#include #include #include "mce_amd.h" static struct amd_decoder_ops *fam_ops; static bool report_gart_errors; static void (*nb_bus_decoder)(int node_id, struct mce *m, u32 nbcfg); void amd_report_gart_errors(bool v) { report_gart_errors = v; } EXPORT_SYMBOL_GPL(amd_report_gart_errors); void amd_register_ecc_decoder(void (*f)(int, struct mce *, u32)) { nb_bus_decoder = f; } EXPORT_SYMBOL_GPL(amd_register_ecc_decoder); void amd_unregister_ecc_decoder(void (*f)(int, struct mce *, u32)) { if (nb_bus_decoder) { WARN_ON(nb_bus_decoder != f); nb_bus_decoder = NULL; } } EXPORT_SYMBOL_GPL(amd_unregister_ecc_decoder); /* * string representation for the different MCA reported error types, see F3x48 * or MSR0000_0411. */ /* transaction type */ const char *tt_msgs[] = { "INSN", "DATA", "GEN", "RESV" }; EXPORT_SYMBOL_GPL(tt_msgs); /* cache level */ const char *ll_msgs[] = { "RESV", "L1", "L2", "L3/GEN" }; EXPORT_SYMBOL_GPL(ll_msgs); /* memory transaction type */ const char *rrrr_msgs[] = { "GEN", "RD", "WR", "DRD", "DWR", "IRD", "PRF", "EV", "SNP" }; EXPORT_SYMBOL_GPL(rrrr_msgs); /* participating processor */ const char *pp_msgs[] = { "SRC", "RES", "OBS", "GEN" }; EXPORT_SYMBOL_GPL(pp_msgs); /* request timeout */ const char *to_msgs[] = { "no timeout", "timed out" }; EXPORT_SYMBOL_GPL(to_msgs); /* memory or i/o */ const char *ii_msgs[] = { "MEM", "RESV", "IO", "GEN" }; EXPORT_SYMBOL_GPL(ii_msgs); /* * Map the 4 or 5 (family-specific) bits of Extended Error code to the * string table. */ const char *ext_msgs[] = { "K8 ECC error", /* 0_0000b */ "CRC error on link", /* 0_0001b */ "Sync error packets on link", /* 0_0010b */ "Master Abort during link operation", /* 0_0011b */ "Target Abort during link operation", /* 0_0100b */ "Invalid GART PTE entry during table walk", /* 0_0101b */ "Unsupported atomic RMW command received", /* 0_0110b */ "WDT error: NB transaction timeout", /* 0_0111b */ "ECC/ChipKill ECC error", /* 0_1000b */ "SVM DEV Error", /* 0_1001b */ "Link Data error", /* 0_1010b */ "Link/L3/Probe Filter Protocol error", /* 0_1011b */ "NB Internal Arrays Parity error", /* 0_1100b */ "DRAM Address/Control Parity error", /* 0_1101b */ "Link Transmission error", /* 0_1110b */ "GART/DEV Table Walk Data error" /* 0_1111b */ "Res 0x100 error", /* 1_0000b */ "Res 0x101 error", /* 1_0001b */ "Res 0x102 error", /* 1_0010b */ "Res 0x103 error", /* 1_0011b */ "Res 0x104 error", /* 1_0100b */ "Res 0x105 error", /* 1_0101b */ "Res 0x106 error", /* 1_0110b */ "Res 0x107 error", /* 1_0111b */ "Res 0x108 error", /* 1_1000b */ "Res 0x109 error", /* 1_1001b */ "Res 0x10A error", /* 1_1010b */ "Res 0x10B error", /* 1_1011b */ "ECC error in L3 Cache Data", /* 1_1100b */ "L3 Cache Tag error", /* 1_1101b */ "L3 Cache LRU Parity error", /* 1_1110b */ "Probe Filter error" /* 1_1111b */ }; EXPORT_SYMBOL_GPL(ext_msgs); static bool f10h_dc_mce(u16 ec) { u8 r4 = (ec >> 4) & 0xf; bool ret = false; if (r4 == R4_GEN) { pr_cont("during data scrub.