/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "ar9003_phy.h" #include "ar9003_eeprom.h" #define COMP_HDR_LEN 4 #define COMP_CKSUM_LEN 2 #define AR_CH0_TOP (0x00016288) #define AR_CH0_TOP_XPABIASLVL (0x300) #define AR_CH0_TOP_XPABIASLVL_S (8) #define AR_CH0_THERM (0x00016290) #define AR_CH0_THERM_XPABIASLVL_MSB 0x3 #define AR_CH0_THERM_XPABIASLVL_MSB_S 0 #define AR_CH0_THERM_XPASHORT2GND 0x4 #define AR_CH0_THERM_XPASHORT2GND_S 2 #define AR_SWITCH_TABLE_COM_ALL (0xffff) #define AR_SWITCH_TABLE_COM_ALL_S (0) #define AR_SWITCH_TABLE_COM2_ALL (0xffffff) #define AR_SWITCH_TABLE_COM2_ALL_S (0) #define AR_SWITCH_TABLE_ALL (0xfff) #define AR_SWITCH_TABLE_ALL_S (0) #define LE16(x) __constant_cpu_to_le16(x) #define LE32(x) __constant_cpu_to_le32(x) /* Local defines to distinguish between extension and control CTL's */ #define EXT_ADDITIVE (0x8000) #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */ #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */ #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */ #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */ #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6)) #define EEPROM_DATA_LEN_9485 1088 static int ar9003_hw_power_interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np); static const struct ar9300_eeprom ar9300_default = { .eepromVersion = 2, .templateVersion = 2, .macAddr = {1, 2, 3, 4, 5, 6}, .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, .baseEepHeader = { .regDmn = { LE16(0), LE16(0x1f) }, .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ .opCapFlags = { .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, .eepMisc = 0, }, .rfSilent = 0, .blueToothOptions = 0, .deviceCap = 0, .deviceType = 5, /* takes lower byte in eeprom location */ .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, .params_for_tuning_caps = {0, 0}, .featureEnable = 0x0c, /* * bit0 - enable tx temp comp - disabled * bit1 - enable tx volt comp - disabled * bit2 - enable fastClock - enabled * bit3 - enable doubling - enabled * bit4 - enable internal regulator - disabled * bit5 - enable pa predistortion - disabled */ .miscConfiguration = 0, /* bit0 - turn down drivestrength */ .eepromWriteEnableGpio = 3, .wlanDisableGpio = 0, .wlanLedGpio = 8, .rxBandSelectGpio = 0xff, .txrxgain = 0, .swreg = 0, }, .modalHeader2G = { /* ar9300_modal_eep_header 2g */ /* 4 idle,t1,t2,b(4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ .antCtrlCommon2 = LE32(0x22222), /* * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, * rx1, rx12, b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, /* * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db * for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for ar9280 (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 36, .voltSlope = 0, /* * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur * channels in usual fbin coding format */ .spurChans = {0, 0, 0, 0, 0}, /* * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check * if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {1, 1, 1},/* 3 chain */ .db_stage2 = {1, 1, 1}, /* 3 chain */ .db_stage3 = {0, 0, 0}, .db_stage4 = {0, 0, 0}, .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2c, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0cf0e0e0), .papdRateMaskHt40 = LE32(0x6cf0e0e0), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext1 = { .ant_div_control = 0, .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }, .calFreqPier2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1), }, /* ar9300_cal_data_per_freq_op_loop 2g */ .calPierData2G = { { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, }, .calTarget_freqbin_Cck = { FREQ2FBIN(2412, 1), FREQ2FBIN(2484, 1), }, .calTarget_freqbin_2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT20 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT40 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTargetPowerCck = { /* 1L-5L,5S,11L,11S */ { {36, 36, 36, 36} }, { {36, 36, 36, 36} }, }, .calTargetPower2G = { /* 6-24,36,48,54 */ { {32, 32, 28, 24} }, { {32, 32, 28, 24} }, { {32, 32, 28, 24} }, }, .calTargetPower2GHT20 = { { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, }, .calTargetPower2GHT40 = { { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} }, }, .ctlIndex_2G = { 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, }, .ctl_freqbin_2G = { { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2457, 1), FREQ2FBIN(2462, 1) }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2422, 1), FREQ2FBIN(2427, 1), FREQ2FBIN(2447, 1), FREQ2FBIN(2452, 1) }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0, }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), FREQ2FBIN(2472, 1), 0, }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), }, { /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), } }, .ctlPowerData_2G = { { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, }, .modalHeader5G = { /* 4 idle,t1,t2,b (4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ .antCtrlCommon2 = LE32(0x22222), /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ .antCtrlChain = { LE16(0x000), LE16(0x000), LE16(0x000), }, /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for merlin (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 68, .voltSlope = 0, /* spurChans spur channels in usual fbin coding format */ .spurChans = {0, 0, 0, 0, 0}, /* noiseFloorThreshCh Check if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {3, 3, 3}, /* 3 chain */ .db_stage2 = {3, 3, 3}, /* 3 chain */ .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */ .db_stage4 = {3, 3, 3}, /* don't exist for 2G */ .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2d, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0c80c080), .papdRateMaskHt40 = LE32(0x0080c080), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext2 = { .tempSlopeLow = 0, .tempSlopeHigh = 0, .xatten1DBLow = {0, 0, 0}, .xatten1MarginLow = {0, 0, 0}, .xatten1DBHigh = {0, 0, 0}, .xatten1MarginHigh = {0, 0, 0} }, .calFreqPier5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calPierData5G = { { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, }, .calTarget_freqbin_5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT20 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT40 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTargetPower5G = { /* 6-24,36,48,54 */ { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, { {20, 20, 20, 10} }, }, .calTargetPower5GHT20 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, }, .calTargetPower5GHT40 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} }, }, .ctlIndex_5G = { 0x10, 0x16, 0x18, 0x40, 0x46, 0x48, 0x30, 0x36, 0x38 }, .ctl_freqbin_5G = { { /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) }, { /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[3].ctlEdges[6].bChannel */ 0xFF, /* Data[3].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), /* Data[4].ctlEdges[4].bChannel */ 0xFF, /* Data[4].ctlEdges[5].bChannel */ 0xFF, /* Data[4].ctlEdges[6].bChannel */ 0xFF, /* Data[4].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[5].ctlEdges[6].bChannel */ 0xFF, /* Data[5].ctlEdges[7].bChannel */ 0xFF }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) } }, .ctlPowerData_5G = { { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), } }, } }; static const struct ar9300_eeprom ar9300_x113 = { .eepromVersion = 2, .templateVersion = 6, .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, .custData = {"x113-023-f0000"}, .baseEepHeader = { .regDmn = { LE16(0), LE16(0x1f) }, .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ .opCapFlags = { .opFlags = AR5416_OPFLAGS_11A, .eepMisc = 0, }, .rfSilent = 0, .blueToothOptions = 0, .deviceCap = 0, .deviceType = 5, /* takes lower byte in eeprom location */ .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, .params_for_tuning_caps = {0, 0}, .featureEnable = 0x0d, /* * bit0 - enable tx temp comp - disabled * bit1 - enable tx volt comp - disabled * bit2 - enable fastClock - enabled * bit3 - enable doubling - enabled * bit4 - enable internal regulator - disabled * bit5 - enable pa predistortion - disabled */ .miscConfiguration = 0, /* bit0 - turn down drivestrength */ .eepromWriteEnableGpio = 6, .wlanDisableGpio = 0, .wlanLedGpio = 8, .rxBandSelectGpio = 0xff, .txrxgain = 0x21, .swreg = 0, }, .modalHeader2G = { /* ar9300_modal_eep_header 2g */ /* 4 idle,t1,t2,b(4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ .antCtrlCommon2 = LE32(0x44444), /* * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, * rx1, rx12, b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, /* * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db * for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for ar9280 (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 25, .voltSlope = 0, /* * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur * channels in usual fbin coding format */ .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, /* * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check * if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {1, 1, 1},/* 3 chain */ .db_stage2 = {1, 1, 1}, /* 3 chain */ .db_stage3 = {0, 0, 0}, .db_stage4 = {0, 0, 0}, .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2c, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0c80c080), .papdRateMaskHt40 = LE32(0x0080c080), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext1 = { .ant_div_control = 0, .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }, .calFreqPier2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1), }, /* ar9300_cal_data_per_freq_op_loop 2g */ .calPierData2G = { { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, }, .calTarget_freqbin_Cck = { FREQ2FBIN(2412, 1), FREQ2FBIN(2472, 1), }, .calTarget_freqbin_2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT20 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT40 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTargetPowerCck = { /* 1L-5L,5S,11L,11S */ { {34, 34, 34, 34} }, { {34, 34, 34, 34} }, }, .calTargetPower2G = { /* 6-24,36,48,54 */ { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, }, .calTargetPower2GHT20 = { { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} }, }, .calTargetPower2GHT40 = { { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, }, .ctlIndex_2G = { 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, }, .ctl_freqbin_2G = { { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2457, 1), FREQ2FBIN(2462, 1) }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2422, 1), FREQ2FBIN(2427, 1), FREQ2FBIN(2447, 1), FREQ2FBIN(2452, 1) }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0, }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), FREQ2FBIN(2472, 1), 0, }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), }, { /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), } }, .ctlPowerData_2G = { { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, }, .modalHeader5G = { /* 4 idle,t1,t2,b (4 bits per setting) */ .antCtrlCommon = LE32(0x220), /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ .antCtrlCommon2 = LE32(0x11111), /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150), }, /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for merlin (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 68, .voltSlope = 0, /* spurChans spur channels in usual fbin coding format */ .