count_strings(np, "unterminated-string"); unittest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); rc = of_property_count_strings(np, "unterminated-string-list"); unittest(rc == -EILSEQ, "unterminated string array; rc=%i\n", rc); /* of_property_read_string_index() tests */ rc = of_property_read_string_index(np, "string-property", 0, strings); unittest(rc == 0 && !strcmp(strings[0], "foobar"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "string-property", 1, strings); unittest(rc == -ENODATA && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 0, strings); unittest(rc == 0 && !strcmp(strings[0], "first"), "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 1, strings); unittest(rc == 0 && !strcmp(strings[0], "second"), "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "phandle-list-names", 2, strings); unittest(rc == 0 && !strcmp(strings[0], "third"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "phandle-list-names", 3, strings); unittest(rc == -ENODATA && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "unterminated-string", 0, strings); unittest(rc == -EILSEQ && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); rc = of_property_read_string_index(np, "unterminated-string-list", 0, strings); unittest(rc == 0 && !strcmp(strings[0], "first"), "of_property_read_string_index() failure; rc=%i\n", rc); strings[0] = NULL; rc = of_property_read_string_index(np, "unterminated-string-list", 2, strings); /* should fail */ unittest(rc == -EILSEQ && strings[0] == NULL, "of_property_read_string_index() failure; rc=%i\n", rc); strings[1] = NULL; /* of_property_read_string_array() tests */ rc = of_property_read_string_array(np, "string-property", strings, 4); unittest(rc == 1, "Incorrect string count; rc=%i\n", rc); rc = of_property_read_string_array(np, "phandle-list-names", strings, 4); unittest(rc == 3, "Incorrect string count; rc=%i\n", rc); rc = of_property_read_string_array(np, "unterminated-string", strings, 4); unittest(rc == -EILSEQ, "unterminated string; rc=%i\n", rc); /* -- An incorrectly formed string should cause a failure */ rc = of_property_read_string_array(np, "unterminated-string-list", strings, 4); unittest(rc == -EILSEQ, "unterminated string array; rc=%i\n", rc); /* -- parsing the correctly formed strings should still work: */ strings[2] = NULL; rc = of_property_read_string_array(np, "unterminated-string-list", strings, 2); unittest(rc == 2 && strings[2] == NULL, "of_property_read_string_array() failure; rc=%i\n", rc); strings[1] = NULL; rc = of_property_read_string_array(np, "phandle-list-names", strings, 1); unittest(rc == 1 && strings[1] == NULL, "Overwrote end of string array; rc=%i, str='%s'\n", rc, strings[1]); } #define propcmp(p1, p2) (((p1)->length == (p2)->length) && \ (p1)->value && (p2)->value && \ !memcmp((p1)->value, (p2)->value, (p1)->length) && \ !strcmp((p1)->name, (p2)->name)) static void __init of_unittest_property_copy(void) { #ifdef CONFIG_OF_DYNAMIC struct property p1 = { .name = "p1", .length = 0, .value = "" }; struct property p2 = { .name = "p2", .length = 5, .value = "abcd" }; struct property *new; new = __of_prop_dup(&p1, GFP_KERNEL); unittest(new && propcmp(&p1, new), "empty property didn't copy correctly\n"); kfree(new->value); kfree(new->name); kfree(new); new = __of_prop_dup(&p2, GFP_KERNEL); unittest(new && propcmp(&p2, new), "non-empty property didn't copy correctly\n"); kfree(new->value); kfree(new->name); kfree(new); #endif } static void __init of_unittest_changeset(void) { #ifdef CONFIG_OF_DYNAMIC struct property *ppadd, padd = { .name = "prop-add", .length = 1, .value = "" }; struct property *ppname_n1, pname_n1 = { .name = "name", .length = 3, .value = "n1" }; struct property *ppname_n2, pname_n2 = { .name = "name", .length = 3, .value = "n2" }; struct property *ppname_n21, pname_n21 = { .name = "name", .length = 3, .value = "n21" }; struct property *ppupdate, pupdate = { .name = "prop-update", .length = 5, .value = "abcd" }; struct property *ppremove; struct device_node *n1, *n2, *n21, *nchangeset, *nremove, *parent, *np; struct of_changeset chgset; n1 = __of_node_dup(NULL, "n1"); unittest(n1, "testcase setup failure\n"); n2 = __of_node_dup(NULL, "n2"); unittest(n2, "testcase setup failure\n"); n21 = __of_node_dup(NULL, "n21"); unittest(n21, "testcase setup failure %p\n", n21); nchangeset = of_find_node_by_path("/testcase-data/changeset"); nremove = of_get_child_by_name(nchangeset, "node-remove"); unittest(nremove, "testcase setup failure\n"); ppadd = __of_prop_dup(&padd, GFP_KERNEL); unittest(ppadd, "testcase setup failure\n"); ppname_n1 = __of_prop_dup(&pname_n1, GFP_KERNEL); unittest(ppname_n1, "testcase setup failure\n"); ppname_n2 = __of_prop_dup(&pname_n2, GFP_KERNEL); unittest(ppname_n2, "testcase setup failure\n"); ppname_n21 = __of_prop_dup(&pname_n21, GFP_KERNEL); unittest(ppname_n21, "testcase setup failure\n"); ppupdate = __of_prop_dup(&pupdate, GFP_KERNEL); unittest(ppupdate, "testcase setup failure\n"); parent = nchangeset; n1->parent = parent; n2->parent = parent; n21->parent = n2; ppremove = of_find_property(parent, "prop-remove", NULL); unittest(ppremove, "failed to find removal prop"); of_changeset_init(&chgset); unittest(!of_changeset_attach_node(&chgset, n1), "fail attach n1\n"); unittest(!of_changeset_add_property(&chgset, n1, ppname_n1), "fail add prop name\n"); unittest(!of_changeset_attach_node(&chgset, n2), "fail attach n2\n"); unittest(!of_changeset_add_property(&chgset, n2, ppname_n2), "fail add prop name\n"); unittest(!of_changeset_detach_node(&chgset, nremove), "fail remove node\n"); unittest(!of_changeset_add_property(&chgset, n21, ppname_n21), "fail add prop name\n"); unittest(!of_changeset_attach_node(&chgset, n21), "fail attach n21\n"); unittest(!of_changeset_add_property(&chgset, parent, ppadd), "fail add prop