\n"); return true; } if (MEM_ERROR(ec)) { u8 ll = ec & 0x3; ret = true; if (ll == LL_L2) pr_cont("during L1 linefill from L2.\n"); else if (ll == LL_L1) pr_cont("Data/Tag %s error.\n", RRRR_MSG(ec)); else ret = false; } return ret; } static bool k8_dc_mce(u16 ec) { if (BUS_ERROR(ec)) { pr_cont("during system linefill.\n"); return true; } return f10h_dc_mce(ec); } static bool f14h_dc_mce(u16 ec) { u8 r4 = (ec >> 4) & 0xf; u8 ll = ec & 0x3; u8 tt = (ec >> 2) & 0x3; u8 ii = tt; bool ret = true; if (MEM_ERROR(ec)) { if (tt != TT_DATA || ll != LL_L1) return false; switch (r4) { case R4_DRD: case R4_DWR: pr_cont("Data/Tag parity error due to %s.\n", (r4 == R4_DRD ? "load/hw prf" : "store")); break; case R4_EVICT: pr_cont("Copyback parity error on a tag miss.\n"); break; case R4_SNOOP: pr_cont("Tag parity error during snoop.\n"); break; default: ret = false; } } else if (BUS_ERROR(ec)) { if ((ii != II_MEM && ii != II_IO) || ll != LL_LG) return false; pr_cont("System read data error on a "); switch (r4) { case R4_RD: pr_cont("TLB reload.\n"); break; case R4_DWR: pr_cont("store.\n"); break; case R4_DRD: pr_cont("load.\n"); break; default: ret = false; } } else { ret = false; } return ret; } static void amd_decode_dc_mce(struct mce *m) { u16 ec = m->status & 0xffff; u8 xec = (m->status >> 16) & 0xf; pr_emerg(HW_ERR "Data Cache Error: "); /* TLB error signatures are the same across families */ if (TLB_ERROR(ec)) { u8 tt = (ec >> 2) & 0x3; if (tt == TT_DATA) { pr_cont("%s TLB %s.\n", LL_MSG(ec), (xec ? "multimatch" : "parity error")); return; } else goto wrong_dc_mce; } if (!fam_ops->dc_mce(ec)) goto wrong_dc_mce; return; wrong_dc_mce: pr_emerg(HW_ERR "Corrupted DC MCE info?\n"); } static bool k8_ic_mce(u16 ec) { u8 ll = ec & 0x3; u8 r4 = (ec >> 4) & 0xf; bool ret = true; if (!MEM_ERROR(ec)) return false; if (ll == 0x2) pr_cont("during a linefill from L2.\n"); else if (ll == 0x1) { switch (r4) { case R4_IRD: pr_cont("Parity error during data load.\n"); break; case R4_EVICT: pr_cont("Copyback Parity/Victim error.\n"); break; case R4_SNOOP: pr_cont("Tag Snoop error.\n"); break; default: ret = false; break; } } else ret = false; return ret; } static bool f14h_ic_mce(u16 ec) { u8 ll = ec & 0x3; u8 tt = (ec >> 2) & 0x3; u8 r4 = (ec >> 4) & 0xf; bool ret = true; if (MEM_ERROR(ec)) { if (tt != 0 || ll != 1) ret = false; if (r4 == R4_IRD) pr_cont("Data/tag array parity error for a tag hit.\n"); else if (r4 == R4_SNOOP) pr_cont("Tag error during snoop/victimization.