/* * arch/sh/kernel/smp.c * * SMP support for the SuperH processors. * * Copyright (C) 2002 - 2007 Paul Mundt * Copyright (C) 2006 - 2007 Akio Idehara * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/err.h> #include <linux/cache.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/interrupt.h> #include <asm/atomic.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/mmu_context.h> #include <asm/smp.h> #include <asm/cacheflush.h> #include <asm/sections.h> int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ cpumask_t cpu_possible_map; EXPORT_SYMBOL(cpu_possible_map); cpumask_t cpu_online_map; EXPORT_SYMBOL(cpu_online_map); static atomic_t cpus_booted = ATOMIC_INIT(0); /* * Run specified function on a particular processor. */ void __smp_call_function(unsigned int cpu); static inline void __init smp_store_cpu_info(unsigned int cpu) { struct sh_cpuinfo *c = cpu_data + cpu; c->loops_per_jiffy = loops_per_jiffy; } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned int cpu = smp_processor_id(); init_new_context(current, &init_mm); current_thread_info()->cpu = cpu; plat_prepare_cpus(max_cpus); #ifndef CONFIG_HOTPLUG_CPU cpu_present_map = cpu_possible_map; #endif } void __devinit smp_prepare_boot_cpu(void) { unsigned int cpu = smp_processor_id(); __cpu_number_map[0] = cpu; __cpu_logical_map[0] = cpu; cpu_set(cpu, cpu_online_map); cpu_set(cpu, cpu_possible_map); } asmlinkage void __cpuinit start_secondary(void) { unsigned int cpu; struct mm_struct *mm = &init_mm; atomic_inc(&mm->mm_count); atomic_inc(&mm->mm_users); current->active_mm = mm; BUG_ON(current->mm); enter_lazy_tlb(mm, current); per_cpu_trap_init(); preempt_disable(); local_irq_enable(); calibrate_delay(); cpu = smp_processor_id(); smp_store_cpu_info(cpu); cpu_set(cpu, cpu_online_map); cpu_idle(); } extern struct { unsigned long sp; unsigned long bss_start; unsigned long bss_end; void *start_kernel_fn; void *cpu_init_fn; void *thread_info; } stack_start; int __cpuinit __cpu_up(unsigned int cpu) { struct task_struct *tsk; unsigned long timeout; tsk = fork_idle(cpu); if (IS_ERR(tsk)) { printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu); return PTR_ERR(tsk); } /* Fill in data in head.S for secondary cpus */ stack_start.sp = tsk->thread.sp; stack_start.thread_info = tsk->stack; stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ stack_start.start_kernel_fn = start_secondary; flush_cache_all(); plat_start_cpu(cpu, (unsigned long)_stext); timeout = jiffies + HZ; while (time_before(jiffies, timeout)) { if (cpu_online(cpu)) break; udelay(10); } if (cpu_online(cpu)) return 0; return -ENOENT; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int cpu; for_each_online_cpu(cpu) bogosum += cpu_data[cpu].loops_per_jiffy; printk(KERN_INFO "SMP: Total of %d processors activated " "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), bogosum / (500000/HZ), (bogosum / (5000/HZ)) % 100); } void smp_send_reschedule(int cpu) { plat_send_ipi(cpu, SMP_MSG_RESCHEDULE); } static void stop_this_cpu(void *unused) { cpu_clear(smp_processor_id(), cpu_online_map); local_irq_disable(); for (;;) cpu_relax(); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, 0, 1, 0); } struct smp_fn_call_struct smp_fn_call = { .lock = __SPIN_LOCK_UNLOCKED(smp_fn_call.lock), .finished = ATOMIC_INIT(0), }; /* * The caller of this wants the passed function to run on every cpu. If wait * is set, wait until all cpus have finished the function before returning. * The lock is here to protect the call structure. * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ int smp_call_function(void (*func)(void *info), void *info, int retry, int wait) { unsigned int nr_cpus = atomic_read(&cpus_booted); int i; /* Can deadlock when called with interrupts disabled */ WARN_ON(irqs_disabled()); spin_lock(&smp_fn_call.lock); atomic_set(&smp_fn_call.finished, 0); smp_fn_call.fn = func; smp_fn_call.data = info; for (i = 0; i < nr_cpus; i++) if (i != smp_processor_id()) plat_send_ipi(i, SMP_MSG_FUNCTION); if (wait) while (atomic_read(&smp_fn_call.finished) != (nr_cpus - 1)); spin_unlock(&smp_fn_call.lock); return 0; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { on_each_cpu(flush_tlb_all_ipi, 0, 1, 1); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_mm(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_range(vma, start, end); preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd; fd.addr1 = start; fd.addr2 = end; on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { preempt_disable(); if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); preempt_enable(); } static void flush_tlb_one_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_one(fd->addr1, fd->addr2); } void flush_tlb_one(unsigned long asid, unsigned long vaddr) { struct flush_tlb_data fd; fd.addr1 = asid; fd.addr2 = vaddr; smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1, 1); local_flush_tlb_one(asid, vaddr); }