/* * linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver * * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * Thanks to the following companies for their support: * * - JMicron (hardware and technical support) */ #include #include #include #include #include #include #include #include #include #include #include "sdhci.h" #define DRIVER_NAME "sdhci" #define DBG(f, x...) \ pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x) #if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \ defined(CONFIG_MMC_SDHCI_MODULE)) #define SDHCI_USE_LEDS_CLASS #endif #define MAX_TUNING_LOOP 40 static unsigned int debug_quirks = 0; static void sdhci_finish_data(struct sdhci_host *); static void sdhci_send_command(struct sdhci_host *, struct mmc_command *); static void sdhci_finish_command(struct sdhci_host *); static int sdhci_execute_tuning(struct mmc_host *mmc); static void sdhci_tuning_timer(unsigned long data); static void sdhci_dumpregs(struct sdhci_host *host) { printk(KERN_DEBUG DRIVER_NAME ": =========== REGISTER DUMP (%s)===========\n", mmc_hostname(host->mmc)); printk(KERN_DEBUG DRIVER_NAME ": Sys addr: 0x%08x | Version: 0x%08x\n", sdhci_readl(host, SDHCI_DMA_ADDRESS), sdhci_readw(host, SDHCI_HOST_VERSION)); printk(KERN_DEBUG DRIVER_NAME ": Blk size: 0x%08x | Blk cnt: 0x%08x\n", sdhci_readw(host, SDHCI_BLOCK_SIZE), sdhci_readw(host, SDHCI_BLOCK_COUNT)); printk(KERN_DEBUG DRIVER_NAME ": Argument: 0x%08x | Trn mode: 0x%08x\n", sdhci_readl(host, SDHCI_ARGUMENT), sdhci_readw(host, SDHCI_TRANSFER_MODE)); printk(KERN_DEBUG DRIVER_NAME ": Present: 0x%08x | Host ctl: 0x%08x\n", sdhci_readl(host, SDHCI_PRESENT_STATE), sdhci_readb(host, SDHCI_HOST_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Power: 0x%08x | Blk gap: 0x%08x\n", sdhci_readb(host, SDHCI_POWER_CONTROL), sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Wake-up: 0x%08x | Clock: 0x%08x\n", sdhci_readb(host, SDHCI_WAKE_UP_CONTROL), sdhci_readw(host, SDHCI_CLOCK_CONTROL)); printk(KERN_DEBUG DRIVER_NAME ": Timeout: 0x%08x | Int stat: 0x%08x\n", sdhci_readb(host, SDHCI_TIMEOUT_CONTROL), sdhci_readl(host, SDHCI_INT_STATUS)); printk(KERN_DEBUG DRIVER_NAME ": Int enab: 0x%08x | Sig enab: 0x%08x\n", sdhci_readl(host, SDHCI_INT_ENABLE), sdhci_readl(host, SDHCI_SIGNAL_ENABLE)); printk(KERN_DEBUG DRIVER_NAME ": AC12 err: 0x%08x | Slot int: 0x%08x\n", sdhci_readw(host, SDHCI_ACMD12_ERR), sdhci_readw(host, SDHCI_SLOT_INT_STATUS)); printk(KERN_DEBUG DRIVER_NAME ": Caps: 0x%08x | Caps_1: 0x%08x\n", sdhci_readl(host, SDHCI_CAPABILITIES), sdhci_readl(host, SDHCI_CAPABILITIES_1)); printk(KERN_DEBUG DRIVER_NAME ": Cmd: 0x%08x | Max curr: 0x%08x\n", sdhci_readw(host, SDHCI_COMMAND), sdhci_readl(host, SDHCI_MAX_CURRENT)); printk(KERN_DEBUG DRIVER_NAME ": Host ctl2: 0x%08x\n", sdhci_readw(host, SDHCI_HOST_CONTROL2)); if (host->flags & SDHCI_USE_ADMA) printk(KERN_DEBUG DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n", readl(host->ioaddr + SDHCI_ADMA_ERROR), readl(host->ioaddr + SDHCI_ADMA_ADDRESS)); printk(KERN_DEBUG DRIVER_NAME ": ===========================================\n"); } /*****************************************************************************\ * * * Low level functions * * * \*****************************************************************************/ static void sdhci_clear_set_irqs(struct sdhci_host *host, u32 clear, u32 set) { u32 ier; ier = sdhci_readl(host, SDHCI_INT_ENABLE); ier &= ~clear; ier |= set; sdhci_writel(host, ier, SDHCI_INT_ENABLE); sdhci_writel(host, ier, SDHCI_SIGNAL_ENABLE); } static void sdhci_unmask_irqs(struct sdhci_host *host, u32 irqs) { sdhci_clear_set_irqs(host, 0, irqs); } static void sdhci_mask_irqs(struct sdhci_host *host, u32 irqs) { sdhci_clear_set_irqs(host, irqs, 0); } static void sdhci_set_card_detection(struct sdhci_host *host, bool enable) { u32 present, irqs; if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) return; present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; irqs = present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT; if (enable) sdhci_unmask_irqs(host, irqs); else sdhci_mask_irqs(host, irqs); } static void sdhci_enable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, true); } static void sdhci_disable_card_detection(struct sdhci_host *host) { sdhci_set_card_detection(host, false); } static void sdhci_reset(struct sdhci_host *host, u8 mask) { unsigned long timeout; u32 uninitialized_var(ier); if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) return; } if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET) ier = sdhci_readl(host, SDHCI_INT_ENABLE); if (host->ops->platform_reset_enter) host->ops->platform_reset_enter(host, mask); sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET); if (mask & SDHCI_RESET_ALL) host->clock = 0; /* Wait max 100 ms */ timeout = 100; /* hw clears the bit when it's done */ while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) { if (timeout == 0) { printk(KERN_ERR "%s: Reset 0x%x never completed.\n", mmc_hostname(host->mmc), (int)mask); sdhci_dumpregs(host); return; } timeout--; mdelay(1); } if (host->ops->platform_reset_exit) host->ops->platform_reset_exit(host, mask); if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET) sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, ier); } static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios); static void sdhci_init(struct sdhci_host *host, int soft) { if (soft) sdhci_reset(host, SDHCI_RESET_CMD|SDHCI_RESET_DATA); else sdhci_reset(host, SDHCI_RESET_ALL); sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE); if (soft) { /* force clock reconfiguration */ host->clock = 0; sdhci_set_ios(host->mmc, &host->mmc->ios); } } static void sdhci_reinit(struct sdhci_host *host) { sdhci_init(host, 0); sdhci_enable_card_detection(host); } static void sdhci_activate_led(struct sdhci_host *host) { u8 ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl |= SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static void sdhci_deactivate_led(struct sdhci_host *host) { u8 ctrl; ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_LED; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } #ifdef SDHCI_USE_LEDS_CLASS static void sdhci_led_control(struct led_classdev *led, enum led_brightness brightness) { struct sdhci_host *host = container_of(led, struct sdhci_host, led); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (brightness == LED_OFF) sdhci_deactivate_led(host); else sdhci_activate_led(host); spin_unlock_irqrestore(&host->lock, flags); } #endif /*****************************************************************************\ * * * Core functions * * * \*****************************************************************************/ static void sdhci_read_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 uninitialized_var(scratch); u8 *buf; DBG("PIO reading\n"); blksize = host->data->blksz; chunk = 0; local_irq_save(flags); while (blksize) { if (!sg_miter_next(&host->sg_miter)) BUG(); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { if (chunk == 0) { scratch = sdhci_readl(host, SDHCI_BUFFER); chunk = 4; } *buf = scratch & 0xFF; buf++; scratch >>= 8; chunk--; len--; } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_write_block_pio(struct sdhci_host *host) { unsigned long flags; size_t blksize, len, chunk; u32 scratch; u8 *buf; DBG("PIO writing\n"); blksize = host->data->blksz; chunk = 0; scratch = 0; local_irq_save(flags); while (blksize) { if (!sg_miter_next(&host->sg_miter)) BUG(); len = min(host->sg_miter.length, blksize); blksize -= len; host->sg_miter.consumed = len; buf = host->sg_miter.addr; while (len) { scratch |= (u32)*buf << (chunk * 8); buf++; chunk++; len--; if ((chunk == 4) || ((len == 0) && (blksize == 0))) { sdhci_writel(host, scratch, SDHCI_BUFFER); chunk = 0; scratch = 0; } } } sg_miter_stop(&host->sg_miter); local_irq_restore(flags); } static void sdhci_transfer_pio(struct sdhci_host *host) { u32 mask; BUG_ON(!host->data); if (host->blocks == 0) return; if (host->data->flags & MMC_DATA_READ) mask = SDHCI_DATA_AVAILABLE; else mask = SDHCI_SPACE_AVAILABLE; /* * Some controllers (JMicron JMB38x) mess up the buffer bits * for transfers < 4 bytes. As long as it is just one block, * we can ignore the bits. */ if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) && (host->data->blocks == 1)) mask = ~0; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY) udelay(100); if (host->data->flags & MMC_DATA_READ) sdhci_read_block_pio(host); else sdhci_write_block_pio(host); host->blocks--; if (host->blocks == 0) break; } DBG("PIO transfer complete.