/* * key management facility for FS encryption support. * * Copyright (C) 2015, Google, Inc. * * This contains encryption key functions. * * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. */ #include #include #include #include #include #include "fscrypt_private.h" static struct crypto_shash *essiv_hash_tfm; static void derive_crypt_complete(struct crypto_async_request *req, int rc) { struct fscrypt_completion_result *ecr = req->data; if (rc == -EINPROGRESS) return; ecr->res = rc; complete(&ecr->completion); } /** * derive_key_aes() - Derive a key using AES-128-ECB * @deriving_key: Encryption key used for derivation. * @source_key: Source key to which to apply derivation. * @derived_raw_key: Derived raw key. * * Return: Zero on success; non-zero otherwise. */ static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE], const struct fscrypt_key *source_key, u8 derived_raw_key[FS_MAX_KEY_SIZE]) { int res = 0; struct skcipher_request *req = NULL; DECLARE_FS_COMPLETION_RESULT(ecr); struct scatterlist src_sg, dst_sg; struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); if (IS_ERR(tfm)) { res = PTR_ERR(tfm); tfm = NULL; goto out; } crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); req = skcipher_request_alloc(tfm, GFP_NOFS); if (!req) { res = -ENOMEM; goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, derive_crypt_complete, &ecr); res = crypto_skcipher_setkey(tfm, deriving_key, FS_AES_128_ECB_KEY_SIZE); if (res < 0) goto out; sg_init_one(&src_sg, source_key->raw, source_key->size); sg_init_one(&dst_sg, derived_raw_key, source_key->size); skcipher_request_set_crypt(req, &src_sg, &dst_sg, source_key->size, NULL); res = crypto_skcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { wait_for_completion(&ecr.completion); res = ecr.res; } out: skcipher_request_free(req); crypto_free_skcipher(tfm); return res; } static int validate_user_key(struct fscrypt_info *crypt_info, struct fscrypt_context *ctx, u8 *raw_key, const char *prefix, int min_keysize) { char *description; struct key *keyring_key; struct fscrypt_key *master_key; const struct user_key_payload *ukp; int res; description = kasprintf(GFP_NOFS, "%s%*phN", prefix, FS_KEY_DESCRIPTOR_SIZE, ctx->master_key_descriptor); if (!description) return -ENOMEM; keyring_key = request_key(&key_type_logon, description, NULL); kfree(description); if (IS_ERR(keyring_key)) return PTR_ERR(keyring_key); down_read(&keyring_key->sem); if (keyring_key->type != &key_type_logon) { printk_once(KERN_WARNING "%s: key type must be logon\n", __func__); res = -ENOKEY; goto out; } ukp = user_key_payload_locked(keyring_key); if (ukp->datalen != sizeof(struct fscrypt_key)) { res = -EINVAL; goto out; } master_key = (struct fscrypt_key *)ukp->data; BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE); if (master_key->size < min_keysize || master_key->size > FS_MAX_KEY_SIZE || master_key->size % AES_BLOCK_SIZE != 0) { printk_once(KERN_WARNING "%s: key size incorrect: %d\n", __func__, master_key->size); res = -ENOKEY; goto out; } res = derive_key_aes(ctx->nonce, master_key, raw_key); out: up_read(&keyring_key->sem); key_put(keyring_key); return res; } static const struct { const char *cipher_str; int keysize; } available_modes[] = { [FS_ENCRYPTION_MODE_AES_256_XTS] = { "xts(aes)", FS_AES_256_XTS_KEY_SIZE }, [FS_ENCRYPTION_MODE_AES_256_CTS] = { "cts(cbc(aes))", FS_AES_256_CTS_KEY_SIZE }, [FS_ENCRYPTION_MODE_AES_128_CBC] = { "cbc(aes)", FS_AES_128_CBC_KEY_SIZE }, [FS_ENCRYPTION_MODE_AES_128_CTS] = { "cts(cbc(aes))", FS_AES_128_CTS_KEY_SIZE }, }; static int determine_cipher_type(struct fscrypt_info *ci, struct inode *inode, const char **cipher_str_ret, int *keysize_ret) { u32 mode; if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) { pr_warn_ratelimited("fscrypt: inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)\n", inode->i_ino, ci->ci_data_mode, ci->ci_filename_mode); return -EINVAL; } if (S_ISREG(inode->i_mode)) { mode = ci->ci_data_mode; } else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) { mode = ci->ci_filename_mode; } else { WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", inode->i_ino, (inode->i_mode & S_IFMT)); return -EINVAL; } *cipher_str_ret = available_modes[mode].cipher_str; *keysize_ret = available_modes[mode].keysize; return 0; } static void put_crypt_info(struct fscrypt_info *ci) { if (!ci) return; crypto_free_skcipher(ci->ci_ctfm); crypto_free_cipher(ci->ci_essiv_tfm); kmem_cache_free(fscrypt_info_cachep, ci); } static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt) { struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm); /* init