\n"); else ret = false; } return ret; } static void amd_decode_ic_mce(struct mce *m) { u16 ec = m->status & 0xffff; u8 xec = (m->status >> 16) & 0xf; pr_emerg(HW_ERR "Instruction Cache Error: "); if (TLB_ERROR(ec)) pr_cont("%s TLB %s.\n", LL_MSG(ec), (xec ? "multimatch" : "parity error")); else if (BUS_ERROR(ec)) { bool k8 = (boot_cpu_data.x86 == 0xf && (m->status & BIT(58))); pr_cont("during %s.\n", (k8 ? "system linefill" : "NB data read")); } else if (fam_ops->ic_mce(ec)) ; else pr_emerg(HW_ERR "Corrupted IC MCE info?\n"); } static void amd_decode_bu_mce(struct mce *m) { u32 ec = m->status & 0xffff; u32 xec = (m->status >> 16) & 0xf; pr_emerg(HW_ERR "Bus Unit Error"); if (xec == 0x1) pr_cont(" in the write data buffers.\n"); else if (xec == 0x3) pr_cont(" in the victim data buffers.\n"); else if (xec == 0x2 && MEM_ERROR(ec)) pr_cont(": %s error in the L2 cache tags.\n", RRRR_MSG(ec)); else if (xec == 0x0) { if (TLB_ERROR(ec)) pr_cont(": %s error in a Page Descriptor Cache or " "Guest TLB.\n", TT_MSG(ec)); else if (BUS_ERROR(ec)) pr_cont(": %s/ECC error in data read from NB: %s.\n", RRRR_MSG(ec), PP_MSG(ec)); else if (MEM_ERROR(ec)) { u8 rrrr = (ec >> 4) & 0xf; if (rrrr >= 0x7) pr_cont(": %s error during data copyback.\n", RRRR_MSG(ec)); else if (rrrr <= 0x1) pr_cont(": %s parity/ECC error during data " "access from L2.\n", RRRR_MSG(ec)); else goto wrong_bu_mce; } else goto wrong_bu_mce; } else goto wrong_bu_mce; return; wrong_bu_mce: pr_emerg(HW_ERR "Corrupted BU MCE info?\n"); } static void amd_decode_ls_mce(struct mce *m) { u32 ec = m->status & 0xffff; u32 xec = (m->status >> 16) & 0xf; pr_emerg(HW_ERR "Load Store Error"); if (xec == 0x0) { u8 rrrr = (ec >> 4) & 0xf; if (!BUS_ERROR(ec) || (rrrr != 0x3 && rrrr != 0x4)) goto wrong_ls_mce; pr_cont(" during %s.\n", RRRR_MSG(ec)); } return; wrong_ls_mce: pr_emerg(HW_ERR "Corrupted LS MCE info?\n"); } void amd_decode_nb_mce(int node_id, struct mce *m, u32 nbcfg) { u32 ec = m->status & 0xffff; u32 nbsh = (u32)(m->status >> 32); u32 nbsl = (u32)m->status; /* * GART TLB error reporting is disabled by default. Bail out early. */ if (TLB_ERROR(ec) && !report_gart_errors) return; pr_emerg(HW_ERR "Northbridge Error, node %d", node_id); /* * F10h, revD can disable ErrCpu[3:0] so check that first and also the * value encoding has changed so interpret those differently */ if ((boot_cpu_data.x86 == 0x10) && (boot_cpu_data.x86_model > 7)) { if (nbsh & K8_NBSH_ERR_CPU_VAL) pr_cont(", core: %u\n", (u8)(nbsh & 0xf)); } else { u8 assoc_cpus = nbsh & 0xf; if (assoc_cpus > 0) pr_cont(", core: %d", fls(assoc_cpus) - 1); pr_cont("\n"); } pr_emerg(HW_ERR "%s.\n", EXT_ERR_MSG(nbsl)); if (BUS_ERROR(ec) && nb_bus_decoder) nb_bus_decoder(node_id, m, nbcfg); } EXPORT_SYMBOL_GPL(amd_decode_nb_mce); static void amd_decode_fr_mce(struct mce *m) { /* we have only one error signature so match all fields at once. */ if ((m->status & 0xffff) == 0x0f0f) pr_emerg(HW_ERR " FR Error: CPU Watchdog timer expire.