/* * Copyright (c) 2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/mmc/sdio_func.h> #include "core.h" #include "cfg80211.h" #include "target.h" #include "debug.h" #include "hif-ops.h" unsigned int debug_mask; module_param(debug_mask, uint, 0644); /* * Include definitions here that can be used to tune the WLAN module * behavior. Different customers can tune the behavior as per their needs, * here. */ /* * This configuration item enable/disable keepalive support. * Keepalive support: In the absence of any data traffic to AP, null * frames will be sent to the AP at periodic interval, to keep the association * active. This configuration item defines the periodic interval. * Use value of zero to disable keepalive support * Default: 60 seconds */ #define WLAN_CONFIG_KEEP_ALIVE_INTERVAL 60 /* * This configuration item sets the value of disconnect timeout * Firmware delays sending the disconnec event to the host for this * timeout after is gets disconnected from the current AP. * If the firmware successly roams within the disconnect timeout * it sends a new connect event */ #define WLAN_CONFIG_DISCONNECT_TIMEOUT 10 #define CONFIG_AR600x_DEBUG_UART_TX_PIN 8 enum addr_type { DATASET_PATCH_ADDR, APP_LOAD_ADDR, APP_START_OVERRIDE_ADDR, }; #define ATH6KL_DATA_OFFSET 64 struct sk_buff *ath6kl_buf_alloc(int size) { struct sk_buff *skb; u16 reserved; /* Add chacheline space at front and back of buffer */ reserved = (2 * L1_CACHE_BYTES) + ATH6KL_DATA_OFFSET + sizeof(struct htc_packet) + ATH6KL_HTC_ALIGN_BYTES; skb = dev_alloc_skb(size + reserved); if (skb) skb_reserve(skb, reserved - L1_CACHE_BYTES); return skb; } void ath6kl_init_profile_info(struct ath6kl *ar) { ar->ssid_len = 0; memset(ar->ssid, 0, sizeof(ar->ssid)); ar->dot11_auth_mode = OPEN_AUTH; ar->auth_mode = NONE_AUTH; ar->prwise_crypto = NONE_CRYPT; ar->prwise_crypto_len = 0; ar->grp_crypto = NONE_CRYPT; ar->grp_crpto_len = 0; memset(ar->wep_key_list, 0, sizeof(ar->wep_key_list)); memset(ar->req_bssid, 0, sizeof(ar->req_bssid)); memset(ar->bssid, 0, sizeof(ar->bssid)); ar->bss_ch = 0; ar->nw_type = ar->next_mode = INFRA_NETWORK; } static u8 ath6kl_get_fw_iftype(struct ath6kl *ar) { switch (ar->nw_type) { case INFRA_NETWORK: return HI_OPTION_FW_MODE_BSS_STA; case ADHOC_NETWORK: return HI_OPTION_FW_MODE_IBSS; case AP_NETWORK: return HI_OPTION_FW_MODE_AP; default: ath6kl_err("Unsupported interface type :%d\n", ar->nw_type); return 0xff; } } static inline u32 ath6kl_get_hi_item_addr(struct ath6kl *ar, u32 item_offset) { u32 addr = 0; if (ar->target_type == TARGET_TYPE_AR6003) addr = ATH6KL_AR6003_HI_START_ADDR + item_offset; else if (ar->target_type == TARGET_TYPE_AR6004) addr = ATH6KL_AR6004_HI_START_ADDR + item_offset; return addr; } static int ath6kl_set_host_app_area(struct ath6kl *ar) { u32 address, data; struct host_app_area host_app_area; /* Fetch the address of the host_app_area_s * instance in the host interest area */ address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_app_host_interest)); address = TARG_VTOP(ar->target_type, address); if (ath6kl_read_reg_diag(ar, &address, &data)) return -EIO; address = TARG_VTOP(ar->target_type, data); host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION; if (ath6kl_access_datadiag(ar, address, (u8 *)&host_app_area, sizeof(struct host_app_area), false)) return -EIO; return 0; } static inline void set_ac2_ep_map(struct ath6kl *ar, u8 ac, enum htc_endpoint_id ep) { ar->ac2ep_map[ac] = ep; ar->ep2ac_map[ep] = ac; } /* connect to a service */ static int ath6kl_connectservice(struct ath6kl *ar, struct htc_service_connect_req *con_req, char *desc) { int status; struct htc_service_connect_resp response; memset(&response, 0, sizeof(response)); status = ath6kl_htc_conn_service(ar->htc_target, con_req, &response); if (status) { ath6kl_err("failed to connect to %s service status:%d\n", desc, status); return status; } switch (con_req->svc_id) { case