/* SPDX-License-Identifier: GPL-2.0 * * IO cost model based controller. * * Copyright (C) 2019 Tejun Heo * Copyright (C) 2019 Andy Newell * Copyright (C) 2019 Facebook * * One challenge of controlling IO resources is the lack of trivially * observable cost metric. This is distinguished from CPU and memory where * wallclock time and the number of bytes can serve as accurate enough * approximations. * * Bandwidth and iops are the most commonly used metrics for IO devices but * depending on the type and specifics of the device, different IO patterns * easily lead to multiple orders of magnitude variations rendering them * useless for the purpose of IO capacity distribution. While on-device * time, with a lot of clutches, could serve as a useful approximation for * non-queued rotational devices, this is no longer viable with modern * devices, even the rotational ones. * * While there is no cost metric we can trivially observe, it isn't a * complete mystery. For example, on a rotational device, seek cost * dominates while a contiguous transfer contributes a smaller amount * proportional to the size. If we can characterize at least the relative * costs of these different types of IOs, it should be possible to * implement a reasonable work-conserving proportional IO resource * distribution. * * 1. IO Cost Model * * IO cost model estimates the cost of an IO given its basic parameters and * history (e.g. the end sector of the last IO). The cost is measured in * device time. If a given IO is estimated to cost 10ms, the device should * be able to process ~100 of those IOs in a second. * * Currently, there's only one builtin cost model - linear. Each IO is * classified as sequential or random and given a base cost accordingly. * On top of that, a size cost proportional to the length of the IO is * added. While simple, this model captures the operational * characteristics of a wide varienty of devices well enough. Default * paramters for several different classes of devices are provided and the * parameters can be configured from userspace via * /sys/fs/cgroup/io.cost.model. * * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate * device-specific coefficients. * * 2. Control Strategy * * The device virtual time (vtime) is used as the primary control metric. * The control strategy is composed of the following three parts. * * 2-1. Vtime Distribution * * When a cgroup becomes active in terms of IOs, its hierarchical share is * calculated. Please consider the following hierarchy where the numbers * inside parentheses denote the configured weights. * * root * / \ * A (w:100) B (w:300) * / \ * A0 (w:100) A1 (w:100) * * If B is idle and only A0 and A1 are actively issuing IOs, as the two are * of equal weight, each gets 50% share. If then B starts issuing IOs, B * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, * 12.5% each. The distribution mechanism only cares about these flattened * shares. They're called hweights (hierarchical weights) and always add * upto 1 (HWEIGHT_WHOLE). * * A given cgroup's vtime runs slower in inverse proportion to its hweight. * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) * against the device vtime - an IO which takes 10ms on the underlying * device is considered to take 80ms on A0. * * This constitutes the basis of IO capacity distribution. Each cgroup's * vtime is running at a rate determined by its hweight. A cgroup tracks * the vtime consumed by past IOs and can issue a new IO iff doing so * wouldn't outrun the current device vtime. Otherwise, the IO is * suspended until the vtime has progressed enough to cover it. * * 2-2. Vrate Adjustment * * It's unrealistic to expect the cost model to be perfect. There are too * many devices and even on the same device the overall performance * fluctuates depending on numerous factors such as IO mixture and device * internal garbage collection. The controller needs to adapt dynamically. * * This is achieved by adjusting the overall IO rate according to how busy * the device is. If the device becomes overloaded, we're sending down too * many IOs and should generally slow down. If there are waiting issuers * but the device isn't saturated, we're issuing too few and should * generally speed up. * * To slow down, we lower the vrate - the rate at which the device vtime * passes compared to the wall clock. For example, if the vtime is running * at the vrate of 75%, all cgroups added up would only be able to issue * 750ms worth of IOs per second, and vice-versa for speeding up. * * Device business is determined using two criteria - rq wait and * completion latencies. * * When a device gets saturated, the on-device and then the request queues * fill up and a bio which is ready to be issued has to wait for a request * to become available. When this delay becomes noticeable, it's a clear * indication that the device is saturated and we lower the vrate. This * saturation signal is fairly conservative as it only triggers when both * hardware and software queues are filled up, and is used as the default * busy signal. * * As devices can have deep queues and be unfair in how the queued commands * are executed, soley depending on rq wait may not result in satisfactory * control quality. For a better control quality, completion latency QoS * parameters can be configured so that the device is considered saturated * if N'th percentile completion latency rises above the set point. * * The completion latency requirements are a function of both the * underlying device characteristics and the desired IO latency quality of * service. There is an inherent trade-off - the tighter the latency QoS, * the higher the bandwidth lossage. Latency QoS is