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0}, /* noiseFloorThreshCh Check if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {3, 3, 3}, /* 3 chain */ .db_stage2 = {3, 3, 3}, /* 3 chain */ .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */ .db_stage4 = {3, 3, 3}, /* don't exist for 2G */ .xpaBiasLvl = 0xf, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2d, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0cf0e0e0), .papdRateMaskHt40 = LE32(0x6cf0e0e0), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext2 = { .tempSlopeLow = 72, .tempSlopeHigh = 105, .xatten1DBLow = {0, 0, 0}, .xatten1MarginLow = {0, 0, 0}, .xatten1DBHigh = {0, 0, 0}, .xatten1MarginHigh = {0, 0, 0} }, .calFreqPier5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5785, 0) }, .calPierData5G = { { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, }, .calTarget_freqbin_5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5785, 0) }, .calTarget_freqbin_5GHT20 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT40 = { FREQ2FBIN(5190, 0), FREQ2FBIN(5230, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5410, 0), FREQ2FBIN(5510, 0), FREQ2FBIN(5670, 0), FREQ2FBIN(5755, 0), FREQ2FBIN(5825, 0) }, .calTargetPower5G = { /* 6-24,36,48,54 */ { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, { {42, 40, 40, 34} }, }, .calTargetPower5GHT20 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} }, { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} }, { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} }, }, .calTargetPower5GHT40 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} }, { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} }, { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} }, }, .ctlIndex_5G = { 0x10, 0x16, 0x18, 0x40, 0x46, 0x48, 0x30, 0x36, 0x38 }, .ctl_freqbin_5G = { { /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) }, { /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[3].ctlEdges[6].bChannel */ 0xFF, /* Data[3].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), /* Data[4].ctlEdges[4].bChannel */ 0xFF, /* Data[4].ctlEdges[5].bChannel */ 0xFF, /* Data[4].ctlEdges[6].bChannel */ 0xFF, /* Data[4].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[5].ctlEdges[6].bChannel */ 0xFF, /* Data[5].ctlEdges[7].bChannel */ 0xFF }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) } }, .ctlPowerData_5G = { { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), } }, } }; static const struct ar9300_eeprom ar9300_h112 = { .eepromVersion = 2, .templateVersion = 3, .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, .custData = {"h112-241-f0000"}, .baseEepHeader = { .regDmn = { LE16(0), LE16(0x1f) }, .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ .opCapFlags = { .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, .eepMisc = 0, }, .rfSilent = 0, .blueToothOptions = 0, .deviceCap = 0, .deviceType = 5, /* takes lower byte in eeprom location */ .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, .params_for_tuning_caps = {0, 0}, .featureEnable = 0x0d, /* * bit0 - enable tx temp comp - disabled * bit1 - enable tx volt comp - disabled * bit2 - enable fastClock - enabled * bit3 - enable doubling - enabled * bit4 - enable internal regulator - disabled * bit5 - enable pa predistortion - disabled */ .miscConfiguration = 0, /* bit0 - turn down drivestrength */ .eepromWriteEnableGpio = 6, .wlanDisableGpio = 0, .wlanLedGpio = 8, .rxBandSelectGpio = 0xff, .txrxgain = 0x10, .swreg = 0, }, .modalHeader2G = { /* ar9300_modal_eep_header 2g */ /* 4 idle,t1,t2,b(4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ .antCtrlCommon2 = LE32(0x44444), /* * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, * rx1, rx12, b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) }, /* * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db * for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for ar9280 (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 25, .voltSlope = 0, /* * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur * channels in usual fbin coding format */ .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, /* * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check * if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {1, 1, 1},/* 3 chain */ .db_stage2 = {1, 1, 1}, /* 3 chain */ .db_stage3 = {0, 0, 0}, .db_stage4 = {0, 0, 0}, .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2c, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x80c080), .papdRateMaskHt40 = LE32(0x80c080), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext1 = { .ant_div_control = 0, .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }, .calFreqPier2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1), }, /* ar9300_cal_data_per_freq_op_loop 2g */ .calPierData2G = { { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, }, .calTarget_freqbin_Cck = { FREQ2FBIN(2412, 1), FREQ2FBIN(2484, 1), }, .calTarget_freqbin_2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT20 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT40 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTargetPowerCck = { /* 1L-5L,5S,11L,11S */ { {34, 34, 34, 34} }, { {34, 34, 34, 34} }, }, .calTargetPower2G = { /* 6-24,36,48,54 */ { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, }, .calTargetPower2GHT20 = { { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} }, }, .calTargetPower2GHT40 = { { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} }, }, .ctlIndex_2G = { 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, }, .ctl_freqbin_2G = { { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2457, 1), FREQ2FBIN(2462, 1) }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2422, 1), FREQ2FBIN(2427, 1), FREQ2FBIN(2447, 1), FREQ2FBIN(2452, 1) }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0, }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), FREQ2FBIN(2472, 1), 0, }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), }, { /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), } }, .ctlPowerData_2G = { { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, }, .modalHeader5G = { /* 4 idle,t1,t2,b (4 bits per setting) */ .antCtrlCommon = LE32(0x220), /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ .antCtrlCommon2 = LE32(0x44444), /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150), }, /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0, 0, 0}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for merlin (0xa20c/b20c 16:12 */ .xatten1Margin = {0, 0, 0}, .tempSlope = 45, .voltSlope = 0, /* spurChans spur channels in usual fbin coding format */ .spurChans = {0, 0, 0, 0, 0}, /* noiseFloorThreshCh Check if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {3, 3, 3}, /* 3 chain */ .db_stage2 = {3, 3, 3}, /* 3 chain */ .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */ .db_stage4 = {3, 3, 3}, /* don't exist for 2G */ .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2d, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0cf0e0e0), .papdRateMaskHt40 = LE32(0x6cf0e0e0), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext2 = { .tempSlopeLow = 40, .tempSlopeHigh = 50, .xatten1DBLow = {0, 0, 0}, .xatten1MarginLow = {0, 0, 0}, .xatten1DBHigh = {0, 0, 0}, .xatten1MarginHigh = {0, 0, 0} }, .calFreqPier5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5825, 0) }, .calPierData5G = { { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, }, .calTarget_freqbin_5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT20 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT40 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5825, 0) }, .calTargetPower5G = { /* 6-24,36,48,54 */ { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, }, .calTargetPower5GHT20 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} }, { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} }, { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} }, { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} }, { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} }, { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} }, { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} }, { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} }, }, .calTargetPower5GHT40 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} }, { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} }, { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} }, { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} }, { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} }, { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} }, { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} }, { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} }, }, .ctlIndex_5G = { 0x10, 0x16, 0x18, 0x40, 0x46, 0x48, 0x30, 0x36, 0x38 }, .ctl_freqbin_5G = { { /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) }, { /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[3].ctlEdges[6].bChannel */ 0xFF, /* Data[3].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), /* Data[4].ctlEdges[4].bChannel */ 0xFF, /* Data[4].ctlEdges[5].bChannel */ 0xFF, /* Data[4].ctlEdges[6].bChannel */ 0xFF, /* Data[4].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[5].ctlEdges[6].bChannel */ 0xFF, /* Data[5].ctlEdges[7].bChannel */ 0xFF }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) } }, .ctlPowerData_5G = { { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), } }, } }; static const struct ar9300_eeprom ar9300_x112 = { .eepromVersion = 2, .templateVersion = 5, .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, .custData = {"x112-041-f0000"}, .baseEepHeader = { .regDmn = { LE16(0), LE16(0x1f) }, .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */ .opCapFlags = { .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, .eepMisc = 0, }, .rfSilent = 0, .blueToothOptions = 0, .deviceCap = 0, .deviceType = 5, /* takes lower byte in eeprom location */ .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, .params_for_tuning_caps = {0, 0}, .featureEnable = 0x0d, /* * bit0 - enable tx temp comp - disabled * bit1 - enable tx volt comp - disabled * bit2 - enable fastclock - enabled * bit3 - enable doubling - enabled * bit4 - enable internal regulator - disabled * bit5 - enable pa predistortion - disabled */ .miscConfiguration = 0, /* bit0 - turn down drivestrength */ .eepromWriteEnableGpio = 6, .wlanDisableGpio = 0, .wlanLedGpio = 8, .rxBandSelectGpio = 0xff, .txrxgain = 0x0, .swreg = 0, }, .modalHeader2G = { /* ar9300_modal_eep_header 2g */ /* 4 idle,t1,t2,b(4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ .antCtrlCommon2 = LE32(0x22222), /* * antCtrlChain[ar9300_max_chains]; 6 idle, t, r, * rx1, rx12, b (2 bits each) */ .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) }, /* * xatten1DB[AR9300_max_chains]; 3 xatten1_db * for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0x1b, 0x1b, 0x1b}, /* * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin * for ar9280 (0xa20c/b20c 16:12 */ .xatten1Margin = {0x15, 0x15, 0x15}, .tempSlope = 50, .voltSlope = 0, /* * spurChans[OSPrey_eeprom_modal_sPURS]; spur * channels in usual fbin coding format */ .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, /* * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check * if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {1, 1, 1},/* 3 chain */ .db_stage2 = {1, 1, 1}, /* 3 chain */ .db_stage3 = {0, 0, 0}, .db_stage4 = {0, 0, 0}, .