/* * DesignWare High-Definition Multimedia Interface (HDMI) driver * * Copyright (C) 2013-2015 Mentor Graphics Inc. * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. * Copyright (C) 2010, Guennadi Liakhovetski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dw-hdmi.h" #include "dw-hdmi-audio.h" #define HDMI_EDID_LEN 512 #define RGB 0 #define YCBCR444 1 #define YCBCR422_16BITS 2 #define YCBCR422_8BITS 3 #define XVYCC444 4 enum hdmi_datamap { RGB444_8B = 0x01, RGB444_10B = 0x03, RGB444_12B = 0x05, RGB444_16B = 0x07, YCbCr444_8B = 0x09, YCbCr444_10B = 0x0B, YCbCr444_12B = 0x0D, YCbCr444_16B = 0x0F, YCbCr422_8B = 0x16, YCbCr422_10B = 0x14, YCbCr422_12B = 0x12, }; static const u16 csc_coeff_default[3][4] = { { 0x2000, 0x0000, 0x0000, 0x0000 }, { 0x0000, 0x2000, 0x0000, 0x0000 }, { 0x0000, 0x0000, 0x2000, 0x0000 } }; static const u16 csc_coeff_rgb_out_eitu601[3][4] = { { 0x2000, 0x6926, 0x74fd, 0x010e }, { 0x2000, 0x2cdd, 0x0000, 0x7e9a }, { 0x2000, 0x0000, 0x38b4, 0x7e3b } }; static const u16 csc_coeff_rgb_out_eitu709[3][4] = { { 0x2000, 0x7106, 0x7a02, 0x00a7 }, { 0x2000, 0x3264, 0x0000, 0x7e6d }, { 0x2000, 0x0000, 0x3b61, 0x7e25 } }; static const u16 csc_coeff_rgb_in_eitu601[3][4] = { { 0x2591, 0x1322, 0x074b, 0x0000 }, { 0x6535, 0x2000, 0x7acc, 0x0200 }, { 0x6acd, 0x7534, 0x2000, 0x0200 } }; static const u16 csc_coeff_rgb_in_eitu709[3][4] = { { 0x2dc5, 0x0d9b, 0x049e, 0x0000 }, { 0x62f0, 0x2000, 0x7d11, 0x0200 }, { 0x6756, 0x78ab, 0x2000, 0x0200 } }; struct hdmi_vmode { bool mdataenablepolarity; unsigned int mpixelclock; unsigned int mpixelrepetitioninput; unsigned int mpixelrepetitionoutput; }; struct hdmi_data_info { unsigned int enc_in_format; unsigned int enc_out_format; unsigned int enc_color_depth; unsigned int colorimetry; unsigned int pix_repet_factor; unsigned int hdcp_enable; struct hdmi_vmode video_mode; }; struct dw_hdmi_i2c { struct i2c_adapter adap; struct mutex lock; /* used to serialize data transfers */ struct completion cmp; u8 stat; u8 slave_reg; bool is_regaddr; }; struct dw_hdmi { struct drm_connector connector; struct drm_encoder *encoder; struct drm_bridge *bridge; struct platform_device *audio; enum dw_hdmi_devtype dev_type; struct device *dev; struct clk *isfr_clk; struct clk *iahb_clk; struct dw_hdmi_i2c *i2c; struct hdmi_data_info hdmi_data; const struct dw_hdmi_plat_data *plat_data; int vic; u8 edid[HDMI_EDID_LEN]; bool cable_plugin; bool phy_enabled; struct drm_display_mode previous_mode; struct i2c_adapter *ddc; void __iomem *regs; bool sink_is_hdmi; bool sink_has_audio; struct mutex mutex; /* for state below and previous_mode */ enum drm_connector_force force; /* mutex-protected force state */ bool disabled; /* DRM has disabled our bridge */ bool bridge_is_on; /* indicates the bridge is on */ bool rxsense; /* rxsense state */ u8 phy_mask; /* desired phy int mask settings */ spinlock_t audio_lock; struct mutex audio_mutex; unsigned int sample_rate; unsigned int audio_cts; unsigned int audio_n; bool audio_enable; void (*write)(struct dw_hdmi *hdmi, u8 val, int offset); u8 (*read)(struct dw_hdmi *hdmi, int offset); }; #define HDMI_IH_PHY_STAT0_RX_SENSE \ (HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \ HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3) #define HDMI_PHY_RX_SENSE \ (HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \ HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3) static void dw_hdmi_writel(struct dw_hdmi *hdmi, u8 val, int offset) { writel(val, hdmi->regs + (offset << 2)); } static u8 dw_hdmi_readl(struct dw_hdmi *hdmi, int offset) { return readl(hdmi->regs + (offset << 2)); } static void dw_hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { writeb(val, hdmi->regs + offset); } static u8 dw_hdmi_readb(struct dw_hdmi *hdmi, int offset) { return readb(hdmi->regs + offset); } static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset) { hdmi->write(hdmi, val, offset); } static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset) { return hdmi->read(hdmi, offset); } static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg) { u8 val = hdmi_readb(hdmi, reg) & ~mask; val |= data & mask; hdmi_writeb(hdmi, val, reg); } static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg, u8 shift, u8 mask) { hdmi_modb(hdmi, data << shift, mask, reg); } static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi) { /* Software reset */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ); /* Set Standard Mode speed (determined to be 100KHz on iMX6) */ hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV); /* Set done, not acknowledged and arbitration interrupt polarities */ hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT); hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL, HDMI_I2CM_CTLINT); /* Clear DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_I2CM_STAT0); /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); } static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int stat; if (!i2c->is_regaddr) { dev_dbg(hdmi->dev, "set read register address to 0\n"); i2c->slave_reg = 0x00; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ, HDMI_I2CM_OPERATION); stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) return -EAGAIN; /* Check for error condition on the bus */ if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR) return -EIO; *buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI); } return 0; } static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi, unsigned char *buf, unsigned int length) { struct dw_hdmi_i2c *i2c = hdmi->i2c; int stat; if (!i2c->is_regaddr) { /* Use the first write byte as register address */ i2c->slave_reg = buf[0]; length--; buf++; i2c->is_regaddr = true; } while (length--) { reinit_completion(&i2c->cmp); hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO); hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS); hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE, HDMI_I2CM_OPERATION); stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10); if (!stat) return -EAGAIN; /* Check for error condition on the bus */ if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR) return -EIO; } return 0; } static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct dw_hdmi *hdmi = i2c_get_adapdata(adap); struct dw_hdmi_i2c *i2c = hdmi->i2c; u8 addr = msgs[0].addr; int