/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: Programming Atheros 802.11n analog front end radios * * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express * devices have either an external AR2133 analog front end radio for single * band 2.4 GHz communication or an AR5133 analog front end radio for dual * band 2.4 GHz / 5 GHz communication. * * All devices after the AR5416 and AR5418 family starting with the AR9280 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded * into a single-chip and require less programming. * * The following single-chips exist with a respective embedded radio: * * AR9280 - 11n dual-band 2x2 MIMO for PCIe * AR9281 - 11n single-band 1x2 MIMO for PCIe * AR9285 - 11n single-band 1x1 for PCIe * AR9287 - 11n single-band 2x2 MIMO for PCIe * * AR9220 - 11n dual-band 2x2 MIMO for PCI * AR9223 - 11n single-band 2x2 MIMO for PCI * * AR9287 - 11n single-band 1x1 MIMO for USB */ #include "hw.h" #include "ar9002_phy.h" /** * ar9002_hw_set_channel - set channel on single-chip device * @ah: atheros hardware structure * @chan: * * This is the function to change channel on single-chip devices, that is * all devices after ar9280. * * This function takes the channel value in MHz and sets * hardware channel value. Assumes writes have been enabled to analog bus. * * Actual Expression, * * For 2GHz channel, * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) * * For 5GHz channel, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) * (freq_ref = 40MHz/(24>>amodeRefSel)) */ static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) { u16 bMode, fracMode, aModeRefSel = 0; u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; struct chan_centers centers; u32 refDivA = 24; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); reg32 &= 0xc0000000; if (freq < 4800) { /* 2 GHz, fractional mode */ u32 txctl; int regWrites = 0; bMode = 1; fracMode = 1; aModeRefSel = 0; channelSel = CHANSEL_2G(freq); if (AR_SREV_9287_11_OR_LATER(ah)) { if (freq == 2484) { /* Enable channel spreading for channel 14 */ REG_WRITE_ARRAY(&ah->iniCckfirJapan2484, 1, regWrites); } else { REG_WRITE_ARRAY(&ah->iniCckfirNormal, 1, regWrites); } } else { txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); } } } else { bMode = 0; fracMode = 0; switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { case 0: if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) aModeRefSel = 0; else if ((freq % 20) == 0) aModeRefSel = 3; else if ((freq % 10) == 0) aModeRefSel = 2; if (aModeRefSel) break; case 1: default: aModeRefSel = 0; /* * Enable 2G (fractional) mode for channels * which are 5MHz spaced. */ fracMode = 1; refDivA = 1; channelSel = CHANSEL_5G(freq); /* RefDivA setting */ ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9, AR_AN_SYNTH9_REFDIVA, AR_AN_SYNTH9_REFDIVA_S, refDivA); } if (!fracMode) { ndiv = (freq * (refDivA >> aModeRefSel)) / 60; channelSel = ndiv & 0x1ff; channelFrac = (ndiv & 0xfffffe00) * 2; channelSel = (channelSel << 17) | channelFrac; } } reg32 = reg32 | (bMode << 29) | (fracMode << 28) | (aModeRefSel << 26) | (channelSel); REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); ah->curchan = chan; return 0; } /** * ar9002_hw_spur_mitigate - convert baseband spur frequency * @ah: atheros hardware structure * @chan: * * For single-chip solutions. Converts to baseband spur frequency given the * input channel frequency and compute register settings below. */ static void ar9002_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int freq; int bin, cur_bin; int bb_spur_off, spur_subchannel_sd; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, newVal; int i; static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; static const int inc[4] = { 0, 100, 0, 0 }; struct chan_centers centers; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; ah->config.spurmode = SPUR_ENABLE_EEPROM; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); if (AR_NO_SPUR == cur_bb_spur) break; if (is2GHz) cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; else cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; cur_bb_spur = cur_bb_spur - freq; if (IS_CHAN_HT40(chan)) { if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { bb_spur = cur_bb_spur; break; } } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); return; } else { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); } bin = bb_spur * 320; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); ENABLE_REGWRITE_BUFFER(ah); newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); if (IS_CHAN_HT40(chan)) { if (bb_spur < 0) { spur_subchannel_sd = 1; bb_spur_off = bb_spur + 10; } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur - 10; } } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur; } if (IS_CHAN_HT40(chan)) spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; else spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, newVal); newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp_v = abs(cur_vit_mask - bin); if (tmp_v < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); REGWRITE_BUFFER_FLUSH(ah); } static void ar9002_olc_init(struct ath_hw *ah) { u32 i; if (!OLC_FOR_AR9280_20_LATER) return; if (OLC_FOR_AR9287_10_LATER) { REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, AR9287_AN_TXPC0_TXPCMODE, AR9287_AN_TXPC0_TXPCMODE_S, AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); udelay(100); } else { for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) ah->originalGain[i] = MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), AR_PHY_TX_GAIN); ah->PDADCdelta = 0; } } static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah, struct ath9k_channel *chan) { int ref_div = 5; int pll_div = 0x2c; u32 pll; if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) { if (AR_SREV_9280_20(ah)) { ref_div = 10; pll_div = 0x50; } else { pll_div = 