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2c, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0c80c080), .papdRateMaskHt40 = LE32(0x0080c080), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext1 = { .ant_div_control = 0, .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }, .calFreqPier2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1), }, /* ar9300_cal_data_per_freq_op_loop 2g */ .calPierData2G = { { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, }, .calTarget_freqbin_Cck = { FREQ2FBIN(2412, 1), FREQ2FBIN(2472, 1), }, .calTarget_freqbin_2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT20 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT40 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTargetPowerCck = { /* 1L-5L,5S,11L,11s */ { {38, 38, 38, 38} }, { {38, 38, 38, 38} }, }, .calTargetPower2G = { /* 6-24,36,48,54 */ { {38, 38, 36, 34} }, { {38, 38, 36, 34} }, { {38, 38, 34, 32} }, }, .calTargetPower2GHT20 = { { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} }, { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} }, { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} }, }, .calTargetPower2GHT40 = { { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} }, { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} }, { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} }, }, .ctlIndex_2G = { 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, }, .ctl_freqbin_2G = { { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2457, 1), FREQ2FBIN(2462, 1) }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2422, 1), FREQ2FBIN(2427, 1), FREQ2FBIN(2447, 1), FREQ2FBIN(2452, 1) }, { /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1), }, { /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 0, }, { /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), FREQ2FBIN(2472, 1), 0, }, { /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1), /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1), /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1), /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1), }, { /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), }, { /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1), /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1), /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1), /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1), /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1), /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1), } }, .ctlPowerData_2G = { { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, { { CTL(60, 1), CTL(60, 0), CTL(0, 0), CTL(0, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, }, .modalHeader5G = { /* 4 idle,t1,t2,b (4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ .antCtrlCommon2 = LE32(0x22222), /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ .antCtrlChain = { LE16(0x0), LE16(0x0), LE16(0x0), }, /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0x13, 0x19, 0x17}, /* * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin * for merlin (0xa20c/b20c 16:12 */ .xatten1Margin = {0x19, 0x19, 0x19}, .tempSlope = 70, .voltSlope = 15, /* spurChans spur channels in usual fbin coding format */ .spurChans = {0, 0, 0, 0, 0}, /* noiseFloorThreshch check if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {3, 3, 3}, /* 3 chain */ .db_stage2 = {3, 3, 3}, /* 3 chain */ .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */ .db_stage4 = {3, 3, 3}, /* don't exist for 2G */ .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2d, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0cf0e0e0), .papdRateMaskHt40 = LE32(0x6cf0e0e0), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext2 = { .tempSlopeLow = 72, .tempSlopeHigh = 105, .xatten1DBLow = {0x10, 0x14, 0x10}, .xatten1MarginLow = {0x19, 0x19 , 0x19}, .xatten1DBHigh = {0x1d, 0x20, 0x24}, .xatten1MarginHigh = {0x10, 0x10, 0x10} }, .calFreqPier5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5785, 0) }, .calPierData5G = { { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, }, .calTarget_freqbin_5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT20 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT40 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5725, 0), FREQ2FBIN(5825, 0) }, .calTargetPower5G = { /* 6-24,36,48,54 */ { {32, 32, 28, 26} }, { {32, 32, 28, 26} }, { {32, 32, 28, 26} }, { {32, 32, 26, 24} }, { {32, 32, 26, 24} }, { {32, 32, 24, 22} }, { {30, 30, 24, 22} }, { {30, 30, 24, 22} }, }, .calTargetPower5GHT20 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} }, { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} }, { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} }, { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} }, { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} }, }, .calTargetPower5GHT40 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} }, { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} }, { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} }, { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} }, }, .ctlIndex_5G = { 0x10, 0x16, 0x18, 0x40, 0x46, 0x48, 0x30, 0x36, 0x38 }, .ctl_freqbin_5G = { { /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0), /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0), /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) }, { /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0), /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0), /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) }, { /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0), /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0), /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0), /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0), /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0), /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0), /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0) }, { /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0), /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0), /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0), /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0), /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), /* Data[3].ctledges[6].bchannel */ 0xFF, /* Data[3].ctledges[7].bchannel */ 0xFF, }, { /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0), /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0), /* Data[4].ctledges[4].bchannel */ 0xFF, /* Data[4].ctledges[5].bchannel */ 0xFF, /* Data[4].ctledges[6].bchannel */ 0xFF, /* Data[4].ctledges[7].bchannel */ 0xFF, }, { /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0), /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0), /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0), /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0), /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0), /* Data[5].ctledges[6].bchannel */ 0xFF, /* Data[5].ctledges[7].bchannel */ 0xFF }, { /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0), /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0), /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0), /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0), /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0), /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0), /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0) }, { /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0), /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0), /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0), /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0), /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0), /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0), /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0), /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0) }, { /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0), /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0), /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0), /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0), /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0), /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0), /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0), /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0) } }, .ctlPowerData_5G = { { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), } }, } }; static const struct ar9300_eeprom ar9300_h116 = { .eepromVersion = 2, .templateVersion = 4, .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0}, .custData = {"h116-041-f0000"}, .baseEepHeader = { .regDmn = { LE16(0), LE16(0x1f) }, .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */ .opCapFlags = { .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A, .eepMisc = 0, }, .rfSilent = 0, .blueToothOptions = 0, .deviceCap = 0, .deviceType = 5, /* takes lower byte in eeprom location */ .pwrTableOffset = AR9300_PWR_TABLE_OFFSET, .params_for_tuning_caps = {0, 0}, .featureEnable = 0x0d, /* * bit0 - enable tx temp comp - disabled * bit1 - enable tx volt comp - disabled * bit2 - enable fastClock - enabled * bit3 - enable doubling - enabled * bit4 - enable internal regulator - disabled * bit5 - enable pa predistortion - disabled */ .miscConfiguration = 0, /* bit0 - turn down drivestrength */ .eepromWriteEnableGpio = 6, .wlanDisableGpio = 0, .wlanLedGpio = 8, .rxBandSelectGpio = 0xff, .txrxgain = 0x10, .swreg = 0, }, .modalHeader2G = { /* ar9300_modal_eep_header 2g */ /* 4 idle,t1,t2,b(4 bits per setting) */ .antCtrlCommon = LE32(0x110), /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */ .antCtrlCommon2 = LE32(0x44444), /* * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r, * rx1, rx12, b (2 bits each) */ .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) }, /* * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db * for ar9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0x1f, 0x1f, 0x1f}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for ar9280 (0xa20c/b20c 16:12 */ .xatten1Margin = {0x12, 0x12, 0x12}, .tempSlope = 25, .voltSlope = 0, /* * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur * channels in usual fbin coding format */ .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0}, /* * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check * if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {1, 1, 1},/* 3 chain */ .db_stage2 = {1, 1, 1}, /* 3 chain */ .db_stage3 = {0, 0, 0}, .db_stage4 = {0, 0, 0}, .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2c, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0c80C080), .papdRateMaskHt40 = LE32(0x0080C080), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext1 = { .ant_div_control = 0, .