i, ret = 0; dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr); for (i = 0; i < num; i++) { if (msgs[i].addr != addr) { dev_warn(hdmi->dev, "unsupported transfer, changed slave address\n"); return -EOPNOTSUPP; } if (msgs[i].len == 0) { dev_dbg(hdmi->dev, "unsupported transfer %d/%d, no data\n", i + 1, num); return -EOPNOTSUPP; } } mutex_lock(&i2c->lock); /* Unmute DONE and ERROR interrupts */ hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0); /* Set slave device address taken from the first I2C message */ hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE); /* Set slave device register address on transfer */ i2c->is_regaddr = false; for (i = 0; i < num; i++) { dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].flags & I2C_M_RD) ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf, msgs[i].len); else ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf, msgs[i].len); if (ret < 0) break; } if (!ret) ret = num; /* Mute DONE and ERROR interrupts */ hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE, HDMI_IH_MUTE_I2CM_STAT0); mutex_unlock(&i2c->lock); return ret; } static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm dw_hdmi_algorithm = { .master_xfer = dw_hdmi_i2c_xfer, .functionality = dw_hdmi_i2c_func, }; static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi) { struct i2c_adapter *adap; struct dw_hdmi_i2c *i2c; int ret; i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return ERR_PTR(-ENOMEM); mutex_init(&i2c->lock); init_completion(&i2c->cmp); adap = &i2c->adap; adap->class = I2C_CLASS_DDC; adap->owner = THIS_MODULE; adap->dev.parent = hdmi->dev; adap->algo = &dw_hdmi_algorithm; strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name)); i2c_set_adapdata(adap, hdmi); ret = i2c_add_adapter(adap); if (ret) { dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name); devm_kfree(hdmi->dev, i2c); return ERR_PTR(ret); } hdmi->i2c = i2c; dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name); return adap; } static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts, unsigned int n) { /* Must be set/cleared first */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); /* nshift factor = 0 */ hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3); hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) | HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3); hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2); hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1); hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3); hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2); hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1); } static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk) { unsigned int n = (128 * freq) / 1000; unsigned int mult = 1; while (freq > 48000) { mult *= 2; freq /= 2; } switch (freq) { case 32000: if (pixel_clk == 25175000) n = 4576; else if (pixel_clk == 27027000) n = 4096; else if (pixel_clk == 74176000 || pixel_clk == 148352000) n = 11648; else n = 4096; n *= mult; break; case 44100: if (pixel_clk == 25175000) n = 7007; else if (pixel_clk == 74176000) n = 17836; else if (pixel_clk == 148352000) n = 8918; else n = 6272; n *= mult; break; case 48000: if (pixel_clk == 25175000) n = 6864; else if (pixel_clk == 27027000) n = 6144; else if (pixel_clk == 74176000) n = 11648; else if (pixel_clk == 148352000) n = 5824; else n = 6144; n *= mult; break; default: break; } return n; } static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi, unsigned long pixel_clk, unsigned int sample_rate) { unsigned long ftdms = pixel_clk; unsigned int n, cts; u64 tmp; n = hdmi_compute_n(sample_rate, pixel_clk); /* * Compute the CTS value from the N value. Note that CTS and N * can be up to 20 bits in total, so we need 64-bit math. Also * note that our TDMS clock is not fully accurate; it is accurate * to kHz. This can introduce an unnecessary remainder in the * calculation below, so we don't try to warn about that. */ tmp = (u64)ftdms * n; do_div(tmp, 128 * sample_rate); cts = tmp; dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n", __func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000, n, cts); spin_lock_irq(&hdmi->audio_lock); hdmi->audio_n = n; hdmi->audio_cts = cts; hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0); spin_unlock_irq(&hdmi->audio_lock); } static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi) { mutex_lock(&hdmi->audio_mutex); hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate) { mutex_lock(&hdmi->audio_mutex); hdmi->sample_rate = rate; hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock, hdmi->sample_rate); mutex_unlock(&hdmi->audio_mutex); } EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate); void dw_hdmi_audio_enable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = true; hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable); void dw_hdmi_audio_disable(struct dw_hdmi *hdmi) { unsigned long flags; spin_lock_irqsave(&hdmi->audio_lock, flags); hdmi->audio_enable = false; hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0); spin_unlock_irqrestore(&hdmi->audio_lock, flags); } EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable); /* * this submodule is responsible for the video data synchronization. * for example, for RGB 4:4:4 input, the data map is defined as * pin{47~40} <==> R[7:0] * pin{31~24} <==> G[7:0] * pin{15~8} <==> B[7:0] */ static void hdmi_video_sample(struct dw_hdmi *hdmi) { int color_format = 0; u8 val; if (hdmi->hdmi_data.enc_in_format == RGB) { if (hdmi->hdmi_data.enc_color_depth == 8) color_format = 0x01; else if (hdmi->hdmi_data.enc_color_depth == 10) color_format = 0x03; else if (hdmi->hdmi_data.enc_color_depth == 12) color_format = 0x05; else if (hdmi->hdmi_data.enc_color_depth == 16) color_format = 0x07; else return; } else if (hdmi->hdmi_data.enc_in_format == YCBCR444) { if (hdmi->hdmi_data.enc_color_depth == 8) color_format = 0x09; else if (hdmi->hdmi_data.enc_color_depth == 10) color_format = 0x0B; else if (hdmi->hdmi_data.enc_color_depth == 12) color_format = 0x0D; else if (hdmi->hdmi_data.enc_color_depth == 16) color_format = 0x0F; else return; } else if (hdmi->hdmi_data.enc_in_format == YCBCR422_8BITS) { if (hdmi->hdmi_data.enc_color_depth == 8) color_format = 0x16; else if (hdmi->hdmi_data.enc_color_depth == 10) color_format = 0x14; else if (hdmi->hdmi_data.enc_color_depth == 12) color_format = 0x12; else return; } val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE | ((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) & HDMI_TX_INVID0_VIDEO_MAPPING_MASK); hdmi_writeb(hdmi, val, HDMI_TX_INVID0); /* Enable TX stuffing: When DE is inactive, fix the output data to 0 */ val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE | HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE; hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0); hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1); } static int is_color_space_conversion(struct dw_hdmi *hdmi) { return hdmi->hdmi_data.enc_in_format != hdmi->hdmi_data.enc_out_format; } static int is_color_space_decimation(struct dw_hdmi *hdmi) { if (hdmi->hdmi_data.enc_out_format != YCBCR422_8BITS) return 0; if (hdmi->hdmi_data.enc_in_format == RGB || hdmi->hdmi_data.enc_in_format == YCBCR444) return 1; return 0; } static int is_color_space_interpolation(struct dw_hdmi *hdmi) { if (hdmi->hdmi_data.enc_in_format != YCBCR422_8BITS) return 0; if (hdmi->hdmi_data.enc_out_format == RGB || hdmi->hdmi_data.enc_out_format == YCBCR444) return 1; return 0; } static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi) { const u16 (*csc_coeff)[3][4] = &csc_coeff_default; unsigned i; u32 csc_scale = 1; if (is_color_space_conversion(hdmi)) { if (hdmi->hdmi_data.enc_out_format == RGB) { if (hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_601) csc_coeff = &csc_coeff_rgb_out_eitu601; else csc_coeff = &csc_coeff_rgb_out_eitu709; } else if (hdmi->hdmi_data.enc_in_format == RGB) { if (hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_601) csc_coeff = &csc_coeff_rgb_in_eitu601; else csc_coeff = &csc_coeff_rgb_in_eitu709; csc_scale = 0; } } /* The CSC registers are sequential, alternating MSB then LSB */ for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) { u16 coeff_a = (*csc_coeff)[0][i]; u16 coeff_b = (*csc_coeff)[1][i]; u16 coeff_c = (*csc_coeff)[2][i]; hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2); hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2); hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2); hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2); hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2); hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2); } hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK, HDMI_CSC_SCALE); } static void hdmi_video_csc(struct dw_hdmi *hdmi) { int color_depth = 0; int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE; int decimation = 0; /* YCC422 interpolation to 444 mode */ if (is_color_space_interpolation(hdmi)) interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1; else if (is_color_space_decimation(hdmi)) decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3; if (hdmi->hdmi_data.enc_color_depth == 8) color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP; else if (hdmi->hdmi_data.enc_color_depth == 10) color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP; else if (hdmi->hdmi_data.enc_color_depth == 12) color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP; else if (hdmi->hdmi_data.enc_color_depth == 16) color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP; else return; /* Configure the CSC registers */ hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG); hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK, HDMI_CSC_SCALE); dw_hdmi_update_csc_coeffs(hdmi); } /* * HDMI video packetizer is used to packetize the data. * for example, if input is YCC422 mode or repeater is used, * data should be repacked this module can be bypassed. */ static void hdmi_video_packetize(struct dw_hdmi *hdmi) { unsigned int color_depth = 0; unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit; unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP; struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data; u8 val, vp_conf; if (hdmi_data->enc_out_format == RGB || hdmi_data->enc_out_format == YCBCR444) { if (!hdmi_data->enc_color_depth) { output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; } else if (hdmi_data->enc_color_depth == 8) { color_depth = 4; output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS; } else if (hdmi_data->enc_color_depth == 10) { color_depth = 5; } else if (hdmi_data->enc_color_depth == 12) { color_depth = 6; } else if (hdmi_data->enc_color_depth == 16) { color_depth = 7; } else { return; } } else if (hdmi_data->enc_out_format == YCBCR422_8BITS) { if (!hdmi_data->enc_color_depth || hdmi_data->enc_color_depth == 8) remap_size = HDMI_VP_REMAP_YCC422_16bit; else if (hdmi_data->enc_color_depth == 10) remap_size = HDMI_VP_REMAP_YCC422_20bit; else if (hdmi_data->enc_color_depth == 12) remap_size = HDMI_VP_REMAP_YCC422_24bit; else return; output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422; } else { return; } /* set the packetizer registers */ val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) & HDMI_VP_PR_CD_COLOR_DEPTH_MASK) | ((hdmi_data->pix_repet_factor << HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) & HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_VP_PR_CD); hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF); /* Data from pixel repeater block */ if (hdmi_data->pix_repet_factor > 1) { vp_conf = HDMI_VP_CONF_PR_EN_ENABLE | HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER; } else { /* data from packetizer block */ vp_conf = HDMI_VP_CONF_PR_EN_DISABLE | HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_PR_EN_MASK | HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET, HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF); hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP); if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_ENABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) { vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_ENABLE; } else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) { vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE | HDMI_VP_CONF_PP_EN_DISABLE | HDMI_VP_CONF_YCC422_EN_DISABLE; } else { return; } hdmi_modb(hdmi, vp_conf, HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK | HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF); hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE | HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE, HDMI_VP_STUFF_PP_STUFFING_MASK | HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF); hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK, HDMI_VP_CONF); } static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET, HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_enable(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTEN_OFFSET, HDMI_PHY_TST0_TSTEN_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_clock(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLK_OFFSET, HDMI_PHY_TST0_TSTCLK_MASK, HDMI_PHY_TST0); } static inline void hdmi_phy_test_din(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_writeb(hdmi, bit, HDMI_PHY_TST1); } static inline void hdmi_phy_test_dout(struct dw_hdmi *hdmi, unsigned char bit) { hdmi_writeb(hdmi, bit, HDMI_PHY_TST2); } static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec) { u32 val; while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) { if (msec-- == 0) return false; udelay(1000); } hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0); return true; } static void hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data, unsigned char addr) { hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0); hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 8), HDMI_PHY_I2CM_DATAO_1_ADDR); hdmi_writeb(hdmi, (unsigned char)(data >> 0), HDMI_PHY_I2CM_DATAO_0_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE, HDMI_PHY_I2CM_OPERATION_ADDR); hdmi_phy_wait_i2c_done(hdmi, 1000); } static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable) { hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_PDZ_OFFSET, HDMI_PHY_CONF0_PDZ_MASK); } static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_ENTMDS_OFFSET, HDMI_PHY_CONF0_ENTMDS_MASK); } static void dw_hdmi_phy_enable_spare(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SPARECTRL_OFFSET, HDMI_PHY_CONF0_SPARECTRL_MASK); } static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET, HDMI_PHY_CONF0_GEN2_PDDQ_MASK); } static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET, HDMI_PHY_CONF0_GEN2_TXPWRON_MASK); } static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDATAENPOL_OFFSET, HDMI_PHY_CONF0_SELDATAENPOL_MASK); } static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable) { hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0, HDMI_PHY_CONF0_SELDIPIF_OFFSET, HDMI_PHY_CONF0_SELDIPIF_MASK); } static int hdmi_phy_configure(struct dw_hdmi *hdmi, unsigned char res, int cscon) { unsigned res_idx; u8 val, msec; const struct dw_hdmi_plat_data *pdata = hdmi->plat_data; const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg; const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr; const struct dw_hdmi_phy_config *phy_config = pdata->phy_config; switch (res) { case 0: /* color resolution 0 is 8 bit colour depth */ case 8: res_idx = DW_HDMI_RES_8; break; case 10: res_idx = DW_HDMI_RES_10; break; case 12: res_idx = DW_HDMI_RES_12; break; default: return -EINVAL; } /* PLL/MPLL Cfg - always match on final entry */ for (; mpll_config->mpixelclock != ~0UL; mpll_config++) if (hdmi->hdmi_data.video_mode.mpixelclock <= mpll_config->mpixelclock) break; for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++) if (hdmi->hdmi_data.video_mode.mpixelclock <= curr_ctrl->mpixelclock) break; for (; phy_config->mpixelclock != ~0UL; phy_config++) if (hdmi->hdmi_data.video_mode.mpixelclock <= phy_config->mpixelclock) break; if (mpll_config->mpixelclock == ~0UL || curr_ctrl->mpixelclock == ~0UL || phy_config->mpixelclock == ~0UL) { dev_err(hdmi->dev, "Pixel clock %d - unsupported by HDMI\n", hdmi->hdmi_data.video_mode.mpixelclock); return -EINVAL; } /* Enable csc path */ if (cscon) val = HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH; else val = HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS; hdmi_writeb(hdmi, val, HDMI_MC_FLOWCTRL); /* gen2 tx power off */ dw_hdmi_phy_gen2_txpwron(hdmi, 0); /* gen2 pddq */ dw_hdmi_phy_gen2_pddq(hdmi, 1); /* PHY reset */ hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_DEASSERT, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_ASSERT, HDMI_MC_PHYRSTZ); hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST); hdmi_phy_test_clear(hdmi, 1); hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2, HDMI_PHY_I2CM_SLAVE_ADDR); hdmi_phy_test_clear(hdmi, 0); hdmi_phy_i2c_write(hdmi, mpll_config->res[res_idx].cpce, 0x06); hdmi_phy_i2c_write(hdmi, mpll_config->res[res_idx].gmp, 0x15); /* CURRCTRL */ hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[res_idx], 0x10); hdmi_phy_i2c_write(hdmi, 0x0000, 0x13); /* PLLPHBYCTRL */ hdmi_phy_i2c_write(hdmi, 0x0006, 0x17); hdmi_phy_i2c_write(hdmi, phy_config->term, 0x19); /* TXTERM */ hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr, 0x09); /* CKSYMTXCTRL */ hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr, 0x0E); /* VLEVCTRL */ /* REMOVE CLK TERM */ hdmi_phy_i2c_write(hdmi, 0x8000, 0x05); /* CKCALCTRL */ dw_hdmi_phy_enable_powerdown(hdmi, false); /* toggle TMDS enable */ dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_tmds(hdmi, 1); /* gen2 tx power on */ dw_hdmi_phy_gen2_txpwron(hdmi, 1); dw_hdmi_phy_gen2_pddq(hdmi, 0); if (hdmi->dev_type == RK3288_HDMI) dw_hdmi_phy_enable_spare(hdmi, 1); /*Wait for PHY PLL lock */ msec = 5; do { val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK; if (!val) break; if (msec == 0) { dev_err(hdmi->dev, "PHY PLL not locked\n"); return -ETIMEDOUT; } udelay(1000); msec--; } while (1); return 0; } static int dw_hdmi_phy_init(struct dw_hdmi *hdmi) { int i, ret; bool cscon; /*check csc whether needed activated in HDMI mode */ cscon = hdmi->sink_is_hdmi && is_color_space_conversion(hdmi); /* HDMI Phy spec says to do the phy initialization sequence twice */ for (i = 0; i < 2; i++) { dw_hdmi_phy_sel_data_en_pol(hdmi, 1); dw_hdmi_phy_sel_interface_control(hdmi, 0); dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_powerdown(hdmi, true); /* Enable CSC */ ret = hdmi_phy_configure(hdmi, 8, cscon); if (ret) return ret; } hdmi->phy_enabled = true; return 0; } static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi) { u8 de; if (hdmi->hdmi_data.video_mode.mdataenablepolarity) de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH; else