/* * Copyright © 2004 Texas Instruments, Jian Zhang * Copyright © 2004 Micron Technology Inc. * Copyright © 2004 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "omap2-nand" #define NAND_Ecc_P1e (1 << 0) #define NAND_Ecc_P2e (1 << 1) #define NAND_Ecc_P4e (1 << 2) #define NAND_Ecc_P8e (1 << 3) #define NAND_Ecc_P16e (1 << 4) #define NAND_Ecc_P32e (1 << 5) #define NAND_Ecc_P64e (1 << 6) #define NAND_Ecc_P128e (1 << 7) #define NAND_Ecc_P256e (1 << 8) #define NAND_Ecc_P512e (1 << 9) #define NAND_Ecc_P1024e (1 << 10) #define NAND_Ecc_P2048e (1 << 11) #define NAND_Ecc_P1o (1 << 16) #define NAND_Ecc_P2o (1 << 17) #define NAND_Ecc_P4o (1 << 18) #define NAND_Ecc_P8o (1 << 19) #define NAND_Ecc_P16o (1 << 20) #define NAND_Ecc_P32o (1 << 21) #define NAND_Ecc_P64o (1 << 22) #define NAND_Ecc_P128o (1 << 23) #define NAND_Ecc_P256o (1 << 24) #define NAND_Ecc_P512o (1 << 25) #define NAND_Ecc_P1024o (1 << 26) #define NAND_Ecc_P2048o (1 << 27) #define TF(value) (value ? 1 : 0) #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) #ifdef CONFIG_MTD_PARTITIONS static const char *part_probes[] = { "cmdlinepart", NULL }; #endif #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH static int use_prefetch = 1; /* "modprobe ... use_prefetch=0" etc */ module_param(use_prefetch, bool, 0); MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH"); #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA static int use_dma = 1; /* "modprobe ... use_dma=0" etc */ module_param(use_dma, bool, 0); MODULE_PARM_DESC(use_dma, "enable/disable use of DMA"); #else static const int use_dma; #endif #else const int use_prefetch; static const int use_dma; #endif struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; struct mtd_partition *parts; struct nand_chip nand; struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; struct completion comp; int dma_ch; }; /** * omap_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: command to device * @ctrl: * NAND_NCE: bit 0 -> don't care * NAND_CLE: bit 1 -> Command Latch * NAND_ALE: bit 2 -> Address Latch * * NOTE: boards may use different bits for these!! */ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); if (cmd != NAND_CMD_NONE) { if (ctrl & NAND_CLE) gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd); else if (ctrl & NAND_ALE) gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd); else /* NAND_NCE */ gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd); } } /** * omap_read_buf8 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread8_rep(nand->IO_ADDR_R, buf, len); } /** * omap_write_buf8 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u_char *p = (u_char *)buf; u32 status = 0; while (len--) { iowrite8(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { status = gpmc_read_status(GPMC_STATUS_BUFFER); } while (!status); } } /** * omap_read_buf16 - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand = mtd->priv; ioread16_rep(nand->IO_ADDR_R, buf, len / 2); } /** * omap_write_buf16 - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; u32 status = 0; /* FIXME try bursts of writesw() or DMA ... */ len >>= 1; while (len--) { iowrite16(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { status = gpmc_read_status(GPMC_STATUS_BUFFER); } while (!status); } } /** * omap_read_buf_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t r_count = 0; int ret = 0; u32 *p = (u32 *)buf; /* take care of subpage reads */ if (len % 4) { if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, buf, len % 4); else omap_read_buf8(mtd, buf, len % 4); p = (u32 *) (buf + len % 4); len -= len % 4; } /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_read_buf16(mtd, buf, len); else omap_read_buf8(mtd, buf, len); } else { p = (u32 *) buf; do { r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); r_count = r_count >> 2; ioread32_rep(info->nand.IO_ADDR_R, p, r_count); p += r_count; len -= r_count << 2; } while (len); /* disable and stop the PFPW engine */ gpmc_prefetch_reset(info->gpmc_cs); } } /** * omap_write_buf_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_pref(struct mtd_info *mtd, const u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t pref_count = 0, w_count = 0; int i = 0, ret = 0; u16 *p; /* take care of subpage writes */ if (len % 2 != 0) { writeb(*buf, info->nand.IO_ADDR_W); p = (u16 *)(buf + 1); len--; } /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) omap_write_buf16(mtd, buf, len); else omap_write_buf8(mtd, buf, len); } else { p = (u16 *) buf; while (len) { w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) iowrite16(*p++, info->nand.IO_ADDR_W); } /* wait for data to