prop-add\n"); unittest(!of_changeset_update_property(&chgset, parent, ppupdate), "fail update prop\n"); unittest(!of_changeset_remove_property(&chgset, parent, ppremove), "fail remove prop\n"); unittest(!of_changeset_apply(&chgset), "apply failed\n"); of_node_put(nchangeset); /* Make sure node names are constructed correctly */ unittest((np = of_find_node_by_path("/testcase-data/changeset/n2/n21")), "'%pOF' not added\n", n21); of_node_put(np); unittest(!of_changeset_revert(&chgset), "revert failed\n"); of_changeset_destroy(&chgset); #endif } static void __init of_unittest_parse_interrupts(void) { struct device_node *np; struct of_phandle_args args; int i, rc; if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) return; np = of_find_node_by_path("/testcase-data/interrupts/interrupts0"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 4; i++) { bool passed = true; args.args_count = 0; rc = of_irq_parse_one(np, i, &args); passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == (i + 1)); unittest(passed, "index %i - data error on node %pOF rc=%i\n", i, args.np, rc); } of_node_put(np); np = of_find_node_by_path("/testcase-data/interrupts/interrupts1"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 4; i++) { bool passed = true; args.args_count = 0; rc = of_irq_parse_one(np, i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 9); break; case 1: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 10); passed &= (args.args[1] == 11); passed &= (args.args[2] == 12); break; case 2: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 13); passed &= (args.args[1] == 14); break; case 3: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 15); passed &= (args.args[1] == 16); break; default: passed = false; } unittest(passed, "index %i - data error on node %pOF rc=%i\n", i, args.np, rc); } of_node_put(np); } static void __init of_unittest_parse_interrupts_extended(void) { struct device_node *np; struct of_phandle_args args; int i, rc; if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) return; np = of_find_node_by_path("/testcase-data/interrupts/interrupts-extended0"); if (!np) { pr_err("missing testcase data\n"); return; } for (i = 0; i < 7; i++) { bool passed = true; rc = of_irq_parse_one(np, i, &args); /* Test the values from tests-phandle.dtsi */ switch (i) { case 0: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 1); break; case 1: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 2); passed &= (args.args[1] == 3); passed &= (args.args[2] == 4); break; case 2: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 5); passed &= (args.args[1] == 6); break; case 3: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 9); break; case 4: passed &= !rc; passed &= (args.args_count == 3); passed &= (args.args[0] == 10); passed &= (args.args[1] == 11); passed &= (args.args[2] == 12); break; case 5: passed &= !rc; passed &= (args.args_count == 2); passed &= (args.args[0] == 13); passed &= (args.args[1] == 14); break; case 6: passed &= !rc; passed &= (args.args_count == 1); passed &= (args.args[0] == 15); break; default: passed = false; } unittest(passed, "index %i - data error on node %pOF rc=%i\n", i, args.np, rc); } of_node_put(np); } static const struct of_device_id match_node_table[] = { { .data = "A", .name = "name0", }, /* Name alone is lowest priority */ { .data = "B", .type = "type1", }, /* followed by type alone */ { .data = "Ca", .name = "name2", .type = "type1", }, /* followed by both together */ { .data = "Cb", .name = "name2", }, /* Only match when type doesn't match */ { .data = "Cc", .name = "name2", .type = "type2", }, { .data = "E", .compatible = "compat3" }, { .data = "G", .compatible = "compat2", }, { .data = "H", .compatible = "compat2", .name = "name5", }, { .data = "I", .compatible = "compat2", .type = "type1", }, { .data = "J", .compatible = "compat2", .type = "type1", .name = "name8", }, { .data = "K", .compatible = "compat2", .name = "name9", }, {} }; static struct { const char *path; const char *data; } match_node_tests[] = { { .path = "/testcase-data/match-node/name0", .data = "A", }, { .path = "/testcase-data/match-node/name1", .data = "B", }, { .path = "/testcase-data/match-node/a/name2", .data = "Ca", }, { .path = "/testcase-data/match-node/b/name2", .data = "Cb", }, { .path = "/testcase-data/match-node/c/name2", .data = "Cc", }, { .path = "/testcase-data/match-node/name3", .data = "E", }, { .path = "/testcase-data/match-node/name4", .data = "G", }, { .path = "/testcase-data/match-node/name5", .data = "H", }, { .path = "/testcase-data/match-node/name6", .data = "G", }, { .path = "/testcase-data/match-node/name7", .data = "I", }, { .path = "/testcase-data/match-node/name8", .data = "J", }, { .path = "/testcase-data/match-node/name9", .data = "K", }, }; static void __init of_unittest_match_node(void) { struct device_node *np; const struct of_device_id *match; int i; for (i = 0; i < ARRAY_SIZE(match_node_tests); i++) { np = of_find_node_by_path(match_node_tests[i].path); if (!np) { unittest(0, "missing testcase node %s\n", match_node_tests[i].path); continue; } match = of_match_node(match_node_table, np); if (!match) { unittest(0, "%s didn't match anything\n", match_node_tests[i].path); continue; } if (strcmp(match->data, match_node_tests[i].data) != 0) { unittest(0, "%s got wrong match. expected %s, got %s\n", match_node_tests[i].path, match_node_tests[i].data, (const char *)match->data); continue; } unittest(1, "passed"); } } static struct resource test_bus_res = { .start = 0xfffffff8, .end = 0xfffffff9, .flags = IORESOURCE_MEM, }; static const struct platform_device_info test_bus_info = { .name = "unittest-bus", }; static void __init of_unittest_platform_populate(void) { int irq, rc; struct device_node *np, *child, *grandchild; struct platform_device *pdev, *test_bus; const struct of_device_id match[] = { { .compatible = "test-device", }, {} }; np = of_find_node_by_path("/testcase-data"); of_platform_default_populate(np, NULL, NULL); /* Test that a missing irq domain returns -EPROBE_DEFER */ np = of_find_node_by_path("/testcase-data/testcase-device1"); pdev = of_find_device_by_node(np); unittest(pdev, "device 1 creation failed\n"); if (!