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }, .calFreqPier2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1), }, /* ar9300_cal_data_per_freq_op_loop 2g */ .calPierData2G = { { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} }, }, .calTarget_freqbin_Cck = { FREQ2FBIN(2412, 1), FREQ2FBIN(2472, 1), }, .calTarget_freqbin_2G = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT20 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTarget_freqbin_2GHT40 = { FREQ2FBIN(2412, 1), FREQ2FBIN(2437, 1), FREQ2FBIN(2472, 1) }, .calTargetPowerCck = { /* 1L-5L,5S,11L,11S */ { {34, 34, 34, 34} }, { {34, 34, 34, 34} }, }, .calTargetPower2G = { /* 6-24,36,48,54 */ { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, { {34, 34, 32, 32} }, }, .calTargetPower2GHT20 = { { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} }, }, .calTargetPower2GHT40 = { { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} }, }, .ctlIndex_2G = { 0x11, 0x12, 0x15, 0x17, 0x41, 0x42, 0x45, 0x47, 0x31, 0x32, 0x35, 0x37, }, .ctl_freqbin_2G = { { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2457, 1), FREQ2FBIN(2462, 1) }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2412, 1), FREQ2FBIN(2417, 1), FREQ2FBIN(2462, 1), 0xFF, }, { FREQ2FBIN(2422, 1), FREQ2FBIN(2427, 1), FREQ2FBIN(2447, 1), FREQ2FBIN(2452, 1) }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1), }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0, }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), FREQ2FBIN(2472, 1), 0, }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), }, { /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1), /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1), /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1), 0 }, { /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1), /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1), /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1), /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1), } }, .ctlPowerData_2G = { { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } }, }, .modalHeader5G = { /* 4 idle,t1,t2,b (4 bits per setting) */ .antCtrlCommon = LE32(0x220), /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */ .antCtrlCommon2 = LE32(0x44444), /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */ .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150), }, /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */ .xatten1DB = {0x19, 0x19, 0x19}, /* * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin * for merlin (0xa20c/b20c 16:12 */ .xatten1Margin = {0x14, 0x14, 0x14}, .tempSlope = 70, .voltSlope = 0, /* spurChans spur channels in usual fbin coding format */ .spurChans = {0, 0, 0, 0, 0}, /* noiseFloorThreshCh Check if the register is per chain */ .noiseFloorThreshCh = {-1, 0, 0}, .ob = {3, 3, 3}, /* 3 chain */ .db_stage2 = {3, 3, 3}, /* 3 chain */ .db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */ .db_stage4 = {3, 3, 3}, /* don't exist for 2G */ .xpaBiasLvl = 0, .txFrameToDataStart = 0x0e, .txFrameToPaOn = 0x0e, .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */ .antennaGain = 0, .switchSettling = 0x2d, .adcDesiredSize = -30, .txEndToXpaOff = 0, .txEndToRxOn = 0x2, .txFrameToXpaOn = 0xe, .thresh62 = 28, .papdRateMaskHt20 = LE32(0x0cf0e0e0), .papdRateMaskHt40 = LE32(0x6cf0e0e0), .futureModal = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, }, .base_ext2 = { .tempSlopeLow = 35, .tempSlopeHigh = 50, .xatten1DBLow = {0, 0, 0}, .xatten1MarginLow = {0, 0, 0}, .xatten1DBHigh = {0, 0, 0}, .xatten1MarginHigh = {0, 0, 0} }, .calFreqPier5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5220, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5785, 0) }, .calPierData5G = { { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, { {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }, }, .calTarget_freqbin_5G = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5600, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT20 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5825, 0) }, .calTarget_freqbin_5GHT40 = { FREQ2FBIN(5180, 0), FREQ2FBIN(5240, 0), FREQ2FBIN(5320, 0), FREQ2FBIN(5400, 0), FREQ2FBIN(5500, 0), FREQ2FBIN(5700, 0), FREQ2FBIN(5745, 0), FREQ2FBIN(5825, 0) }, .calTargetPower5G = { /* 6-24,36,48,54 */ { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, { {30, 30, 28, 24} }, }, .calTargetPower5GHT20 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} }, { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} }, { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} }, { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} }, { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} }, { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} }, { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} }, { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} }, }, .calTargetPower5GHT40 = { /* * 0_8_16,1-3_9-11_17-19, * 4,5,6,7,12,13,14,15,20,21,22,23 */ { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} }, { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} }, { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} }, { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} }, { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} }, { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} }, { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} }, { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} }, }, .ctlIndex_5G = { 0x10, 0x16, 0x18, 0x40, 0x46, 0x48, 0x30, 0x36, 0x38 }, .ctl_freqbin_5G = { { /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0), /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0), /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0), /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0), /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0), /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0), /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0), /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0) }, { /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0), /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0), /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[3].ctlEdges[6].bChannel */ 0xFF, /* Data[3].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0), /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0), /* Data[4].ctlEdges[4].bChannel */ 0xFF, /* Data[4].ctlEdges[5].bChannel */ 0xFF, /* Data[4].ctlEdges[6].bChannel */ 0xFF, /* Data[4].ctlEdges[7].bChannel */ 0xFF, }, { /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0), /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0), /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0), /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[5].ctlEdges[6].bChannel */ 0xFF, /* Data[5].ctlEdges[7].bChannel */ 0xFF }, { /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0), /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0), /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0), /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0), /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0), /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0), /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0) }, { /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0), /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0), /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0), /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0), /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0), /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0), /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0), /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0) }, { /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0), /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0), /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0), /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0), /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0), /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0), /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0), /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0) } }, .ctlPowerData_5G = { { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), } }, { { CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), } }, { { CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1), } }, } }; static const struct ar9300_eeprom *ar9300_eep_templates[] = { &ar9300_default, &ar9300_x112, &ar9300_h116, &ar9300_h112, &ar9300_x113, }; static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id) { #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0])) int it; for (it = 0; it < N_LOOP; it++) if (ar9300_eep_templates[it]->templateVersion == id) return ar9300_eep_templates[it]; return NULL; #undef N_LOOP } static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz) { if (fbin == AR5416_BCHAN_UNUSED) return fbin; return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); } static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah) { return 0; } static int interpolate(int x, int xa, int xb, int ya, int yb) { int bf, factor, plus; bf = 2 * (yb - ya) * (x - xa) / (xb - xa); factor = bf / 2; plus = bf % 2; return ya + factor + plus; } static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah, enum eeprom_param param) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader; switch (param) { case EEP_MAC_LSW: return eep->macAddr[0] << 8 | eep->macAddr[1]; case EEP_MAC_MID: return eep->macAddr[2] << 8 | eep->macAddr[3]; case EEP_MAC_MSW: return eep->macAddr[4] << 8 | eep->macAddr[5]; case EEP_REG_0: return le16_to_cpu(pBase->regDmn[0]); case EEP_REG_1: return le16_to_cpu(pBase->regDmn[1]); case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags.opFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_TX_MASK: return (pBase->txrxMask >> 4) & 0xf; case EEP_RX_MASK: return pBase->txrxMask & 0xf; case EEP_DRIVE_STRENGTH: #define AR9300_EEP_BASE_DRIV_STRENGTH 0x1 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH; case EEP_INTERNAL_REGULATOR: /* Bit 4 is internal regulator flag */ return (pBase->featureEnable & 0x10) >> 4; case EEP_SWREG: return le32_to_cpu(pBase->swreg); case EEP_PAPRD: return !!(pBase->featureEnable & BIT(5)); case EEP_CHAIN_MASK_REDUCE: return (pBase->miscConfiguration >> 0x3) & 0x1; case EEP_ANT_DIV_CTL1: return le32_to_cpu(eep->base_ext1.ant_div_control); default: return 0; } } static bool ar9300_eeprom_read_byte(struct ath_common *common, int address, u8 *buffer) { u16 val; if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val))) return false; *buffer = (val >> (8 * (address % 2))) & 0xff; return true; } static bool ar9300_eeprom_read_word(struct ath_common *common, int address, u8 *buffer) { u16 val; if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val))) return false; buffer[0] = val >> 8; buffer[1] = val & 0xff; return true; } static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer, int count) { struct ath_common *common = ath9k_hw_common(ah); int i; if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) { ath_dbg(common, ATH_DBG_EEPROM, "eeprom address not in range\n"); return false; } /* * Since we're reading the bytes in reverse order from a little-endian * word stream, an even address means we only use the lower half of * the 16-bit word at that address */ if (address % 2 == 0) { if (!ar9300_eeprom_read_byte(common, address--, buffer++)) goto error; count--; } for (i = 0; i < count / 2; i++) { if (!ar9300_eeprom_read_word(common, address, buffer)) goto error; address -= 2; buffer += 2; } if (count % 2) if (!ar9300_eeprom_read_byte(common, address, buffer)) goto error; return true; error: ath_dbg(common, ATH_DBG_EEPROM, "unable to read eeprom region at offset %d\n", address); return false; } static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data) { REG_READ(ah, AR9300_OTP_BASE + (4 * addr)); if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE, AR9300_OTP_STATUS_VALID, 1000)) return false; *data = REG_READ(ah, AR9300_OTP_READ_DATA); return true; } static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer, int