flushed-out before reset the prefetch */ do { pref_count = gpmc_read_status(GPMC_PREFETCH_COUNT); } while (pref_count); /* disable and stop the PFPW engine */ gpmc_prefetch_reset(info->gpmc_cs); } } #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA /* * omap_nand_dma_cb: callback on the completion of dma transfer * @lch: logical channel * @ch_satuts: channel status * @data: pointer to completion data structure */ static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) { complete((struct completion *) data); } /* * omap_nand_dma_transfer: configer and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred * @is_write: flag for read/write operation */ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, unsigned int len, int is_write) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); uint32_t prefetch_status = 0; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; dma_addr_t dma_addr; int ret; /* The fifo depth is 64 bytes. We have a sync at each frame and frame * length is 64 bytes. */ int buf_len = len >> 6; if (addr >= high_memory) { struct page *p1; if (((size_t)addr & PAGE_MASK) != ((size_t)(addr + len - 1) & PAGE_MASK)) goto out_copy; p1 = vmalloc_to_page(addr); if (!p1) goto out_copy; addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); if (dma_mapping_error(&info->pdev->dev, dma_addr)) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } if (is_write) { omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, info->phys_base, 0, 0); omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, 0x10, buf_len, OMAP_DMA_SYNC_FRAME, OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); } else { omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, info->phys_base, 0, 0); omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, dma_addr, 0, 0); omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, 0x10, buf_len, OMAP_DMA_SYNC_FRAME, OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); } /* configure and start prefetch transfer */ ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write); if (ret) /* PFPW engine is busy, use cpu copy methode */ goto out_copy; init_completion(&info->comp); omap_start_dma(info->dma_ch); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); do { prefetch_status = gpmc_read_status(GPMC_PREFETCH_COUNT); } while (prefetch_status); /* disable and stop the PFPW engine */ gpmc_prefetch_reset(info->gpmc_cs); dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); return 0; out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) : omap_write_buf16(mtd, (u_char *) addr, len); else is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) : omap_write_buf8(mtd, (u_char *) addr, len); return 0; } #else static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {} static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, unsigned int len, int is_write) { return 0; } #endif /** * omap_read_buf_dma_pref - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read */ static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) { if (len <= mtd->oobsize) omap_read_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, buf, len, 0x0); } /** * omap_write_buf_dma_pref - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write */ static void omap_write_buf_dma_pref(struct mtd_info *mtd, const u_char *buf, int len) { if (len <= mtd->oobsize) omap_write_buf_pref(mtd, buf, len); else /* start transfer in DMA mode */ omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); } /** * omap_verify_buf - Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare */ static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; len >>= 1; while (len--) { if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) return -EFAULT; } return 0; } #ifdef CONFIG_MTD_NAND_OMAP_HWECC /** * gen_true_ecc - This function will generate true ECC value * @ecc_buf: buffer to store ecc code * * This generated true ECC value can be used when correcting * data read from NAND flash memory core */ static void gen_true_ecc(u8 *ecc_buf) { u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); } /** * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data * @ecc_data1: ecc code from nand spare area * @ecc_data2: ecc code from hardware register obtained from hardware ecc * @page_data: page data * * This function compares two ECC's and indicates if there is an error. * If the error can be corrected it will be corrected to the buffer. */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ u8 *page_data) { uint i; u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; u8 ecc_bit[24]; u8 ecc_sum = 0; u8 find_bit = 0; uint find_byte = 