\n"); } static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags) { local_irq_save(*flags); return kmap_atomic(sg_page(sg), KM_BIO_SRC_IRQ) + sg->offset; } static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags) { kunmap_atomic(buffer, KM_BIO_SRC_IRQ); local_irq_restore(*flags); } static void sdhci_set_adma_desc(u8 *desc, u32 addr, int len, unsigned cmd) { __le32 *dataddr = (__le32 __force *)(desc + 4); __le16 *cmdlen = (__le16 __force *)desc; /* SDHCI specification says ADMA descriptors should be 4 byte * aligned, so using 16 or 32bit operations should be safe. */ cmdlen[0] = cpu_to_le16(cmd); cmdlen[1] = cpu_to_le16(len); dataddr[0] = cpu_to_le32(addr); } static int sdhci_adma_table_pre(struct sdhci_host *host, struct mmc_data *data) { int direction; u8 *desc; u8 *align; dma_addr_t addr; dma_addr_t align_addr; int len, offset; struct scatterlist *sg; int i; char *buffer; unsigned long flags; /* * The spec does not specify endianness of descriptor table. * We currently guess that it is LE. */ if (data->flags & MMC_DATA_READ) direction = DMA_FROM_DEVICE; else direction = DMA_TO_DEVICE; /* * The ADMA descriptor table is mapped further down as we * need to fill it with data first. */ host->align_addr = dma_map_single(mmc_dev(host->mmc), host->align_buffer, 128 * 4, direction); if (dma_mapping_error(mmc_dev(host->mmc), host->align_addr)) goto fail; BUG_ON(host->align_addr & 0x3); host->sg_count = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); if (host->sg_count == 0) goto unmap_align; desc = host->adma_desc; align = host->align_buffer; align_addr = host->align_addr; for_each_sg(data->sg, sg, host->sg_count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); /* * The SDHCI specification states that ADMA * addresses must be 32-bit aligned. If they * aren't, then we use a bounce buffer for * the (up to three) bytes that screw up the * alignment. */ offset = (4 - (addr & 0x3)) & 0x3; if (offset) { if (data->flags & MMC_DATA_WRITE) { buffer = sdhci_kmap_atomic(sg, &flags); WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3)); memcpy(align, buffer, offset); sdhci_kunmap_atomic(buffer, &flags); } /* tran, valid */ sdhci_set_adma_desc(desc, align_addr, offset, 0x21); BUG_ON(offset > 65536); align += 4; align_addr += 4; desc += 8; addr += offset; len -= offset; } BUG_ON(len > 65536); /* tran, valid */ sdhci_set_adma_desc(desc, addr, len, 0x21); desc += 8; /* * If this triggers then we have a calculation bug * somewhere. :/ */ WARN_ON((desc - host->adma_desc) > (128 * 2 + 1) * 4); } if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) { /* * Mark the last descriptor as the terminating descriptor */ if (desc != host->adma_desc) { desc -= 8; desc[0] |= 0x2; /* end */ } } else { /* * Add a terminating entry. */ /* nop, end, valid */ sdhci_set_adma_desc(desc, 0, 0, 0x3); } /* * Resync align buffer as we might have changed it. */ if (data->flags & MMC_DATA_WRITE) { dma_sync_single_for_device(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); } host->adma_addr = dma_map_single(mmc_dev(host->mmc), host->adma_desc, (128 * 2 + 1) * 4, DMA_TO_DEVICE); if (dma_mapping_error(mmc_dev(host->mmc), host->adma_addr)) goto unmap_entries; BUG_ON(host->adma_addr & 0x3); return 0; unmap_entries: dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); unmap_align: dma_unmap_single(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); fail: return -EINVAL; } static void sdhci_adma_table_post(struct sdhci_host *host, struct mmc_data *data) { int direction; struct scatterlist *sg; int i, size; u8 *align; char *buffer; unsigned long flags; if (data->flags & MMC_DATA_READ) direction = DMA_FROM_DEVICE; else direction = DMA_TO_DEVICE; dma_unmap_single(mmc_dev(host->mmc), host->adma_addr, (128 * 2 + 1) * 4, DMA_TO_DEVICE); dma_unmap_single(mmc_dev(host->mmc), host->align_addr, 128 * 4, direction); if (data->flags & MMC_DATA_READ) { dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg, data->sg_len, direction); align = host->align_buffer; for_each_sg(data->sg, sg, host->sg_count, i) { if (sg_dma_address(sg) & 0x3) { size = 4 - (sg_dma_address(sg) & 0x3); buffer = sdhci_kmap_atomic(sg, &flags); WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3)); memcpy(buffer, align, size); sdhci_kunmap_atomic(buffer, &flags); align += 4; } } } dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, direction); } static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd) { u8 count; struct mmc_data *data = cmd->data; unsigned target_timeout, current_timeout; /* * If the host controller provides us with an incorrect timeout * value, just skip the check and use 0xE. The hardware may take * longer to time out, but that's much better than having a too-short * timeout value. */ if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) return 0xE; /* Unspecified timeout, assume max */ if (!data && !cmd->cmd_timeout_ms) return 0xE; /* timeout in us */ if (!data) target_timeout = cmd->cmd_timeout_ms * 1000; else target_timeout = data->timeout_ns / 1000 + data->timeout_clks / host->clock; if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) host->timeout_clk = host->clock / 1000; /* * Figure out needed cycles. * We do this in steps in order to fit inside a 32 bit int. * The first step is the minimum timeout, which will have a * minimum resolution of 6 bits: * (1) 2^13*1000 > 2^22, * (2) host->timeout_clk < 2^16 * => * (1) / (2) > 2^6 */ BUG_ON(!host->timeout_clk); count = 0; current_timeout = (1 << 13) * 1000 / host->timeout_clk; while (current_timeout < target_timeout) { count++; current_timeout <<= 1; if (count >= 0xF) break; } if (count >= 0xF) { printk(KERN_WARNING "%s: Too large timeout requested for CMD%d!\n", mmc_hostname(host->mmc), cmd->opcode); count = 0xE; } return count; } static void sdhci_set_transfer_irqs(struct sdhci_host *host) { u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL; u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR; if (host->flags & SDHCI_REQ_USE_DMA) sdhci_clear_set_irqs(host, pio_irqs, dma_irqs); else sdhci_clear_set_irqs(host, dma_irqs, pio_irqs); } static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd) { u8 count; u8 ctrl; struct mmc_data *data = cmd->data; int ret; WARN_ON(host->data); if (data || (cmd->flags & MMC_RSP_BUSY)) { count = sdhci_calc_timeout(host, cmd); sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL); } if (!data) return; /* Sanity checks */ BUG_ON(data->blksz * data->blocks > 524288); BUG_ON(data->blksz > host->mmc->max_blk_size); BUG_ON(data->blocks > 65535); host->data = data; host->data_early = 0; host->data->bytes_xfered = 0; if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) host->flags |= SDHCI_REQ_USE_DMA; /* * FIXME: This doesn't account for merging when mapping the * scatterlist. */ if (host->flags & SDHCI_REQ_USE_DMA) { int broken, i; struct scatterlist *sg; broken = 0; if (host->flags & SDHCI_USE_ADMA) { if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) broken = 1; } else { if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) broken = 1; } if (unlikely(broken)) { for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->length & 0x3) { DBG("Reverting to PIO because of " "transfer size (%d)\n", sg->length); host->flags &= ~SDHCI_REQ_USE_DMA; break; } } } } /* * The assumption here being that alignment is the same after * translation to device address space. */ if (host->flags & SDHCI_REQ_USE_DMA) { int broken, i; struct scatterlist *sg; broken = 0; if (host->flags & SDHCI_USE_ADMA) { /* * As we use 3 byte chunks to work around * alignment problems, we need to check this * quirk. */ if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) broken = 1; } else { if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) broken = 1; } if (unlikely(broken)) { for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 0x3) { DBG("Reverting to PIO because of " "bad alignment\n"); host->flags &= ~SDHCI_REQ_USE_DMA; break; } } } } if (host->flags & SDHCI_REQ_USE_DMA) { if (host->flags & SDHCI_USE_ADMA) { ret = sdhci_adma_table_pre(host, data); if (ret) { /* * This only happens when someone fed * us an invalid request. */ WARN_ON(1); host->flags &= ~SDHCI_REQ_USE_DMA; } else { sdhci_writel(host, host->adma_addr, SDHCI_ADMA_ADDRESS); } } else { int sg_cnt; sg_cnt = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (sg_cnt == 0) { /* * This only happens when someone fed * us an invalid request. */ WARN_ON(1); host->flags &= ~SDHCI_REQ_USE_DMA; } else { WARN_ON(sg_cnt != 1); sdhci_writel(host, sg_dma_address(data->sg), SDHCI_DMA_ADDRESS); } } } /* * Always adjust the DMA selection as some controllers * (e.g. JMicron) can't do PIO properly when the selection * is ADMA. */ if (host->version >= SDHCI_SPEC_200) { ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_DMA_MASK; if ((host->flags & SDHCI_REQ_USE_DMA) && (host->flags & SDHCI_USE_ADMA)) ctrl |= SDHCI_CTRL_ADMA32; else ctrl |= SDHCI_CTRL_SDMA; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } if (!