count) { u32 data; int i; for (i = 0; i < count; i++) { int offset = 8 * ((address - i) % 4); if (!ar9300_otp_read_word(ah, (address - i) / 4, &data)) return false; buffer[i] = (data >> offset) & 0xff; } return true; } static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference, int *length, int *major, int *minor) { unsigned long value[4]; value[0] = best[0]; value[1] = best[1]; value[2] = best[2]; value[3] = best[3]; *code = ((value[0] >> 5) & 0x0007); *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020); *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f); *major = (value[2] & 0x000f); *minor = (value[3] & 0x00ff); } static u16 ar9300_comp_cksum(u8 *data, int dsize) { int it, checksum = 0; for (it = 0; it < dsize; it++) { checksum += data[it]; checksum &= 0xffff; } return checksum; } static bool ar9300_uncompress_block(struct ath_hw *ah, u8 *mptr, int mdataSize, u8 *block, int size) { int it; int spot; int offset; int length; struct ath_common *common = ath9k_hw_common(ah); spot = 0; for (it = 0; it < size; it += (length+2)) { offset = block[it]; offset &= 0xff; spot += offset; length = block[it+1]; length &= 0xff; if (length > 0 && spot >= 0 && spot+length <= mdataSize) { ath_dbg(common, ATH_DBG_EEPROM, "Restore at %d: spot=%d offset=%d length=%d\n", it, spot, offset, length); memcpy(&mptr[spot], &block[it+2], length); spot += length; } else if (length > 0) { ath_dbg(common, ATH_DBG_EEPROM, "Bad restore at %d: spot=%d offset=%d length=%d\n", it, spot, offset, length); return false; } } return true; } static int ar9300_compress_decision(struct ath_hw *ah, int it, int code, int reference, u8 *mptr, u8 *word, int length, int mdata_size) { struct ath_common *common = ath9k_hw_common(ah); const struct ar9300_eeprom *eep = NULL; switch (code) { case _CompressNone: if (length != mdata_size) { ath_dbg(common, ATH_DBG_EEPROM, "EEPROM structure size mismatch memory=%d eeprom=%d\n", mdata_size, length); return -1; } memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length); ath_dbg(common, ATH_DBG_EEPROM, "restored eeprom %d: uncompressed, length %d\n", it, length); break; case _CompressBlock: if (reference == 0) { } else { eep = ar9003_eeprom_struct_find_by_id(reference); if (eep == NULL) { ath_dbg(common, ATH_DBG_EEPROM, "can't find reference eeprom struct %d\n", reference); return -1; } memcpy(mptr, eep, mdata_size); } ath_dbg(common, ATH_DBG_EEPROM, "restore eeprom %d: block, reference %d, length %d\n", it, reference, length); ar9300_uncompress_block(ah, mptr, mdata_size, (u8 *) (word + COMP_HDR_LEN), length); break; default: ath_dbg(common, ATH_DBG_EEPROM, "unknown compression code %d\n", code); return -1; } return 0; } typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer, int count); static bool ar9300_check_header(void *data) { u32 *word = data; return !(*word == 0 || *word == ~0); } static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read, int base_addr) { u8 header[4]; if (!read(ah, base_addr, header, 4)) return false; return ar9300_check_header(header); } static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr, int mdata_size) { struct ath_common *common = ath9k_hw_common(ah); u16 *data = (u16 *) mptr; int i; for (i = 0; i < mdata_size / 2; i++, data++) ath9k_hw_nvram_read(common, i, data); return 0; } /* * Read the configuration data from the eeprom. * The data can be put in any specified memory buffer. * * Returns -1 on error. * Returns address of next memory location on success. */ static int ar9300_eeprom_restore_internal(struct ath_hw *ah, u8 *mptr, int mdata_size) { #define MDEFAULT 15 #define MSTATE 100 int cptr; u8 *word; int code; int reference, length, major, minor; int osize; int it; u16 checksum, mchecksum; struct ath_common *common = ath9k_hw_common(ah); eeprom_read_op read; if (ath9k_hw_use_flash(ah)) return ar9300_eeprom_restore_flash(ah, mptr, mdata_size); word = kzalloc(2048, GFP_KERNEL); if (!word) return -1; memcpy(mptr, &ar9300_default, mdata_size); read = ar9300_read_eeprom; if (AR_SREV_9485(ah)) cptr = AR9300_BASE_ADDR_4K; else if (AR_SREV_9330(ah)) cptr = AR9300_BASE_ADDR_512; else cptr = AR9300_BASE_ADDR; ath_dbg(common, ATH_DBG_EEPROM, "Trying EEPROM access at Address 0x%04x\n", cptr); if (ar9300_check_eeprom_header(ah, read, cptr)) goto found; cptr = AR9300_BASE_ADDR_512; ath_dbg(common, ATH_DBG_EEPROM, "Trying EEPROM access at Address 0x%04x\n", cptr); if (ar9300_check_eeprom_header(ah, read, cptr)) goto found; read = ar9300_read_otp; cptr = AR9300_BASE_ADDR; ath_dbg(common, ATH_DBG_EEPROM, "Trying OTP access at Address 0x%04x\n", cptr); if (ar9300_check_eeprom_header(ah, read, cptr)) goto found; cptr = AR9300_BASE_ADDR_512; ath_dbg(common, ATH_DBG_EEPROM, "Trying OTP access at Address 0x%04x\n", cptr); if (ar9300_check_eeprom_header(ah, read, cptr)) goto found; goto fail; found: ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n"); for (it = 0; it < MSTATE; it++) { if (!read(ah, cptr, word, COMP_HDR_LEN)) goto fail; if (!ar9300_check_header(word)) break; ar9300_comp_hdr_unpack(word, &code, &reference, &length, &major, &minor); ath_dbg(common, ATH_DBG_EEPROM, "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n", cptr, code, reference, length, major, minor); if ((!AR_SREV_9485(ah) && length >= 1024) || (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) { ath_dbg(common, ATH_DBG_EEPROM, "Skipping bad header\n"); cptr -= COMP_HDR_LEN; continue; } osize = length; read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN); checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length); mchecksum = word[COMP_HDR_LEN + osize] | (word[COMP_HDR_LEN + osize + 1] << 8); ath_dbg(common, ATH_DBG_EEPROM, "checksum %x %x\n", checksum, mchecksum); if (checksum == mchecksum) { ar9300_compress_decision(ah, it, code, reference, mptr, word, length, mdata_size); } else { ath_dbg(common, ATH_DBG_EEPROM, "skipping block with bad checksum\n"); } cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN); } kfree(word); return cptr; fail: kfree(word); return -1; } /* * Restore the configuration structure by reading the eeprom. * This function destroys any existing in-memory structure * content. */ static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah) { u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep; if (ar9300_eeprom_restore_internal(ah, mptr, sizeof(struct ar9300_eeprom)) < 0) return false; return true; } /* XXX: review hardware docs */ static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah) { return ah->eeprom.ar9300_eep.eepromVersion; } /* XXX: could be read from the eepromVersion, not sure yet */ static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah) { return 0; } static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (is2ghz) return eep->modalHeader2G.xpaBiasLvl; else return eep->modalHeader5G.xpaBiasLvl; } static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz) { int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz); if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah)) REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias); else { REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias); REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPABIASLVL_MSB, bias >> 2); REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_XPASHORT2GND, 1); } } static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; __le32 val; if (is2ghz) val = eep->modalHeader2G.antCtrlCommon; else val = eep->modalHeader5G.antCtrlCommon; return le32_to_cpu(val); } static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; __le32 val; if (is2ghz) val = eep->modalHeader2G.antCtrlCommon2; else val = eep->modalHeader5G.antCtrlCommon2; return le32_to_cpu(val); } static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain, bool is2ghz) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; __le16 val = 0; if (chain >= 0 && chain < AR9300_MAX_CHAINS) { if (is2ghz) val = eep->modalHeader2G.antCtrlChain[chain]; else val = eep->modalHeader5G.antCtrlChain[chain]; } return le16_to_cpu(val); } static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz) { int chain; u32 regval; u32 ant_div_ctl1; static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = { AR_PHY_SWITCH_CHAIN_0, AR_PHY_SWITCH_CHAIN_1, AR_PHY_SWITCH_CHAIN_2, }; u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz); REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value); value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz); REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value); for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { if ((ah->rxchainmask & BIT(chain)) || (ah->txchainmask & BIT(chain))) { value = ar9003_hw_ant_ctrl_chain_get(ah, chain, is2ghz); REG_RMW_FIELD(ah, switch_chain_reg[chain], AR_SWITCH_TABLE_ALL, value); } } if (AR_SREV_9485(ah)) { value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1); /* * main_lnaconf, alt_lnaconf, main_tb, alt_tb * are the fields present */ regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= (~AR_ANT_DIV_CTRL_ALL); regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S; /* enable_lnadiv */ regval &= (~AR_PHY_9485_ANT_DIV_LNADIV); regval |= ((value >> 6) & 0x1) << AR_PHY_9485_ANT_DIV_LNADIV_S; REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); /*enable fast_div */ regval = REG_READ(ah, AR_PHY_CCK_DETECT); regval &= (~AR_FAST_DIV_ENABLE); regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S; REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); /* check whether antenna diversity is enabled */ if ((ant_div_ctl1 >> 0x6) == 0x3) { regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); /* * clear bits 25-30 main_lnaconf, alt_lnaconf, * main_tb, alt_tb */ regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF | AR_PHY_9485_ANT_DIV_ALT_LNACONF | AR_PHY_9485_ANT_DIV_ALT_GAINTB | AR_PHY_9485_ANT_DIV_MAIN_GAINTB)); /* by default use LNA1 for the main antenna */ regval |= (AR_PHY_9485_ANT_DIV_LNA1 << AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S); regval |= (AR_PHY_9485_ANT_DIV_LNA2 << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S); REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } } } static void ar9003_hw_drive_strength_apply(struct ath_hw *ah) { int drive_strength; unsigned long reg; drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH); if (!drive_strength) return; reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1); reg &= ~0x00ffffc0; reg |= 0x5 << 21; reg |= 0x5 << 18; reg |= 0x5 << 15; reg |= 0x5 << 12; reg |= 0x5 << 9; reg |= 0x5 << 6; REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg); reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2); reg &= ~0xffffffe0; reg |= 0x5 << 29; reg |= 0x5 << 26; reg |= 0x5 << 23; reg |= 0x5 << 20; reg |= 0x5 << 17; reg |= 0x5 << 14; reg |= 0x5 << 11; reg |= 0x5 << 8; reg |= 0x5 << 5; REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg); reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4); reg &= ~0xff800000; reg |= 0x5 << 29; reg |= 0x5 << 26; reg |= 0x5 << 23; REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg); } static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain, struct ath9k_channel *chan) { int f[3], t[3]; u16 value; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (chain >= 0 && chain < 3) { if (IS_CHAN_2GHZ(chan)) return eep->modalHeader2G.xatten1DB[chain]; else if (eep->base_ext2.xatten1DBLow[chain] != 0) { t[0] = eep->base_ext2.xatten1DBLow[chain]; f[0] = 