0; int isEccFF; isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); gen_true_ecc(ecc_data1); gen_true_ecc(ecc_data2); for (i = 0; i <= 2; i++) { *(ecc_data1 + i) = ~(*(ecc_data1 + i)); *(ecc_data2 + i) = ~(*(ecc_data2 + i)); } for (i = 0; i < 8; i++) { tmp0_bit[i] = *ecc_data1 % 2; *ecc_data1 = *ecc_data1 / 2; } for (i = 0; i < 8; i++) { tmp1_bit[i] = *(ecc_data1 + 1) % 2; *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; } for (i = 0; i < 8; i++) { tmp2_bit[i] = *(ecc_data1 + 2) % 2; *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; } for (i = 0; i < 8; i++) { comp0_bit[i] = *ecc_data2 % 2; *ecc_data2 = *ecc_data2 / 2; } for (i = 0; i < 8; i++) { comp1_bit[i] = *(ecc_data2 + 1) % 2; *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; } for (i = 0; i < 8; i++) { comp2_bit[i] = *(ecc_data2 + 2) % 2; *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; } for (i = 0; i < 6; i++) ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; for (i = 0; i < 8; i++) ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; for (i = 0; i < 8; i++) ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; for (i = 0; i < 24; i++) ecc_sum += ecc_bit[i]; switch (ecc_sum) { case 0: /* Not reached because this function is not called if * ECC values are equal */ return 0; case 1: /* Uncorrectable error */ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); return -1; case 11: /* UN-Correctable error */ DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); return -1; case 12: /* Correctable error */ find_byte = (ecc_bit[23] << 8) + (ecc_bit[21] << 7) + (ecc_bit[19] << 6) + (ecc_bit[17] << 5) + (ecc_bit[15] << 4) + (ecc_bit[13] << 3) + (ecc_bit[11] << 2) + (ecc_bit[9] << 1) + ecc_bit[7]; find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " "offset: %d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); return 0; default: if (isEccFF) { if (ecc_data2[0] == 0 && ecc_data2[1] == 0 && ecc_data2[2] == 0) return 0; } DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); return -1; } } /** * omap_correct_data - Compares the ECC read with HW generated ECC * @mtd: MTD device structure * @dat: page data * @read_ecc: ecc read from nand flash * @calc_ecc: ecc read from HW ECC registers * * Compares the ecc read from nand spare area with ECC registers values * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection * and correction. */ static int omap_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); int blockCnt = 0, i = 0, ret = 0; /* Ex NAND_ECC_HW12_2048 */ if ((info->nand.ecc.mode == NAND_ECC_HW) && (info->nand.ecc.size == 2048)) blockCnt = 4; else blockCnt = 1; for (i = 0; i < blockCnt; i++) { if (memcmp(read_ecc, calc_ecc, 3) != 0) { ret = omap_compare_ecc(read_ecc, calc_ecc, dat); if (ret < 0) return ret; } read_ecc += 3; calc_ecc += 3; dat += 512; } return 0; } /** * omap_calcuate_ecc - Generate non-inverted ECC bytes. * @mtd: MTD device structure * @dat: The pointer to data on which ecc is computed * @ecc_code: The ecc_code buffer * * Using noninverted ECC can be considered ugly since writing a blank * page ie. padding will clear the ECC bytes. This is no problem as long * nobody is trying to write data on the seemingly unused page. Reading * an erased page will produce an ECC mismatch between generated and read * ECC bytes that has to be dealt with separately. */ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code); } /** * omap_enable_hwecc - This function enables the hardware ecc functionality * @mtd: MTD device structure * @mode: Read/Write mode */ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size); } #endif /** * omap_wait - wait until the command is done * @mtd: MTD device structure * @chip: NAND Chip structure * * Wait function is called during Program and erase operations and * the way it is called from MTD layer, we should wait till the NAND * chip is ready after the programming/erase operation has completed. * * Erase can take up to 400ms and program up to 20ms according to * general NAND and SmartMedia specs */ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct nand_chip *this = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long timeo = jiffies; int status = NAND_STATUS_FAIL, state = this->state; if (state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF)); while (time_before(jiffies, timeo)) { status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); if (status & NAND_STATUS_READY) break; cond_resched(); } return status; } /** * omap_dev_ready - calls the platform specific dev_ready function * @mtd: MTD device structure */ static int omap_dev_ready(struct mtd_info *mtd) { unsigned