(host->flags & SDHCI_REQ_USE_DMA)) { int flags; flags = SG_MITER_ATOMIC; if (host->data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); host->blocks = data->blocks; } sdhci_set_transfer_irqs(host); /* Set the DMA boundary value and block size */ sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, data->blksz), SDHCI_BLOCK_SIZE); sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT); } static void sdhci_set_transfer_mode(struct sdhci_host *host, struct mmc_command *cmd) { u16 mode; struct mmc_data *data = cmd->data; if (data == NULL) return; WARN_ON(!host->data); mode = SDHCI_TRNS_BLK_CNT_EN; if (mmc_op_multi(cmd->opcode) || data->blocks > 1) { mode |= SDHCI_TRNS_MULTI; /* * If we are sending CMD23, CMD12 never gets sent * on successful completion (so no Auto-CMD12). */ if (!host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) mode |= SDHCI_TRNS_AUTO_CMD12; else if (host->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) { mode |= SDHCI_TRNS_AUTO_CMD23; sdhci_writel(host, host->mrq->sbc->arg, SDHCI_ARGUMENT2); } } if (data->flags & MMC_DATA_READ) mode |= SDHCI_TRNS_READ; if (host->flags & SDHCI_REQ_USE_DMA) mode |= SDHCI_TRNS_DMA; sdhci_writew(host, mode, SDHCI_TRANSFER_MODE); } static void sdhci_finish_data(struct sdhci_host *host) { struct mmc_data *data; BUG_ON(!host->data); data = host->data; host->data = NULL; if (host->flags & SDHCI_REQ_USE_DMA) { if (host->flags & SDHCI_USE_ADMA) sdhci_adma_table_post(host, data); else { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } } /* * The specification states that the block count register must * be updated, but it does not specify at what point in the * data flow. That makes the register entirely useless to read * back so we have to assume that nothing made it to the card * in the event of an error. */ if (data->error) data->bytes_xfered = 0; else data->bytes_xfered = data->blksz * data->blocks; /* * Need to send CMD12 if - * a) open-ended multiblock transfer (no CMD23) * b) error in multiblock transfer */ if (data->stop && (data->error || !host->mrq->sbc)) { /* * The controller needs a reset of internal state machines * upon error conditions. */ if (data->error) { sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); } sdhci_send_command(host, data->stop); } else tasklet_schedule(&host->finish_tasklet); } static void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd) { int flags; u32 mask; unsigned long timeout; WARN_ON(host->cmd); /* Wait max 10 ms */ timeout = 10; mask = SDHCI_CMD_INHIBIT; if ((cmd->data != NULL) || (cmd->flags & MMC_RSP_BUSY)) mask |= SDHCI_DATA_INHIBIT; /* We shouldn't wait for data inihibit for stop commands, even though they might use busy signaling */ if (host->mrq->data && (cmd == host->mrq->data->stop)) mask &= ~SDHCI_DATA_INHIBIT; while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) { if (timeout == 0) { printk(KERN_ERR "%s: Controller never released " "inhibit bit(s).\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); cmd->error = -EIO; tasklet_schedule(&host->finish_tasklet); return; } timeout--; mdelay(1); } mod_timer(&host->timer, jiffies + 10 * HZ); host->cmd = cmd; sdhci_prepare_data(host, cmd); sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT); sdhci_set_transfer_mode(host, cmd); if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { printk(KERN_ERR "%s: Unsupported response type!\n", mmc_hostname(host->mmc)); cmd->error = -EINVAL; tasklet_schedule(&host->finish_tasklet); return; } if (!(cmd->flags & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->flags & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->flags & MMC_RSP_BUSY) flags = SDHCI_CMD_RESP_SHORT_BUSY; else flags = SDHCI_CMD_RESP_SHORT; if (cmd->flags & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->flags & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; /* CMD19 is special in that the Data Present Select should be set */ if (cmd->data || (cmd->opcode == MMC_SEND_TUNING_BLOCK)) flags |= SDHCI_CMD_DATA; sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND); } static void sdhci_finish_command(struct sdhci_host *host) { int i; BUG_ON(host->cmd == NULL); if (host->cmd->flags & MMC_RSP_PRESENT) { if (host->cmd->flags & MMC_RSP_136) { /* CRC is stripped so we need to do some shifting. */ for (i = 0;i < 4;i++) { host->cmd->resp[i] = sdhci_readl(host, SDHCI_RESPONSE + (3-i)*4) << 8; if (i != 3) host->cmd->resp[i] |= sdhci_readb(host, SDHCI_RESPONSE + (3-i)*4-1); } } else { host->cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE); } } host->cmd->error = 0; /* Finished CMD23, now send actual command. */ if (host->cmd == host->mrq->sbc) { host->cmd = NULL; sdhci_send_command(host, host->mrq->cmd); } else { /* Processed actual command. */ if (host->data && host->data_early) sdhci_finish_data(host); if (!host->cmd->data) tasklet_schedule(&host->finish_tasklet); host->cmd = NULL; } } static void sdhci_set_clock(struct sdhci_host *host, unsigned int clock) { int div = 0; /* Initialized for compiler warning */ u16 clk = 0; unsigned long timeout; if (clock == host->clock) return; if (host->ops->set_clock) { host->ops->set_clock(host, clock); if (host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK) return; } sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); if (clock == 0) goto out; if (host->version >= SDHCI_SPEC_300) { /* * Check if the Host Controller supports Programmable Clock * Mode. */ if (host->clk_mul) { u16 ctrl; /* * We need to figure out whether the Host Driver needs * to select Programmable Clock Mode, or the value can * be set automatically by the Host Controller based on * the Preset Value registers. */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl & SDHCI_CTRL_PRESET_VAL_ENABLE)) { for (div = 1; div <= 1024; div++) { if (((host->max_clk * host->clk_mul) / div) <= clock) break; } /* * Set Programmable Clock Mode in the Clock * Control register. */ clk = SDHCI_PROG_CLOCK_MODE; div--; } } else { /* Version 3.00 divisors must be a multiple of 2. */ if (host->max_clk <= clock) div = 1; else { for (div = 2; div < SDHCI_MAX_DIV_SPEC_300; div += 2) { if ((host->max_clk / div) <= clock) break; } } div >>= 1; } } else { /* Version 2.00 divisors must be a power of 2. */ for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) { if ((host->max_clk / div) <= clock) break; } div >>= 1; } clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT; clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN) << SDHCI_DIVIDER_HI_SHIFT; clk |= SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Wait max 20 ms */ timeout = 20; while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL)) & SDHCI_CLOCK_INT_STABLE)) { if (timeout == 0) { printk(KERN_ERR "%s: Internal clock never " "stabilised.