(of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)) { irq = platform_get_irq(pdev, 0); unittest(irq == -EPROBE_DEFER, "device deferred probe failed - %d\n", irq); /* Test that a parsing failure does not return -EPROBE_DEFER */ np = of_find_node_by_path("/testcase-data/testcase-device2"); pdev = of_find_device_by_node(np); unittest(pdev, "device 2 creation failed\n"); irq = platform_get_irq(pdev, 0); unittest(irq < 0 && irq != -EPROBE_DEFER, "device parsing error failed - %d\n", irq); } np = of_find_node_by_path("/testcase-data/platform-tests"); unittest(np, "No testcase data in device tree\n"); if (!np) return; test_bus = platform_device_register_full(&test_bus_info); rc = PTR_ERR_OR_ZERO(test_bus); unittest(!rc, "testbus registration failed; rc=%i\n", rc); if (rc) return; test_bus->dev.of_node = np; /* * Add a dummy resource to the test bus node after it is * registered to catch problems with un-inserted resources. The * DT code doesn't insert the resources, and it has caused the * kernel to oops in the past. This makes sure the same bug * doesn't crop up again. */ platform_device_add_resources(test_bus, &test_bus_res, 1); of_platform_populate(np, match, NULL, &test_bus->dev); for_each_child_of_node(np, child) { for_each_child_of_node(child, grandchild) unittest(of_find_device_by_node(grandchild), "Could not create device for node '%pOFn'\n", grandchild); } of_platform_depopulate(&test_bus->dev); for_each_child_of_node(np, child) { for_each_child_of_node(child, grandchild) unittest(!of_find_device_by_node(grandchild), "device didn't get destroyed '%pOFn'\n", grandchild); } platform_device_unregister(test_bus); of_node_put(np); } /** * update_node_properties - adds the properties * of np into dup node (present in live tree) and * updates parent of children of np to dup. * * @np: node whose properties are being added to the live tree * @dup: node present in live tree to be updated */ static void update_node_properties(struct device_node *np, struct device_node *dup) { struct property *prop; struct property *save_next; struct device_node *child; int ret; for_each_child_of_node(np, child) child->parent = dup; /* * "unittest internal error: unable to add testdata property" * * If this message reports a property in node '/__symbols__' then * the respective unittest overlay contains a label that has the * same name as a label in the live devicetree. The label will * be in the live devicetree only if the devicetree source was * compiled with the '-@' option. If you encounter this error, * please consider renaming __all__ of the labels in the unittest * overlay dts files with an odd prefix that is unlikely to be * used in a real devicetree. */ /* * open code for_each_property_of_node() because of_add_property() * sets prop->next to NULL */ for (prop = np->properties; prop != NULL; prop = save_next) { save_next = prop->next; ret = of_add_property(dup, prop); if (ret) pr_err("unittest internal error: unable to add testdata property %pOF/%s", np, prop->name); } } /** * attach_node_and_children - attaches nodes * and its children to live tree * * @np: Node to attach to live tree */ static void attach_node_and_children(struct device_node *np) { struct device_node *next, *dup, *child; unsigned long flags; const char *full_name; full_name = kasprintf(GFP_KERNEL, "%pOF", np); if (!strcmp(full_name, "/__local_fixups__") || !strcmp(full_name, "/__fixups__")) return; dup = of_find_node_by_path(full_name); kfree(full_name); if (dup) { update_node_properties(np, dup); return; } child = np->child; np->child = NULL; mutex_lock(&of_mutex); raw_spin_lock_irqsave(&devtree_lock, flags); np->sibling = np->parent->child; np->parent->child = np; of_node_clear_flag(np, OF_DETACHED); raw_spin_unlock_irqrestore(&devtree_lock, flags); __of_attach_node_sysfs(np); mutex_unlock(&of_mutex); while (child) { next = child->sibling; attach_node_and_children(child); child = next; } } /** * unittest_data_add - Reads, copies data from * linked tree and attaches it to the live tree */ static int __init unittest_data_add(void) { void *unittest_data; struct device_node *unittest_data_node, *np; /* * __dtb_testcases_begin[] and __dtb_testcases_end[] are magically * created by cmd_dt_S_dtb in scripts/Makefile.lib */ extern uint8_t __dtb_testcases_begin[]; extern uint8_t __dtb_testcases_end[]; const int size = __dtb_testcases_end - __dtb_testcases_begin; int rc; if (!size) { pr_warn("%s: No testcase data to attach; not running tests\n", __func__); return -ENODATA; } /* creating copy */ unittest_data = kmemdup(__dtb_testcases_begin, size, GFP_KERNEL); if (!unittest_data) { pr_warn("%s: Failed to allocate memory for unittest_data; " "not running tests\n", __func__); return -ENOMEM; } of_fdt_unflatten_tree(unittest_data, NULL, &unittest_data_node); if (!unittest_data_node) { pr_warn("%s: No tree to attach; not running tests\n", __func__); kfree(unittest_data); return -ENODATA; } /* * This lock normally encloses of_resolve_phandles() */ of_overlay_mutex_lock(); rc = of_resolve_phandles(unittest_data_node); if (rc) { pr_err("%s: Failed to resolve phandles (rc=%i)\n", __func__, rc); of_overlay_mutex_unlock(); return -EINVAL; } if (!of_root) { of_root = unittest_data_node; for_each_of_allnodes(np) __of_attach_node_sysfs(np); of_aliases = of_find_node_by_path("/aliases"); of_chosen = of_find_node_by_path("/chosen"); of_overlay_mutex_unlock(); return 0; } /* attach the sub-tree to live tree */ np = unittest_data_node->child; while (np) { struct device_node *next = np->sibling; np->parent = of_root; attach_node_and_children(np); np = next; } of_overlay_mutex_unlock(); return 0; } #ifdef CONFIG_OF_OVERLAY static int __init overlay_data_apply(const char *overlay_name, int *overlay_id); static int unittest_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; if (np == NULL) { dev_err(dev, "No OF data for device\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%pOF\n", __func__, np); of_platform_populate(np, NULL, NULL, &pdev->dev); return 0; } static int unittest_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; dev_dbg(dev, "%s for node @%pOF\n", __func__, np); return 0; } static const struct of_device_id unittest_match[] = { { .compatible = "unittest", }, {}, }; static struct platform_driver unittest_driver = { .probe = unittest_probe, .remove = unittest_remove, .driver = { .name = "unittest", .of_match_table = of_match_ptr(unittest_match), }, }; /* get the platform device instantiated at the path */ static struct platform_device *of_path_to_platform_device(const char *path) { struct device_node *np; struct platform_device *pdev; np = of_find_node_by_path(path); if (np == NULL) return NULL; pdev = of_find_device_by_node(np); of_node_put(np); return pdev; } /* find out if a platform device exists at that path */ static int of_path_platform_device_exists(const char *path) { struct platform_device *pdev; pdev = of_path_to_platform_device(path); platform_device_put(pdev); return pdev != NULL; } #if IS_BUILTIN(CONFIG_I2C) /* get the i2c client device instantiated at the path */ static struct i2c_client *of_path_to_i2c_client(const char *path) { struct device_node *np; struct i2c_client *client; np = of_find_node_by_path(path); if (np == NULL) return NULL; client = of_find_i2c_device_by_node(np); of_node_put(np); return client; } /* find out if a i2c client device exists at that path */ static int of_path_i2c_client_exists(const char *path) { struct i2c_client *client; client = of_path_to_i2c_client(path); if (client) put_device(&client->dev); return client != NULL; } #else static int of_path_i2c_client_exists(const char *path) { return 0; } #endif enum overlay_type { PDEV_OVERLAY, I2C_OVERLAY }; static int of_path_device_type_exists(const char *path, enum overlay_type ovtype) { switch (ovtype) { case PDEV_OVERLAY: return of_path_platform_device_exists(path); case I2C_OVERLAY: return of_path_i2c_client_exists(path); } return 0; } static const char *unittest_path(int nr, enum overlay_type ovtype) { const char *base; static char buf[256]; switch (ovtype) { case PDEV_OVERLAY: base = "/testcase-data/overlay-node/test-bus"; break; case I2C_OVERLAY: base = "/testcase-data/overlay-node/test-bus/i2c-test-bus"; break; default: buf[0] = '\0'; return buf; } snprintf(buf, sizeof(buf) - 1, "%s/test-unittest%d", base, nr); buf[sizeof(buf) - 1] = '\0'; return buf; } static int of_unittest_device_exists(int unittest_nr, enum overlay_type ovtype) { const char *path; path = unittest_path(unittest_nr, ovtype); switch (ovtype) { case PDEV_OVERLAY: return of_path_platform_device_exists(path); case I2C_OVERLAY: return of_path_i2c_client_exists(path); } return 0; } static const char *overlay_name_from_nr(int nr) { static char buf[256]; snprintf(buf, sizeof(buf) - 1, "overlay_%d", nr); buf[sizeof(buf) - 1] = '\0'; return buf; } static const char *bus_path = "/testcase-data/overlay-node/test-bus"; /* it is guaranteed that overlay ids are assigned in sequence */ #define MAX_UNITTEST_OVERLAYS 256 static unsigned long overlay_id_bits[BITS_TO_LONGS(MAX_UNITTEST_OVERLAYS)]; static int overlay_first_id = -1; static void of_unittest_track_overlay(int id) { if (overlay_first_id < 0) overlay_first_id = id; id -= overlay_first_id; /* we shouldn't need that many */ BUG_ON(id >= MAX_UNITTEST_OVERLAYS); overlay_id_bits[BIT_WORD(id)] |= BIT_MASK(id); } static void of_unittest_untrack_overlay(int id) { if (overlay_first_id < 0) return; id -= overlay_first_id; BUG_ON(id >= MAX_UNITTEST_OVERLAYS); overlay_id_bits[BIT_WORD(id)] &= ~BIT_MASK(id); } static void of_unittest_destroy_tracked_overlays(void) { int id, ret, defers, ovcs_id; if (overlay_first_id < 0) return; /* try until no defers */ do { defers = 0; /* remove in reverse order */ for (id = MAX_UNITTEST_OVERLAYS - 1; id >= 0; id--) { if (!(overlay_id_bits[BIT_WORD(id)] & BIT_MASK(id))) continue; ovcs_id = id + overlay_first_id; ret = of_overlay_remove(&ovcs_id); if (ret == -ENODEV) { pr_warn("%s: no overlay to destroy for #%d\n", __func__, id + overlay_first_id); continue; } if (ret != 0) { defers++; pr_warn("%s: overlay destroy failed for #%d\n", __func__, id + overlay_first_id); continue; } overlay_id_bits[BIT_WORD(id)] &= ~BIT_MASK(id); } } while (defers > 0); } static int __init of_unittest_apply_overlay(int overlay_nr, int unittest_nr, int *overlay_id) { const char *overlay_name; overlay_name = overlay_name_from_nr(overlay_nr); if (!overlay_data_apply(overlay_name, overlay_id)) { unittest(0, "could not apply overlay \"%s\"\n", overlay_name); return -EFAULT; } of_unittest_track_overlay(*overlay_id); return 0; } /* apply an overlay while checking before and after states */ static int __init of_unittest_apply_overlay_check(int overlay_nr, int unittest_nr, int before, int after, enum overlay_type ovtype) { int ret, ovcs_id; /* unittest device must not be in before state */ if (of_unittest_device_exists(unittest_nr, ovtype) != before) { unittest(0, "%s with device @\"%s\" %s\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } ovcs_id = 0; ret = of_unittest_apply_overlay(overlay_nr, unittest_nr, &ovcs_id); if (ret != 0) { /* of_unittest_apply_overlay already called unittest() */ return ret; } /* unittest device must be to set to after state */ if (of_unittest_device_exists(unittest_nr, ovtype) != after) { unittest(0, "%s failed to create @\"%s\" %s\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype), !after ? "enabled" : "disabled"); return -EINVAL; } return 0; } /* apply an overlay and then revert it while checking before, after states */ static int __init of_unittest_apply_revert_overlay_check(int overlay_nr, int unittest_nr, int before, int after, enum overlay_type ovtype) { int ret, ovcs_id; /* unittest device must be in before state */ if (of_unittest_device_exists(unittest_nr, ovtype) != before) { unittest(0, "%s with device @\"%s\" %s\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } /* apply the overlay */ ovcs_id = 0; ret = of_unittest_apply_overlay(overlay_nr, unittest_nr, &ovcs_id); if (ret != 0) { /* of_unittest_apply_overlay already called unittest() */ return ret; } /* unittest device must be in after state */ if (of_unittest_device_exists(unittest_nr, ovtype) != after) { unittest(0, "%s failed to create @\"%s\" %s\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype), !after ? "enabled" : "disabled"); return -EINVAL; } ret = of_overlay_remove(&ovcs_id); if (ret != 0) { unittest(0, "%s failed to be destroyed @\"%s\"\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype)); return ret; } /* unittest device must be again in before state */ if (of_unittest_device_exists(unittest_nr, PDEV_OVERLAY) != before) { unittest(0, "%s with device @\"%s\" %s\n", overlay_name_from_nr(overlay_nr), unittest_path(unittest_nr, ovtype), !before ? "enabled" : "disabled"); return -EINVAL; } return 0; } /* test activation of device */ static void __init of_unittest_overlay_0(void) { /* device should enable */ if (of_unittest_apply_overlay_check(0, 0, 0, 1, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 0); } /* test deactivation of device */ static void __init of_unittest_overlay_1(void) { /* device should disable */ if (of_unittest_apply_overlay_check(1, 1, 1, 0, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 1); } /* test activation of device */ static void __init of_unittest_overlay_2(void) { /* device should enable */ if (of_unittest_apply_overlay_check(2, 2, 0, 1, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 2); } /* test deactivation of device */ static void __init of_unittest_overlay_3(void) { /* device should disable */ if (of_unittest_apply_overlay_check(3, 3, 1, 0, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 3); } /* test activation of a full device node */ static void __init of_unittest_overlay_4(void) { /* device should disable */ if (of_unittest_apply_overlay_check(4, 4, 0, 1, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 4); } /* test overlay apply/revert sequence */ static void __init of_unittest_overlay_5(void) { /* device should disable */ if (of_unittest_apply_revert_overlay_check(5, 5, 0, 1, PDEV_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 5); } /* test overlay application in sequence */ static void __init of_unittest_overlay_6(void) { int i, ov_id[2], ovcs_id; int overlay_nr = 6, unittest_nr = 6; int before = 0, after = 1; const char *overlay_name; /* unittest device must be in before state */ for (i = 0; i < 2; i++) { if (of_unittest_device_exists(unittest_nr + i, PDEV_OVERLAY) != before) { unittest(0, "%s with device @\"%s\" %s\n", overlay_name_from_nr(overlay_nr + i), unittest_path(unittest_nr + i, PDEV_OVERLAY), !before ? "enabled" : "disabled"); return; } } /* apply the overlays */ for (i = 0; i < 2; i++) { overlay_name = overlay_name_from_nr(overlay_nr + i); if (!overlay_data_apply(overlay_name, &ovcs_id)) { unittest(0, "could not apply overlay \"%s\"\n", overlay_name); return; } ov_id[i] = ovcs_id; of_unittest_track_overlay(ov_id[i]); } for (i = 0; i < 2; i++) { /* unittest device must be in after state */ if (of_unittest_device_exists(unittest_nr + i, PDEV_OVERLAY) != after) { unittest(0, "overlay @\"%s\" failed @\"%s\" %s\n", overlay_name_from_nr(overlay_nr + i), unittest_path(unittest_nr + i, PDEV_OVERLAY), !after ? "enabled" : "disabled"); return; } } for (i = 1; i >= 0; i--) { ovcs_id = ov_id[i]; if (of_overlay_remove(&ovcs_id)) { unittest(0, "%s failed destroy @\"%s\"\n", overlay_name_from_nr(overlay_nr + i), unittest_path(unittest_nr + i, PDEV_OVERLAY)); return; } of_unittest_untrack_overlay(ov_id[i]); } for (i = 0; i < 2; i++) { /* unittest device must be again in before state */ if (of_unittest_device_exists(unittest_nr + i, PDEV_OVERLAY) != before) { unittest(0, "%s with device @\"%s\" %s\n", overlay_name_from_nr(overlay_nr + i), unittest_path(unittest_nr + i, PDEV_OVERLAY), !before ? "enabled" : "disabled"); return; } } unittest(1, "overlay test %d passed\n", 6); } /* test overlay application in sequence */ static void __init of_unittest_overlay_8(void) { int i, ov_id[2], ovcs_id; int overlay_nr = 8, unittest_nr = 8; const char *overlay_name; /* we don't care about device state in this test */ /* apply the overlays */ for (i = 0; i < 2; i++) { overlay_name = overlay_name_from_nr(overlay_nr + i); if (!overlay_data_apply(overlay_name, &ovcs_id)) { unittest(0, "could not apply overlay \"%s\"\n", overlay_name); return; } ov_id[i] = ovcs_id; of_unittest_track_overlay(ov_id[i]); } /* now try to remove first overlay (it should fail) */ ovcs_id = ov_id[0]; if (!of_overlay_remove(&ovcs_id)) { unittest(0, "%s was destroyed @\"%s\"\n", overlay_name_from_nr(overlay_nr + 0), unittest_path(unittest_nr, PDEV_OVERLAY)); return; } /* removing them in order should work */ for (i = 1; i >= 0; i--) { ovcs_id = ov_id[i]; if (of_overlay_remove(&ovcs_id)) { unittest(0, "%s not destroyed @\"%s\"\n", overlay_name_from_nr(overlay_nr + i), unittest_path(unittest_nr, PDEV_OVERLAY)); return; } of_unittest_untrack_overlay(ov_id[i]); } unittest(1, "overlay test %d passed\n", 8); } /* test insertion of a bus with parent devices */ static void __init of_unittest_overlay_10(void) { int ret; char *child_path; /* device should disable */ ret = of_unittest_apply_overlay_check(10, 