\n"); else pr_emerg(HW_ERR "Corrupted FR MCE info?\n"); } static inline void amd_decode_err_code(u16 ec) { if (TLB_ERROR(ec)) { pr_emerg(HW_ERR "Transaction: %s, Cache Level: %s\n", TT_MSG(ec), LL_MSG(ec)); } else if (MEM_ERROR(ec)) { pr_emerg(HW_ERR "Transaction: %s, Type: %s, Cache Level: %s\n", RRRR_MSG(ec), TT_MSG(ec), LL_MSG(ec)); } else if (BUS_ERROR(ec)) { pr_emerg(HW_ERR "Transaction: %s (%s), %s, Cache Level: %s, " "Participating Processor: %s\n", RRRR_MSG(ec), II_MSG(ec), TO_MSG(ec), LL_MSG(ec), PP_MSG(ec)); } else pr_emerg(HW_ERR "Huh? Unknown MCE error 0x%x\n", ec); } int amd_decode_mce(struct notifier_block *nb, unsigned long val, void *data) { struct mce *m = (struct mce *)data; int node, ecc; pr_emerg(HW_ERR "MC%d_STATUS: ", m->bank); pr_cont("%sorrected error, other errors lost: %s, " "CPU context corrupt: %s", ((m->status & MCI_STATUS_UC) ? "Unc" : "C"), ((m->status & MCI_STATUS_OVER) ? "yes" : "no"), ((m->status & MCI_STATUS_PCC) ? "yes" : "no")); /* do the two bits[14:13] together */ ecc = (m->status >> 45) & 0x3; if (ecc) pr_cont(", %sECC Error", ((ecc == 2) ? "C" : "U")); pr_cont("\n"); switch (m->bank) { case 0: amd_decode_dc_mce(m); break; case 1: amd_decode_ic_mce(m); break; case 2: amd_decode_bu_mce(m); break; case 3: amd_decode_ls_mce(m); break; case 4: node = amd_get_nb_id(m->extcpu); amd_decode_nb_mce(node, m, 0); break; case 5: amd_decode_fr_mce(m); break; default: break; } amd_decode_err_code(m->status & 0xffff); return NOTIFY_STOP; } EXPORT_SYMBOL_GPL(amd_decode_mce); static struct notifier_block amd_mce_dec_nb = { .notifier_call = amd_decode_mce, }; static int __init mce_amd_init(void) { /* * We can decode MCEs for K8, F10h and F11h CPUs: */ if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) return 0; if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11) return 0; fam_ops = kzalloc(sizeof(struct amd_decoder_ops), GFP_KERNEL); if (!fam_ops) return -ENOMEM; switch (boot_cpu_data.x86) { case 0xf: fam_ops->dc_mce = k8_dc_mce; fam_ops->ic_mce = k8_ic_mce; break; case 0x10: fam_ops->dc_mce = f10h_dc_mce; fam_ops->ic_mce = k8_ic_mce; break; case 0x14: fam_ops->dc_mce = f14h_dc_mce; fam_ops->ic_mce = f14h_ic_mce; break; default: printk(KERN_WARNING "Huh? What family is that: %d?!\n", boot_cpu_data.x86); kfree(fam_ops); return -EINVAL; } atomic_notifier_chain_register(&x86_mce_decoder_chain, &amd_mce_dec_nb); return 0; } early_initcall(mce_amd_init); #ifdef MODULE static void __exit mce_amd_exit(void) { atomic_notifier_chain_unregister(&x86_mce_decoder_chain, &amd_mce_dec_nb); kfree(fam_ops); } MODULE_DESCRIPTION("AMD MCE decoder"); MODULE_ALIAS("edac-mce-amd"); MODULE_LICENSE("GPL"); module_exit(mce_amd_exit); #endif