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); return; } timeout--; mdelay(1); } clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); out: host->clock = clock; } static void sdhci_set_power(struct sdhci_host *host, unsigned short power) { u8 pwr = 0; if (power != (unsigned short)-1) { switch (1 << power) { case MMC_VDD_165_195: pwr = SDHCI_POWER_180; break; case MMC_VDD_29_30: case MMC_VDD_30_31: pwr = SDHCI_POWER_300; break; case MMC_VDD_32_33: case MMC_VDD_33_34: pwr = SDHCI_POWER_330; break; default: BUG(); } } if (host->pwr == pwr) return; host->pwr = pwr; if (pwr == 0) { sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); return; } /* * Spec says that we should clear the power reg before setting * a new value. Some controllers don't seem to like this though. */ if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE)) sdhci_writeb(host, 0, SDHCI_POWER_CONTROL); /* * At least the Marvell CaFe chip gets confused if we set the voltage * and set turn on power at the same time, so set the voltage first. */ if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER) sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); pwr |= SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); /* * Some controllers need an extra 10ms delay of 10ms before they * can apply clock after applying power */ if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER) mdelay(10); } /*****************************************************************************\ * * * MMC callbacks * * * \*****************************************************************************/ static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host; bool present; unsigned long flags; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); WARN_ON(host->mrq != NULL); #ifndef SDHCI_USE_LEDS_CLASS sdhci_activate_led(host); #endif /* * Ensure we don't send the STOP for non-SET_BLOCK_COUNTED * requests if Auto-CMD12 is enabled. */ if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) { if (mrq->stop) { mrq->data->stop = NULL; mrq->stop = NULL; } } host->mrq = mrq; /* If polling, assume that the card is always present. */ if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) present = true; else present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; if (!present || host->flags & SDHCI_DEVICE_DEAD) { host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } else { u32 present_state; present_state = sdhci_readl(host, SDHCI_PRESENT_STATE); /* * Check if the re-tuning timer has already expired and there * is no on-going data transfer. If so, we need to execute * tuning procedure before sending command. */ if ((host->flags & SDHCI_NEEDS_RETUNING) && !(present_state & (SDHCI_DOING_WRITE | SDHCI_DOING_READ))) { spin_unlock_irqrestore(&host->lock, flags); sdhci_execute_tuning(mmc); spin_lock_irqsave(&host->lock, flags); /* Restore original mmc_request structure */ host->mrq = mrq; } if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23)) sdhci_send_command(host, mrq->sbc); else sdhci_send_command(host, mrq->cmd); } mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host; unsigned long flags; u8 ctrl; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; /* * Reset the chip on each power off. * Should clear out any weird states. */ if (ios->power_mode == MMC_POWER_OFF) { sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE); sdhci_reinit(host); } sdhci_set_clock(host, ios->clock); if (ios->power_mode == MMC_POWER_OFF) sdhci_set_power(host, -1); else sdhci_set_power(host, ios->vdd); if (host->ops->platform_send_init_74_clocks) host->ops->platform_send_init_74_clocks(host, ios->power_mode); /* * If your platform has 8-bit width support but is not a v3 controller, * or if it requires special setup code, you should implement that in * platform_8bit_width(). */ if (host->ops->platform_8bit_width) host->ops->platform_8bit_width(host, ios->bus_width); else { ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if (ios->bus_width == MMC_BUS_WIDTH_8) { ctrl &= ~SDHCI_CTRL_4BITBUS; if (host->version >= SDHCI_SPEC_300) ctrl |= SDHCI_CTRL_8BITBUS; } else { if (host->version >= SDHCI_SPEC_300) ctrl &= ~SDHCI_CTRL_8BITBUS; if (ios->bus_width == MMC_BUS_WIDTH_4) ctrl |= SDHCI_CTRL_4BITBUS; else ctrl &= ~SDHCI_CTRL_4BITBUS; } sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); if ((ios->timing == MMC_TIMING_SD_HS || ios->timing == MMC_TIMING_MMC_HS) && !(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) ctrl |= SDHCI_CTRL_HISPD; else ctrl &= ~SDHCI_CTRL_HISPD; if (host->version >= SDHCI_SPEC_300) { u16 clk, ctrl_2; unsigned int clock; /* In case of UHS-I modes, set High Speed Enable */ if ((ios->timing == MMC_TIMING_UHS_SDR50) || (ios->timing == MMC_TIMING_UHS_SDR104) || (ios->timing == MMC_TIMING_UHS_DDR50) || (ios->timing == MMC_TIMING_UHS_SDR25) || (ios->timing == MMC_TIMING_UHS_SDR12)) ctrl |= SDHCI_CTRL_HISPD; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl_2 & SDHCI_CTRL_PRESET_VAL_ENABLE)) { sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* * We only need to set Driver Strength if the * preset value enable is not set. */ ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK; if (ios->drv_type == MMC_SET_DRIVER_TYPE_A) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A; else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C) ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C; sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } else { /* * According to SDHC Spec v3.00, if the Preset Value * Enable in the Host Control 2 register is set, we * need to reset SD Clock Enable before changing High * Speed Enable to avoid generating clock gliches. */ /* Reset SD Clock Enable */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* Re-enable SD Clock */ clock = host->clock; host->clock = 0; sdhci_set_clock(host, clock); } /* Reset SD Clock Enable */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); if (host->ops->set_uhs_signaling) host->ops->set_uhs_signaling(host, ios->timing); else { ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; if (ios->timing == MMC_TIMING_UHS_SDR12) ctrl_2 |= SDHCI_CTRL_UHS_SDR12; else if (ios->timing == MMC_TIMING_UHS_SDR25) ctrl_2 |= SDHCI_CTRL_UHS_SDR25; else if (ios->timing == MMC_TIMING_UHS_SDR50) ctrl_2 |= SDHCI_CTRL_UHS_SDR50; else if (ios->timing == MMC_TIMING_UHS_SDR104) ctrl_2 |= SDHCI_CTRL_UHS_SDR104; else if (ios->timing == MMC_TIMING_UHS_DDR50) ctrl_2 |= SDHCI_CTRL_UHS_DDR50; sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } /* Re-enable SD Clock */ clock = host->clock; host->clock = 0; sdhci_set_clock(host, clock); } else sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); /* * Some (ENE) controllers go apeshit on some ios operation, * signalling timeout and CRC errors even on CMD0. Resetting * it on each ios seems to solve the problem. */ if(host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS) sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); out: mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static int check_ro(struct sdhci_host *host) { unsigned long flags; int is_readonly; spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) is_readonly = 0; else if (host->ops->get_ro) is_readonly = host->ops->get_ro(host); else is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_WRITE_PROTECT); spin_unlock_irqrestore(&host->lock, flags); /* This quirk needs to be replaced by a callback-function later */ return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ? !is_readonly : is_readonly; } #define SAMPLE_COUNT 5 static int sdhci_get_ro(struct mmc_host *mmc) { struct sdhci_host *host; int i, ro_count; host = mmc_priv(mmc); if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT)) return check_ro(host); ro_count = 0; for (i = 0; i < SAMPLE_COUNT; i++) { if (check_ro(host)) { if (++ro_count > SAMPLE_COUNT / 2) return 1; } msleep(30); } return 0; } static void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct sdhci_host *host; unsigned long flags; host = mmc_priv(mmc); spin_lock_irqsave(&host->lock, flags); if (host->flags & SDHCI_DEVICE_DEAD) goto out; if (enable) sdhci_unmask_irqs(host, SDHCI_INT_CARD_INT); else sdhci_mask_irqs(host, SDHCI_INT_CARD_INT); out: mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static int sdhci_start_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host; u8 pwr; u16 clk, ctrl; u32 present_state; host = mmc_priv(mmc); /* * Signal Voltage Switching is only applicable for Host Controllers * v3.00 and above. */ if (host->version < SDHCI_SPEC_300) return 0; /* * We first check whether the request is to set signalling voltage * to 3.3V. If so, we change the voltage to 3.3V and return quickly. */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) { /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ ctrl &= ~SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); /* Wait for 5ms */ usleep_range(5000, 5500); /* 3.3V regulator output should be stable within 5 ms */ ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl & SDHCI_CTRL_VDD_180)) return 0; else { printk(KERN_INFO DRIVER_NAME ": Switching to 3.3V " "signalling voltage failed\n"); return -EIO; } } else if (!