10, 0, 1, PDEV_OVERLAY); if (unittest(ret == 0, "overlay test %d failed; overlay application\n", 10)) return; child_path = kasprintf(GFP_KERNEL, "%s/test-unittest101", unittest_path(10, PDEV_OVERLAY)); if (unittest(child_path, "overlay test %d failed; kasprintf\n", 10)) return; ret = of_path_device_type_exists(child_path, PDEV_OVERLAY); kfree(child_path); unittest(ret, "overlay test %d failed; no child device\n", 10); } /* test insertion of a bus with parent devices (and revert) */ static void __init of_unittest_overlay_11(void) { int ret; /* device should disable */ ret = of_unittest_apply_revert_overlay_check(11, 11, 0, 1, PDEV_OVERLAY); unittest(ret == 0, "overlay test %d failed; overlay apply\n", 11); } #if IS_BUILTIN(CONFIG_I2C) && IS_ENABLED(CONFIG_OF_OVERLAY) struct unittest_i2c_bus_data { struct platform_device *pdev; struct i2c_adapter adap; }; static int unittest_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct unittest_i2c_bus_data *std = i2c_get_adapdata(adap); (void)std; return num; } static u32 unittest_i2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm unittest_i2c_algo = { .master_xfer = unittest_i2c_master_xfer, .functionality = unittest_i2c_functionality, }; static int unittest_i2c_bus_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct unittest_i2c_bus_data *std; struct i2c_adapter *adap; int ret; if (np == NULL) { dev_err(dev, "No OF data for device\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%pOF\n", __func__, np); std = devm_kzalloc(dev, sizeof(*std), GFP_KERNEL); if (!std) { dev_err(dev, "Failed to allocate unittest i2c data\n"); return -ENOMEM; } /* link them together */ std->pdev = pdev; platform_set_drvdata(pdev, std); adap = &std->adap; i2c_set_adapdata(adap, std); adap->nr = -1; strlcpy(adap->name, pdev->name, sizeof(adap->name)); adap->class = I2C_CLASS_DEPRECATED; adap->algo = &unittest_i2c_algo; adap->dev.parent = dev; adap->dev.of_node = dev->of_node; adap->timeout = 5 * HZ; adap->retries = 3; ret = i2c_add_numbered_adapter(adap); if (ret != 0) { dev_err(dev, "Failed to add I2C adapter\n"); return ret; } return 0; } static int unittest_i2c_bus_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct unittest_i2c_bus_data *std = platform_get_drvdata(pdev); dev_dbg(dev, "%s for node @%pOF\n", __func__, np); i2c_del_adapter(&std->adap); return 0; } static const struct of_device_id unittest_i2c_bus_match[] = { { .compatible = "unittest-i2c-bus", }, {}, }; static struct platform_driver unittest_i2c_bus_driver = { .probe = unittest_i2c_bus_probe, .remove = unittest_i2c_bus_remove, .driver = { .name = "unittest-i2c-bus", .of_match_table = of_match_ptr(unittest_i2c_bus_match), }, }; static int unittest_i2c_dev_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; if (!np) { dev_err(dev, "No OF node\n"); return -EINVAL; } dev_dbg(dev, "%s for node @%pOF\n", __func__, np); return 0; }; static int unittest_i2c_dev_remove(struct i2c_client *client) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; dev_dbg(dev, "%s for node @%pOF\n", __func__, np); return 0; } static const struct i2c_device_id unittest_i2c_dev_id[] = { { .name = "unittest-i2c-dev" }, { } }; static struct i2c_driver unittest_i2c_dev_driver = { .driver = { .name = "unittest-i2c-dev", }, .probe = unittest_i2c_dev_probe, .remove = unittest_i2c_dev_remove, .id_table = unittest_i2c_dev_id, }; #if IS_BUILTIN(CONFIG_I2C_MUX) static int unittest_i2c_mux_select_chan(struct i2c_mux_core *muxc, u32 chan) { return 0; } static int unittest_i2c_mux_probe(struct i2c_client *client, const struct i2c_device_id *id) { int i, nchans; struct device *dev = &client->dev; struct i2c_adapter *adap = to_i2c_adapter(dev->parent); struct device_node *np = client->dev.of_node, *child; struct i2c_mux_core *muxc; u32 reg, max_reg; dev_dbg(dev, "%s for node @%pOF\n", __func__, np); if (!np) { dev_err(dev, "No OF node\n"); return -EINVAL; } max_reg = (u32)-1; for_each_child_of_node(np, child) { if (of_property_read_u32(child, "reg", ®)) continue; if (max_reg == (u32)-1 || reg > max_reg) max_reg = reg; } nchans = max_reg == (u32)-1 ? 0 : max_reg + 1; if (nchans == 0) { dev_err(dev, "No channels\n"); return -EINVAL; } muxc = i2c_mux_alloc(adap, dev, nchans, 0, 0, unittest_i2c_mux_select_chan, NULL); if (!muxc) return -ENOMEM; for (i = 0; i < nchans; i++) { if (i2c_mux_add_adapter(muxc, 0, i, 0)) { dev_err(dev, "Failed to register mux #%d\n", i); i2c_mux_del_adapters(muxc); return -ENODEV; } } i2c_set_clientdata(client, muxc); return 0; }; static int unittest_i2c_mux_remove(struct i2c_client *client) { struct device *dev = &client->dev; struct device_node *np = client->dev.of_node; struct i2c_mux_core *muxc = i2c_get_clientdata(client); dev_dbg(dev, "%s for node @%pOF\n", __func__, np); i2c_mux_del_adapters(muxc); return 0; } static const struct i2c_device_id unittest_i2c_mux_id[] = { { .name = "unittest-i2c-mux" }, { } }; static struct i2c_driver unittest_i2c_mux_driver = { .driver = { .name = "unittest-i2c-mux", }, .probe = unittest_i2c_mux_probe, .remove = unittest_i2c_mux_remove, .id_table = unittest_i2c_mux_id, }; #endif static int of_unittest_overlay_i2c_init(void) { int ret; ret = i2c_add_driver(&unittest_i2c_dev_driver); if (unittest(ret == 0, "could not register unittest i2c device driver\n")) return ret; ret = platform_driver_register(&unittest_i2c_bus_driver); if (unittest(ret == 0, "could not register unittest i2c bus driver\n")) return ret; #if IS_BUILTIN(CONFIG_I2C_MUX) ret = i2c_add_driver(&unittest_i2c_mux_driver); if (unittest(ret == 0, "could not register unittest i2c mux driver\n")) return ret; #endif return 0; } static void of_unittest_overlay_i2c_cleanup(void) { #if IS_BUILTIN(CONFIG_I2C_MUX) i2c_del_driver(&unittest_i2c_mux_driver); #endif platform_driver_unregister(&unittest_i2c_bus_driver); i2c_del_driver(&unittest_i2c_dev_driver); } static