de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW; /* disable rx detect */ hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE, HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0); hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG); hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1); } static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { struct hdmi_avi_infoframe frame; u8 val; /* Initialise info frame from DRM mode */ drm_hdmi_avi_infoframe_from_display_mode(&frame, mode); if (hdmi->hdmi_data.enc_out_format == YCBCR444) frame.colorspace = HDMI_COLORSPACE_YUV444; else if (hdmi->hdmi_data.enc_out_format == YCBCR422_8BITS) frame.colorspace = HDMI_COLORSPACE_YUV422; else frame.colorspace = HDMI_COLORSPACE_RGB; /* Set up colorimetry */ if (hdmi->hdmi_data.enc_out_format == XVYCC444) { frame.colorimetry = HDMI_COLORIMETRY_EXTENDED; if (hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_601) frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; else /*hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_709*/ frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_709; } else if (hdmi->hdmi_data.enc_out_format != RGB) { frame.colorimetry = hdmi->hdmi_data.colorimetry; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; } else { /* Carries no data */ frame.colorimetry = HDMI_COLORIMETRY_NONE; frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; } frame.scan_mode = HDMI_SCAN_MODE_NONE; /* * The Designware IP uses a different byte format from standard * AVI info frames, though generally the bits are in the correct * bytes. */ /* * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6, * scan info in bits 4,5 rather than 0,1 and active aspect present in * bit 6 rather than 4. */ val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3); if (frame.active_aspect & 15) val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT; if (frame.top_bar || frame.bottom_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR; if (frame.left_bar || frame.right_bar) val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0); /* AVI data byte 2 differences: none */ val = ((frame.colorimetry & 0x3) << 6) | ((frame.picture_aspect & 0x3) << 4) | (frame.active_aspect & 0xf); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1); /* AVI data byte 3 differences: none */ val = ((frame.extended_colorimetry & 0x7) << 4) | ((frame.quantization_range & 0x3) << 2) | (frame.nups & 0x3); if (frame.itc) val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID; hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2); /* AVI data byte 4 differences: none */ val = frame.video_code & 0x7f; hdmi_writeb(hdmi, val, HDMI_FC_AVIVID); /* AVI Data Byte 5- set up input and output pixel repetition */ val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) << HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) | ((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput << HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) & HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK); hdmi_writeb(hdmi, val, HDMI_FC_PRCONF); /* * AVI data byte 5 differences: content type in 0,1 rather than 4,5, * ycc range in bits 2,3 rather than 6,7 */ val = ((frame.ycc_quantization_range & 0x3) << 2) | (frame.content_type & 0x3); hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3); /* AVI Data Bytes 6-13 */ hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0); hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1); hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0); hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1); hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0); hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1); hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0); hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1); } static void hdmi_av_composer(struct dw_hdmi *hdmi, const struct drm_display_mode *mode) { u8 inv_val; struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode; int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len; unsigned int vdisplay; vmode->mpixelclock = mode->clock * 1000; dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock); /* Set up HDMI_FC_INVIDCONF */ inv_val = (hdmi->hdmi_data.hdcp_enable ? HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE : HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE); inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ? HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ? HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW; inv_val |= (vmode->mdataenablepolarity ? HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH : HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW); if (hdmi->vic == 39) inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH; else inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH : HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW; inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ? HDMI_FC_INVIDCONF_IN_I_P_INTERLACED : HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE; inv_val |= hdmi->sink_is_hdmi ? HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE : HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE; hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF); vdisplay = mode->vdisplay; vblank = mode->vtotal - mode->vdisplay; v_de_vs = mode->vsync_start - mode->vdisplay; vsync_len = mode->vsync_end - mode->vsync_start; /* * When we're setting an interlaced mode, we need * to adjust the vertical timing to suit. */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vdisplay /= 2; vblank /= 2; v_de_vs /= 2; vsync_len /= 2; } /* Set up horizontal active pixel width */ hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1); hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0); /* Set up vertical active lines */ hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1); hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0); /* Set up horizontal blanking pixel region width */ hblank = mode->htotal - mode->hdisplay; hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1); hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0); /* Set up vertical blanking pixel region width */ hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK); /* Set up HSYNC active edge delay width (in pixel clks) */ h_de_hs = mode->hsync_start - mode->hdisplay; hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1); hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY); /* Set up HSYNC active pulse width (in pixel clks) */ hsync_len = mode->hsync_end - mode->hsync_start; hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1); hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0); /* Set up VSYNC active edge delay (in lines) */ hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH); } static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi) { if (!hdmi->phy_enabled) return; dw_hdmi_phy_enable_tmds(hdmi, 0); dw_hdmi_phy_enable_powerdown(hdmi, true); hdmi->phy_enabled = false; } /* HDMI Initialization Step B.4 */ static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi) { u8 clkdis; /* control period minimum duration */ hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR); hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR); hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC); /* Set to fill TMDS data channels */ hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM); hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM); hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM); /* Enable pixel clock and tmds data path */ clkdis = 0x7F; clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); /* Enable csc path */ if (is_color_space_conversion(hdmi)) { clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE; hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS); } } static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi) { hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS); } /* Workaround to clear the overflow condition */ static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi) { int count; u8 val; /* TMDS software reset */ hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ); val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF); if (hdmi->dev_type == IMX6DL_HDMI) { hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF); return; } for (count = 0; count < 4; count++) hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF); } static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, 0, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2); } static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK, HDMI_IH_MUTE_FC_STAT2); } static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode) { int ret; hdmi_disable_overflow_interrupts(hdmi); hdmi->vic = drm_match_cea_mode(mode); if (!hdmi->vic) { dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n"); } else { dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic); } if ((hdmi->vic == 6) || (hdmi->vic == 7) || (hdmi->vic == 21) || (hdmi->vic == 22) || (hdmi->vic == 2) || (hdmi->vic == 3) || (hdmi->vic == 17) || (hdmi->vic == 18)) hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_601; else hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_709; hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0; hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0; /* TODO: Get input format from IPU (via FB driver interface) */ hdmi->hdmi_data.enc_in_format = RGB; hdmi->hdmi_data.enc_out_format = RGB; hdmi->hdmi_data.enc_color_depth = 8; hdmi->hdmi_data.pix_repet_factor = 0; hdmi->hdmi_data.hdcp_enable = 0; hdmi->hdmi_data.video_mode.mdataenablepolarity = true; /* HDMI Initialization Step B.1 */ hdmi_av_composer(hdmi, mode); /* HDMI Initializateion Step B.2 */ ret = dw_hdmi_phy_init(hdmi); if (ret) return ret; /* HDMI Initialization Step B.3 */ dw_hdmi_enable_video_path(hdmi); if (hdmi->sink_has_audio) { dev_dbg(hdmi->dev, "sink has audio support\n"); /* HDMI Initialization Step E - Configure audio */ hdmi_clk_regenerator_update_pixel_clock(hdmi); hdmi_enable_audio_clk(hdmi); } /* not for DVI mode */ if (hdmi->sink_is_hdmi) { dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__); /* HDMI Initialization Step F - Configure AVI InfoFrame */ hdmi_config_AVI(hdmi, mode); } else { dev_dbg(hdmi->dev, "%s DVI mode\n", __func__); } hdmi_video_packetize(hdmi); hdmi_video_csc(hdmi); hdmi_video_sample(hdmi); hdmi_tx_hdcp_config(hdmi); dw_hdmi_clear_overflow(hdmi); if (hdmi->cable_plugin && hdmi->sink_is_hdmi) hdmi_enable_overflow_interrupts(hdmi); return 0; } /* Wait until we are registered to enable interrupts */ static int dw_hdmi_fb_registered(struct dw_hdmi *hdmi) { hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL | HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL, HDMI_PHY_I2CM_CTLINT_ADDR); /* enable cable hot plug irq */ hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); /* Clear Hotplug interrupts */ hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); return 0; } static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi) { u8 ih_mute; /* * Boot up defaults are: * HDMI_IH_MUTE = 0x03 (disabled) * HDMI_IH_MUTE_* = 0x00 (enabled) * * Disable top level interrupt bits in HDMI block */ ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) | HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT; hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); /* by default mask all interrupts */ hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1); hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2); hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR); hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT); hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK); hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK); hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK); hdmi_writeb(hdmi, 0xff, HDMI_CEC_MASK); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT); hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT); /* Disable interrupts in the IH_MUTE_* registers */ hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0); hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0); /* Enable top level interrupt bits in HDMI block */ ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT | HDMI_IH_MUTE_MUTE_ALL_INTERRUPT); hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE); } static void dw_hdmi_poweron(struct dw_hdmi *hdmi) { hdmi->bridge_is_on = true; dw_hdmi_setup(hdmi, &hdmi->previous_mode); } static void dw_hdmi_poweroff(struct dw_hdmi *hdmi) { dw_hdmi_phy_disable(hdmi); hdmi->bridge_is_on = false; } static void dw_hdmi_update_power(struct dw_hdmi *hdmi) { int force = hdmi->force; if (hdmi->disabled) { force = DRM_FORCE_OFF; } else if (force == DRM_FORCE_UNSPECIFIED) { if (hdmi->rxsense) force = DRM_FORCE_ON; else force = DRM_FORCE_OFF; } if (force == DRM_FORCE_OFF) { if (hdmi->bridge_is_on) dw_hdmi_poweroff(hdmi); } else { if (!hdmi->bridge_is_on) dw_hdmi_poweron(hdmi); } } /* * Adjust the detection of RXSENSE according to whether we have a forced * connection mode enabled, or whether we have been disabled. There is * no point processing RXSENSE interrupts if we have a forced connection * state, or DRM has us disabled. * * We also disable rxsense interrupts when we think we're disconnected * to avoid floating TDMS signals giving false rxsense interrupts. * * Note: we still need to listen for HPD interrupts even when DRM has us * disabled so that we can detect a connect event. */ static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi) { u8 old_mask = hdmi->phy_mask; if (hdmi->force || hdmi->disabled || !hdmi->rxsense) hdmi->phy_mask |= HDMI_PHY_RX_SENSE; else hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE; if (old_mask != hdmi->phy_mask) hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0); } static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge, struct drm_display_mode *orig_mode, struct drm_display_mode *mode) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); /* Store the display mode for plugin/DKMS poweron events */ memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode)); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_disable(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); hdmi->disabled = true; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static void dw_hdmi_bridge_enable(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; mutex_lock(&hdmi->mutex); hdmi->disabled = false; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static enum drm_connector_status dw_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); mutex_lock(&hdmi->mutex); hdmi->force = DRM_FORCE_UNSPECIFIED; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ? connector_status_connected : connector_status_disconnected; } static int dw_hdmi_connector_get_modes(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); struct edid *edid; int ret = 0; if (!hdmi->ddc) return 0; edid = drm_get_edid(connector, hdmi->ddc); if (edid) { dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n", edid->width_cm, edid->height_cm); hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid); hdmi->sink_has_audio = drm_detect_monitor_audio(edid); drm_mode_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); /* Store the ELD */ drm_edid_to_eld(connector, edid); kfree(edid); } else { dev_dbg(hdmi->dev, "failed to get edid\n"); } return ret; } static enum drm_mode_status dw_hdmi_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); enum drm_mode_status mode_status = MODE_OK; /* We don't support double-clocked modes */ if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_BAD; if (hdmi->plat_data->mode_valid) mode_status = hdmi->plat_data->mode_valid(connector, mode); return mode_status; } static void dw_hdmi_connector_force(struct drm_connector *connector) { struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi, connector); mutex_lock(&hdmi->mutex); hdmi->force = connector->force; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); mutex_unlock(&hdmi->mutex); } static const struct drm_connector_funcs dw_hdmi_connector_funcs = { .dpms = drm_atomic_helper_connector_dpms, .fill_modes = drm_helper_probe_single_connector_modes, .detect = dw_hdmi_connector_detect, .destroy = drm_connector_cleanup, .force = dw_hdmi_connector_force, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = { .get_modes = dw_hdmi_connector_get_modes, .mode_valid = dw_hdmi_connector_mode_valid, .best_encoder = drm_atomic_helper_best_encoder, }; static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = { .enable = dw_hdmi_bridge_enable, .disable = dw_hdmi_bridge_disable, .mode_set = dw_hdmi_bridge_mode_set, }; static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi) { struct dw_hdmi_i2c *i2c = hdmi->i2c; unsigned int stat; stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0); if (!stat) return IRQ_NONE; hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0); i2c->stat = stat; complete(&i2c->cmp); return IRQ_HANDLED; } static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat; irqreturn_t ret = IRQ_NONE; if (hdmi->i2c) ret = dw_hdmi_i2c_irq(hdmi); intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); if (intr_stat) { hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); return IRQ_WAKE_THREAD; } return ret; } static irqreturn_t dw_hdmi_irq(int irq, void *dev_id) { struct dw_hdmi *hdmi = dev_id; u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat; intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0); phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0); phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0); phy_pol_mask = 0; if (intr_stat & HDMI_IH_PHY_STAT0_HPD) phy_pol_mask |= HDMI_PHY_HPD; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0) phy_pol_mask |= HDMI_PHY_RX_SENSE0; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1) phy_pol_mask |= HDMI_PHY_RX_SENSE1; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2) phy_pol_mask |= HDMI_PHY_RX_SENSE2; if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3) phy_pol_mask |= HDMI_PHY_RX_SENSE3; if (phy_pol_mask) hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0); /* * RX sense tells us whether the TDMS transmitters are detecting * load - in other words, there's something listening on the * other end of the link. Use this to decide whether we should * power on the phy as HPD may be toggled by the sink to merely * ask the source to re-read the EDID. */ if (intr_stat & (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) { mutex_lock(&hdmi->mutex); if (!hdmi->disabled && !hdmi->force) { /* * If the RX sense status indicates we're disconnected, * clear the software rxsense status. */ if (!