/* * Copyright (C) Maxime Coquelin 2015 * Author: Maxime Coquelin * License terms: GNU General Public License (GPL), version 2 * * Inspired by time-efm32.c from Uwe Kleine-Koenig */ #include #include #include #include #include #include #include #include #include #include #define TIM_CR1 0x00 #define TIM_DIER 0x0c #define TIM_SR 0x10 #define TIM_EGR 0x14 #define TIM_PSC 0x28 #define TIM_ARR 0x2c #define TIM_CR1_CEN BIT(0) #define TIM_CR1_OPM BIT(3) #define TIM_CR1_ARPE BIT(7) #define TIM_DIER_UIE BIT(0) #define TIM_SR_UIF BIT(0) #define TIM_EGR_UG BIT(0) struct stm32_clock_event_ddata { struct clock_event_device evtdev; unsigned periodic_top; void __iomem *base; }; static void stm32_clock_event_set_mode(enum clock_event_mode mode, struct clock_event_device *evtdev) { struct stm32_clock_event_ddata *data = container_of(evtdev, struct stm32_clock_event_ddata, evtdev); void *base = data->base; switch (mode) { case CLOCK_EVT_MODE_PERIODIC: writel_relaxed(data->periodic_top, base + TIM_ARR); writel_relaxed(TIM_CR1_ARPE | TIM_CR1_CEN, base + TIM_CR1); break; case CLOCK_EVT_MODE_ONESHOT: default: writel_relaxed(0, base + TIM_CR1); break; } } static int stm32_clock_event_set_next_event(unsigned long evt, struct clock_event_device *evtdev) { struct stm32_clock_event_ddata *data = container_of(evtdev, struct stm32_clock_event_ddata, evtdev); writel_relaxed(evt, data->base + TIM_ARR); writel_relaxed(TIM_CR1_ARPE | TIM_CR1_OPM | TIM_CR1_CEN, data->base + TIM_CR1); return 0; } static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id) { struct stm32_clock_event_ddata *data = dev_id; writel_relaxed(0, data->base + TIM_SR); data->evtdev.event_handler(&data->evtdev); return IRQ_HANDLED; } static struct stm32_clock_event_ddata clock_event_ddata = { .evtdev = { .name = "stm32 clockevent", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_mode = stm32_clock_event_set_mode, .set_next_event = stm32_clock_event_set_next_event, .rating = 200, }, }; static void __init stm32_clockevent_init(struct device_node *np) { struct stm32_clock_event_ddata *data = &clock_event_ddata; struct clk *clk; struct reset_control *rstc; unsigned long rate, max_delta; int irq, ret, bits, prescaler = 1; clk = of_clk_get(np, 0); if (IS_ERR(clk)) { ret = PTR_ERR(clk); pr_err("failed to get clock for clockevent (%d)\n", ret); goto err_clk_get; } ret = clk_prepare_enable(clk); if (ret) { pr_err("failed to enable timer clock for clockevent (%d)\n", ret); goto err_clk_enable; } rate = clk_get_rate(clk); rstc = of_reset_control_get(np, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); reset_control_deassert(rstc); } data->base = of_iomap(np, 0); if (!data->base) { pr_err("failed to map registers for clockevent\n"); goto err_iomap; } irq = irq_of_parse_and_map(np, 0); if (!irq) { pr_err("%s: failed to get irq.\n", np->full_name); goto err_get_irq; } /* Detect whether the timer is 16 or 32 bits */ writel_relaxed(~0UL, data->base + TIM_ARR); max_delta = readl_relaxed(data->base + TIM_ARR); if (max_delta == ~0UL) { prescaler = 1; bits = 32; } else { prescaler = 1024; bits = 16; } writel_relaxed(0, data->base + TIM_ARR); writel_relaxed(prescaler - 1, data->base + TIM_PSC); writel_relaxed(TIM_EGR_UG, data->base + TIM_EGR); writel_relaxed(TIM_DIER_UIE, data->base + TIM_DIER); writel_relaxed(0, data->base + TIM_SR); data->periodic_top = DIV_ROUND_CLOSEST(rate, prescaler * HZ); clockevents_config_and_register(&data->evtdev, DIV_ROUND_CLOSEST(rate, prescaler), 0x1, max_delta); ret = request_irq(irq, stm32_clock_event_handler, IRQF_TIMER, "stm32 clockevent", data); if (ret) { pr_err("%s: failed to request irq.\n", np->full_name); goto err_get_irq; } pr_info("%s: STM32 clockevent driver initialized (%d bits)\n", np->full_name, bits); return; err_get_irq: iounmap(data->base); err_iomap: clk_disable_unprepare(clk); err_clk_enable: clk_put(clk); err_clk_get: return; } CLOCKSOURCE_OF_DECLARE(stm32, "st,stm32-timer", stm32_clockevent_init);