/* * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan. */ #ifndef _ASM_POWERPC_PPC_ASM_H #define _ASM_POWERPC_PPC_ASM_H #include #include #include #include #include #ifdef __ASSEMBLY__ #define SZL (BITS_PER_LONG/8) /* * Stuff for accurate CPU time accounting. * These macros handle transitions between user and system state * in exception entry and exit and accumulate time to the * user_time and system_time fields in the paca. */ #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb) #define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb) #define ACCOUNT_STOLEN_TIME #else #define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb) \ MFTB(ra); /* get timebase */ \ PPC_LL rb, ACCOUNT_STARTTIME_USER(ptr); \ PPC_STL ra, ACCOUNT_STARTTIME(ptr); \ subf rb,rb,ra; /* subtract start value */ \ PPC_LL ra, ACCOUNT_USER_TIME(ptr); \ add ra,ra,rb; /* add on to user time */ \ PPC_STL ra, ACCOUNT_USER_TIME(ptr); \ #define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb) \ MFTB(ra); /* get timebase */ \ PPC_LL rb, ACCOUNT_STARTTIME(ptr); \ PPC_STL ra, ACCOUNT_STARTTIME_USER(ptr); \ subf rb,rb,ra; /* subtract start value */ \ PPC_LL ra, ACCOUNT_SYSTEM_TIME(ptr); \ add ra,ra,rb; /* add on to system time */ \ PPC_STL ra, ACCOUNT_SYSTEM_TIME(ptr) #ifdef CONFIG_PPC_SPLPAR #define ACCOUNT_STOLEN_TIME \ BEGIN_FW_FTR_SECTION; \ beq 33f; \ /* from user - see if there are any DTL entries to process */ \ ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \ ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \ addi r10,r10,LPPACA_DTLIDX; \ LDX_BE r10,0,r10; /* get log write index */ \ cmpd cr1,r11,r10; \ beq+ cr1,33f; \ bl accumulate_stolen_time; \ ld r12,_MSR(r1); \ andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \ 33: \ END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR) #else /* CONFIG_PPC_SPLPAR */ #define ACCOUNT_STOLEN_TIME #endif /* CONFIG_PPC_SPLPAR */ #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ /* * Macros for storing registers into and loading registers from * exception frames. */ #ifdef __powerpc64__ #define SAVE_GPR(n, base) std n,GPR0+8*(n)(base) #define REST_GPR(n, base) ld n,GPR0+8*(n)(base) #define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base) #define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base) #else #define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base) #define REST_GPR(n, base) lwz n,GPR0+4*(n)(base) #define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \ SAVE_10GPRS(22, base) #define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \ REST_10GPRS(22, base) #endif #define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base) #define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base) #define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base) #define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base) #define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base) #define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base) #define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base) #define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base) #define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base) #define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base) #define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base) #define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base) #define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base) #define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base) #define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base) #define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base) #define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base) #define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base) #define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base) #define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base) #define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b #define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base) #define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base) #define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base) #define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base) #define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base) #define REST_VR(n,b,base) li b,16*(n); lvx n,base,b #define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base) #define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base) #define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base) #define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base) #define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base) #ifdef __BIG_ENDIAN__ #define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base) #define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base) #else #define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \ STXVD2X(n,b,base); \ XXSWAPD(n,n) #define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \ XXSWAPD(n,n) #endif /* Save the lower 32 VSRs in the thread VSR region */ #define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b) #define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base) #define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base) #define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base) #define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base) #define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base) #define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b) #define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base) #define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base) #define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base) #define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base) #define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base) /* * b = base register for addressing, o = base offset from register of 1st EVR * n = first EVR, s = scratch */ #define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b) #define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o) #define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o) #define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o) #define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o) #define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o) #define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n #define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o) #define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o) #define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o) #define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o) #define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o) /* Macros to adjust thread priority for hardware multithreading */ #define HMT_VERY_LOW or 31,31,31 # very low priority #define HMT_LOW or 1,1,1 #define HMT_MEDIUM_LOW or 6,6,6 # medium low priority #define HMT_MEDIUM or 2,2,2 #define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority #define HMT_HIGH or 3,3,3 #define HMT_EXTRA_HIGH or 7,7,7 # power7 only #ifdef CONFIG_PPC64 #define ULONG_SIZE 8 #else #define ULONG_SIZE 4 #endif #define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE)) #define VCPU_GPR(n) __VCPU_GPR(__REG_##n) #ifdef __KERNEL__ #ifdef CONFIG_PPC64 #define STACKFRAMESIZE 256 #define __STK_REG(i) (112 + ((i)-14)*8) #define STK_REG(i) __STK_REG(__REG_##i) #ifdef PPC64_ELF_ABI_v2 #define STK_GOT 24 #define __STK_PARAM(i) (32 + ((i)-3)*8) #else #define STK_GOT 40 #define __STK_PARAM(i) (48 + ((i)-3)*8) #endif #define STK_PARAM(i) __STK_PARAM(__REG_##i) #ifdef PPC64_ELF_ABI_v2 #define _GLOBAL(name) \ .align 2 ; \ .type name,@function; \ .globl name; \ name: #define _GLOBAL_TOC(name) \ .align 2 ; \ .type name,@function; \ .globl name; \ name: \ 0: addis r2,r12,(.TOC.-0b)@ha; \ addi r2,r2,(.TOC.-0b)@l; \ .localentry name,.