(ctrl & SDHCI_CTRL_VDD_180) && (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)) { /* Stop SDCLK */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); /* Check whether DAT[3:0] is 0000 */ present_state = sdhci_readl(host, SDHCI_PRESENT_STATE); if (!((present_state & SDHCI_DATA_LVL_MASK) >> SDHCI_DATA_LVL_SHIFT)) { /* * Enable 1.8V Signal Enable in the Host Control2 * register */ ctrl |= SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); /* Wait for 5ms */ usleep_range(5000, 5500); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (ctrl & SDHCI_CTRL_VDD_180) { /* Provide SDCLK again and wait for 1ms*/ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); usleep_range(1000, 1500); /* * If DAT[3:0] level is 1111b, then the card * was successfully switched to 1.8V signaling. */ present_state = sdhci_readl(host, SDHCI_PRESENT_STATE); if ((present_state & SDHCI_DATA_LVL_MASK) == SDHCI_DATA_LVL_MASK) return 0; } } /* * If we are here, that means the switch to 1.8V signaling * failed. We power cycle the card, and retry initialization * sequence by setting S18R to 0. */ pwr = sdhci_readb(host, SDHCI_POWER_CONTROL); pwr &= ~SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); /* Wait for 1ms as per the spec */ usleep_range(1000, 1500); pwr |= SDHCI_POWER_ON; sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL); printk(KERN_INFO DRIVER_NAME ": Switching to 1.8V signalling " "voltage failed, retrying with S18R set to 0\n"); return -EAGAIN; } else /* No signal voltage switch required */ return 0; } static int sdhci_execute_tuning(struct mmc_host *mmc) { struct sdhci_host *host; u16 ctrl; u32 ier; int tuning_loop_counter = MAX_TUNING_LOOP; unsigned long timeout; int err = 0; host = mmc_priv(mmc); disable_irq(host->irq); spin_lock(&host->lock); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* * Host Controller needs tuning only in case of SDR104 mode * and for SDR50 mode when Use Tuning for SDR50 is set in * Capabilities register. */ if (((ctrl & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR104) || (((ctrl & SDHCI_CTRL_UHS_MASK) == SDHCI_CTRL_UHS_SDR50) && (host->flags & SDHCI_SDR50_NEEDS_TUNING))) ctrl |= SDHCI_CTRL_EXEC_TUNING; else { spin_unlock(&host->lock); enable_irq(host->irq); return 0; } sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); /* * As per the Host Controller spec v3.00, tuning command * generates Buffer Read Ready interrupt, so enable that. * * Note: The spec clearly says that when tuning sequence * is being performed, the controller does not generate * interrupts other than Buffer Read Ready interrupt. But * to make sure we don't hit a controller bug, we _only_ * enable Buffer Read Ready interrupt here. */ ier = sdhci_readl(host, SDHCI_INT_ENABLE); sdhci_clear_set_irqs(host, ier, SDHCI_INT_DATA_AVAIL); /* * Issue CMD19 repeatedly till Execute Tuning is set to 0 or the number * of loops reaches 40 times or a timeout of 150ms occurs. */ timeout = 150; do { struct mmc_command cmd = {0}; struct mmc_request mrq = {0}; if (!tuning_loop_counter && !timeout) break; cmd.opcode = MMC_SEND_TUNING_BLOCK; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; cmd.retries = 0; cmd.data = NULL; cmd.error = 0; mrq.cmd = &cmd; host->mrq = &mrq; /* * In response to CMD19, the card sends 64 bytes of tuning * block to the Host Controller. So we set the block size * to 64 here. */ sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, 64), SDHCI_BLOCK_SIZE); /* * The tuning block is sent by the card to the host controller. * So we set the TRNS_READ bit in the Transfer Mode register. * This also takes care of setting DMA Enable and Multi Block * Select in the same register to 0. */ sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); sdhci_send_command(host, &cmd); host->cmd = NULL; host->mrq = NULL; spin_unlock(&host->lock); enable_irq(host->irq); /* Wait for Buffer Read Ready interrupt */ wait_event_interruptible_timeout(host->buf_ready_int, (host->tuning_done == 1), msecs_to_jiffies(50)); disable_irq(host->irq); spin_lock(&host->lock); if (!host->tuning_done) { printk(KERN_INFO DRIVER_NAME ": Timeout waiting for " "Buffer Read Ready interrupt during tuning " "procedure, falling back to fixed sampling " "clock\n"); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl &= ~SDHCI_CTRL_TUNED_CLK; ctrl &= ~SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); err = -EIO; goto out; } host->tuning_done = 0; ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); tuning_loop_counter--; timeout--; mdelay(1); } while (ctrl & SDHCI_CTRL_EXEC_TUNING); /* * The Host Driver has exhausted the maximum number of loops allowed, * so use fixed sampling frequency. */ if (!tuning_loop_counter || !timeout) { ctrl &= ~SDHCI_CTRL_TUNED_CLK; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } else { if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) { printk(KERN_INFO DRIVER_NAME ": Tuning procedure" " failed, falling back to fixed sampling" " clock\n"); err = -EIO; } } out: /* * If this is the very first time we are here, we start the retuning * timer. Since only during the first time, SDHCI_NEEDS_RETUNING * flag won't be set, we check this condition before actually starting * the timer. */ if (!(host->flags & SDHCI_NEEDS_RETUNING) && host->tuning_count && (host->tuning_mode == SDHCI_TUNING_MODE_1)) { mod_timer(&host->tuning_timer, jiffies + host->tuning_count * HZ); /* Tuning mode 1 limits the maximum data length to 4MB */ mmc->max_blk_count = (4 * 1024 * 1024) / mmc->max_blk_size; } else { host->flags &= ~SDHCI_NEEDS_RETUNING; /* Reload the new initial value for timer */ if (host->tuning_mode == SDHCI_TUNING_MODE_1) mod_timer(&host->tuning_timer, jiffies + host->tuning_count * HZ); } /* * In case tuning fails, host controllers which support re-tuning can * try tuning again at a later time, when the re-tuning timer expires. * So for these controllers, we return 0. Since there might be other * controllers who do not have this capability, we return error for * them. */ if (err && host->tuning_count && host->tuning_mode == SDHCI_TUNING_MODE_1) err = 0; sdhci_clear_set_irqs(host, SDHCI_INT_DATA_AVAIL, ier); spin_unlock(&host->lock); enable_irq(host->irq); return err; } static void sdhci_enable_preset_value(struct mmc_host *mmc, bool enable) { struct sdhci_host *host; u16 ctrl; unsigned long flags; host = mmc_priv(mmc); /* Host Controller v3.00 defines preset value registers */ if (host->version < SDHCI_SPEC_300) return; spin_lock_irqsave(&host->lock, flags); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* * We only enable or disable Preset Value if they are not already * enabled or disabled respectively. Otherwise, we bail out. */ if (enable && !(ctrl & SDHCI_CTRL_PRESET_VAL_ENABLE)) { ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } else if (!enable && (ctrl & SDHCI_CTRL_PRESET_VAL_ENABLE)) { ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } spin_unlock_irqrestore(&host->lock, flags); } static const struct mmc_host_ops sdhci_ops = { .request = sdhci_request, .set_ios = sdhci_set_ios, .get_ro = sdhci_get_ro, .enable_sdio_irq = sdhci_enable_sdio_irq, .start_signal_voltage_switch = sdhci_start_signal_voltage_switch, .execute_tuning = sdhci_execute_tuning, .enable_preset_value = sdhci_enable_preset_value, }; /*****************************************************************************\ * * * Tasklets * * * \*****************************************************************************/ static void sdhci_tasklet_card(unsigned long param) { struct sdhci_host *host; unsigned long flags; host = (struct sdhci_host*)param; spin_lock_irqsave(&host->lock, flags); if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) { if (host->mrq) { printk(KERN_ERR "%s: Card removed during transfer!\n", mmc_hostname(host->mmc)); printk(KERN_ERR "%s: Resetting controller.