disabled by default * and can be set through /sys/fs/cgroup/io.cost.qos. * * 2-3. Work Conservation * * Imagine two cgroups A and B with equal weights. A is issuing a small IO * periodically while B is sending out enough parallel IOs to saturate the * device on its own. Let's say A's usage amounts to 100ms worth of IO * cost per second, i.e., 10% of the device capacity. The naive * distribution of half and half would lead to 60% utilization of the * device, a significant reduction in the total amount of work done * compared to free-for-all competition. This is too high a cost to pay * for IO control. * * To conserve the total amount of work done, we keep track of how much * each active cgroup is actually using and yield part of its weight if * there are other cgroups which can make use of it. In the above case, * A's weight will be lowered so that it hovers above the actual usage and * B would be able to use the rest. * * As we don't want to penalize a cgroup for donating its weight, the * surplus weight adjustment factors in a margin and has an immediate * snapback mechanism in case the cgroup needs more IO vtime for itself. * * Note that adjusting down surplus weights has the same effects as * accelerating vtime for other cgroups and work conservation can also be * implemented by adjusting vrate dynamically. However, squaring who can * donate and should take back how much requires hweight propagations * anyway making it easier to implement and understand as a separate * mechanism. * * 3. Monitoring * * Instead of debugfs or other clumsy monitoring mechanisms, this * controller uses a drgn based monitoring script - * tools/cgroup/iocost_monitor.py. For details on drgn, please see * https://github.com/osandov/drgn. The ouput looks like the following. * * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% * active weight hweight% inflt% dbt delay usages% * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 * * - per : Timer period * - cur_per : Internal wall and device vtime clock * - vrate : Device virtual time rate against wall clock * - weight : Surplus-adjusted and configured weights * - hweight : Surplus-adjusted and configured hierarchical weights * - inflt : The percentage of in-flight IO cost at the end of last period * - del_ms : Deferred issuer delay induction level and duration * - usages : Usage history */ #include #include #include #include #include #include #include #include "blk-rq-qos.h" #include "blk-stat.h" #include "blk-wbt.h" #ifdef CONFIG_TRACEPOINTS /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ #define TRACE_IOCG_PATH_LEN 1024 static DEFINE_SPINLOCK(trace_iocg_path_lock); static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; #define TRACE_IOCG_PATH(type, iocg, ...) \ do { \ unsigned long flags; \ if (trace_iocost_##type##_enabled()) { \ spin_lock_irqsave(&trace_iocg_path_lock, flags); \ cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ trace_iocg_path, TRACE_IOCG_PATH_LEN); \ trace_iocost_##type(iocg, trace_iocg_path, \ ##__VA_ARGS__); \ spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ } \ } while (0) #else /* CONFIG_TRACE_POINTS */ #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) #endif /* CONFIG_TRACE_POINTS */ enum { MILLION = 1000000, /* timer period is calculated from latency requirements, bound it */ MIN_PERIOD = USEC_PER_MSEC, MAX_PERIOD = USEC_PER_SEC, /* * A cgroup's vtime can run 50% behind the device vtime, which * serves as its IO credit buffer. Surplus weight adjustment is * immediately canceled if the vtime margin runs below 10%. */ MARGIN_PCT = 50, INUSE_MARGIN_PCT = 10, /* Have some play in waitq timer operations */ WAITQ_TIMER_MARGIN_PCT = 5, /* * vtime can wrap well within a reasonable uptime when vrate is * consistently raised. Don't trust recorded cgroup vtime if the * period counter indicates that it's older than 5mins. */ VTIME_VALID_DUR = 300 * USEC_PER_SEC, /* * Remember the past three non-zero usages and use the max for * surplus calculation. Three slots guarantee that we remember one * full period usage from the last active stretch even after * partial deactivation and re-activation periods. Don't start * giving away weight before collecting two data points to prevent * hweight adjustments based on one partial activation period. */ NR_USAGE_SLOTS = 3, MIN_VALID_USAGES = 2, /* 1/64k is granular enough and can easily be handled w/ u32 */ HWEIGHT_WHOLE = 1 << 16, /* * As vtime is used to calculate the cost of each IO, it needs to * be fairly high precision. For example, it should be able to * represent the cost of a single page worth of discard with * suffificient accuracy. At the same time, it should be able to * represent reasonably long enough durations to be useful and * convenient during operation. * * 1s worth of vtime is 2^37. This gives us both sub-nanosecond * granularity and days of wrap-around time even at extreme vrates. */ VTIME_PER_SEC_SHIFT = 37, VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, /* bound vrate adjustments within two orders of magnitude */ VRATE_MIN_PPM = 10000, /* 1% */ VRATE_MAX_PPM = 100000000, /* 10000% */ VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, VRATE_CLAMP_ADJ_PCT = 4, /* if IOs end up waiting for requests, issue less */ RQ_WAIT_BUSY_PCT = 5, /* unbusy hysterisis */ UNBUSY_THR_PCT = 75, /* don't let cmds which take a very long time pin lagging for too long */ MAX_LAGGING_PERIODS = 10, /* * If usage% * 1.25 + 2% is lower than hweight% by more than 3%, * donate the surplus. */ SURPLUS_SCALE_PCT = 125, /* * 125% */ SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */ SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */ /* switch iff the conditions