-name #define DOTSYM(a) a #else #define XGLUE(a,b) a##b #define GLUE(a,b) XGLUE(a,b) #define _GLOBAL(name) \ .align 2 ; \ .globl name; \ .globl GLUE(.,name); \ .pushsection ".opd","aw"; \ name: \ .quad GLUE(.,name); \ .quad .TOC.@tocbase; \ .quad 0; \ .popsection; \ .type GLUE(.,name),@function; \ GLUE(.,name): #define _GLOBAL_TOC(name) _GLOBAL(name) #define DOTSYM(a) GLUE(.,a) #endif #else /* 32-bit */ #define _ENTRY(n) \ .globl n; \ n: #define _GLOBAL(n) \ .stabs __stringify(n:F-1),N_FUN,0,0,n;\ .globl n; \ n: #define _GLOBAL_TOC(name) _GLOBAL(name) #endif /* * __kprobes (the C annotation) puts the symbol into the .kprobes.text * section, which gets emitted at the end of regular text. * * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to * a blacklist. The former is for core kprobe functions/data, the * latter is for those that incdentially must be excluded from probing * and allows them to be linked at more optimal location within text. */ #define _ASM_NOKPROBE_SYMBOL(entry) \ .pushsection "_kprobe_blacklist","aw"; \ PPC_LONG (entry) ; \ .popsection #define FUNC_START(name) _GLOBAL(name) #define FUNC_END(name) /* * LOAD_REG_IMMEDIATE(rn, expr) * Loads the value of the constant expression 'expr' into register 'rn' * using immediate instructions only. Use this when it's important not * to reference other data (i.e. on ppc64 when the TOC pointer is not * valid) and when 'expr' is a constant or absolute address. * * LOAD_REG_ADDR(rn, name) * Loads the address of label 'name' into register 'rn'. Use this when * you don't particularly need immediate instructions only, but you need * the whole address in one register (e.g. it's a structure address and * you want to access various offsets within it). On ppc32 this is * identical to LOAD_REG_IMMEDIATE. * * LOAD_REG_ADDR_PIC(rn, name) * Loads the address of label 'name' into register 'run'. Use this when * the kernel doesn't run at the linked or relocated address. Please * note that this macro will clobber the lr register. * * LOAD_REG_ADDRBASE(rn, name) * ADDROFF(name) * LOAD_REG_ADDRBASE loads part of the address of label 'name' into * register 'rn'. ADDROFF(name) returns the remainder of the address as * a constant expression. ADDROFF(name) is a signed expression < 16 bits * in size, so is suitable for use directly as an offset in load and store * instructions. Use this when loading/storing a single word or less as: * LOAD_REG_ADDRBASE(rX, name) * ld rY,ADDROFF(name)(rX) */ /* Be careful, this will clobber the lr register. */ #define LOAD_REG_ADDR_PIC(reg, name) \ bl 0f; \ 0: mflr reg; \ addis reg,reg,(name - 0b)@ha; \ addi reg,reg,(name - 0b)@l; #ifdef __powerpc64__ #ifdef HAVE_AS_ATHIGH #define __AS_ATHIGH high #else #define __AS_ATHIGH h #endif #define LOAD_REG_IMMEDIATE(reg,expr) \ lis reg,(expr)@highest; \ ori reg,reg,(expr)@higher; \ rldicr reg,reg,32,31; \ oris reg,reg,(expr)@__AS_ATHIGH; \ ori reg,reg,(expr)@l; #define LOAD_REG_ADDR(reg,name) \ ld reg,name@got(r2) #define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name) #define ADDROFF(name) 0 /* offsets for stack frame layout */ #define LRSAVE 16 #else /* 32-bit */ #define LOAD_REG_IMMEDIATE(reg,expr) \ lis reg,(expr)@ha; \ addi reg,reg,(expr)@l; #define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name) #define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha #define ADDROFF(name) name@l /* offsets for stack frame layout */ #define LRSAVE 4 #endif /* various errata or part fixups */ #ifdef CONFIG_PPC601_SYNC_FIX #define SYNC \ BEGIN_FTR_SECTION \ sync; \ isync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #define SYNC_601 \ BEGIN_FTR_SECTION \ sync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #define ISYNC_601 \ BEGIN_FTR_SECTION \ isync; \ END_FTR_SECTION_IFSET(CPU_FTR_601) #else #define SYNC #define SYNC_601 #define ISYNC_601 #endif #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E) #define MFTB(dest) \ 90: mfspr dest, SPRN_TBRL; \ BEGIN_FTR_SECTION_NESTED(96); \ cmpwi dest,0; \ beq- 90b; \ END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96) #elif defined(CONFIG_8xx) #define MFTB(dest) mftb dest #else #define MFTB(dest) mfspr dest, SPRN_TBRL #endif #ifndef CONFIG_SMP #define TLBSYNC #else /* CONFIG_SMP */ /* tlbsync is not implemented on 601 */ #define TLBSYNC \ BEGIN_FTR_SECTION \ tlbsync; \ sync; \ END_FTR_SECTION_IFCLR(CPU_FTR_601) #endif #ifdef CONFIG_PPC64 #define MTOCRF(FXM, RS) \ BEGIN_FTR_SECTION_NESTED(848); \ mtcrf (FXM), RS; \ FTR_SECTION_ELSE_NESTED(848); \ mtocrf (FXM), RS; \ ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848) #endif /* * This instruction is not implemented on the PPC 603 or 601; however, on * the 403GCX and 405GP tlbia IS defined and tlbie is not. * All of these instructions exist in the 8xx, they have magical powers, * and they must be used. */ #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx) #define tlbia \ li r4,1024; \ mtctr r4; \ lis r4,KERNELBASE@h; \ .machine push; \ .machine "power4"; \ 0: tlbie r4; \ .machine pop; \ addi r4,r4,0x1000; \ bdnz 0b #endif #ifdef CONFIG_IBM440EP_ERR42 #define PPC440EP_ERR42 isync #else #define PPC440EP_ERR42 #endif /* The following stops all load and store data streams associated with stream * ID (ie. streams created explicitly). The embedded and server mnemonics for * dcbt are different so we use machine "power4" here explicitly. */ #define DCBT_STOP_ALL_STREAM_IDS(scratch) \ .machine push ; \ .machine "power4" ; \ lis scratch,0x60000000@h; \ dcbt r0,scratch,0b01010; \ .machine pop /* * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them * keep the address intact to be compatible with code shared with * 32-bit classic. * * On the other hand, I find it useful to have them behave as expected * by their name (ie always do the addition) on 64-bit BookE */ #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64) #define toreal(rd) #define fromreal(rd) /* * We use addis to ensure compatibility with the "classic" ppc versions of * these macros, which use rs = 0 to get the tophys offset in rd, rather than * converting the address in r0, and so this version has to do that too * (i.e. set register rd to 0 when rs == 0). */ #define tophys(rd,rs) \ addis rd,rs,0 #define tovirt(rd,rs) \ addis rd,rs,0 #elif defined(CONFIG_PPC64) #define toreal(rd) /* we can access c000... in real mode */ #define fromreal(rd) #define tophys(rd,rs) \ clrldi rd,rs,2 #define tovirt(rd,rs) \ rotldi rd,rs,16; \ ori rd,rd,((KERNELBASE>>48)&0xFFFF);\ rotldi rd,rd,48 #else /* * On APUS (Amiga PowerPC cpu upgrade board), we don't know the * physical base address of RAM at compile time. */ #define toreal(rd) tophys(rd,rd) #define fromreal(rd) tovirt(rd,rd) #define tophys(rd,rs) \ 0: addis rd,rs,-PAGE_OFFSET@h; \ .section ".vtop_fixup","aw"; \ .align 1; \ .long 0b; \ .previous #define tovirt(rd,rs) \ 0: addis rd,rs,PAGE_OFFSET@h; \ .section ".ptov_fixup","aw"; \ .align 1; \ .long 0b; \ .previous #endif #ifdef CONFIG_PPC_BOOK3S_64 #define RFI rfid #define MTMSRD(r) mtmsrd r #define MTMSR_EERI(reg) mtmsrd reg,1 #else #define FIX_SRR1(ra, rb) #ifndef CONFIG_40x #define RFI rfi #else #define RFI rfi; b . /* Prevent prefetch past rfi */ #endif #define MTMSRD(r) mtmsr r #define MTMSR_EERI(reg) mtmsr reg #endif #endif /* __KERNEL__ */ /* The boring bits... */ /* Condition Register Bit Fields */ #define cr0 0 #define cr1 1 #define cr2 2 #define cr3 3 #define cr4 4 #define cr5 5 #define cr6 6 #define cr7 7 /* * General Purpose Registers (GPRs) * * The lower case r0-r31 should be used in preference to the upper * case R0-R31 as they provide more error checking in the assembler. * Use R0-31 only when really nessesary. */ #define r0 %r0 #define r1 %r1 #define r2 %r2 #define r3 %r3 #define r4 %r4 #define r5 %r5 #define r6 %r6 #define r7 %r7 #define r8 %r8 #define r9 %r9 #define r10 %r10 #define r11 %r11 #define r12 %r12 #define r13 %r13 #define r14 %r14 #define r15 %r15 #define r16 %r16 #define r17 %r17 #define r18 %r18 #define r19 %r19 #define r20 %r20 #define r21 %r21 #define r22 %r22 #define r23 %r23 #define r24 %r24 #define r25 %r25 #define r26 %r26 #define r27 %r27 #define r28 %r28 #define r29 %r29 #define r30 %r30 #define r31 %r31 /* Floating Point Registers (FPRs) */ #define fr0 0 #define fr1 1 #define fr2 2 #define fr3 3 #define fr4 4 #define fr5 5 #define fr6 6 #define fr7 7 #define fr8 8 #define fr9 9 #define fr10 10 #define fr11 11 #define fr12 12 #define fr13 13 #define fr14 14 #define fr15 15 #define fr16 16 #define fr17 17 #define fr18 18 #define fr19 19 #define fr20 20 #define fr21 21 #define fr22 22 #define fr23 23 #define fr24 24 #define fr25 25 #define fr26 26 #define fr27 27 #define fr28 28 #define fr29 29 #define fr30 30 #define fr31 31 /* AltiVec Registers (VPRs) */ #define v0 0 #define v1 1 #define v2 2 #define v3 3 #define v4 4 #define v5 5 #define v6 6 #define v7 7 #define v8 8 #define v9 9 #define v10 10 #define v11 11 #define v12 12 #define v13 13 #define v14 14 #define v15 15 #define v16 16 #define v17 17 #define v18 18 #define v19 19 #define v20 20 #define v21 21 #define v22 22 #define v23 23 #define v24 24 #define v25 25 #define v26 26 #define v27 27 #define v28 28 #define v29 29 #define v30 30 #define v31 31 /* VSX Registers (VSRs) */ #define vs0 0 #define vs1 1 #define vs2 2 #define vs3 3 #define vs4 4 #define vs5 5 #define vs6 6 #define vs7 7 #define vs8 8 #define vs9 9 #define vs10 10 #define vs11 11 #define vs12 12 #define vs13 13 #define vs14 14 #define vs15 15 #define vs16 16 #define vs17 17 #define vs18 18 #define vs19 19 #define vs20 20 #define vs21 21 #define vs22 22 #define vs23 23 #define vs24 24 #define vs25 25 #define vs26 26 #define vs27 27 #define vs28 28 #define vs29 29 #define vs30 30 #define vs31 31 #define vs32 32 #define vs33 33 #define vs34 34 #define vs35 35 #define vs36 36 #define vs37 37 #define vs38 38 #define vs39 39 #define vs40 40 #define vs41 41 #define vs42 42 #define vs43 43 #define vs44 44 #define vs45 45 #define vs46 46 #define vs47 47 #define vs48 48 #define vs49 49 #define vs50 50 #define vs51 51 #define vs52 52 #define vs53 53 #define vs54 54 #define vs55 55 #define vs56 56 #define vs57 57 #define vs58 58 #define vs59 59 #define vs60 60 #define vs61 61 #define vs62 62 #define vs63 63 /* SPE Registers (EVPRs) */ #define evr0 0 #define evr1 1 #define evr2 2 #define evr3 3 #define evr4 4 #define evr5 5 #define evr6 6 #define evr7 7 #define evr8 8 #define evr9 9 #define evr10 10 #define evr11 11 #define evr12 12 #define evr13 13 #define evr14 14 #define evr15 15 #define evr16 16 #define evr17 17 #define evr18 18 #define evr19 19 #define evr20 20 #define evr21 21 #define evr22 22 #define evr23 23 #define evr24 24 #define evr25 25 #define evr26 26 #define evr27 27 #define evr28 28 #define evr29 29 #define evr30 30 #define evr31 31 /* some stab codes */ #define N_FUN 36 #define N_RSYM 64 #define N_SLINE 68 #define N_SO 100 /* * Create an endian fixup trampoline * * This starts with a "tdi 0,0,0x48" instruction which is * essentially a "trap never", and thus akin to a nop. * * The opcode for this instruction read with the wrong endian * however results in a b . + 8 * * So essentially we use that trick to execute the following * trampoline in "reverse endian" if we are running with the * MSR_LE bit set the "wrong" way for whatever endianness the * kernel is built for. */ #ifdef CONFIG_PPC_BOOK3E #define FIXUP_ENDIAN #else #define FIXUP_ENDIAN \ tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \ b $+36; /* Skip trampoline if endian is good */ \ .long 0x05009f42; /* bcl 20,31,$+4 */ \ .long 0xa602487d; /* mflr r10 */ \ .long 0x1c004a39; /* addi r10,r10,28 */ \ .long 0xa600607d; /* mfmsr r11 */ \ .long 0x01006b69; /* xori r11,r11,1 */ \ .long 0xa6035a7d; /* mtsrr0 r10 */ \ .long 0xa6037b7d; /* mtsrr1 r11 */ \ .long 0x2400004c /* rfid */ #endif /* !CONFIG_PPC_BOOK3E */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PPC_ASM_H */