\n", mmc_hostname(host->mmc)); sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } } spin_unlock_irqrestore(&host->lock, flags); mmc_detect_change(host->mmc, msecs_to_jiffies(200)); } static void sdhci_tasklet_finish(unsigned long param) { struct sdhci_host *host; unsigned long flags; struct mmc_request *mrq; host = (struct sdhci_host*)param; /* * If this tasklet gets rescheduled while running, it will * be run again afterwards but without any active request. */ if (!host->mrq) return; spin_lock_irqsave(&host->lock, flags); del_timer(&host->timer); if (host->version >= SDHCI_SPEC_300) del_timer(&host->tuning_timer); mrq = host->mrq; /* * The controller needs a reset of internal state machines * upon error conditions. */ if (!(host->flags & SDHCI_DEVICE_DEAD) && ((mrq->cmd && mrq->cmd->error) || (mrq->data && (mrq->data->error || (mrq->data->stop && mrq->data->stop->error))) || (host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { /* Some controllers need this kick or reset won't work here */ if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET) { unsigned int clock; /* This is to force an update */ clock = host->clock; host->clock = 0; sdhci_set_clock(host, clock); } /* Spec says we should do both at the same time, but Ricoh controllers do not like that. */ sdhci_reset(host, SDHCI_RESET_CMD); sdhci_reset(host, SDHCI_RESET_DATA); } host->mrq = NULL; host->cmd = NULL; host->data = NULL; #ifndef SDHCI_USE_LEDS_CLASS sdhci_deactivate_led(host); #endif mmiowb(); spin_unlock_irqrestore(&host->lock, flags); mmc_request_done(host->mmc, mrq); } static void sdhci_timeout_timer(unsigned long data) { struct sdhci_host *host; unsigned long flags; host = (struct sdhci_host*)data; spin_lock_irqsave(&host->lock, flags); if (host->mrq) { printk(KERN_ERR "%s: Timeout waiting for hardware " "interrupt.\n", mmc_hostname(host->mmc)); sdhci_dumpregs(host); if (host->data) { host->data->error = -ETIMEDOUT; sdhci_finish_data(host); } else { if (host->cmd) host->cmd->error = -ETIMEDOUT; else host->mrq->cmd->error = -ETIMEDOUT; tasklet_schedule(&host->finish_tasklet); } } mmiowb(); spin_unlock_irqrestore(&host->lock, flags); } static void sdhci_tuning_timer(unsigned long data) { struct sdhci_host *host; unsigned long flags; host = (struct sdhci_host *)data; spin_lock_irqsave(&host->lock, flags); host->flags |= SDHCI_NEEDS_RETUNING; spin_unlock_irqrestore(&host->lock, flags); } /*****************************************************************************\ * * * Interrupt handling * * * \*****************************************************************************/ static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask) { BUG_ON(intmask == 0); if (!host->cmd) { printk(KERN_ERR "%s: Got command interrupt 0x%08x even " "though no command operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & SDHCI_INT_TIMEOUT) host->cmd->error = -ETIMEDOUT; else if (intmask & (SDHCI_INT_CRC | SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) host->cmd->error = -EILSEQ; if (host->cmd->error) { tasklet_schedule(&host->finish_tasklet); return; } /* * The host can send and interrupt when the busy state has * ended, allowing us to wait without wasting CPU cycles. * Unfortunately this is overloaded on the "data complete" * interrupt, so we need to take some care when handling * it. * * Note: The 1.0 specification is a bit ambiguous about this * feature so there might be some problems with older * controllers. */ if (host->cmd->flags & MMC_RSP_BUSY) { if (host->cmd->data) DBG("Cannot wait for busy signal when also " "doing a data transfer"); else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ)) return; /* The controller does not support the end-of-busy IRQ, * fall through and take the SDHCI_INT_RESPONSE */ } if (intmask & SDHCI_INT_RESPONSE) sdhci_finish_command(host); } #ifdef CONFIG_MMC_DEBUG static void sdhci_show_adma_error(struct sdhci_host *host) { const char *name = mmc_hostname(host->mmc); u8 *desc = host->adma_desc; __le32 *dma; __le16 *len; u8 attr; sdhci_dumpregs(host); while (true) { dma = (__le32 *)(desc + 4); len = (__le16 *)(desc + 2); attr = *desc; DBG("%s: %p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n", name, desc, le32_to_cpu(*dma), le16_to_cpu(*len), attr); desc += 8; if (attr & 2) break; } } #else static void sdhci_show_adma_error(struct sdhci_host *host) { } #endif static void sdhci_data_irq(struct sdhci_host *host, u32 intmask) { BUG_ON(intmask == 0); /* CMD19 generates _only_ Buffer Read Ready interrupt */ if (intmask & SDHCI_INT_DATA_AVAIL) { if (SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)) == MMC_SEND_TUNING_BLOCK) { host->tuning_done = 1; wake_up(&host->buf_ready_int); return; } } if (!host->data) { /* * The "data complete" interrupt is also used to * indicate that a busy state has ended. See comment * above in sdhci_cmd_irq(). */ if (host->cmd && (host->cmd->flags & MMC_RSP_BUSY)) { if (intmask & SDHCI_INT_DATA_END) { sdhci_finish_command(host); return; } } printk(KERN_ERR "%s: Got data interrupt 0x%08x even " "though no data operation was in progress.\n", mmc_hostname(host->mmc), (unsigned)intmask); sdhci_dumpregs(host); return; } if (intmask & SDHCI_INT_DATA_TIMEOUT) host->data->error = -ETIMEDOUT; else if (intmask & SDHCI_INT_DATA_END_BIT) host->data->error = -EILSEQ; else if ((intmask & SDHCI_INT_DATA_CRC) && SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)) != MMC_BUS_TEST_R) host->data->error = -EILSEQ; else if (intmask & SDHCI_INT_ADMA_ERROR) { printk(KERN_ERR "%s: ADMA error\n", mmc_hostname(host->mmc)); sdhci_show_adma_error(host); host->data->error = -EIO; } if (host->data->error) sdhci_finish_data(host); else { if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) sdhci_transfer_pio(host); /* * We currently don't do anything fancy with DMA * boundaries, but as we can't disable the feature * we need to at least restart the transfer. * * According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS) * should return a valid address to continue from, but as * some controllers are faulty, don't trust them. */ if (intmask & SDHCI_INT_DMA_END) { u32 dmastart, dmanow; dmastart = sg_dma_address(host->data->sg); dmanow = dmastart + host->data->bytes_xfered; /* * Force update to the next DMA block boundary. */ dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + SDHCI_DEFAULT_BOUNDARY_SIZE; host->data->bytes_xfered = dmanow - dmastart; DBG("%s: DMA base 0x%08x, transferred 0x%06x bytes," " next 0x%08x\n", mmc_hostname(host->mmc), dmastart, host->data->bytes_xfered, dmanow); sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); } if (intmask & SDHCI_INT_DATA_END) { if (host->cmd) { /* * Data managed to finish before the * command completed. Make sure we do * things in the proper order. */ host->data_early = 1; } else { sdhci_finish_data(host); } } } } static irqreturn_t sdhci_irq(int irq, void *dev_id) { irqreturn_t result; struct sdhci_host* host = dev_id; u32 intmask; int cardint = 0; spin_lock(&host->lock); intmask = sdhci_readl(host, SDHCI_INT_STATUS); if (!intmask || intmask == 0xffffffff) { result = IRQ_NONE; goto out; } DBG("*** %s got interrupt: 0x%08x\n", mmc_hostname(host->mmc), intmask); if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT; /* * There is a observation on i.mx esdhc. INSERT bit will be * immediately set again when it gets cleared, if a card is * inserted. We have to mask the irq to prevent interrupt * storm which will freeze the system. And the REMOVE gets * the same situation. * * More testing are needed here to ensure it works for other * platforms though. */ sdhci_mask_irqs(host, present ? SDHCI_INT_CARD_INSERT : SDHCI_INT_CARD_REMOVE); sdhci_unmask_irqs(host, present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT); sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS); intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); tasklet_schedule(&host->card_tasklet); } if (intmask & SDHCI_INT_CMD_MASK) { sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK, SDHCI_INT_STATUS); sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK); } if (intmask & SDHCI_INT_DATA_MASK) { sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK, SDHCI_INT_STATUS); sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); } intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK); intmask &= ~SDHCI_INT_ERROR; if (intmask & SDHCI_INT_BUS_POWER) { printk(KERN_ERR "%s: Card is consuming too much power!