5180; t[1] = eep->modalHeader5G.xatten1DB[chain]; f[1] = 5500; t[2] = eep->base_ext2.xatten1DBHigh[chain]; f[2] = 5785; value = ar9003_hw_power_interpolate((s32) chan->channel, f, t, 3); return value; } else return eep->modalHeader5G.xatten1DB[chain]; } return 0; } static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain, struct ath9k_channel *chan) { int f[3], t[3]; u16 value; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (chain >= 0 && chain < 3) { if (IS_CHAN_2GHZ(chan)) return eep->modalHeader2G.xatten1Margin[chain]; else if (eep->base_ext2.xatten1MarginLow[chain] != 0) { t[0] = eep->base_ext2.xatten1MarginLow[chain]; f[0] = 5180; t[1] = eep->modalHeader5G.xatten1Margin[chain]; f[1] = 5500; t[2] = eep->base_ext2.xatten1MarginHigh[chain]; f[2] = 5785; value = ar9003_hw_power_interpolate((s32) chan->channel, f, t, 3); return value; } else return eep->modalHeader5G.xatten1Margin[chain]; } return 0; } static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan) { int i; u16 value; unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_2, }; /* Test value. if 0 then attenuation is unused. Don't load anything. */ for (i = 0; i < 3; i++) { if (ah->txchainmask & BIT(i)) { value = ar9003_hw_atten_chain_get(ah, i, chan); REG_RMW_FIELD(ah, ext_atten_reg[i], AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); value = ar9003_hw_atten_chain_get_margin(ah, i, chan); REG_RMW_FIELD(ah, ext_atten_reg[i], AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); } } } static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set) { int timeout = 100; while (pmu_set != REG_READ(ah, pmu_reg)) { if (timeout-- == 0) return false; REG_WRITE(ah, pmu_reg, pmu_set); udelay(10); } return true; } static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah) { int internal_regulator = ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR); if (internal_regulator) { if (AR_SREV_9485(ah)) { int reg_pmu_set; reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM; REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) return; reg_pmu_set = (5 << 1) | (7 << 4) | (1 << 8) | (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) | (1 << 28); REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set); if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set)) return; reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000) | (4 << 26); REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) return; reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000) | (1 << 21); REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set); if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set)) return; } else { /* Internal regulator is ON. Write swreg register. */ int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG); REG_WRITE(ah, AR_RTC_REG_CONTROL1, REG_READ(ah, AR_RTC_REG_CONTROL1) & (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM)); REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg); /* Set REG_CONTROL1.SWREG_PROGRAM */ REG_WRITE(ah, AR_RTC_REG_CONTROL1, REG_READ(ah, AR_RTC_REG_CONTROL1) | AR_RTC_REG_CONTROL1_SWREG_PROGRAM); } } else { if (AR_SREV_9485(ah)) { REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0); while (REG_READ_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM)) udelay(10); REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1); while (!REG_READ_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD)) udelay(10); REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1); while (!REG_READ_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM)) udelay(10); } else REG_WRITE(ah, AR_RTC_SLEEP_CLK, (REG_READ(ah, AR_RTC_SLEEP_CLK) | AR_RTC_FORCE_SWREG_PRD)); } } static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0]; if (eep->baseEepHeader.featureEnable & 0x40) { tuning_caps_param &= 0x7f; REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC, tuning_caps_param); REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC, tuning_caps_param); } } static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah, struct ath9k_channel *chan) { ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan)); ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan)); ar9003_hw_drive_strength_apply(ah); ar9003_hw_atten_apply(ah, chan); if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah)) ar9003_hw_internal_regulator_apply(ah); if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah)) ar9003_hw_apply_tuning_caps(ah); } static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah, struct ath9k_channel *chan) { } /* * Returns the interpolated y value corresponding to the specified x value * from the np ordered pairs of data (px,py). * The pairs do not have to be in any order. * If the specified x value is less than any of the px, * the returned y value is equal to the py for the lowest px. * If the specified x value is greater than any of the px, * the returned y value is equal to the py for the highest px. */ static int ar9003_hw_power_interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np) { int ip = 0; int lx = 0, ly = 0, lhave = 0; int hx = 0, hy = 0, hhave = 0; int dx = 0; int y = 0; lhave = 0; hhave = 0; /* identify best lower and higher x calibration measurement */ for (ip = 0; ip < np; ip++) { dx = x - px[ip]; /* this measurement is higher than our desired x */ if (dx <= 0) { if (!hhave || dx > (x - hx)) { /* new best higher x measurement */ hx = px[ip]; hy = py[ip]; hhave = 1; } } /* this measurement is lower than our desired x */ if (dx >= 0) { if (!lhave || dx < (x - lx)) { /* new best lower x measurement */ lx = px[ip]; ly = py[ip]; lhave = 1; } } } /* the low x is good */ if (lhave) { /* so is the high x */ if (hhave) { /* they're the same, so just pick one */ if (hx == lx) y = ly; else /* interpolate */ y = interpolate(x, lx, hx, ly, hy); } else /* only low is good, use it */ y = ly; } else if (hhave) /* only high is good, use it */ y = hy; else /* nothing is good,this should never happen unless np=0, ???? */ y = -(1 << 30); return y; } static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah, u16 rateIndex, u16 freq, bool is2GHz) { u16 numPiers, i; s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS]; s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS]; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct cal_tgt_pow_legacy *pEepromTargetPwr; u8 *pFreqBin; if (is2GHz) { numPiers = AR9300_NUM_2G_20_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower2G; pFreqBin = eep->calTarget_freqbin_2G; } else { numPiers = AR9300_NUM_5G_20_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower5G; pFreqBin = eep->calTarget_freqbin_5G; } /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < numPiers; i++) { freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz); targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; } /* interpolate to get target power for given frequency */ return (u8) ar9003_hw_power_interpolate((s32) freq, freqArray, targetPowerArray, numPiers); } static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah, u16 rateIndex, u16 freq, bool is2GHz) { u16 numPiers, i; s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS]; s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS]; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct cal_tgt_pow_ht *pEepromTargetPwr; u8 *pFreqBin; if (is2GHz) { numPiers = AR9300_NUM_2G_20_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower2GHT20; pFreqBin = eep->calTarget_freqbin_2GHT20; } else { numPiers = AR9300_NUM_5G_20_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower5GHT20; pFreqBin = eep->calTarget_freqbin_5GHT20; } /* * create array of channels and targetpower * from targetpower piers stored on eeprom */ for (i = 0; i < numPiers; i++) { freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz); targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; } /* interpolate to get target power for given frequency */ return (u8) ar9003_hw_power_interpolate((s32) freq, freqArray, targetPowerArray, numPiers); } static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah, u16 rateIndex, u16 freq, bool is2GHz) { u16 numPiers, i; s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS]; s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS]; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct cal_tgt_pow_ht *pEepromTargetPwr; u8 *pFreqBin; if (is2GHz) { numPiers = AR9300_NUM_2G_40_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower2GHT40; pFreqBin = eep->calTarget_freqbin_2GHT40; } else { numPiers = AR9300_NUM_5G_40_TARGET_POWERS; pEepromTargetPwr = eep->calTargetPower5GHT40; pFreqBin = eep->calTarget_freqbin_5GHT40; } /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < numPiers; i++) { freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz); targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; } /* interpolate to get target power for given frequency */ return (u8) ar9003_hw_power_interpolate((s32) freq, freqArray, targetPowerArray, numPiers); } static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah, u16 rateIndex, u16 freq) { u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i; s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS]; s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS]; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck; u8 *pFreqBin = eep->calTarget_freqbin_Cck; /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < numPiers; i++) { freqArray[i] = FBIN2FREQ(pFreqBin[i], 1); targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex]; } /* interpolate to get target power for given frequency */ return (u8) ar9003_hw_power_interpolate((s32) freq, freqArray, targetPowerArray, numPiers); } /* Set tx power registers to array of values passed in */ static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray) { #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) /* make sure forced gain is not set */ REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0); /* Write the OFDM power per rate set */ /* 6 (LSB), 9, 12, 18 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0), POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0)); /* 24 (LSB), 36, 48, 54 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1), POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0)); /* Write the CCK power per rate set */ /* 1L (LSB), reserved, 2L, 2S (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2), POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) | /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */ POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)); /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3), POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0) ); /* Write the power for duplicated frames - HT40 */ /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */ REG_WRITE(ah, 0xa3e0, POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) | POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0) ); /* Write the HT20 power per rate set */ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4), POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) | POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) | POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) | POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5), POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) | POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) | POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) | POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0) ); /* 