0x28; } } pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV); pll |= SM(pll_div, AR_RTC_9160_PLL_DIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); return pll; } static void ar9002_hw_do_getnf(struct ath_hw *ah, int16_t nfarray[NUM_NF_READINGS]) { int16_t nf; nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); nfarray[0] = sign_extend32(nf, 8); nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); if (IS_CHAN_HT40(ah->curchan)) nfarray[3] = sign_extend32(nf, 8); if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) return; nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); nfarray[1] = sign_extend32(nf, 8); nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); if (IS_CHAN_HT40(ah->curchan)) nfarray[4] = sign_extend32(nf, 8); } static void ar9002_hw_set_nf_limits(struct ath_hw *ah) { if (AR_SREV_9285(ah)) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; } else if (AR_SREV_9287(ah)) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ; } else if (AR_SREV_9271(ah)) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ; } else { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; } } static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >> AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S; antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >> AR_PHY_9285_ANT_DIV_ALT_LNACONF_S; antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >> AR_PHY_9285_FAST_DIV_BIAS_S; antconf->lna1_lna2_delta = -3; antconf->div_group = 0; } static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF | AR_PHY_9285_ANT_DIV_ALT_LNACONF | AR_PHY_9285_FAST_DIV_BIAS); regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S) & AR_PHY_9285_ANT_DIV_MAIN_LNACONF); regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S) & AR_PHY_9285_ANT_DIV_ALT_LNACONF); regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S) & AR_PHY_9285_FAST_DIV_BIAS); REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); } static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable) { struct ath_btcoex_hw *btcoex = &ah->btcoex_hw; u8 antdiv_ctrl1, antdiv_ctrl2; u32 regval; if (enable) { antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE; antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE; /* * Don't disable BT ant to allow BB to control SWCOM. */ btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT)); REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM); REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); } else { /* * Disable antenna diversity, use LNA1 only. */ antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A; antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A; /* * Disable BT Ant. to allow concurrent BT and WLAN receive. */ btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT; REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2); /* * Program SWCOM table to make sure RF switch always parks * at BT side. */ REG_WRITE(ah, AR_PHY_SWITCH_COM, 0); REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000); } regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); /* * Clear ant_fast_div_bias [14:9] since for WB195, * the main LNA is always LNA1. */ regval &= (~(AR_PHY_9285_FAST_DIV_BIAS)); regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL); regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF); regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF); regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB); regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB); REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval); regval = REG_READ(ah, AR_PHY_CCK_DETECT); regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); } static void ar9002_hw_spectral_scan_config(struct ath_hw *ah, struct ath_spec_scan *param) { u8 count; if (!param->enabled) { REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); return; } REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA); REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); if (param->short_repeat) REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); else REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); /* on AR92xx, the highest bit of count will make the the chip send * spectral samples endlessly. Check if this really was intended, * and fix otherwise. */ count = param->count; if (param->endless) count = 0x80; else if (count & 0x80) count = 0x7f; REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_COUNT, count); REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_PERIOD, param->period); REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period); return; } static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah) { REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE); /* Activate spectral scan */ REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ACTIVE); } static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); /* Poll for spectral scan complete */ if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ACTIVE, 0, AH_WAIT_TIMEOUT)) { ath_err(common, "spectral scan wait failed\n"); return; } } void ar9002_hw_attach_phy_ops(struct ath_hw *ah) { struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); struct ath_hw_ops *ops = ath9k_hw_ops(ah); priv_ops->set_rf_regs = NULL; priv_ops->rf_set_freq = ar9002_hw_set_channel; priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate; priv_ops->olc_init = ar9002_olc_init; priv_ops->compute_pll_control = ar9002_hw_compute_pll_control; priv_ops->do_getnf = ar9002_hw_do_getnf; ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get; ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set; ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity; ops->spectral_scan_config = ar9002_hw_spectral_scan_config; ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger; ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait; ar9002_hw_set_nf_limits(ah); }