(phy_stat & HDMI_PHY_RX_SENSE)) hdmi->rxsense = false; /* * Only set the software rxsense status when both * rxsense and hpd indicates we're connected. * This avoids what seems to be bad behaviour in * at least iMX6S versions of the phy. */ if (phy_stat & HDMI_PHY_HPD) hdmi->rxsense = true; dw_hdmi_update_power(hdmi); dw_hdmi_update_phy_mask(hdmi); } mutex_unlock(&hdmi->mutex); } if (intr_stat & HDMI_IH_PHY_STAT0_HPD) { dev_dbg(hdmi->dev, "EVENT=%s\n", phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout"); drm_helper_hpd_irq_event(hdmi->bridge->dev); } hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0); hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); return IRQ_HANDLED; } static int dw_hdmi_register(struct drm_device *drm, struct dw_hdmi *hdmi) { struct drm_encoder *encoder = hdmi->encoder; struct drm_bridge *bridge; int ret; bridge = devm_kzalloc(drm->dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) { DRM_ERROR("Failed to allocate drm bridge\n"); return -ENOMEM; } hdmi->bridge = bridge; bridge->driver_private = hdmi; bridge->funcs = &dw_hdmi_bridge_funcs; ret = drm_bridge_attach(encoder, bridge, NULL); if (ret) { DRM_ERROR("Failed to initialize bridge with drm\n"); return -EINVAL; } hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(&hdmi->connector, &dw_hdmi_connector_helper_funcs); drm_connector_init(drm, &hdmi->connector, &dw_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_mode_connector_attach_encoder(&hdmi->connector, encoder); return 0; } int dw_hdmi_bind(struct device *dev, struct drm_encoder *encoder, struct resource *iores, int irq, const struct dw_hdmi_plat_data *plat_data) { struct device_node *np = dev->of_node; struct platform_device_info pdevinfo; struct device_node *ddc_node; struct dw_hdmi *hdmi; int ret; u32 val = 1; u8 config0; u8 config1; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; hdmi->connector.interlace_allowed = 1; hdmi->plat_data = plat_data; hdmi->dev = dev; hdmi->dev_type = plat_data->dev_type; hdmi->sample_rate = 48000; hdmi->encoder = encoder; hdmi->disabled = true; hdmi->rxsense = true; hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE); mutex_init(&hdmi->mutex); mutex_init(&hdmi->audio_mutex); spin_lock_init(&hdmi->audio_lock); of_property_read_u32(np, "reg-io-width", &val); switch (val) { case 4: hdmi->write = dw_hdmi_writel; hdmi->read = dw_hdmi_readl; break; case 1: hdmi->write = dw_hdmi_writeb; hdmi->read = dw_hdmi_readb; break; default: dev_err(dev, "reg-io-width must be 1 or 4\n"); return -EINVAL; } ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0); if (ddc_node) { hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!hdmi->ddc) { dev_dbg(hdmi->dev, "failed to read ddc node\n"); return -EPROBE_DEFER; } } else { dev_dbg(hdmi->dev, "no ddc property found\n"); } hdmi->regs = devm_ioremap_resource(dev, iores); if (IS_ERR(hdmi->regs)) { ret = PTR_ERR(hdmi->regs); goto err_res; } hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr"); if (IS_ERR(hdmi->isfr_clk)) { ret = PTR_ERR(hdmi->isfr_clk); dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret); goto err_res; } ret = clk_prepare_enable(hdmi->isfr_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret); goto err_res; } hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb"); if (IS_ERR(hdmi->iahb_clk)) { ret = PTR_ERR(hdmi->iahb_clk); dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret); goto err_isfr; } ret = clk_prepare_enable(hdmi->iahb_clk); if (ret) { dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret); goto err_isfr; } /* Product and revision IDs */ dev_info(dev, "Detected HDMI controller 0x%x:0x%x:0x%x:0x%x\n", hdmi_readb(hdmi, HDMI_DESIGN_ID), hdmi_readb(hdmi, HDMI_REVISION_ID), hdmi_readb(hdmi, HDMI_PRODUCT_ID0), hdmi_readb(hdmi, HDMI_PRODUCT_ID1)); initialize_hdmi_ih_mutes(hdmi); ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq, dw_hdmi_irq, IRQF_SHARED, dev_name(dev), hdmi); if (ret) goto err_iahb; /* * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator * N and cts values before enabling phy */ hdmi_init_clk_regenerator(hdmi); /* If DDC bus is not specified, try to register HDMI I2C bus */ if (!hdmi->ddc) { hdmi->ddc = dw_hdmi_i2c_adapter(hdmi); if (IS_ERR(hdmi->ddc)) hdmi->ddc = NULL; } /* * Configure registers related to HDMI interrupt * generation before registering IRQ. */ hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0); /* Clear Hotplug interrupts */ hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE, HDMI_IH_PHY_STAT0); ret = dw_hdmi_fb_registered(hdmi); if (ret) goto err_iahb; ret = dw_hdmi_register(encoder->dev, hdmi); if (ret) goto err_iahb; /* Unmute interrupts */ hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE), HDMI_IH_MUTE_PHY_STAT0); memset(&pdevinfo, 0, sizeof(pdevinfo)); pdevinfo.parent = dev; pdevinfo.id = PLATFORM_DEVID_AUTO; config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID); config1 = hdmi_readb(hdmi, HDMI_CONFIG1_ID); if (config1 & HDMI_CONFIG1_AHB) { struct dw_hdmi_audio_data audio; audio.phys = iores->start; audio.base = hdmi->regs; audio.irq = irq; audio.hdmi = hdmi; audio.eld = hdmi->connector.eld; pdevinfo.name = "dw-hdmi-ahb-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } else if (config0 & HDMI_CONFIG0_I2S) { struct dw_hdmi_i2s_audio_data audio; audio.hdmi = hdmi; audio.write = hdmi_writeb; audio.read = hdmi_readb; pdevinfo.name = "dw-hdmi-i2s-audio"; pdevinfo.data = &audio; pdevinfo.size_data = sizeof(audio); pdevinfo.dma_mask = DMA_BIT_MASK(32); hdmi->audio = platform_device_register_full(&pdevinfo); } /* Reset HDMI DDC I2C master controller and mute I2CM interrupts */ if (hdmi->i2c) dw_hdmi_i2c_init(hdmi); dev_set_drvdata(dev, hdmi); return 0; err_iahb: if (hdmi->i2c) { i2c_del_adapter(&hdmi->i2c->adap); hdmi->ddc = NULL; } clk_disable_unprepare(hdmi->iahb_clk); err_isfr: clk_disable_unprepare(hdmi->isfr_clk); err_res: i2c_put_adapter(hdmi->ddc); return ret; } EXPORT_SYMBOL_GPL(dw_hdmi_bind); void dw_hdmi_unbind(struct device *dev) { struct dw_hdmi *hdmi = dev_get_drvdata(dev); if (hdmi->audio && !IS_ERR(hdmi->audio)) platform_device_unregister(hdmi->audio); /* Disable all interrupts */ hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0); clk_disable_unprepare(hdmi->iahb_clk); clk_disable_unprepare(hdmi->isfr_clk); if (hdmi->i2c) i2c_del_adapter(&hdmi->i2c->adap); else i2c_put_adapter(hdmi->ddc); } EXPORT_SYMBOL_GPL(dw_hdmi_unbind); MODULE_AUTHOR("Sascha Hauer "); MODULE_AUTHOR("Andy Yan "); MODULE_AUTHOR("Yakir Yang "); MODULE_AUTHOR("Vladimir Zapolskiy "); MODULE_DESCRIPTION("DW HDMI transmitter driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dw-hdmi");