WMI_CONTROL_SVC: if (test_bit(WMI_ENABLED, &ar->flag)) ath6kl_wmi_set_control_ep(ar->wmi, response.endpoint); ar->ctrl_ep = response.endpoint; break; case WMI_DATA_BE_SVC: set_ac2_ep_map(ar, WMM_AC_BE, response.endpoint); break; case WMI_DATA_BK_SVC: set_ac2_ep_map(ar, WMM_AC_BK, response.endpoint); break; case WMI_DATA_VI_SVC: set_ac2_ep_map(ar, WMM_AC_VI, response.endpoint); break; case WMI_DATA_VO_SVC: set_ac2_ep_map(ar, WMM_AC_VO, response.endpoint); break; default: ath6kl_err("service id is not mapped %d\n", con_req->svc_id); return -EINVAL; } return 0; } static int ath6kl_init_service_ep(struct ath6kl *ar) { struct htc_service_connect_req connect; memset(&connect, 0, sizeof(connect)); /* these fields are the same for all service endpoints */ connect.ep_cb.rx = ath6kl_rx; connect.ep_cb.rx_refill = ath6kl_rx_refill; connect.ep_cb.tx_full = ath6kl_tx_queue_full; /* * Set the max queue depth so that our ath6kl_tx_queue_full handler * gets called. */ connect.max_txq_depth = MAX_DEFAULT_SEND_QUEUE_DEPTH; connect.ep_cb.rx_refill_thresh = ATH6KL_MAX_RX_BUFFERS / 4; if (!connect.ep_cb.rx_refill_thresh) connect.ep_cb.rx_refill_thresh++; /* connect to control service */ connect.svc_id = WMI_CONTROL_SVC; if (ath6kl_connectservice(ar, &connect, "WMI CONTROL")) return -EIO; connect.flags |= HTC_FLGS_TX_BNDL_PAD_EN; /* * Limit the HTC message size on the send path, although e can * receive A-MSDU frames of 4K, we will only send ethernet-sized * (802.3) frames on the send path. */ connect.max_rxmsg_sz = WMI_MAX_TX_DATA_FRAME_LENGTH; /* * To reduce the amount of committed memory for larger A_MSDU * frames, use the recv-alloc threshold mechanism for larger * packets. */ connect.ep_cb.rx_alloc_thresh = ATH6KL_BUFFER_SIZE; connect.ep_cb.rx_allocthresh = ath6kl_alloc_amsdu_rxbuf; /* * For the remaining data services set the connection flag to * reduce dribbling, if configured to do so. */ connect.conn_flags |= HTC_CONN_FLGS_REDUCE_CRED_DRIB; connect.conn_flags &= ~HTC_CONN_FLGS_THRESH_MASK; connect.conn_flags |= HTC_CONN_FLGS_THRESH_LVL_HALF; connect.svc_id = WMI_DATA_BE_SVC; if (ath6kl_connectservice(ar, &connect, "WMI DATA BE")) return -EIO; /* connect to back-ground map this to WMI LOW_PRI */ connect.svc_id = WMI_DATA_BK_SVC; if (ath6kl_connectservice(ar, &connect, "WMI DATA BK")) return -EIO; /* connect to Video service, map this to to HI PRI */ connect.svc_id = WMI_DATA_VI_SVC; if (ath6kl_connectservice(ar, &connect, "WMI DATA VI")) return -EIO; /* * Connect to VO service, this is currently not mapped to a WMI * priority stream due to historical reasons. WMI originally * defined 3 priorities over 3 mailboxes We can change this when * WMI is reworked so that priorities are not dependent on * mailboxes. */ connect.svc_id = WMI_DATA_VO_SVC; if (ath6kl_connectservice(ar, &connect, "WMI DATA VO")) return -EIO; return 0; } static void ath6kl_init_control_info(struct ath6kl *ar) { u8 ctr; clear_bit(WMI_ENABLED, &ar->flag); ath6kl_init_profile_info(ar); ar->def_txkey_index = 0; memset(ar->wep_key_list, 0, sizeof(ar->wep_key_list)); ar->ch_hint = 0; ar->listen_intvl_t = A_DEFAULT_LISTEN_INTERVAL; ar->listen_intvl_b = 0; ar->tx_pwr = 0; clear_bit(SKIP_SCAN, &ar->flag); set_bit(WMM_ENABLED, &ar->flag); ar->intra_bss = 1; memset(&ar->sc_params, 0, sizeof(ar->sc_params)); ar->sc_params.short_scan_ratio = WMI_SHORTSCANRATIO_DEFAULT; ar->sc_params.scan_ctrl_flags = DEFAULT_SCAN_CTRL_FLAGS; memset((u8 *)ar->sta_list, 0, AP_MAX_NUM_STA * sizeof(struct ath6kl_sta)); spin_lock_init(&ar->mcastpsq_lock); /* Init the PS queues */ for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { spin_lock_init(&ar->sta_list[ctr].psq_lock); skb_queue_head_init(&ar->sta_list[ctr].psq); } skb_queue_head_init(&ar->mcastpsq); memcpy(ar->ap_country_code, DEF_AP_COUNTRY_CODE, 3); } /* * Set HTC/Mbox operational parameters, this can only be called when the * target is in the BMI phase. */ static int