\n", mmc_hostname(host->mmc)); sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS); } intmask &= ~SDHCI_INT_BUS_POWER; if (intmask & SDHCI_INT_CARD_INT) cardint = 1; intmask &= ~SDHCI_INT_CARD_INT; if (intmask) { printk(KERN_ERR "%s: Unexpected interrupt 0x%08x.\n", mmc_hostname(host->mmc), intmask); sdhci_dumpregs(host); sdhci_writel(host, intmask, SDHCI_INT_STATUS); } result = IRQ_HANDLED; mmiowb(); out: spin_unlock(&host->lock); /* * We have to delay this as it calls back into the driver. */ if (cardint) mmc_signal_sdio_irq(host->mmc); return result; } /*****************************************************************************\ * * * Suspend/resume * * * \*****************************************************************************/ #ifdef CONFIG_PM int sdhci_suspend_host(struct sdhci_host *host, pm_message_t state) { int ret; sdhci_disable_card_detection(host); /* Disable tuning since we are suspending */ if (host->version >= SDHCI_SPEC_300 && host->tuning_count && host->tuning_mode == SDHCI_TUNING_MODE_1) { host->flags &= ~SDHCI_NEEDS_RETUNING; mod_timer(&host->tuning_timer, jiffies + host->tuning_count * HZ); } ret = mmc_suspend_host(host->mmc); if (ret) return ret; free_irq(host->irq, host); if (host->vmmc) ret = regulator_disable(host->vmmc); return ret; } EXPORT_SYMBOL_GPL(sdhci_suspend_host); int sdhci_resume_host(struct sdhci_host *host) { int ret; if (host->vmmc) { int ret = regulator_enable(host->vmmc); if (ret) return ret; } if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->enable_dma) host->ops->enable_dma(host); } ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED, mmc_hostname(host->mmc), host); if (ret) return ret; sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER)); mmiowb(); ret = mmc_resume_host(host->mmc); sdhci_enable_card_detection(host); /* Set the re-tuning expiration flag */ if ((host->version >= SDHCI_SPEC_300) && host->tuning_count && (host->tuning_mode == SDHCI_TUNING_MODE_1)) host->flags |= SDHCI_NEEDS_RETUNING; return ret; } EXPORT_SYMBOL_GPL(sdhci_resume_host); void sdhci_enable_irq_wakeups(struct sdhci_host *host) { u8 val; val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL); val |= SDHCI_WAKE_ON_INT; sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL); } EXPORT_SYMBOL_GPL(sdhci_enable_irq_wakeups); #endif /* CONFIG_PM */ /*****************************************************************************\ * * * Device allocation/registration * * * \*****************************************************************************/ struct sdhci_host *sdhci_alloc_host(struct device *dev, size_t priv_size) { struct mmc_host *mmc; struct sdhci_host *host; WARN_ON(dev == NULL); mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev); if (!mmc) return ERR_PTR(-ENOMEM); host = mmc_priv(mmc); host->mmc = mmc; return host; } EXPORT_SYMBOL_GPL(sdhci_alloc_host); int sdhci_add_host(struct sdhci_host *host) { struct mmc_host *mmc; u32 caps[2]; u32 max_current_caps; unsigned int ocr_avail; int ret; WARN_ON(host == NULL); if (host == NULL) return -EINVAL; mmc = host->mmc; if (debug_quirks) host->quirks = debug_quirks; sdhci_reset(host, SDHCI_RESET_ALL); host->version = sdhci_readw(host, SDHCI_HOST_VERSION); host->version = (host->version & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT; if (host->version > SDHCI_SPEC_300) { printk(KERN_ERR "%s: Unknown controller version (%d). " "You may experience problems.\n", mmc_hostname(mmc), host->version); } caps[0] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps : sdhci_readl(host, SDHCI_CAPABILITIES); caps[1] = (host->version >= SDHCI_SPEC_300) ? sdhci_readl(host, SDHCI_CAPABILITIES_1) : 0; if (host->quirks & SDHCI_QUIRK_FORCE_DMA) host->flags |= SDHCI_USE_SDMA; else if (!(caps[0] & SDHCI_CAN_DO_SDMA)) DBG("Controller doesn't have SDMA capability\n"); else host->flags |= SDHCI_USE_SDMA; if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) && (host->flags & SDHCI_USE_SDMA)) { DBG("Disabling DMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_SDMA; } if ((host->version >= SDHCI_SPEC_200) && (caps[0] & SDHCI_CAN_DO_ADMA2)) host->flags |= SDHCI_USE_ADMA; if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) && (host->flags & SDHCI_USE_ADMA)) { DBG("Disabling ADMA as it is marked broken\n"); host->flags &= ~SDHCI_USE_ADMA; } if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) { if (host->ops->enable_dma) { if (host->ops->enable_dma(host)) { printk(KERN_WARNING "%s: No suitable DMA " "available. Falling back to PIO.\n", mmc_hostname(mmc)); host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA); } } } if (host->flags & SDHCI_USE_ADMA) { /* * We need to allocate descriptors for all sg entries * (128) and potentially one alignment transfer for * each of those entries. */ host->adma_desc = kmalloc((128 * 2 + 1) * 4, GFP_KERNEL); host->align_buffer = kmalloc(128 * 4, GFP_KERNEL); if (!host->adma_desc || !host->align_buffer) { kfree(host->adma_desc); kfree(host->align_buffer); printk(KERN_WARNING "%s: Unable to allocate ADMA " "buffers. Falling back to standard DMA.\n", mmc_hostname(mmc)); host->flags &= ~SDHCI_USE_ADMA; } } /* * If we use DMA, then it's up to the caller to set the DMA * mask, but PIO does not need the hw shim so we set a new * mask here in that case. */ if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) { host->dma_mask = DMA_BIT_MASK(64); mmc_dev(host->mmc)->dma_mask = &host->dma_mask; } if (host->version >= SDHCI_SPEC_300) host->max_clk = (caps[0] & SDHCI_CLOCK_V3_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; else host->max_clk = (caps[0] & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; host->max_clk *= 1000000; if (host->max_clk == 0 || host->quirks & SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) { if (!host->ops->get_max_clock) { printk(KERN_ERR "%s: Hardware doesn't specify base clock " "frequency.\n", mmc_hostname(mmc)); return -ENODEV; } host->max_clk = host->ops->get_max_clock(host); } host->timeout_clk = (caps[0] & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT; if (host->timeout_clk == 0) { if (host->ops->get_timeout_clock) { host->timeout_clk = host->ops->get_timeout_clock(host); } else if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) { printk(KERN_ERR "%s: Hardware doesn't specify timeout clock " "frequency.\n", mmc_hostname(mmc)); return -ENODEV; } } if (caps[0] & SDHCI_TIMEOUT_CLK_UNIT) host->timeout_clk *= 1000; /* * In case of Host Controller v3.00, find out whether clock * multiplier is supported. */ host->clk_mul = (caps[1] & SDHCI_CLOCK_MUL_MASK) >> SDHCI_CLOCK_MUL_SHIFT; /* * In case the value in Clock Multiplier is 0, then programmable * clock mode is not supported, otherwise the actual clock * multiplier is one more than the value of Clock Multiplier * in the Capabilities Register. */ if (host->clk_mul) host->clk_mul += 1; /* * Set host parameters. */ mmc->ops = &sdhci_ops; mmc->f_max = host->max_clk; if (host->ops->get_min_clock) mmc->f_min = host->ops->get_min_clock(host); else if (host->version >= SDHCI_SPEC_300) { if (host->clk_mul) { mmc->f_min = (host->max_clk * host->clk_mul) / 1024; mmc->f_max = host->max_clk * host->clk_mul; } else mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300; } else mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200; mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23; if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12) host->flags |= SDHCI_AUTO_CMD12; /* Auto-CMD23 stuff only works in ADMA or PIO. */ if ((host->version >= SDHCI_SPEC_300) && ((host->flags & SDHCI_USE_ADMA) || !