void __init of_unittest_overlay_i2c_12(void) { /* device should enable */ if (of_unittest_apply_overlay_check(12, 12, 0, 1, I2C_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 12); } /* test deactivation of device */ static void __init of_unittest_overlay_i2c_13(void) { /* device should disable */ if (of_unittest_apply_overlay_check(13, 13, 1, 0, I2C_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 13); } /* just check for i2c mux existence */ static void of_unittest_overlay_i2c_14(void) { } static void __init of_unittest_overlay_i2c_15(void) { /* device should enable */ if (of_unittest_apply_overlay_check(15, 15, 0, 1, I2C_OVERLAY)) return; unittest(1, "overlay test %d passed\n", 15); } #else static inline void of_unittest_overlay_i2c_14(void) { } static inline void of_unittest_overlay_i2c_15(void) { } #endif static void __init of_unittest_overlay(void) { struct device_node *bus_np = NULL; if (platform_driver_register(&unittest_driver)) { unittest(0, "could not register unittest driver\n"); goto out; } bus_np = of_find_node_by_path(bus_path); if (bus_np == NULL) { unittest(0, "could not find bus_path \"%s\"\n", bus_path); goto out; } if (of_platform_default_populate(bus_np, NULL, NULL)) { unittest(0, "could not populate bus @ \"%s\"\n", bus_path); goto out; } if (!of_unittest_device_exists(100, PDEV_OVERLAY)) { unittest(0, "could not find unittest0 @ \"%s\"\n", unittest_path(100, PDEV_OVERLAY)); goto out; } if (of_unittest_device_exists(101, PDEV_OVERLAY)) { unittest(0, "unittest1 @ \"%s\" should not exist\n", unittest_path(101, PDEV_OVERLAY)); goto out; } unittest(1, "basic infrastructure of overlays passed"); /* tests in sequence */ of_unittest_overlay_0(); of_unittest_overlay_1(); of_unittest_overlay_2(); of_unittest_overlay_3(); of_unittest_overlay_4(); of_unittest_overlay_5(); of_unittest_overlay_6(); of_unittest_overlay_8(); of_unittest_overlay_10(); of_unittest_overlay_11(); #if IS_BUILTIN(CONFIG_I2C) if (unittest(of_unittest_overlay_i2c_init() == 0, "i2c init failed\n")) goto out; of_unittest_overlay_i2c_12(); of_unittest_overlay_i2c_13(); of_unittest_overlay_i2c_14(); of_unittest_overlay_i2c_15(); of_unittest_overlay_i2c_cleanup(); #endif of_unittest_destroy_tracked_overlays(); out: of_node_put(bus_np); } #else static inline void __init of_unittest_overlay(void) { } #endif #ifdef CONFIG_OF_OVERLAY /* * __dtb_ot_begin[] and __dtb_ot_end[] are created by cmd_dt_S_dtb * in scripts/Makefile.lib */ #define OVERLAY_INFO_EXTERN(name) \ extern uint8_t __dtb_##name##_begin[]; \ extern uint8_t __dtb_##name##_end[] #define OVERLAY_INFO(overlay_name, expected) \ { .dtb_begin = __dtb_##overlay_name##_begin, \ .dtb_end = __dtb_##overlay_name##_end, \ .expected_result = expected, \ .name = #overlay_name, \ } struct overlay_info { uint8_t *dtb_begin; uint8_t *dtb_end; int expected_result; int overlay_id; char *name; }; OVERLAY_INFO_EXTERN(overlay_base); OVERLAY_INFO_EXTERN(overlay); OVERLAY_INFO_EXTERN(overlay_0); OVERLAY_INFO_EXTERN(overlay_1); OVERLAY_INFO_EXTERN(overlay_2); OVERLAY_INFO_EXTERN(overlay_3); OVERLAY_INFO_EXTERN(overlay_4); OVERLAY_INFO_EXTERN(overlay_5); OVERLAY_INFO_EXTERN(overlay_6); OVERLAY_INFO_EXTERN(overlay_7); OVERLAY_INFO_EXTERN(overlay_8); OVERLAY_INFO_EXTERN(overlay_9); OVERLAY_INFO_EXTERN(overlay_10); OVERLAY_INFO_EXTERN(overlay_11); OVERLAY_INFO_EXTERN(overlay_12); OVERLAY_INFO_EXTERN(overlay_13); OVERLAY_INFO_EXTERN(overlay_15); OVERLAY_INFO_EXTERN(overlay_bad_phandle); OVERLAY_INFO_EXTERN(overlay_bad_symbol); /* order of entries is hard-coded into users of overlays[] */ static struct overlay_info overlays[] = { OVERLAY_INFO(overlay_base, -9999), OVERLAY_INFO(overlay, 0), OVERLAY_INFO(overlay_0, 0), OVERLAY_INFO(overlay_1, 0), OVERLAY_INFO(overlay_2, 0), OVERLAY_INFO(overlay_3, 0), OVERLAY_INFO(overlay_4, 0), OVERLAY_INFO(overlay_5, 0), OVERLAY_INFO(overlay_6, 0), OVERLAY_INFO(overlay_7, 0), OVERLAY_INFO(overlay_8, 0), OVERLAY_INFO(overlay_9, 0), OVERLAY_INFO(overlay_10, 0), OVERLAY_INFO(overlay_11, 0), OVERLAY_INFO(overlay_12, 0), OVERLAY_INFO(overlay_13, 0), OVERLAY_INFO(overlay_15, 0), OVERLAY_INFO(overlay_bad_phandle, -EINVAL), OVERLAY_INFO(overlay_bad_symbol, -EINVAL), {} }; static struct device_node *overlay_base_root; static void * __init dt_alloc_memory(u64 size, u64 align) { return memblock_virt_alloc(size, align); } /* * Create base device tree for the overlay unittest. * * This is called from very early boot code. * * Do as much as possible the same way as done in __unflatten_device_tree * and other early boot steps for the normal FDT so that the overlay base * unflattened tree will have the same characteristics as the real tree * (such as having memory allocated by the early allocator). The goal * is to test "the real thing" as much as possible, and test "test setup * code" as little as possible. * * Have to stop before resolving phandles, because that uses kmalloc. */ void __init unittest_unflatten_overlay_base(void) { struct overlay_info *info; u32 data_size; void *new_fdt; u32 size; info = &overlays[0]; if (info->expected_result != -9999) { pr_err("No dtb 'overlay_base' to attach\n"); return; } data_size = info->dtb_end - info->dtb_begin; if (!data_size) { pr_err("No dtb 'overlay_base' to attach\n"); return; } size = fdt_totalsize(info->dtb_begin); if (size != data_size) { pr_err("dtb 'overlay_base' header totalsize != actual size"); return; } new_fdt = dt_alloc_memory(size, roundup_pow_of_two(FDT_V17_SIZE)); if (!new_fdt) { pr_err("alloc for dtb 'overlay_base' failed"); return; } memcpy(new_fdt, info->dtb_begin, size); __unflatten_device_tree(new_fdt, NULL, &overlay_base_root, dt_alloc_memory, true); } /* * The purpose of of_unittest_overlay_data_add is to add an * overlay in the normal fashion. This is a test of the whole * picture, instead of testing individual elements. * * A