ath6kl_set_htc_params(struct ath6kl *ar, u32 mbox_isr_yield_val, u8 htc_ctrl_buf) { int status; u32 blk_size; blk_size = ar->mbox_info.block_size; if (htc_ctrl_buf) blk_size |= ((u32)htc_ctrl_buf) << 16; /* set the host interest area for the block size */ status = ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_mbox_io_block_sz)), (u8 *)&blk_size, 4); if (status) { ath6kl_err("bmi_write_memory for IO block size failed\n"); goto out; } ath6kl_dbg(ATH6KL_DBG_TRC, "block size set: %d (target addr:0x%X)\n", blk_size, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_mbox_io_block_sz))); if (mbox_isr_yield_val) { /* set the host interest area for the mbox ISR yield limit */ status = ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_mbox_isr_yield_limit)), (u8 *)&mbox_isr_yield_val, 4); if (status) { ath6kl_err("bmi_write_memory for yield limit failed\n"); goto out; } } out: return status; } #define REG_DUMP_COUNT_AR6003 60 #define REGISTER_DUMP_LEN_MAX 60 static void ath6kl_dump_target_assert_info(struct ath6kl *ar) { u32 address; u32 regdump_loc = 0; int status; u32 regdump_val[REGISTER_DUMP_LEN_MAX]; u32 i; if (ar->target_type != TARGET_TYPE_AR6003) return; /* the reg dump pointer is copied to the host interest area */ address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state)); address = TARG_VTOP(ar->target_type, address); /* read RAM location through diagnostic window */ status = ath6kl_read_reg_diag(ar, &address, ®dump_loc); if (status || !regdump_loc) { ath6kl_err("failed to get ptr to register dump area\n"); return; } ath6kl_dbg(ATH6KL_DBG_TRC, "location of register dump data: 0x%X\n", regdump_loc); regdump_loc = TARG_VTOP(ar->target_type, regdump_loc); /* fetch register dump data */ status = ath6kl_access_datadiag(ar, regdump_loc, (u8 *)®dump_val[0], REG_DUMP_COUNT_AR6003 * (sizeof(u32)), true); if (status) { ath6kl_err("failed to get register dump\n"); return; } ath6kl_dbg(ATH6KL_DBG_TRC, "Register Dump:\n"); for (i = 0; i < REG_DUMP_COUNT_AR6003; i++) ath6kl_dbg(ATH6KL_DBG_TRC, " %d : 0x%8.8X\n", i, regdump_val[i]); } void ath6kl_target_failure(struct ath6kl *ar) { ath6kl_err("target asserted\n"); /* try dumping target assertion information (if any) */ ath6kl_dump_target_assert_info(ar); } static int ath6kl_target_config_wlan_params(struct ath6kl *ar) { int status = 0; /* * Configure the device for rx dot11 header rules. "0,0" are the * default values. Required if checksum offload is needed. Set * RxMetaVersion to 2. */ if (ath6kl_wmi_set_rx_frame_format_cmd(ar->wmi, ar->rx_meta_ver, 0, 0)) { ath6kl_err("unable to set the rx frame format\n"); status = -EIO; } if (ar->conf_flags & ATH6KL_CONF_IGNORE_PS_FAIL_EVT_IN_SCAN) if ((ath6kl_wmi_pmparams_cmd(ar->wmi, 0, 1, 0, 0, 1, IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN)) != 0) { ath6kl_err("unable to set power save fail event policy\n"); status = -EIO; } if (!(ar->conf_flags & ATH6KL_CONF_IGNORE_ERP_BARKER)) if ((ath6kl_wmi_set_lpreamble_cmd(ar->wmi, 0, WMI_DONOT_IGNORE_BARKER_IN_ERP)) != 0) { ath6kl_err("unable to set barker preamble policy\n"); status = -EIO; } if (ath6kl_wmi_set_keepalive_cmd(ar->wmi, WLAN_CONFIG_KEEP_ALIVE_INTERVAL)) { ath6kl_err("unable to set keep alive interval\n"); status = -EIO; } if (ath6kl_wmi_disctimeout_cmd(ar->wmi, WLAN_CONFIG_DISCONNECT_TIMEOUT)) { ath6kl_err("unable to set disconnect timeout\n"); status = -EIO; } if (!