(host->flags & SDHCI_USE_SDMA))) { host->flags |= SDHCI_AUTO_CMD23; DBG("%s: Auto-CMD23 available\n", mmc_hostname(mmc)); } else { DBG("%s: Auto-CMD23 unavailable\n", mmc_hostname(mmc)); } /* * A controller may support 8-bit width, but the board itself * might not have the pins brought out. Boards that support * 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in * their platform code before calling sdhci_add_host(), and we * won't assume 8-bit width for hosts without that CAP. */ if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA)) mmc->caps |= MMC_CAP_4_BIT_DATA; if (caps[0] & SDHCI_CAN_DO_HISPD) mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && mmc_card_is_removable(mmc)) mmc->caps |= MMC_CAP_NEEDS_POLL; /* UHS-I mode(s) supported by the host controller. */ if (host->version >= SDHCI_SPEC_300) mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; /* SDR104 supports also implies SDR50 support */ if (caps[1] & SDHCI_SUPPORT_SDR104) mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; else if (caps[1] & SDHCI_SUPPORT_SDR50) mmc->caps |= MMC_CAP_UHS_SDR50; if (caps[1] & SDHCI_SUPPORT_DDR50) mmc->caps |= MMC_CAP_UHS_DDR50; /* Does the host needs tuning for SDR50? */ if (caps[1] & SDHCI_USE_SDR50_TUNING) host->flags |= SDHCI_SDR50_NEEDS_TUNING; /* Driver Type(s) (A, C, D) supported by the host */ if (caps[1] & SDHCI_DRIVER_TYPE_A) mmc->caps |= MMC_CAP_DRIVER_TYPE_A; if (caps[1] & SDHCI_DRIVER_TYPE_C) mmc->caps |= MMC_CAP_DRIVER_TYPE_C; if (caps[1] & SDHCI_DRIVER_TYPE_D) mmc->caps |= MMC_CAP_DRIVER_TYPE_D; /* Initial value for re-tuning timer count */ host->tuning_count = (caps[1] & SDHCI_RETUNING_TIMER_COUNT_MASK) >> SDHCI_RETUNING_TIMER_COUNT_SHIFT; /* * In case Re-tuning Timer is not disabled, the actual value of * re-tuning timer will be 2 ^ (n - 1). */ if (host->tuning_count) host->tuning_count = 1 << (host->tuning_count - 1); /* Re-tuning mode supported by the Host Controller */ host->tuning_mode = (caps[1] & SDHCI_RETUNING_MODE_MASK) >> SDHCI_RETUNING_MODE_SHIFT; ocr_avail = 0; /* * According to SD Host Controller spec v3.00, if the Host System * can afford more than 150mA, Host Driver should set XPC to 1. Also * the value is meaningful only if Voltage Support in the Capabilities * register is set. The actual current value is 4 times the register * value. */ max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT); if (caps[0] & SDHCI_CAN_VDD_330) { int max_current_330; ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34; max_current_330 = ((max_current_caps & SDHCI_MAX_CURRENT_330_MASK) >> SDHCI_MAX_CURRENT_330_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; if (max_current_330 > 150) mmc->caps |= MMC_CAP_SET_XPC_330; } if (caps[0] & SDHCI_CAN_VDD_300) { int max_current_300; ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31; max_current_300 = ((max_current_caps & SDHCI_MAX_CURRENT_300_MASK) >> SDHCI_MAX_CURRENT_300_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; if (max_current_300 > 150) mmc->caps |= MMC_CAP_SET_XPC_300; } if (caps[0] & SDHCI_CAN_VDD_180) { int max_current_180; ocr_avail |= MMC_VDD_165_195; max_current_180 = ((max_current_caps & SDHCI_MAX_CURRENT_180_MASK) >> SDHCI_MAX_CURRENT_180_SHIFT) * SDHCI_MAX_CURRENT_MULTIPLIER; if (max_current_180 > 150) mmc->caps |= MMC_CAP_SET_XPC_180; /* Maximum current capabilities of the host at 1.8V */ if (max_current_180 >= 800) mmc->caps |= MMC_CAP_MAX_CURRENT_800; else if (max_current_180 >= 600) mmc->caps |= MMC_CAP_MAX_CURRENT_600; else if (max_current_180 >= 400) mmc->caps |= MMC_CAP_MAX_CURRENT_400; else mmc->caps |= MMC_CAP_MAX_CURRENT_200; } mmc->ocr_avail = ocr_avail; mmc->ocr_avail_sdio = ocr_avail; if (host->ocr_avail_sdio) mmc->ocr_avail_sdio &= host->ocr_avail_sdio; mmc->ocr_avail_sd = ocr_avail; if (host->ocr_avail_sd) mmc->ocr_avail_sd &= host->ocr_avail_sd; else /* normal SD controllers don't support 1.8V */ mmc->ocr_avail_sd &= ~MMC_VDD_165_195; mmc->ocr_avail_mmc = ocr_avail; if (host->ocr_avail_mmc) mmc->ocr_avail_mmc &= host->ocr_avail_mmc; if (mmc->ocr_avail == 0) { printk(KERN_ERR "%s: Hardware doesn't report any " "support voltages.\n", mmc_hostname(mmc)); return -ENODEV; } spin_lock_init(&host->lock); /* * Maximum number of segments. Depends on if the hardware * can do scatter/gather or not. */ if (host->flags & SDHCI_USE_ADMA) mmc->max_segs = 128; else if (host->flags & SDHCI_USE_SDMA) mmc->max_segs = 1; else /* PIO */ mmc->max_segs = 128; /* * Maximum number of sectors in one transfer. Limited by DMA boundary * size (512KiB). */ mmc->max_req_size = 524288; /* * Maximum segment size. Could be one segment with the maximum number * of bytes. When doing hardware scatter/gather, each entry cannot * be larger than 64 KiB though. */ if (host->flags & SDHCI_USE_ADMA) { if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC) mmc->max_seg_size = 65535; else mmc->max_seg_size = 65536; } else { mmc->max_seg_size = mmc->max_req_size; } /* * Maximum block size. This varies from controller to controller and * is specified in the capabilities register. */ if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) { mmc->max_blk_size = 2; } else { mmc->max_blk_size = (caps[0] & SDHCI_MAX_BLOCK_MASK) >> SDHCI_MAX_BLOCK_SHIFT; if (mmc->max_blk_size >= 3) { printk(KERN_WARNING "%s: Invalid maximum block size, " "assuming 512 bytes\n", mmc_hostname(mmc)); mmc->max_blk_size = 0; } } mmc->max_blk_size = 512 << mmc->max_blk_size; /* * Maximum block count. */ mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535; /* * Init tasklets. */ tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host); tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host); setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host); if (host->version >= SDHCI_SPEC_300) { init_waitqueue_head(&host->buf_ready_int); /* Initialize re-tuning timer */ init_timer(&host->tuning_timer); host->tuning_timer.data = (unsigned long)host; host->tuning_timer.function = sdhci_tuning_timer; } ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED, mmc_hostname(mmc), host); if (ret) goto untasklet; host->vmmc = regulator_get(mmc_dev(mmc), "vmmc"); if (IS_ERR(host->vmmc)) { printk(KERN_INFO "%s: no vmmc regulator found\n", mmc_hostname(mmc)); host->vmmc = NULL; } else { regulator_enable(host->vmmc); } sdhci_init(host, 0); #ifdef CONFIG_MMC_DEBUG sdhci_dumpregs(host); #endif #ifdef SDHCI_USE_LEDS_CLASS snprintf(host->led_name, sizeof(host->led_name), "%s::", mmc_hostname(mmc)); host->led.name = host->led_name; host->led.brightness = LED_OFF; host->led.default_trigger = mmc_hostname(mmc); host->led.brightness_set = sdhci_led_control; ret = led_classdev_register(mmc_dev(mmc), &host->led); if (ret) goto reset; #endif mmiowb(); mmc_add_host(mmc); printk(KERN_INFO "%s: SDHCI controller on %s [%s] using %s\n", mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)), (host->flags & SDHCI_USE_ADMA) ? "ADMA" : (host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO"); sdhci_enable_card_detection(host); return 0; #ifdef SDHCI_USE_LEDS_CLASS reset: sdhci_reset(host, SDHCI_RESET_ALL); free_irq(host->irq, host); #endif untasklet: tasklet_kill(&host->card_tasklet); tasklet_kill(&host->finish_tasklet); return ret; } EXPORT_SYMBOL_GPL(sdhci_add_host); void sdhci_remove_host(struct sdhci_host *host, int dead) { unsigned long flags; if (dead) { spin_lock_irqsave(&host->lock, flags); host->flags |= SDHCI_DEVICE_DEAD; if (host->mrq) { printk(KERN_ERR "%s: Controller removed during " " transfer!\n", mmc_hostname(host->mmc)); host->mrq->cmd->error = -ENOMEDIUM; tasklet_schedule(&host->finish_tasklet); } spin_unlock_irqrestore(&host->lock, flags); } sdhci_disable_card_detection(host); mmc_remove_host(host->mmc); #ifdef SDHCI_USE_LEDS_CLASS led_classdev_unregister(&host->led); #endif if (!dead) sdhci_reset(host, SDHCI_RESET_ALL); free_irq(host->irq, host); del_timer_sync(&host->timer); if (host->version >= SDHCI_SPEC_300) del_timer_sync(&host->tuning_timer); tasklet_kill(&host->card_tasklet); tasklet_kill(&host->finish_tasklet); if (host->vmmc) { regulator_disable(host->vmmc); regulator_put(host->vmmc); } kfree(host->adma_desc); kfree(host->align_buffer); host->adma_desc = NULL; host->align_buffer = NULL; } EXPORT_SYMBOL_GPL(sdhci_remove_host); void sdhci_free_host(struct sdhci_host *host) { mmc_free_host(host->mmc); } EXPORT_SYMBOL_GPL(sdhci_free_host); /*****************************************************************************\ * * * Driver init/exit * * * \*****************************************************************************/ static int __init sdhci_drv_init(void) { printk(KERN_INFO DRIVER_NAME ": Secure Digital Host Controller Interface driver\n"); printk(KERN_INFO DRIVER_NAME ": Copyright(c) Pierre Ossman\n"); return 0; } static void __exit sdhci_drv_exit(void) { } module_init(sdhci_drv_init); module_exit(sdhci_drv_exit); module_param(debug_quirks, uint, 0444); MODULE_AUTHOR("Pierre Ossman "); MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");