14 (LSB), 15, 20, 21 */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9), POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) | POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) | POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) | POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0) ); /* Mixed HT20 and HT40 rates */ /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10), POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) | POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) | POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) | POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0) ); /* * Write the HT40 power per rate set * correct PAR difference between HT40 and HT20/LEGACY * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6), POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) | POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) | POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) | POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7), POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) | POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) | POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) | POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0) ); /* 14 (LSB), 15, 20, 21 */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11), POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) | POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) | POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) | POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0) ); return 0; #undef POW_SM } static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq, u8 *targetPowerValT2) { /* XXX: hard code for now, need to get from eeprom struct */ u8 ht40PowerIncForPdadc = 0; bool is2GHz = false; unsigned int i = 0; struct ath_common *common = ath9k_hw_common(ah); if (freq < 4000) is2GHz = true; targetPowerValT2[ALL_TARGET_LEGACY_6_24] = ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq, is2GHz); targetPowerValT2[ALL_TARGET_LEGACY_36] = ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq, is2GHz); targetPowerValT2[ALL_TARGET_LEGACY_48] = ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq, is2GHz); targetPowerValT2[ALL_TARGET_LEGACY_54] = ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq, is2GHz); targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] = ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L, freq); targetPowerValT2[ALL_TARGET_LEGACY_5S] = ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq); targetPowerValT2[ALL_TARGET_LEGACY_11L] = ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq); targetPowerValT2[ALL_TARGET_LEGACY_11S] = ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq); targetPowerValT2[ALL_TARGET_HT20_0_8_16] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_4] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_5] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_6] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_7] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_12] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_13] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_14] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_15] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_20] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_21] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_22] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT20_23] = ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq, is2GHz); targetPowerValT2[ALL_TARGET_HT40_0_8_16] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_4] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_5] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_6] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_7] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_12] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_13] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_14] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_15] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_20] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_21] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_22] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq, is2GHz) + ht40PowerIncForPdadc; targetPowerValT2[ALL_TARGET_HT40_23] = ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq, is2GHz) + ht40PowerIncForPdadc; for (i = 0; i < ar9300RateSize; i++) { ath_dbg(common, ATH_DBG_EEPROM, "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]); } } static int ar9003_hw_cal_pier_get(struct ath_hw *ah, int mode, int ipier, int ichain, int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage) { u8 *pCalPier; struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct; int is2GHz; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct ath_common *common = ath9k_hw_common(ah); if (ichain >= AR9300_MAX_CHAINS) { ath_dbg(common, ATH_DBG_EEPROM, "Invalid chain index, must be less than %d\n", AR9300_MAX_CHAINS); return -1; } if (mode) { /* 5GHz */ if (ipier >= AR9300_NUM_5G_CAL_PIERS) { ath_dbg(common, ATH_DBG_EEPROM, "Invalid 5GHz cal pier index, must be less than %d\n", AR9300_NUM_5G_CAL_PIERS); return -1; } pCalPier = &(eep->calFreqPier5G[ipier]); pCalPierStruct = &(eep->calPierData5G[ichain][ipier]); is2GHz = 0; } else { if (ipier >= AR9300_NUM_2G_CAL_PIERS) { ath_dbg(common, ATH_DBG_EEPROM, "Invalid 2GHz cal pier index, must be less than %d\n", AR9300_NUM_2G_CAL_PIERS); return -1; } pCalPier = &(eep->calFreqPier2G[ipier]); pCalPierStruct = &(eep->calPierData2G[ichain][ipier]); is2GHz = 1; } *pfrequency = FBIN2FREQ(*pCalPier, is2GHz); *pcorrection = pCalPierStruct->refPower; *ptemperature = pCalPierStruct->tempMeas; *pvoltage = pCalPierStruct->voltMeas; return 0; } static int ar9003_hw_power_control_override(struct ath_hw *ah, int frequency, int *correction, int *voltage, int *temperature) { int tempSlope = 0; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; int f[3], t[3]; REG_RMW(ah, AR_PHY_TPC_11_B0, (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); if (ah->caps.tx_chainmask & BIT(1)) REG_RMW(ah, AR_PHY_TPC_11_B1, (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); if (ah->caps.tx_chainmask & BIT(2)) REG_RMW(ah, AR_PHY_TPC_11_B2, (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); /* enable open loop power control on chip */ REG_RMW(ah, AR_PHY_TPC_6_B0, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); if (ah->caps.tx_chainmask & BIT(1)) REG_RMW(ah, AR_PHY_TPC_6_B1, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); if (ah->caps.tx_chainmask & BIT(2)) REG_RMW(ah, AR_PHY_TPC_6_B2, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); /* * enable temperature compensation * Need to use register names */ if (frequency < 4000) tempSlope = eep->modalHeader2G.tempSlope; else if (eep->base_ext2.tempSlopeLow != 0) { t[0] = eep->base_ext2.tempSlopeLow; f[0] = 5180; t[1] = eep->modalHeader5G.tempSlope; f[1] = 5500; t[2] = eep->base_ext2.tempSlopeHigh; f[2] = 5785; tempSlope = ar9003_hw_power_interpolate((s32) frequency, f, t, 3); } else tempSlope = eep->modalHeader5G.tempSlope; REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope); REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]); return 0; } /* Apply the recorded correction values. */ static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency) { int ichain, ipier, npier; int mode; int lfrequency[AR9300_MAX_CHAINS], lcorrection[AR9300_MAX_CHAINS], ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS]; int hfrequency[AR9300_MAX_CHAINS], hcorrection[AR9300_MAX_CHAINS], htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS]; int fdiff; int correction[AR9300_MAX_CHAINS], voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS]; int pfrequency, pcorrection, ptemperature, pvoltage; struct ath_common *common = ath9k_hw_common(ah); mode = (frequency >= 4000); if (mode) npier = AR9300_NUM_5G_CAL_PIERS; else npier = AR9300_NUM_2G_CAL_PIERS; for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { lfrequency[ichain] = 0; hfrequency[ichain] = 100000; } /* identify best lower and higher frequency calibration measurement */ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { for (ipier = 0; ipier < npier; ipier++) { if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain, &pfrequency, &pcorrection, &ptemperature, &pvoltage)) { fdiff = frequency - pfrequency; /* * this measurement is higher than * our desired frequency */ if (fdiff <= 0) { if (hfrequency[ichain] <= 0 || hfrequency[ichain] >= 100000 || fdiff > (frequency - hfrequency[ichain])) { /* * new best higher * frequency measurement */ hfrequency[ichain] = pfrequency; hcorrection[ichain] = pcorrection; htemperature[ichain] = ptemperature; hvoltage[ichain] = pvoltage; } } if (fdiff >= 0) { if (lfrequency[ichain] <= 0 || fdiff < (frequency - lfrequency[ichain])) { /* * new best lower * frequency measurement */ lfrequency[ichain] = pfrequency; lcorrection[ichain] = pcorrection; ltemperature[ichain] = ptemperature; lvoltage[ichain] = pvoltage; } } } } } /* interpolate */ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { ath_dbg(common, ATH_DBG_EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n", ichain, frequency, lfrequency[ichain], lcorrection[ichain], hfrequency[ichain], hcorrection[ichain]); /* they're the same, so just pick one */ if (hfrequency[ichain] == lfrequency[ichain]) { correction[ichain] = lcorrection[ichain]; voltage[ichain] = lvoltage[ichain]; temperature[ichain] = ltemperature[ichain]; } /* the low frequency is good */ else if (frequency - lfrequency[ichain] < 1000) { /* so is the high frequency, interpolate */ if (hfrequency[ichain] - frequency < 1000) { correction[ichain] = interpolate(frequency, lfrequency[ichain], hfrequency[ichain], lcorrection[ichain], hcorrection[ichain]); temperature[ichain] = interpolate(frequency, lfrequency[ichain], hfrequency[ichain], ltemperature[ichain], htemperature[ichain]); voltage[ichain] = interpolate(frequency, lfrequency[ichain], hfrequency[ichain], lvoltage[ichain], hvoltage[ichain]); } /* only low is good, use it */ else { correction[ichain] = lcorrection[ichain]; temperature[ichain] = ltemperature[ichain]; voltage[ichain] = lvoltage[ichain]; } } /* only high is good, use it */ else if (hfrequency[ichain] - frequency < 1000) { correction[ichain] = hcorrection[ichain]; temperature[ichain] = htemperature[ichain]; voltage[ichain] = hvoltage[ichain]; } else { /* nothing is good, presume 0???? */ correction[ichain] = 0; temperature[ichain] = 0; voltage[ichain] = 0; } } ar9003_hw_power_control_override(ah, frequency, correction, voltage, temperature); ath_dbg(common, ATH_DBG_EEPROM, "for frequency=%d, calibration correction = %d %d %d\n", frequency, correction[0], correction[1], correction[2]); return 0; } static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep, int idx, int edge, bool is2GHz) { struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G; struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G; if (is2GHz) return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]); else return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]); } static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep, int idx, unsigned int edge, u16 freq, bool is2GHz) { struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G; struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G; u8 *ctl_freqbin = is2GHz ? &eep->ctl_freqbin_2G[idx][0] : &eep->ctl_freqbin_5G[idx][0]; if (is2GHz) { if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq && CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1])) return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]); } else { if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq && CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1])) return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]); } return MAX_RATE_POWER; } /* * Find the maximum conformance test limit for the given channel and CTL info */ static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep, u16 freq, int idx, bool is2GHz) { u16 twiceMaxEdgePower = MAX_RATE_POWER; u8 *ctl_freqbin = is2GHz ? &eep->ctl_freqbin_2G[idx][0] : &eep->ctl_freqbin_5G[idx][0]; u16 num_edges = is2GHz ? AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G; unsigned int edge; /* Get the edge power */ for (edge = 0; (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED); edge++) { /* * If there's an exact channel match or an inband flag set * on the lower channel use the given rdEdgePower */ if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) { twiceMaxEdgePower = ar9003_hw_get_direct_edge_power(eep, idx, edge, is2GHz); break; } else if ((edge > 0) && (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz))) { twiceMaxEdgePower = ar9003_hw_get_indirect_edge_power(eep, idx, edge, freq, is2GHz); /* * Leave loop - no more affecting edges possible in * this monotonic increasing list */ break; } } return twiceMaxEdgePower; } static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah, struct ath9k_channel *chan, u8 *pPwrArray, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u16 powerLimit) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath_common *common = ath9k_hw_common(ah); struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep; u16 twiceMaxEdgePower = MAX_RATE_POWER; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, MAX_RATE_POWER }; int i; int16_t twiceLargestAntenna; u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; static const u16 ctlModesFor11a[] = { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; static const u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes; const u16 *pCtlMode; u16 ctlMode, freq; struct chan_centers centers; u8 *ctlIndex; u8 ctlNum; u16 twiceMinEdgePower; bool is2ghz = IS_CHAN_2GHZ(chan); ath9k_hw_get_channel_centers(ah, chan, ¢ers); /* Compute TxPower reduction due to Antenna Gain */ if (is2ghz) twiceLargestAntenna = pEepData->modalHeader2G.antennaGain; else twiceLargestAntenna = pEepData->modalHeader5G.antennaGain; twiceLargestAntenna = (int16_t)min((twiceAntennaReduction) - twiceLargestAntenna, 0); /* * scaledPower is the minimum of the user input power level * and the regulatory allowed power level */ maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) { maxRegAllowedPower -= (tpScaleReductionTable[(regulatory->tp_scale)] * 2); } scaledPower = min(powerLimit, maxRegAllowedPower); /* * Reduce scaled Power by number of chains active to get * to per chain tx power level */ switch (ar5416_get_ntxchains(ah->txchainmask)) { case 1: break; case 2: if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN) scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; else scaledPower = 0; break; case 3: if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN) scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; else scaledPower = 0; break; } scaledPower = max((u16)0, scaledPower); /* * Get target powers from EEPROM - our baseline for TX Power */ if (is2ghz) { /* Setup for CTL modes */ /* CTL_11B, CTL_11G, CTL_2GHT20 */ numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; if (IS_CHAN_HT40(chan)) /* All 2G CTL's */ numCtlModes = ARRAY_SIZE(ctlModesFor11g); } else { /* Setup for CTL modes */ /* CTL_11A, CTL_5GHT20 */ numCtlModes = ARRAY_SIZE(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; pCtlMode = ctlModesFor11a; if (IS_CHAN_HT40(chan)) /* All 5G CTL's */ numCtlModes = ARRAY_SIZE(ctlModesFor11a); } /* * For MIMO, need to apply regulatory caps individually across * dynamically running modes: CCK, OFDM, HT20, HT40 * * The outer loop walks through each possible applicable runtime mode. * The inner loop walks through each ctlIndex entry in EEPROM. * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. */ for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; ath_dbg(common, ATH_DBG_REGULATORY, "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n", ctlMode, numCtlModes, isHt40CtlMode, (pCtlMode[ctlMode] & EXT_ADDITIVE)); /* walk through each CTL index stored in EEPROM */ if (is2ghz) { ctlIndex = pEepData->ctlIndex_2G; ctlNum = AR9300_NUM_CTLS_2G; } else { ctlIndex = pEepData->ctlIndex_5G; ctlNum = AR9300_NUM_CTLS_5G; } for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) { ath_dbg(common, ATH_DBG_REGULATORY, "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n", i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i], chan->channel); /* * compare test group from regulatory * channel list with test mode from pCtlMode * list */ if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { twiceMinEdgePower = ar9003_hw_get_max_edge_power(pEepData, freq, i, is2ghz); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) /* * Find the minimum of all CTL * edge powers that apply to * this channel */ twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); else { /* specific */ twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); ath_dbg(common, ATH_DBG_REGULATORY, "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n", ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, scaledPower, minCtlPower); /* Apply ctl mode to correct target power set */ switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) pPwrArray[i] = (u8)min((u16)pPwrArray[i], minCtlPower); break; case CTL_11A: case CTL_11G: for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) pPwrArray[i] = (u8)min((u16)pPwrArray[i], minCtlPower); break; case CTL_5GHT20: case CTL_2GHT20: for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_21; i++) pPwrArray[i] = (u8)min((u16)pPwrArray[i], minCtlPower); pPwrArray[ALL_TARGET_HT20_22] = (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22], minCtlPower); pPwrArray[ALL_TARGET_HT20_23] = (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) pPwrArray[i] = (u8)min((u16)pPwrArray[i], minCtlPower); break; default: break; } } /* end ctl mode checking */ } static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx) { u8 mod_idx = mcs_idx % 8; if (mod_idx <= 3) return mod_idx ? (base_pwridx + 1) : base_pwridx; else return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2; } static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit, bool test) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath_common *common = ath9k_hw_common(ah); struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; struct ar9300_modal_eep_header *modal_hdr; u8 targetPowerValT2[ar9300RateSize]; u8 target_power_val_t2_eep[ar9300RateSize]; unsigned int i = 0, paprd_scale_factor = 0; u8 pwr_idx, min_pwridx = 0; ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2); if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) { if (IS_CHAN_2GHZ(chan)) modal_hdr = &eep->modalHeader2G; else modal_hdr = &eep->modalHeader5G; ah->paprd_ratemask = le32_to_cpu(modal_hdr->papdRateMaskHt20) & AR9300_PAPRD_RATE_MASK; ah->paprd_ratemask_ht40 = le32_to_cpu(modal_hdr->papdRateMaskHt40) & AR9300_PAPRD_RATE_MASK; paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan); min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 : ALL_TARGET_HT20_0_8_16; if (!ah->paprd_table_write_done) { memcpy(target_power_val_t2_eep, targetPowerValT2, sizeof(targetPowerValT2)); for (i = 0; i < 24; i++) { pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx); if (ah->paprd_ratemask & (1 << i)) { if (targetPowerValT2[pwr_idx] && targetPowerValT2[pwr_idx] == target_power_val_t2_eep[pwr_idx]) targetPowerValT2[pwr_idx] -= paprd_scale_factor; } } } memcpy(target_power_val_t2_eep, targetPowerValT2, sizeof(targetPowerValT2)); } ar9003_hw_set_power_per_rate_table(ah, chan, targetPowerValT2, cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit); if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) { for (i = 0; i < ar9300RateSize; i++) { if ((ah->paprd_ratemask & (1 << i)) && (abs(targetPowerValT2[i] - target_power_val_t2_eep[i]) > paprd_scale_factor)) { ah->paprd_ratemask &= ~(1 << i); ath_dbg(common, ATH_DBG_EEPROM, "paprd disabled for mcs %d\n", i); } } } regulatory->max_power_level = 0; for (i = 0; i < ar9300RateSize; i++) { if (targetPowerValT2[i] > regulatory->max_power_level) regulatory->max_power_level = targetPowerValT2[i]; } if (test) return; for (i = 0; i < ar9300RateSize; i++) { ath_dbg(common, ATH_DBG_EEPROM, "TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]); } /* * This is the TX power we send back to driver core, * and it can use to pass to userspace to display our * currently configured TX power setting. * * Since power is rate dependent, use one of the indices * from the AR9300_Rates enum to select an entry from * targetPowerValT2[] to report. Currently returns the * power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps * as CCK power is less interesting (?). */ i = ALL_TARGET_LEGACY_6_24; /* legacy */ if (IS_CHAN_HT40(chan)) i = ALL_TARGET_HT40_0_8_16; /* ht40 */ else if (IS_CHAN_HT20(chan)) i = ALL_TARGET_HT20_0_8_16; /* ht20 */ ah->txpower_limit = targetPowerValT2[i]; regulatory->max_power_level = targetPowerValT2[i]; /* Write target power array to registers */ ar9003_hw_tx_power_regwrite(ah, targetPowerValT2); ar9003_hw_calibration_apply(ah, chan->channel); if (IS_CHAN_2GHZ(chan)) { if (IS_CHAN_HT40(chan)) i = ALL_TARGET_HT40_0_8_16; else i = ALL_TARGET_HT20_0_8_16; } else { if (IS_CHAN_HT40(chan)) i = ALL_TARGET_HT40_7; else i = ALL_TARGET_HT20_7; } ah->paprd_target_power = targetPowerValT2[i]; } static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) { return AR_NO_SPUR; } s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */ } s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */ } u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (is_2ghz) return eep->modalHeader2G.spurChans; else return eep->modalHeader5G.spurChans; } unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah, struct ath9k_channel *chan) { struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (IS_CHAN_2GHZ(chan)) return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20), AR9300_PAPRD_SCALE_1); else { if (chan->channel >= 5700) return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20), AR9300_PAPRD_SCALE_1); else if (chan->channel >= 5400) return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40), AR9300_PAPRD_SCALE_2); else return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40), AR9300_PAPRD_SCALE_1); } } const struct eeprom_ops eep_ar9300_ops = { .check_eeprom = ath9k_hw_ar9300_check_eeprom, .get_eeprom = ath9k_hw_ar9300_get_eeprom, .fill_eeprom = ath9k_hw_ar9300_fill_eeprom, .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver, .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev, .set_board_values = ath9k_hw_ar9300_set_board_values, .set_addac = ath9k_hw_ar9300_set_addac, .set_txpower = ath9k_hw_ar9300_set_txpower, .get_spur_channel = ath9k_hw_ar9300_get_spur_channel };