are met for longer than this */ AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, /* * Count IO size in 4k pages. The 12bit shift helps keeping * size-proportional components of cost calculation in closer * numbers of digits to per-IO cost components. */ IOC_PAGE_SHIFT = 12, IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, /* if apart further than 16M, consider randio for linear model */ LCOEF_RANDIO_PAGES = 4096, }; enum ioc_running { IOC_IDLE, IOC_RUNNING, IOC_STOP, }; /* io.cost.qos controls including per-dev enable of the whole controller */ enum { QOS_ENABLE, QOS_CTRL, NR_QOS_CTRL_PARAMS, }; /* io.cost.qos params */ enum { QOS_RPPM, QOS_RLAT, QOS_WPPM, QOS_WLAT, QOS_MIN, QOS_MAX, NR_QOS_PARAMS, }; /* io.cost.model controls */ enum { COST_CTRL, COST_MODEL, NR_COST_CTRL_PARAMS, }; /* builtin linear cost model coefficients */ enum { I_LCOEF_RBPS, I_LCOEF_RSEQIOPS, I_LCOEF_RRANDIOPS, I_LCOEF_WBPS, I_LCOEF_WSEQIOPS, I_LCOEF_WRANDIOPS, NR_I_LCOEFS, }; enum { LCOEF_RPAGE, LCOEF_RSEQIO, LCOEF_RRANDIO, LCOEF_WPAGE, LCOEF_WSEQIO, LCOEF_WRANDIO, NR_LCOEFS, }; enum { AUTOP_INVALID, AUTOP_HDD, AUTOP_SSD_QD1, AUTOP_SSD_DFL, AUTOP_SSD_FAST, }; struct ioc_gq; struct ioc_params { u32 qos[NR_QOS_PARAMS]; u64 i_lcoefs[NR_I_LCOEFS]; u64 lcoefs[NR_LCOEFS]; u32 too_fast_vrate_pct; u32 too_slow_vrate_pct; }; struct ioc_missed { u32 nr_met; u32 nr_missed; u32 last_met; u32 last_missed; }; struct ioc_pcpu_stat { struct ioc_missed missed[2]; u64 rq_wait_ns; u64 last_rq_wait_ns; }; /* per device */ struct ioc { struct rq_qos rqos; bool enabled; struct ioc_params params; u32 period_us; u32 margin_us; u64 vrate_min; u64 vrate_max; spinlock_t lock; struct timer_list timer; struct list_head active_iocgs; /* active cgroups */ struct ioc_pcpu_stat __percpu *pcpu_stat; enum ioc_running running; atomic64_t vtime_rate; seqcount_t period_seqcount; u32 period_at; /* wallclock starttime */ u64 period_at_vtime; /* vtime starttime */ atomic64_t cur_period; /* inc'd each period */ int busy_level; /* saturation history */ u64 inuse_margin_vtime; bool weights_updated; atomic_t hweight_gen; /* for lazy hweights */ u64 autop_too_fast_at; u64 autop_too_slow_at; int autop_idx; bool user_qos_params:1; bool user_cost_model:1; }; /* per device-cgroup pair */ struct ioc_gq { struct blkg_policy_data pd; struct ioc *ioc; /* * A iocg can get its weight from two sources - an explicit * per-device-cgroup configuration or the default weight of the * cgroup. `cfg_weight` is the explicit per-device-cgroup * configuration. `weight` is the effective considering both * sources. * * When an idle cgroup becomes active its `active` goes from 0 to * `weight`. `inuse` is the surplus adjusted active weight. * `active` and `inuse` are used to calculate `hweight_active` and * `hweight_inuse`. * * `last_inuse` remembers `inuse` while an iocg is idle to persist * surplus adjustments. */ u32 cfg_weight; u32 weight; u32 active; u32 inuse; u32 last_inuse; sector_t cursor; /* to detect randio */ /* * `vtime` is this iocg's vtime cursor which progresses as IOs are * issued. If lagging behind device vtime, the delta represents * the currently available IO budget. If runnning ahead, the * overage. * * `vtime_done` is the same but progressed on completion rather * than issue. The delta behind `vtime` represents the cost of * currently in-flight IOs. * * `last_vtime` is used to remember `vtime` at the end of the last * period to calculate utilization. */ atomic64_t vtime; atomic64_t done_vtime; atomic64_t abs_vdebt; u64 last_vtime; /* * The period this iocg was last active in. Used for deactivation * and invalidating `vtime`. */ atomic64_t active_period; struct list_head active_list; /* see __propagate_active_weight() and current_hweight() for details */ u64 child_active_sum; u64 child_inuse_sum; int hweight_gen; u32 hweight_active; u32 hweight_inuse; bool has_surplus; struct wait_queue_head waitq; struct hrtimer waitq_timer; struct hrtimer delay_timer; /* usage is recorded as fractions of HWEIGHT_WHOLE */ int usage_idx; u32 usages[NR_USAGE_SLOTS]; /* this iocg's depth in the hierarchy and ancestors including self */ int level; struct ioc_gq *ancestors[]; }; /* per cgroup */ struct ioc_cgrp { struct blkcg_policy_data cpd; unsigned int dfl_weight; }; struct ioc_now { u64 now_ns; u32 now; u64 vnow; u64 vrate; }; struct iocg_wait { struct wait_queue_entry wait; struct bio *bio; u64 abs_cost; bool committed; }; struct iocg_wake_ctx { struct ioc_gq *iocg; u32 hw_inuse; s64 vbudget; }; static const struct ioc_params autop[] = { [AUTOP_HDD] = { .qos = { [QOS_RLAT] = 250000, /* 250ms */ [QOS_WLAT] = 250000, [QOS_MIN] = VRATE_MIN_PPM, [QOS_MAX] = VRATE_MAX_PPM, }, .i_lcoefs = { [I_LCOEF_RBPS] = 174019176, [I_LCOEF_RSEQIOPS] = 41708, [I_LCOEF_RRANDIOPS] = 370, [I_LCOEF_WBPS] = 178075866, [I_LCOEF_WSEQIOPS] = 42705, [I_LCOEF_WRANDIOPS] = 378, }, }, [AUTOP_SSD_QD1] = { .qos = { [QOS_RLAT] = 25000, /* 25ms */ [QOS_WLAT] = 25000, [QOS_MIN] = VRATE_MIN_PPM, [QOS_MAX] = VRATE_MAX_PPM, }, .i_lcoefs = { [I_LCOEF_RBPS] = 245855193, [I_LCOEF_RSEQIOPS] = 61575, [I_LCOEF_RRANDIOPS] = 6946, [I_LCOEF_WBPS] = 141365009, [I_LCOEF_WSEQIOPS] = 33716, [I_LCOEF_WRANDIOPS] = 26796, }, }, [AUTOP_SSD_DFL] = { .qos = { [QOS_RLAT] = 25000, /* 25ms */ [QOS_WLAT] = 25000, [QOS_MIN] = VRATE_MIN_PPM, [QOS_MAX] = VRATE_MAX_PPM, }, .i_lcoefs = { [I_LCOEF_RBPS] = 488636629, [I_LCOEF_RSEQIOPS] = 8932, [I_LCOEF_RRANDIOPS] = 8518, [I_LCOEF_WBPS] = 427891549, [I_LCOEF_WSEQIOPS] = 28755, [I_LCOEF_WRANDIOPS] = 21940, }, .too_fast_vrate_pct = 500, }, [AUTOP_SSD_FAST] = { .qos = { [QOS_RLAT] = 5000, /* 5ms */ [QOS_WLAT] = 5000, [QOS_MIN] = VRATE_MIN_PPM, [QOS_MAX] = VRATE_MAX_PPM, }, .i_lcoefs = { [I_LCOEF_RBPS] = 