secondary purpose is to be able to verify that the contents of * /proc/device-tree/ contains the updated structure and values from * the overlay. That must be verified separately in user space. * * Return 0 on unexpected error. */ static int __init overlay_data_apply(const char *overlay_name, int *overlay_id) { struct overlay_info *info; int found = 0; int k; int ret; u32 size; for (k = 0, info = overlays; info && info->name; info++, k++) { if (!strcmp(overlay_name, info->name)) { found = 1; break; } } if (!found) { pr_err("no overlay data for %s\n", overlay_name); return 0; } size = info->dtb_end - info->dtb_begin; if (!size) pr_err("no overlay data for %s\n", overlay_name); ret = of_overlay_fdt_apply(info->dtb_begin, size, &info->overlay_id); if (overlay_id) *overlay_id = info->overlay_id; if (ret < 0) goto out; pr_debug("%s applied\n", overlay_name); out: if (ret != info->expected_result) pr_err("of_overlay_fdt_apply() expected %d, ret=%d, %s\n", info->expected_result, ret, overlay_name); return (ret == info->expected_result); } /* * The purpose of of_unittest_overlay_high_level is to add an overlay * in the normal fashion. This is a test of the whole picture, * instead of individual elements. * * The first part of the function is _not_ normal overlay usage; it is * finishing splicing the base overlay device tree into the live tree. */ static __init void of_unittest_overlay_high_level(void) { struct device_node *last_sibling; struct device_node *np; struct device_node *of_symbols; struct device_node *overlay_base_symbols; struct device_node **pprev; struct property *prop; if (!overlay_base_root) { unittest(0, "overlay_base_root not initialized\n"); return; } /* * Could not fixup phandles in unittest_unflatten_overlay_base() * because kmalloc() was not yet available. */ of_overlay_mutex_lock(); of_resolve_phandles(overlay_base_root); of_overlay_mutex_unlock(); /* * do not allow overlay_base to duplicate any node already in * tree, this greatly simplifies the code */ /* * remove overlay_base_root node "__local_fixups", after * being used by of_resolve_phandles() */ pprev = &overlay_base_root->child; for (np = overlay_base_root->child; np; np = np->sibling) { if (!of_node_cmp(np->name, "__local_fixups__")) { *pprev = np->sibling; break; } pprev = &np->sibling; } /* remove overlay_base_root node "__symbols__" if in live tree */ of_symbols = of_get_child_by_name(of_root, "__symbols__"); if (of_symbols) { /* will have to graft properties from node into live tree */ pprev = &overlay_base_root->child; for (np = overlay_base_root->child; np; np = np->sibling) { if (!of_node_cmp(np->name, "__symbols__")) { overlay_base_symbols = np; *pprev = np->sibling; break; } pprev = &np->sibling; } } for (np = overlay_base_root->child; np; np = np->sibling) { if (of_get_child_by_name(of_root, np->name)) { unittest(0, "illegal node name in overlay_base %s", np->name); return; } } /* * overlay 'overlay_base' is not allowed to have root * properties, so only need to splice nodes into main device tree. * * root node of *overlay_base_root will not be freed, it is lost * memory. */ for (np = overlay_base_root->child; np; np = np->sibling) np->parent = of_root; mutex_lock(&of_mutex); for (last_sibling = np = of_root->child; np; np = np->sibling) last_sibling = np; if (last_sibling) last_sibling->sibling = overlay_base_root->child; else of_root->child = overlay_base_root->child; for_each_of_allnodes_from(overlay_base_root, np) __of_attach_node_sysfs(np); if (of_symbols) { struct property *new_prop; for_each_property_of_node(overlay_base_symbols, prop) { new_prop = __of_prop_dup(prop, GFP_KERNEL); if (!new_prop) { unittest(0, "__of_prop_dup() of '%s' from overlay_base node __symbols__", prop->name); goto err_unlock; } if (__of_add_property(of_symbols, new_prop)) { /* "name" auto-generated by unflatten */ if (!strcmp(new_prop->name, "name")) continue; unittest(0, "duplicate property '%s' in overlay_base node __symbols__", prop->name); goto err_unlock; } if (__of_add_property_sysfs(of_symbols, new_prop)) { unittest(0, "unable to add property '%s' in overlay_base node __symbols__ to sysfs", prop->name); goto err_unlock; } } } mutex_unlock(&of_mutex); /* now do the normal overlay usage test */ unittest(overlay_data_apply("overlay", NULL), "Adding overlay 'overlay' failed\n"); unittest(overlay_data_apply("overlay_bad_phandle", NULL), "Adding overlay 'overlay_bad_phandle' failed\n"); unittest(overlay_data_apply("overlay_bad_symbol", NULL), "Adding overlay 'overlay_bad_symbol' failed\n"); return; err_unlock: mutex_unlock(&of_mutex); } #else static inline __init void of_unittest_overlay_high_level(void) {} #endif static int __init of_unittest(void) { struct device_node *np; int res; /* adding data for unittest */ res = unittest_data_add(); if (res) return res; if (!of_aliases) of_aliases = of_find_node_by_path("/aliases"); np = of_find_node_by_path("/testcase-data/phandle-tests/consumer-a"); if (!np) { pr_info("No testcase data in device tree; not running tests\n"); return 0; } of_node_put(np); pr_info("start of unittest - you will see error messages\n"); of_unittest_check_tree_linkage(); of_unittest_check_phandles(); of_unittest_find_node_by_name(); of_unittest_dynamic(); of_unittest_parse_phandle_with_args(); of_unittest_parse_phandle_with_args_map(); of_unittest_printf(); of_unittest_property_string(); of_unittest_property_copy(); of_unittest_changeset(); of_unittest_parse_interrupts(); of_unittest_parse_interrupts_extended(); of_unittest_match_node(); of_unittest_platform_populate(); of_unittest_overlay(); /* Double check linkage after removing testcase data */ of_unittest_check_tree_linkage(); of_unittest_overlay_high_level(); pr_info("end of unittest - %i passed, %i failed\n", unittest_results.passed, unittest_results.failed); return 0; } late_initcall(of_unittest);