hash transform on demand */ if (unlikely(!tfm)) { struct crypto_shash *prev_tfm; tfm = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(tfm)) { pr_warn_ratelimited("fscrypt: error allocating SHA-256 transform: %ld\n", PTR_ERR(tfm)); return PTR_ERR(tfm); } prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm); if (prev_tfm) { crypto_free_shash(tfm); tfm = prev_tfm; } } { SHASH_DESC_ON_STACK(desc, tfm); desc->tfm = tfm; desc->flags = 0; return crypto_shash_digest(desc, key, keysize, salt); } } static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key, int keysize) { int err; struct crypto_cipher *essiv_tfm; u8 salt[SHA256_DIGEST_SIZE]; essiv_tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(essiv_tfm)) return PTR_ERR(essiv_tfm); ci->ci_essiv_tfm = essiv_tfm; err = derive_essiv_salt(raw_key, keysize, salt); if (err) goto out; /* * Using SHA256 to derive the salt/key will result in AES-256 being * used for IV generation. File contents encryption will still use the * configured keysize (AES-128) nevertheless. */ err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt)); if (err) goto out; out: memzero_explicit(salt, sizeof(salt)); return err; } void __exit fscrypt_essiv_cleanup(void) { crypto_free_shash(essiv_hash_tfm); } int fscrypt_get_encryption_info(struct inode *inode) { struct fscrypt_info *crypt_info; struct fscrypt_context ctx; struct crypto_skcipher *ctfm; const char *cipher_str; int keysize; u8 *raw_key = NULL; int res; if (inode->i_crypt_info) return 0; res = fscrypt_initialize(inode->i_sb->s_cop->flags); if (res) return res; res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); if (res < 0) { if (!fscrypt_dummy_context_enabled(inode) || IS_ENCRYPTED(inode)) return res; /* Fake up a context for an unencrypted directory */ memset(&ctx, 0, sizeof(ctx)); ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE); } else if (res != sizeof(ctx)) { return -EINVAL; } if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1) return -EINVAL; if (ctx.flags & ~FS_POLICY_FLAGS_VALID) return -EINVAL; crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS); if (!crypt_info) return -ENOMEM; crypt_info->ci_flags = ctx.flags; crypt_info->ci_data_mode = ctx.contents_encryption_mode; crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; crypt_info->ci_ctfm = NULL; crypt_info->ci_essiv_tfm = NULL; memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, sizeof(crypt_info->ci_master_key)); res = determine_cipher_type(crypt_info, inode, &cipher_str, &keysize); if (res) goto out; /* * This cannot be a stack buffer because it is passed to the scatterlist * crypto API as part of key derivation. */ res = -ENOMEM; raw_key = kmalloc(FS_MAX_KEY_SIZE, GFP_NOFS); if (!raw_key) goto out; res = validate_user_key(crypt_info, &ctx, raw_key, FS_KEY_DESC_PREFIX, keysize); if (res && inode->i_sb->s_cop->key_prefix) { int res2 = validate_user_key(crypt_info, &ctx, raw_key, inode->i_sb->s_cop->key_prefix, keysize); if (res2) { if (res2 == -ENOKEY) res = -ENOKEY; goto out; } } else if (res) { goto out; } ctfm = crypto_alloc_skcipher(cipher_str, 0, 0); if (!ctfm || IS_ERR(ctfm)) { res = ctfm ? PTR_ERR(ctfm) : -ENOMEM; pr_debug("%s: error %d (inode %lu) allocating crypto tfm\n", __func__, res, inode->i_ino); goto out; } crypt_info->ci_ctfm = ctfm; crypto_skcipher_clear_flags(ctfm, ~0); crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY); /* * if the provided key is longer than keysize, we use the first * keysize bytes of the derived key only */ res = crypto_skcipher_setkey(ctfm, raw_key, keysize); if (res) goto out; if (S_ISREG(inode->i_mode) && crypt_info->ci_data_mode == FS_ENCRYPTION_MODE_AES_128_CBC) { res = init_essiv_generator(crypt_info, raw_key, keysize); if (res) { pr_debug("%s: error %d (inode %lu) allocating essiv tfm\n", __func__, res, inode->i_ino); goto out; } } if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) == NULL) crypt_info = NULL; out: if (res == -ENOKEY) res = 0; put_crypt_info(crypt_info); kzfree(raw_key); return res; } EXPORT_SYMBOL(fscrypt_get_encryption_info); void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci) { struct fscrypt_info *prev; if (ci == NULL) ci = ACCESS_ONCE(inode->i_crypt_info); if (ci == NULL) return; prev = cmpxchg(&inode->i_crypt_info, ci, NULL); if (prev != ci) return; put_crypt_info(ci); } EXPORT_SYMBOL(fscrypt_put_encryption_info);