3102524156LLU, [I_LCOEF_RSEQIOPS] = 724816, [I_LCOEF_RRANDIOPS] = 778122, [I_LCOEF_WBPS] = 1742780862LLU, [I_LCOEF_WSEQIOPS] = 425702, [I_LCOEF_WRANDIOPS] = 443193, }, .too_slow_vrate_pct = 10, }, }; /* * vrate adjust percentages indexed by ioc->busy_level. We adjust up on * vtime credit shortage and down on device saturation. */ static u32 vrate_adj_pct[] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; static struct blkcg_policy blkcg_policy_iocost; /* accessors and helpers */ static struct ioc *rqos_to_ioc(struct rq_qos *rqos) { return container_of(rqos, struct ioc, rqos); } static struct ioc *q_to_ioc(struct request_queue *q) { return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); } static const char *q_name(struct request_queue *q) { if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) return kobject_name(q->kobj.parent); else return ""; } static const char __maybe_unused *ioc_name(struct ioc *ioc) { return q_name(ioc->rqos.q); } static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) { return pd ? container_of(pd, struct ioc_gq, pd) : NULL; } static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) { return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); } static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) { return pd_to_blkg(&iocg->pd); } static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) { return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), struct ioc_cgrp, cpd); } /* * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical * weight, the more expensive each IO. Must round up. */ static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) { return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse); } /* * The inverse of abs_cost_to_cost(). Must round up. */ static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) { return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE); } static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost) { bio->bi_iocost_cost = cost; atomic64_add(cost, &iocg->vtime); } #define CREATE_TRACE_POINTS #include /* latency Qos params changed, update period_us and all the dependent params */ static void ioc_refresh_period_us(struct ioc *ioc) { u32 ppm, lat, multi, period_us; lockdep_assert_held(&ioc->lock); /* pick the higher latency target */ if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { ppm = ioc->params.qos[QOS_RPPM]; lat = ioc->params.qos[QOS_RLAT]; } else { ppm = ioc->params.qos[QOS_WPPM]; lat = ioc->params.qos[QOS_WLAT]; } /* * We want the period to be long enough to contain a healthy number * of IOs while short enough for granular control. Define it as a * multiple of the latency target. Ideally, the multiplier should * be scaled according to the percentile so that it would nominally * contain a certain number of requests. Let's be simpler and * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). */ if (ppm) multi = max_t(u32, (MILLION - ppm) / 50000, 2); else multi = 2; period_us = multi * lat; period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); /* calculate dependent params */ ioc->period_us = period_us; ioc->margin_us = period_us * MARGIN_PCT / 100; ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100); } static int ioc_autop_idx(struct ioc *ioc) { int idx = ioc->autop_idx; const struct ioc_params *p = &autop[idx]; u32 vrate_pct; u64 now_ns; /* rotational? */ if (!blk_queue_nonrot(ioc->rqos.q)) return AUTOP_HDD; /* handle SATA SSDs w/ broken NCQ */ if (blk_queue_depth(ioc->rqos.q) == 1) return AUTOP_SSD_QD1; /* use one of the normal ssd sets */ if (idx < AUTOP_SSD_DFL) return AUTOP_SSD_DFL; /* if user is overriding anything, maintain what was there */ if (ioc->user_qos_params || ioc->user_cost_model) return idx; /* step up/down based on the vrate */ vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100, VTIME_PER_USEC); now_ns = ktime_get_ns(); if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { if (!ioc->autop_too_fast_at) ioc->autop_too_fast_at = now_ns; if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) return idx + 1; } else { ioc->autop_too_fast_at = 0; } if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { if (!ioc->autop_too_slow_at) ioc->autop_too_slow_at = now_ns; if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) return idx - 1; } else { ioc->autop_too_slow_at = 0; } return idx; } /* * Take the followings as input * * @bps maximum sequential throughput * @seqiops maximum sequential 4k iops * @randiops maximum random 4k iops * * and calculate the linear model cost coefficients. * * *@page per-page cost 1s / (@bps / 4096) * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) */ static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, u64 *page, u64 *seqio, u64 *randio) { u64 v; *page = *seqio = *randio = 0; if (bps) *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); if (seqiops) { v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); if (v > *page) *seqio = v - *page; } if (randiops) { v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); if (v > *page) *randio = v - *page; } } static void ioc_refresh_lcoefs(struct ioc *ioc) { u64 *u = ioc->params.i_lcoefs; u64 *c = ioc->params.lcoefs; calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); } static bool ioc_refresh_params(struct ioc *ioc, bool force) { const struct ioc_params *p; int idx; lockdep_assert_held(&ioc->lock); idx = ioc_autop_idx(ioc); p = &autop[idx]; if (idx == ioc->autop_idx && !force) return false; if (idx != ioc->autop_idx) atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); ioc->autop_idx = idx; ioc->autop_too_fast_at = 0; ioc->autop_too_slow_at = 0; if (!ioc->user_qos_params) memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); if (!ioc->user_cost_model) memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); ioc_refresh_period_us(ioc); ioc_refresh_lcoefs(ioc); ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * VTIME_PER_USEC, MILLION); ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * VTIME_PER_USEC, MILLION); return true; } /* take a snapshot of the current [v]time and vrate */ static void ioc_now(struct ioc *ioc, struct ioc_now *now) { unsigned seq; now->now_ns = ktime_get(); now->now = ktime_to_us(now->now_ns); now->vrate = atomic64_read(&ioc->vtime_rate); /* * The current vtime is * * vtime at period start + (wallclock time since the start) * vrate * * As a consistent snapshot of `period_at_vtime` and `period_at` is * needed, they're seqcount protected. */ do { seq = read_seqcount_begin(&ioc->period_seqcount); now->vnow = ioc->period_at_vtime + (now->now - ioc->period_at) * now->vrate; } while (read_seqcount_retry(&ioc->period_seqcount, seq)); } static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) { lockdep_assert_held(&ioc->lock); WARN_ON_ONCE(ioc->running != IOC_RUNNING); write_seqcount_begin(&ioc->period_seqcount); ioc->period_at = now->now; ioc->period_at_vtime = now->vnow; write_seqcount_end(&ioc->period_seqcount); ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); add_timer(&ioc->timer); } /* * Update @iocg's `active` and `inuse` to @active and @inuse, update level * weight sums and propagate upwards accordingly. */ static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) { struct ioc *ioc = iocg->ioc; int lvl; lockdep_assert_held(&ioc->lock); inuse = min(active, inuse); for (lvl = iocg->level - 1; lvl >= 0; lvl--) { struct ioc_gq *parent = iocg->ancestors[lvl]; struct ioc_gq *child = iocg->ancestors[lvl + 1]; u32 parent_active = 0, parent_inuse = 0; /* update the level sums */ parent->child_active_sum += (s32)(active - child->active); parent->child_inuse_sum += (s32)(inuse - child->inuse); /* apply the udpates */ child->active = active; child->inuse = inuse; /* * The delta between inuse and active sums indicates that * that much of weight is being given away. Parent's inuse * and active should reflect the ratio. */ if (parent->child_active_sum) { parent_active = parent->weight; parent_inuse = DIV64_U64_ROUND_UP( parent_active * parent->child_inuse_sum, parent->child_active_sum); } /* do we need to keep walking up? */ if (parent_active == parent->active && parent_inuse == parent->inuse) break; active = parent_active; inuse = parent_inuse; } ioc->weights_updated = true; } static void commit_active_weights(struct ioc *ioc) { lockdep_assert_held(&ioc->lock); if (ioc->weights_updated) { /* paired with rmb in current_hweight(), see there */ smp_wmb(); atomic_inc(&ioc->hweight_gen); ioc->weights_updated = false; } } static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) { __propagate_active_weight(iocg, active, inuse); commit_active_weights(iocg->ioc); } static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) { struct ioc *ioc = iocg->ioc; int lvl; u32 hwa, hwi; int ioc_gen; /* hot path - if uptodate, use cached */ ioc_gen = atomic_read(&ioc->hweight_gen); if (ioc_gen == iocg->hweight_gen) goto out; /* * Paired with wmb in commit_active_weights(). If we saw the * updated hweight_gen, all the weight updates from * __propagate_active_weight() are visible too. * * We can race with weight updates during calculation and get it * wrong. However, hweight_gen would have changed and a future * reader will recalculate and we're guaranteed to discard the * wrong result soon. */ smp_rmb(); hwa = hwi = HWEIGHT_WHOLE; for (lvl = 0; lvl <= iocg->level - 1; lvl++) { struct ioc_gq *parent = iocg->ancestors[lvl]; struct ioc_gq *child = iocg->ancestors[lvl + 1]; u32 active_sum = READ_ONCE(parent->child_active_sum); u32 inuse_sum = READ_ONCE(parent->child_inuse_sum); u32 active = READ_ONCE(child->active); u32 inuse = READ_ONCE(child->inuse); /* we can race with deactivations and either may read as zero */ if (!active_sum || !inuse_sum) continue; active_sum = max(active, active_sum); hwa = hwa * active / active_sum; /* max 16bits * 10000 */ inuse_sum = max(inuse, inuse_sum); hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */ } iocg->hweight_active = max_t(u32, hwa, 1); iocg->hweight_inuse = max_t(u32, hwi, 1); iocg->hweight_gen = ioc_gen; out: if (hw_activep) *hw_activep = iocg->hweight_active; if (hw_inusep) *hw_inusep = iocg->hweight_inuse; } static void weight_updated(struct ioc_gq *iocg) { struct ioc *ioc = iocg->ioc; struct blkcg_gq *blkg = iocg_to_blkg(iocg); struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); u32 weight; lockdep_assert_held(&ioc->lock); weight = iocg->cfg_weight ?: iocc->dfl_weight; if (weight != iocg->weight && iocg->active) propagate_active_weight(iocg, weight, DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight)); iocg->weight = weight; } static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) { struct ioc *ioc = iocg->ioc; u64 last_period, cur_period, max_period_delta; u64 vtime, vmargin, vmin; int i; /* * If seem to be already active, just update the stamp to tell the * timer that we're still active. We don't mind occassional races. */ if (!list_empty(&iocg->active_list)) { ioc_now(ioc, now); cur_period = atomic64_read(&ioc->cur_period); if (atomic64_read(&iocg->active_period) != cur_period) atomic64_set(&iocg->active_period, cur_period); return true; } /* racy check on internal node IOs, treat as root level IOs */ if (iocg->child_active_sum) return false; spin_lock_irq(&ioc->lock); ioc_now(ioc, now); /* update period */ cur_period = atomic64_read(&ioc->cur_period); last_period = atomic64_read(&iocg->active_period); atomic64_set(&iocg->active_period, cur_period); /* already activated or breaking leaf-only constraint? */ if (!list_empty(&iocg->active_list)) goto succeed_unlock; for (i = iocg->level - 1; i > 0; i--) if (!list_empty(&iocg->ancestors[i]->active_list)) goto fail_unlock; if (iocg->child_active_sum) goto fail_unlock; /* * vtime may wrap when vrate is raised substantially due to * underestimated IO costs. Look at the period and ignore its * vtime if the iocg has been idle for too long. Also, cap the * budget it can start with to the margin. */ max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us); vtime = atomic64_read(&iocg->vtime); vmargin = ioc->margin_us * now->vrate; vmin = now->vnow - vmargin; if (last_period + max_period_delta < cur_period || time_before64(vtime, vmin)) { atomic64_add(vmin - vtime, &iocg->vtime); atomic64_add(vmin - vtime, &iocg->done_vtime); vtime = vmin; } /* * Activate, propagate weight and start period timer if not * running. Reset hweight_gen to avoid accidental match from * wrapping. */ iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; list_add(&iocg->active_list, &ioc->active_iocgs); propagate_active_weight(iocg, iocg->weight, iocg->last_inuse ?: iocg->weight); TRACE_IOCG_PATH(iocg_activate, iocg, now, last_period, cur_period, vtime); iocg->last_vtime = vtime; if (ioc->running == IOC_IDLE) { ioc->running = IOC_RUNNING; ioc_start_period(ioc, now); } succeed_unlock: spin_unlock_irq(&ioc->lock); return true; fail_unlock: spin_unlock_irq(&ioc->lock); return false; } static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key) { struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); ctx->vbudget -= cost; if (ctx->vbudget < 0) return -1; iocg_commit_bio(ctx->iocg, wait->bio, cost); /* * autoremove_wake_function() removes the wait entry only when it * actually changed the task state. We want the wait always * removed. Remove explicitly and use default_wake_function(). */ list_del_init(&wq_entry->entry); wait->committed = true; default_wake_function(wq_entry, mode, flags, key); return 0; } static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now) { struct ioc *ioc = iocg->ioc; struct iocg_wake_ctx ctx = { .iocg = iocg }; u64 margin_ns = (u64)(ioc->period_us * WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC; u64 abs_vdebt, vdebt, vshortage, expires, oexpires; s64 vbudget; u32 hw_inuse; lockdep_assert_held(&iocg->waitq.lock); current_hweight(iocg, NULL, &hw_inuse); vbudget = now->vnow - atomic64_read(&iocg->vtime); /* pay off debt */ abs_vdebt = atomic64_read(&iocg->abs_vdebt); vdebt = abs_cost_to_cost(abs_vdebt, hw_inuse); if (vdebt && vbudget > 0) { u64 delta = min_t(u64, vbudget, vdebt); u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse), abs_vdebt); atomic64_add(delta, &iocg->vtime); atomic64_add(delta, &iocg->done_vtime); atomic64_sub(abs_delta, &iocg->abs_vdebt); if (WARN_ON_ONCE(atomic64_read(&iocg->abs_vdebt) < 0)) atomic64_set(&iocg->abs_vdebt, 0); } /* * Wake up the ones which are due and see how much vtime we'll need * for the next one. */ ctx.hw_inuse = hw_inuse; ctx.vbudget = vbudget - vdebt; __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); if (!waitqueue_active(&iocg->waitq)) return; if (WARN_ON_ONCE(ctx.vbudget >= 0)) return; /* determine next wakeup, add a quarter margin to guarantee chunking */ vshortage = -ctx.vbudget; expires = now->now_ns + DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC; expires += margin_ns / 4; /* if already active and close enough, don't bother */ oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); if (hrtimer_is_queued(&iocg->waitq_timer) && abs(oexpires - expires) <= margin_ns / 4) return; hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), margin_ns / 4, HRTIMER_MODE_ABS); } static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) { struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); struct ioc_now now; unsigned long flags; ioc_now(iocg->ioc, &now); spin_lock_irqsave(&iocg->waitq.lock, flags); iocg_kick_waitq(iocg, &now); spin_unlock_irqrestore(&iocg->waitq.lock, flags); return HRTIMER_NORESTART; } static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost) { struct ioc *ioc = iocg->ioc; struct blkcg_gq *blkg = iocg_to_blkg(iocg); u64 vtime = atomic64_read(&iocg->vtime); u64 vmargin = ioc->margin_us * now->vrate; u64 margin_ns = ioc->margin_us * NSEC_PER_USEC; u64 expires, oexpires; u32 hw_inuse; /* debt-adjust vtime */ current_hweight(iocg, NULL, &hw_inuse); vtime += abs_cost_to_cost(atomic64_read(&iocg->abs_vdebt), hw_inuse); /* clear or maintain depending on the overage */ if (time_before_eq64(vtime, now->vnow)) { blkcg_clear_delay(blkg); return false; } if (!atomic_read(&blkg->use_delay) && time_before_eq64(vtime, now->vnow + vmargin)) return false; /* use delay */ if (cost) { u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC, now->vrate); blkcg_add_delay(blkg, now->now_ns, cost_ns); } blkcg_use_delay(blkg); expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow, now->vrate) * NSEC_PER_USEC; /* if already active and close enough, don't bother */ oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer)); if (hrtimer_is_queued(&iocg->delay_timer) && abs(oexpires - expires) <= margin_ns / 4) return true; hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires), margin_ns / 4, HRTIMER_MODE_ABS); return true; } static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer) { struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer); struct ioc_now now; ioc_now(iocg->ioc, &now); iocg_kick_delay(iocg, &now, 0); return HRTIMER_NORESTART; } static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) { u32 nr_met[2] = { }; u32 