int val = 0; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); val = gpmc_read_status(GPMC_GET_IRQ_STATUS); if ((val & 0x100) == 0x100) { /* Clear IRQ Interrupt */ val |= 0x100; val &= ~(0x0); gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val); } else { unsigned int cnt = 0; while (cnt++ < 0x1FF) { if ((val & 0x100) == 0x100) return 0; val = gpmc_read_status(GPMC_GET_IRQ_STATUS); } } return 1; } static int __devinit omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; int err; pdata = pdev->dev.platform_data; if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); info->pdev = pdev; info->gpmc_cs = pdata->cs; info->phys_base = pdata->phys_base; info->mtd.priv = &info->nand; info->mtd.name = dev_name(&pdev->dev); info->mtd.owner = THIS_MODULE; info->nand.options = pdata->devsize; info->nand.options |= NAND_SKIP_BBTSCAN; /* NAND write protect off */ gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0); if (!request_mem_region(info->phys_base, NAND_IO_SIZE, pdev->dev.driver->name)) { err = -EBUSY; goto out_free_info; } info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); if (!info->nand.IO_ADDR_R) { err = -ENOMEM; goto out_release_mem_region; } info->nand.controller = &info->controller; info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; info->nand.cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready * funcrtion and the generic nand_wait function which reads the status * register after monitoring the RDY/BSY line.Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { info->nand.dev_ready = omap_dev_ready; info->nand.chip_delay = 0; } else { info->nand.waitfunc = omap_wait; info->nand.chip_delay = 50; } if (use_prefetch) { info->nand.read_buf = omap_read_buf_pref; info->nand.write_buf = omap_write_buf_pref; if (use_dma) { err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", omap_nand_dma_cb, &info->comp, &info->dma_ch); if (err < 0) { info->dma_ch = -1; printk(KERN_WARNING "DMA request failed." " Non-dma data transfer mode\n"); } else { omap_set_dma_dest_burst_mode(info->dma_ch, OMAP_DMA_DATA_BURST_16); omap_set_dma_src_burst_mode(info->dma_ch, OMAP_DMA_DATA_BURST_16); info->nand.read_buf = omap_read_buf_dma_pref; info->nand.write_buf = omap_write_buf_dma_pref; } } } else { if (info->nand.options & NAND_BUSWIDTH_16) { info->nand.read_buf = omap_read_buf16; info->nand.write_buf = omap_write_buf16; } else { info->nand.read_buf = omap_read_buf8; info->nand.write_buf = omap_write_buf8; } } info->nand.verify_buf = omap_verify_buf; #ifdef CONFIG_MTD_NAND_OMAP_HWECC info->nand.ecc.bytes = 3; info->nand.ecc.size = 512; info->nand.ecc.calculate = omap_calculate_ecc; info->nand.ecc.hwctl = omap_enable_hwecc; info->nand.ecc.correct = omap_correct_data; info->nand.ecc.mode = NAND_ECC_HW; #else info->nand.ecc.mode = NAND_ECC_SOFT; #endif /* DIP switches on some boards change between 8 and 16 bit * bus widths for flash. Try the other width if the first try fails. */ if (nand_scan(&info->mtd, 1)) { info->nand.options ^= NAND_BUSWIDTH_16; if (nand_scan(&info->mtd, 1)) { err = -ENXIO; goto out_release_mem_region; } } #ifdef CONFIG_MTD_PARTITIONS err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); if (err > 0) add_mtd_partitions(&info->mtd, info->parts, err); else if (pdata->parts) add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); else #endif add_mtd_device(&info->mtd); platform_set_drvdata(pdev, &info->mtd); return 0; out_release_mem_region: release_mem_region(info->phys_base, NAND_IO_SIZE); out_free_info: kfree(info); return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); platform_set_drvdata(pdev, NULL); if (use_dma) omap_free_dma(info->dma_ch); /* Release NAND device, its internal structures and partitions */ nand_release(&info->mtd); iounmap(info->nand.IO_ADDR_R); kfree(&info->mtd); return 0; } static struct platform_driver omap_nand_driver = { .probe = omap_nand_probe, .remove = omap_nand_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; static int __init omap_nand_init(void) { printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); /* This check is required if driver is being * loaded run time as a module */ if ((1 == use_dma) && (0 == use_prefetch)) { printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 " "without use_prefetch'. Prefetch will not be" " used in either mode (mpu or dma)\n"); } return platform_driver_register(&omap_nand_driver); } static void __exit omap_nand_exit(void) { platform_driver_unregister(&omap_nand_driver); } module_init(omap_nand_init); module_exit(omap_nand_exit); MODULE_ALIAS(DRIVER_NAME); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");