(ar->conf_flags & ATH6KL_CONF_ENABLE_TX_BURST)) if (ath6kl_wmi_set_wmm_txop(ar->wmi, WMI_TXOP_DISABLED)) { ath6kl_err("unable to set txop bursting\n"); status = -EIO; } return status; } int ath6kl_configure_target(struct ath6kl *ar) { u32 param, ram_reserved_size; u8 fw_iftype; fw_iftype = ath6kl_get_fw_iftype(ar); if (fw_iftype == 0xff) return -EINVAL; /* Tell target which HTC version it is used*/ param = HTC_PROTOCOL_VERSION; if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_app_host_interest)), (u8 *)¶m, 4) != 0) { ath6kl_err("bmi_write_memory for htc version failed\n"); return -EIO; } /* set the firmware mode to STA/IBSS/AP */ param = 0; if (ath6kl_bmi_read(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_option_flag)), (u8 *)¶m, 4) != 0) { ath6kl_err("bmi_read_memory for setting fwmode failed\n"); return -EIO; } param |= (1 << HI_OPTION_NUM_DEV_SHIFT); param |= (fw_iftype << HI_OPTION_FW_MODE_SHIFT); param |= (0 << HI_OPTION_MAC_ADDR_METHOD_SHIFT); param |= (0 << HI_OPTION_FW_BRIDGE_SHIFT); if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_option_flag)), (u8 *)¶m, 4) != 0) { ath6kl_err("bmi_write_memory for setting fwmode failed\n"); return -EIO; } ath6kl_dbg(ATH6KL_DBG_TRC, "firmware mode set\n"); /* * Hardcode the address use for the extended board data * Ideally this should be pre-allocate by the OS at boot time * But since it is a new feature and board data is loaded * at init time, we have to workaround this from host. * It is difficult to patch the firmware boot code, * but possible in theory. */ if (ar->target_type == TARGET_TYPE_AR6003 || ar->target_type == TARGET_TYPE_AR6004) { if (ar->version.target_ver == AR6003_REV2_VERSION) { param = AR6003_REV2_BOARD_EXT_DATA_ADDRESS; ram_reserved_size = AR6003_REV2_RAM_RESERVE_SIZE; } else if (ar->version.target_ver == AR6004_REV1_VERSION) { param = AR6004_REV1_BOARD_EXT_DATA_ADDRESS; ram_reserved_size = AR6004_REV1_RAM_RESERVE_SIZE; } else { param = AR6003_REV3_BOARD_EXT_DATA_ADDRESS; ram_reserved_size = AR6003_REV3_RAM_RESERVE_SIZE; } if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_ext_data)), (u8 *)¶m, 4) != 0) { ath6kl_err("bmi_write_memory for hi_board_ext_data failed\n"); return -EIO; } if (ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_end_ram_reserve_sz)), (u8 *)&ram_reserved_size, 4) != 0) { ath6kl_err("bmi_write_memory for hi_end_ram_reserve_sz failed\n"); return -EIO; } } /* set the block size for the target */ if (ath6kl_set_htc_params(ar, MBOX_YIELD_LIMIT, 0)) /* use default number of control buffers */ return -EIO; return 0; } struct ath6kl *ath6kl_core_alloc(struct device *sdev) { struct net_device *dev; struct ath6kl *ar; struct wireless_dev *wdev; wdev = ath6kl_cfg80211_init(sdev); if (!wdev) { ath6kl_err("ath6kl_cfg80211_init failed\n"); return NULL; } ar = wdev_priv(wdev); ar->dev = sdev; ar->wdev = wdev; wdev->iftype = NL80211_IFTYPE_STATION; if (ath6kl_debug_init(ar)) { ath6kl_err("Failed to initialize debugfs\n"); ath6kl_cfg80211_deinit(ar); return NULL; } dev = alloc_netdev(0, "wlan%d", ether_setup); if (!dev) { ath6kl_err("no memory for network device instance\n"); ath6kl_cfg80211_deinit(ar); return NULL; } dev->ieee80211_ptr = wdev; SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy)); wdev->netdev = dev; ar->sme_state = SME_DISCONNECTED; ar->auto_auth_stage = AUTH_IDLE; init_netdev(dev); ar->net_dev = dev; set_bit(WLAN_ENABLED, &ar->flag); ar->wlan_pwr_state = WLAN_POWER_STATE_ON; spin_lock_init(&ar->lock); ath6kl_init_control_info(ar); init_waitqueue_head(&ar->event_wq); sema_init(&ar->sem, 1); clear_bit(DESTROY_IN_PROGRESS, &ar->flag); INIT_LIST_HEAD(&ar->amsdu_rx_buffer_queue); setup_timer(&ar->disconnect_timer, disconnect_timer_handler, (unsigned long) dev); return ar; } int ath6kl_unavail_ev(struct ath6kl *ar) { ath6kl_destroy(ar->net_dev, 1); return 0; } /* firmware upload */ static u32 ath6kl_get_load_address(u32 target_ver, enum addr_type type) { WARN_ON(target_ver != AR6003_REV2_VERSION && target_ver != AR6003_REV3_VERSION && target_ver != AR6004_REV1_VERSION); switch (type) { case DATASET_PATCH_ADDR: return (target_ver == AR6003_REV2_VERSION) ? AR6003_REV2_DATASET_PATCH_ADDRESS : AR6003_REV3_DATASET_PATCH_ADDRESS; case APP_LOAD_ADDR: return (target_ver == AR6003_REV2_VERSION) ? AR6003_REV2_APP_LOAD_ADDRESS : 0x1234; case APP_START_OVERRIDE_ADDR: return (target_ver == AR6003_REV2_VERSION) ? AR6003_REV2_APP_START_OVERRIDE : AR6003_REV3_APP_START_OVERRIDE; default: return 0; } } static int ath6kl_get_fw(struct ath6kl *ar, const char *filename, u8 **fw, size_t *fw_len) { const struct firmware *fw_entry; int ret; ret = request_firmware(&fw_entry, filename, ar->dev); if (ret) return ret; *fw_len = fw_entry->size; *fw = kmemdup(fw_entry->data, fw_entry->size, GFP_KERNEL); if (*fw == NULL) ret = -ENOMEM; release_firmware(fw_entry); return ret; } static int ath6kl_fetch_board_file(struct ath6kl *ar) { const char *filename; int ret; switch (ar->version.target_ver) { case AR6003_REV2_VERSION: filename = AR6003_REV2_BOARD_DATA_FILE; break; case AR6004_REV1_VERSION: filename = AR6004_REV1_BOARD_DATA_FILE; break; default: filename = AR6003_REV3_BOARD_DATA_FILE; break; } ret = ath6kl_get_fw(ar, filename, &ar->fw_board, &ar->fw_board_len); if (ret == 0) { /* managed to get proper board file */ return 0; } /* there was no proper board file, try to use default instead */ ath6kl_warn("Failed to get board file %s (%d), trying to find default board file.\n", filename, ret); switch (ar->version.target_ver) { case AR6003_REV2_VERSION: filename = AR6003_REV2_DEFAULT_BOARD_DATA_FILE; break; case AR6004_REV1_VERSION: filename = AR6004_REV1_DEFAULT_BOARD_DATA_FILE; break; default: filename = AR6003_REV3_DEFAULT_BOARD_DATA_FILE; break; } ret = ath6kl_get_fw(ar, filename, &ar->fw_board, &ar->fw_board_len); if (ret) { ath6kl_err("Failed to get default board file %s: %d\n", filename, ret); return ret; } ath6kl_warn("WARNING! No proper board file was not found, instead using a default board file.\n"); ath6kl_warn("Most likely your hardware won't work as specified. Install correct board file!\n"); return 0; } static int ath6kl_upload_board_file(struct ath6kl *ar) { u32 board_address, board_ext_address, param; u32 board_data_size, board_ext_data_size; int ret; if (ar->fw_board == NULL) { ret = ath6kl_fetch_board_file(ar); if (ret) return ret; } /* * Determine where in Target RAM to write Board Data. * For AR6004, host determine Target RAM address for * writing board data. */ if (ar->target_type == TARGET_TYPE_AR6004) { board_address = AR6004_REV1_BOARD_DATA_ADDRESS; ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_data)), (u8 *) &board_address, 4); } else { ath6kl_bmi_read(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_data)), (u8 *) &board_address, 4); } ath6kl_dbg(ATH6KL_DBG_TRC, "board data download addr: 0x%x\n", board_address); /* determine where in target ram to write extended board data */ ath6kl_bmi_read(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_ext_data)), (u8 *) &board_ext_address, 4); ath6kl_dbg(ATH6KL_DBG_TRC, "board file download addr: 0x%x\n", board_ext_address); if (board_ext_address == 0) { ath6kl_err("Failed to get board file target address.\n"); return -EINVAL; } switch (ar->target_type) { case TARGET_TYPE_AR6003: board_data_size = AR6003_BOARD_DATA_SZ; board_ext_data_size = AR6003_BOARD_EXT_DATA_SZ; break; case TARGET_TYPE_AR6004: board_data_size = AR6004_BOARD_DATA_SZ; board_ext_data_size = AR6004_BOARD_EXT_DATA_SZ; break; default: WARN_ON(1); return -EINVAL; break; } if (ar->fw_board_len == (board_data_size + board_ext_data_size)) { /* write extended board data */ ret = ath6kl_bmi_write(ar, board_ext_address, ar->fw_board + board_data_size, board_ext_data_size); if (ret) { ath6kl_err("Failed to write extended board data: %d\n", ret); return ret; } /* record that extended board data is initialized */ param = (board_ext_data_size << 16) | 1; ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_ext_data_config)), (unsigned char *) ¶m, 4); } if (ar->fw_board_len < board_data_size) { ath6kl_err("Too small board file: %zu\n", ar->fw_board_len); ret = -EINVAL; return ret; } ret = ath6kl_bmi_write(ar, board_address, ar->fw_board, board_data_size); if (ret) { ath6kl_err("Board file bmi write failed: %d\n", ret); return ret; } /* record the fact that Board Data IS initialized */ param = 1; ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_board_data_initialized)), (u8 *)¶m, 4); return ret; } static int ath6kl_upload_otp(struct ath6kl *ar) { const char *filename; u32 address, param; int ret; switch (ar->version.target_ver) { case AR6003_REV2_VERSION: filename = AR6003_REV2_OTP_FILE; break; case AR6004_REV1_VERSION: ath6kl_dbg(ATH6KL_DBG_TRC, "AR6004 doesn't need OTP file\n"); return 0; break; default: filename = AR6003_REV3_OTP_FILE; break; } if (ar->fw_otp == NULL) { ret = ath6kl_get_fw(ar, filename, &ar->fw_otp, &ar->fw_otp_len); if (ret) { ath6kl_err("Failed to get OTP file %s: %d\n", filename, ret); return ret; } } address = ath6kl_get_load_address(ar->version.target_ver, APP_LOAD_ADDR); ret = ath6kl_bmi_fast_download(ar, address, ar->fw_otp, ar->fw_otp_len); if (ret) { ath6kl_err("Failed to upload OTP file: %d\n", ret); return ret; } /* execute the OTP code */ param = 0; address = ath6kl_get_load_address(ar->version.target_ver, APP_START_OVERRIDE_ADDR); ath6kl_bmi_execute(ar, address, ¶m); return ret; } static int ath6kl_upload_firmware(struct ath6kl *ar) { const char *filename; u32 address; int ret; switch (ar->version.target_ver) { case AR6003_REV2_VERSION: filename = AR6003_REV2_FIRMWARE_FILE; break; case AR6004_REV1_VERSION: filename = AR6004_REV1_FIRMWARE_FILE; break; default: filename = AR6003_REV3_FIRMWARE_FILE; break; } if (ar->fw == NULL) { ret = ath6kl_get_fw(ar, filename, &ar->fw, &ar->fw_len); if (ret) { ath6kl_err("Failed to get firmware file %s: %d\n", filename, ret); return ret; } } address = ath6kl_get_load_address(ar->version.target_ver, APP_LOAD_ADDR); ret = ath6kl_bmi_fast_download(ar, address, ar->fw, ar->fw_len); if (ret) { ath6kl_err("Failed to write firmware: %d\n", ret); return ret; } /* * Set starting address for firmware * Don't need to setup app_start override addr on AR6004 */ if (ar->target_type != TARGET_TYPE_AR6004) { address = ath6kl_get_load_address(ar->version.target_ver, APP_START_OVERRIDE_ADDR); ath6kl_bmi_set_app_start(ar, address); } return ret; } static int ath6kl_upload_patch(struct ath6kl *ar) { const char *filename; u32 address, param; int ret; switch (ar->version.target_ver) { case AR6003_REV2_VERSION: filename = AR6003_REV2_PATCH_FILE; break; case AR6004_REV1_VERSION: /* FIXME: implement for AR6004 */ return 0; break; default: filename = AR6003_REV3_PATCH_FILE; break; } if (ar->fw_patch == NULL) { ret = ath6kl_get_fw(ar, filename, &ar->fw_patch, &ar->fw_patch_len); if (ret) { ath6kl_err("Failed to get patch file %s: %d\n", filename, ret); return ret; } } address = ath6kl_get_load_address(ar->version.target_ver, DATASET_PATCH_ADDR); ret = ath6kl_bmi_write(ar, address, ar->fw_patch, ar->fw_patch_len); if (ret) { ath6kl_err("Failed to write patch file: %d\n", ret); return ret; } param = address; ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_dset_list_head)), (unsigned char *) ¶m, 4); return 0; } static int ath6kl_init_upload(struct ath6kl *ar) { u32 param, options, sleep, address; int status = 0; if (ar->target_type != TARGET_TYPE_AR6003 && ar->target_type != TARGET_TYPE_AR6004) return -EINVAL; /* temporarily disable system sleep */ address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS; status = ath6kl_bmi_reg_read(ar, address, ¶m); if (status) return status; options = param; param |= ATH6KL_OPTION_SLEEP_DISABLE; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS; status = ath6kl_bmi_reg_read(ar, address, ¶m); if (status) return status; sleep = param; param |= SM(SYSTEM_SLEEP_DISABLE, 1); status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; ath6kl_dbg(ATH6KL_DBG_TRC, "old options: %d, old sleep: %d\n", options, sleep); /* program analog PLL register */ /* no need to control 40/44MHz clock on AR6004 */ if (ar->target_type != TARGET_TYPE_AR6004) { status = ath6kl_bmi_reg_write(ar, ATH6KL_ANALOG_PLL_REGISTER, 0xF9104001); if (status) return status; /* Run at 80/88MHz by default */ param = SM(CPU_CLOCK_STANDARD, 1); address = RTC_BASE_ADDRESS + CPU_CLOCK_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; } param = 0; address = RTC_BASE_ADDRESS + LPO_CAL_ADDRESS; param = SM(LPO_CAL_ENABLE, 1); status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; /* WAR to avoid SDIO CRC err */ if (ar->version.target_ver == AR6003_REV2_VERSION) { ath6kl_err("temporary war to avoid sdio crc error\n"); param = 0x20; address = GPIO_BASE_ADDRESS + GPIO_PIN10_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; address = GPIO_BASE_ADDRESS + GPIO_PIN11_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; address = GPIO_BASE_ADDRESS + GPIO_PIN12_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; address = GPIO_BASE_ADDRESS + GPIO_PIN13_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; } /* write EEPROM data to Target RAM */ status = ath6kl_upload_board_file(ar); if (status) return status; /* transfer One time Programmable data */ status = ath6kl_upload_otp(ar); if (status) return status; /* Download Target firmware */ status = ath6kl_upload_firmware(ar); if (status) return status; status = ath6kl_upload_patch(ar); if (status) return status; /* Restore system sleep */ address = RTC_BASE_ADDRESS + SYSTEM_SLEEP_ADDRESS; status = ath6kl_bmi_reg_write(ar, address, sleep); if (status) return status; address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_ADDRESS; param = options | 0x20; status = ath6kl_bmi_reg_write(ar, address, param); if (status) return status; /* Configure GPIO AR6003 UART */ param = CONFIG_AR600x_DEBUG_UART_TX_PIN; status = ath6kl_bmi_write(ar, ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_dbg_uart_txpin)), (u8 *)¶m, 4); return status; } static int ath6kl_init(struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); int status = 0; s32 timeleft; if (!ar) return -EIO; /* Do we need to finish the BMI phase */ if (ath6kl_bmi_done(ar)) { status = -EIO; goto ath6kl_init_done; } /* Indicate that WMI is enabled (although not ready yet) */ set_bit(WMI_ENABLED, &ar->flag); ar->wmi = ath6kl_wmi_init(ar); if (!ar->wmi) { ath6kl_err("failed to initialize wmi\n"); status = -EIO; goto ath6kl_init_done; } ath6kl_dbg(ATH6KL_DBG_TRC, "%s: got wmi @ 0x%p.\n", __func__, ar->wmi); wlan_node_table_init(&ar->scan_table); /* * The reason we have to wait for the target here is that the * driver layer has to init BMI in order to set the host block * size. */ if (ath6kl_htc_wait_target(ar->htc_target)) { status = -EIO; goto err_node_cleanup; } if (ath6kl_init_service_ep(ar)) { status = -EIO; goto err_cleanup_scatter; } /* setup access class priority mappings */ ar->ac_stream_pri_map[WMM_AC_BK] = 0; /* lowest */ ar->ac_stream_pri_map[WMM_AC_BE] = 1; ar->ac_stream_pri_map[WMM_AC_VI] = 2; ar->ac_stream_pri_map[WMM_AC_VO] = 3; /* highest */ /* give our connected endpoints some buffers */ ath6kl_rx_refill(ar->htc_target, ar->ctrl_ep); ath6kl_rx_refill(ar->htc_target, ar->ac2ep_map[WMM_AC_BE]); /* allocate some buffers that handle larger AMSDU frames */ ath6kl_refill_amsdu_rxbufs(ar, ATH6KL_MAX_AMSDU_RX_BUFFERS); /* setup credit distribution */ ath6k_setup_credit_dist(ar->htc_target, &ar->credit_state_info); ath6kl_cookie_init(ar); /* start HTC */ status = ath6kl_htc_start(ar->htc_target); if (status) { ath6kl_cookie_cleanup(ar); goto err_rxbuf_cleanup; } /* Wait for Wmi event to be ready */ timeleft = wait_event_interruptible_timeout(ar->event_wq, test_bit(WMI_READY, &ar->flag), WMI_TIMEOUT); if (ar->version.abi_ver != ATH6KL_ABI_VERSION) { ath6kl_err("abi version mismatch: host(0x%x), target(0x%x)\n", ATH6KL_ABI_VERSION, ar->version.abi_ver); status = -EIO; goto err_htc_stop; } if (!timeleft || signal_pending(current)) { ath6kl_err("wmi is not ready or wait was interrupted\n"); status = -EIO; goto err_htc_stop; } ath6kl_dbg(ATH6KL_DBG_TRC, "%s: wmi is ready\n", __func__); /* communicate the wmi protocol verision to the target */ if ((ath6kl_set_host_app_area(ar)) != 0) ath6kl_err("unable to set the host app area\n"); ar->conf_flags = ATH6KL_CONF_IGNORE_ERP_BARKER | ATH6KL_CONF_ENABLE_11N | ATH6KL_CONF_ENABLE_TX_BURST; status = ath6kl_target_config_wlan_params(ar); if (!status) goto ath6kl_init_done; err_htc_stop: ath6kl_htc_stop(ar->htc_target); err_rxbuf_cleanup: ath6kl_htc_flush_rx_buf(ar->htc_target); ath6kl_cleanup_amsdu_rxbufs(ar); err_cleanup_scatter: ath6kl_hif_cleanup_scatter(ar); err_node_cleanup: wlan_node_table_cleanup(&ar->scan_table); ath6kl_wmi_shutdown(ar->wmi); clear_bit(WMI_ENABLED, &ar->flag); ar->wmi = NULL; ath6kl_init_done: return status; } int ath6kl_core_init(struct ath6kl *ar) { int ret = 0; struct ath6kl_bmi_target_info targ_info; ar->ath6kl_wq = create_singlethread_workqueue("ath6kl"); if (!ar->ath6kl_wq) return -ENOMEM; ret = ath6kl_bmi_init(ar); if (ret) goto err_wq; ret = ath6kl_bmi_get_target_info(ar, &targ_info); if (ret) goto err_bmi_cleanup; ar->version.target_ver = le32_to_cpu(targ_info.version); ar->target_type = le32_to_cpu(targ_info.type); ar->wdev->wiphy->hw_version = le32_to_cpu(targ_info.version); ret = ath6kl_configure_target(ar); if (ret) goto err_bmi_cleanup; ar->htc_target = ath6kl_htc_create(ar); if (!ar->htc_target) { ret = -ENOMEM; goto err_bmi_cleanup; } ar->aggr_cntxt = aggr_init(ar->net_dev); if (!ar->aggr_cntxt) { ath6kl_err("failed to initialize aggr\n"); ret = -ENOMEM; goto err_htc_cleanup; } ret = ath6kl_init_upload(ar); if (ret) goto err_htc_cleanup; ret = ath6kl_init(ar->net_dev); if (ret) goto err_htc_cleanup; /* This runs the init function if registered */ ret = register_netdev(ar->net_dev); if (ret) { ath6kl_err("register_netdev failed\n"); ath6kl_destroy(ar->net_dev, 0); return ret; } set_bit(NETDEV_REGISTERED, &ar->flag); ath6kl_dbg(ATH6KL_DBG_TRC, "%s: name=%s dev=0x%p, ar=0x%p\n", __func__, ar->net_dev->name, ar->net_dev, ar); return ret; err_htc_cleanup: ath6kl_htc_cleanup(ar->htc_target); err_bmi_cleanup: ath6kl_bmi_cleanup(ar); err_wq: destroy_workqueue(ar->ath6kl_wq); return ret; } void ath6kl_stop_txrx(struct ath6kl *ar) { struct net_device *ndev = ar->net_dev; if (!ndev) return; set_bit(DESTROY_IN_PROGRESS, &ar->flag); if (down_interruptible(&ar->sem)) { ath6kl_err("down_interruptible failed\n"); return; } if (ar->wlan_pwr_state != WLAN_POWER_STATE_CUT_PWR) ath6kl_stop_endpoint(ndev, false, true); clear_bit(WLAN_ENABLED, &ar->flag); } /* * We need to differentiate between the surprise and planned removal of the * device because of the following consideration: * * - In case of surprise removal, the hcd already frees up the pending * for the device and hence there is no need to unregister the function * driver inorder to get these requests. For planned removal, the function * driver has to explicitly unregister itself to have the hcd return all the * pending requests before the data structures for the devices are freed up. * Note that as per the current implementation, the function driver will * end up releasing all the devices since there is no API to selectively * release a particular device. * * - Certain commands issued to the target can be skipped for surprise * removal since they will anyway not go through. */ void ath6kl_destroy(struct net_device *dev, unsigned int unregister) { struct ath6kl *ar; if (!dev || !ath6kl_priv(dev)) { ath6kl_err("failed to get device structure\n"); return; } ar = ath6kl_priv(dev); destroy_workqueue(ar->ath6kl_wq); if (ar->htc_target) ath6kl_htc_cleanup(ar->htc_target); aggr_module_destroy(ar->aggr_cntxt); ath6kl_cookie_cleanup(ar); ath6kl_cleanup_amsdu_rxbufs(ar); ath6kl_bmi_cleanup(ar); if (unregister && test_bit(NETDEV_REGISTERED, &ar->flag)) { unregister_netdev(dev); clear_bit(NETDEV_REGISTERED, &ar->flag); } free_netdev(dev); wlan_node_table_cleanup(&ar->scan_table); kfree(ar->fw_board); kfree(ar->fw_otp); kfree(ar->fw); kfree(ar->fw_patch); ath6kl_cfg80211_deinit(ar); }