nr_missed[2] = { }; u64 rq_wait_ns = 0; int cpu, rw; for_each_online_cpu(cpu) { struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); u64 this_rq_wait_ns; for (rw = READ; rw <= WRITE; rw++) { u32 this_met = READ_ONCE(stat->missed[rw].nr_met); u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed); nr_met[rw] += this_met - stat->missed[rw].last_met; nr_missed[rw] += this_missed - stat->missed[rw].last_missed; stat->missed[rw].last_met = this_met; stat->missed[rw].last_missed = this_missed; } this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns); rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; stat->last_rq_wait_ns = this_rq_wait_ns; } for (rw = READ; rw <= WRITE; rw++) { if (nr_met[rw] + nr_missed[rw]) missed_ppm_ar[rw] = DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, nr_met[rw] + nr_missed[rw]); else missed_ppm_ar[rw] = 0; } *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, ioc->period_us * NSEC_PER_USEC); } /* was iocg idle this period? */ static bool iocg_is_idle(struct ioc_gq *iocg) { struct ioc *ioc = iocg->ioc; /* did something get issued this period? */ if (atomic64_read(&iocg->active_period) == atomic64_read(&ioc->cur_period)) return false; /* is something in flight? */ if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) return false; return true; } /* returns usage with margin added if surplus is large enough */ static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse) { /* add margin */ usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100); usage += SURPLUS_SCALE_ABS; /* don't bother if the surplus is too small */ if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse) return 0; return usage; } static void ioc_timer_fn(struct timer_list *timer) { struct ioc *ioc = container_of(timer, struct ioc, timer); struct ioc_gq *iocg, *tiocg; struct ioc_now now; int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0; u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; u32 missed_ppm[2], rq_wait_pct; u64 period_vtime; int prev_busy_level, i; /* how were the latencies during the period? */ ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); /* take care of active iocgs */ spin_lock_irq(&ioc->lock); ioc_now(ioc, &now); period_vtime = now.vnow - ioc->period_at_vtime; if (WARN_ON_ONCE(!period_vtime)) { spin_unlock_irq(&ioc->lock); return; } /* * Waiters determine the sleep durations based on the vrate they * saw at the time of sleep. If vrate has increased, some waiters * could be sleeping for too long. Wake up tardy waiters which * should have woken up in the last period and expire idle iocgs. */ list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { if (!waitqueue_active(&iocg->waitq) && !atomic64_read(&iocg->abs_vdebt) && !iocg_is_idle(iocg)) continue; spin_lock(&iocg->waitq.lock); if (waitqueue_active(&iocg->waitq) || atomic64_read(&iocg->abs_vdebt)) { /* might be oversleeping vtime / hweight changes, kick */ iocg_kick_waitq(iocg, &now); iocg_kick_delay(iocg, &now, 0); } else if (iocg_is_idle(iocg)) { /* no waiter and idle, deactivate */ iocg->last_inuse = iocg->inuse; __propagate_active_weight(iocg, 0, 0); list_del_init(&iocg->active_list); } spin_unlock(&iocg->waitq.lock); } commit_active_weights(ioc); /* calc usages and see whether some weights need to be moved around */ list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { u64 vdone, vtime, vusage, vmargin, vmin; u32 hw_active, hw_inuse, usage; /* * Collect unused and wind vtime closer to vnow to prevent * iocgs from accumulating a large amount of budget. */ vdone = atomic64_read(&iocg->done_vtime); vtime = atomic64_read(&iocg->vtime); current_hweight(iocg, &hw_active, &hw_inuse); /* * Latency QoS detection doesn't account for IOs which are * in-flight for longer than a period. Detect them by * comparing vdone against period start. If lagging behind * IOs from past periods, don't increase vrate. */ if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && !atomic_read(&iocg_to_blkg(iocg)->use_delay) && time_after64(vtime, vdone) && time_after64(vtime, now.vnow - MAX_LAGGING_PERIODS * period_vtime) && time_before64(vdone, now.vnow - period_vtime)) nr_lagging++; if (waitqueue_active(&iocg->waitq)) vusage = now.vnow - iocg->last_vtime; else if (time_before64(iocg->last_vtime, vtime)) vusage = vtime - iocg->last_vtime; else vusage = 0; iocg->last_vtime += vusage; /* * Factor in in-flight vtime into vusage to avoid * high-latency completions appearing as idle. This should * be done after the above ->last_time adjustment. */ vusage = max(vusage, vtime - vdone); /* calculate hweight based usage ratio and record */ if (vusage) { usage = DIV64_U64_ROUND_UP(vusage * hw_inuse, period_vtime); iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS; iocg->usages[iocg->usage_idx] = usage; } else { usage = 0; } /* see whether there's surplus vtime */ vmargin = ioc->margin_us * now.vrate; vmin = now.vnow - vmargin; iocg->has_surplus = false; if (!waitqueue_active(&iocg->waitq) && time_before64(vtime, vmin)) { u64 delta = vmin - vtime; /* throw away surplus vtime */ atomic64_add(delta, &iocg->vtime); atomic64_add(delta, &iocg->done_vtime); iocg->last_vtime += delta; /* if usage is sufficiently low, maybe it can donate */ if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) { iocg->has_surplus = true; nr_surpluses++; } } else if (hw_inuse < hw_active) { u32 new_hwi, new_inuse; /* was donating but might need to take back some */ if (waitqueue_active(&iocg->waitq)) { new_hwi = hw_active; } else { new_hwi = max(hw_inuse, usage * SURPLUS_SCALE_PCT / 100 + SURPLUS_SCALE_ABS); } new_inuse = div64_u64((u64)iocg->inuse * new_hwi, hw_inuse); new_inuse = clamp_t(u32, new_inuse, 1, iocg->active); if (new_inuse > iocg->inuse) { TRACE_IOCG_PATH(inuse_takeback, iocg, &now, iocg->inuse, new_inuse, hw_inuse, new_hwi); __propagate_active_weight(iocg, iocg->weight, new_inuse); } } else { /* genuninely out of vtime */ nr_shortages++; } } if (!nr_shortages || !nr_surpluses) goto skip_surplus_transfers; /* there are both shortages and surpluses, transfer surpluses */ list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { u32 usage, hw_active, hw_inuse, new_hwi, new_inuse; int nr_valid = 0; if (!iocg->has_surplus) continue; /* base the decision on max historical usage */ for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) { if (iocg->usages[i]) { usage = max(usage, iocg->usages[i]); nr_valid++; } } if (nr_valid < MIN_VALID_USAGES) continue; current_hweight(iocg, &hw_active, &hw_inuse); new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse); if (!new_hwi) continue; new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi, hw_inuse); if (new_inuse < iocg->inuse) { TRACE_IOCG_PATH(inuse_giveaway, iocg, &now, iocg->inuse, new_inuse, hw_inuse, new_hwi); __propagate_active_weight(iocg, iocg->weight, new_inuse); } } skip_surplus_transfers: commit_active_weights(ioc); /* * If q is getting clogged or we're missing too much, we're issuing * too much IO and should lower vtime rate. If we're not missing * and experiencing shortages but not surpluses, we're too stingy * and should increase vtime rate. */ prev_busy_level = ioc->busy_level; if (rq_wait_pct > RQ_WAIT_BUSY_PCT || missed_ppm[READ] > ppm_rthr || missed_ppm[WRITE] > ppm_wthr) { /* clearly missing QoS targets, slow down vrate */ ioc->busy_level = max(ioc->busy_level, 0); ioc->busy_level++; } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { /* QoS targets are being met with >25% margin */ if (nr_shortages) { /* * We're throttling while the device has spare * capacity. If vrate was being slowed down, stop. */ ioc->busy_level = min(ioc->busy_level, 0); /* * If there are IOs spanning multiple periods, wait * them out before pushing the device harder. If * there are surpluses, let redistribution work it * out first. */ if (!nr_lagging && !nr_surpluses) ioc->busy_level--; } else { /* * Nobody is being throttled and the users aren't * issuing enough IOs to saturate the device. We * simply don't know how close the device is to * saturation. Coast. */ ioc->busy_level = 0; } } else { /* inside the hysterisis margin, we're good */ ioc->busy_level = 0; } ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { u64 vrate = atomic64_read(&ioc->vtime_rate); u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; /* rq_wait signal is always reliable, ignore user vrate_min */ if (rq_wait_pct > RQ_WAIT_BUSY_PCT) vrate_min = VRATE_MIN; /* * If vrate is out of bounds, apply clamp gradually as the * bounds can change abruptly. Otherwise, apply busy_level * based adjustment. */ if (vrate < vrate_min) { vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); vrate = min(vrate, vrate_min); } else if (vrate > vrate_max) { vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); vrate = max(vrate, vrate_max); } else { int idx = min_t(int, abs(ioc->busy_level), ARRAY_SIZE(vrate_adj_pct) - 1); u32 adj_pct = vrate_adj_pct[idx]; if (ioc->busy_level > 0) adj_pct = 100 - adj_pct; else adj_pct = 100 + adj_pct; vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), vrate_min, vrate_max); } trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, nr_lagging, nr_shortages, nr_surpluses); atomic64_set(&ioc->vtime_rate, vrate); ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( ioc->period_us * vrate * INUSE_MARGIN_PCT, 100); } else if (ioc->busy_level != prev_busy_level || nr_lagging) { trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), missed_ppm, rq_wait_pct, nr_lagging, nr_shortages, nr_surpluses); } ioc_refresh_params(ioc, false); /* * This period is done. Move onto the next one. If nothing's * going on with the device, stop the timer. */ atomic64_inc(&ioc->cur_period); if (ioc->running != IOC_STOP) { if (!list_empty(&ioc->active_iocgs)) { ioc_start_period(ioc, &now); } else { ioc->busy_level = 0; ioc->running = IOC_IDLE; } } spin_unlock_irq(&ioc->lock); } static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, bool is_merge, u64 *costp) { struct ioc *ioc = iocg->ioc; u64 coef_seqio, coef_randio, coef_page; u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); u64 seek_pages = 0; u64 cost = 0; switch (bio_op(bio)) { case REQ_OP_READ: coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; break; case REQ_OP_WRITE: coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; break; default: goto out; } if (iocg->cursor) { seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; } if (!is_merge) { if (seek_pages > LCOEF_RANDIO_PAGES) { cost += coef_randio; } else { cost += coef_seqio; } } cost += pages * coef_page; out: *costp = cost; } static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) { u64 cost; calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); return cost; } static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio, spinlock_t *lock) __releases(lock) __acquires(lock) { struct ioc *ioc = rqos_to_ioc(rqos); struct request_queue *q = rqos->q; struct blkcg_gq *blkg; struct blkcg *blkcg; struct ioc_gq *iocg; struct ioc_now now; struct iocg_wait wait; u32 hw_active, hw_inuse; u64 abs_cost, cost, vtime; /* bypass IOs if disabled */ if (!ioc->enabled) return; rcu_read_lock(); blkcg = bio_blkcg(bio); bio_associate_blkcg(bio, &blkcg->css); blkg = blkg_lookup(blkcg, q); if (unlikely(!blkg)) { if (!lock) spin_lock_irq(q->queue_lock); blkg = blkg_lookup_create(blkcg, q); if (IS_ERR(blkg)) blkg = NULL; if (!lock) spin_unlock_irq(q->queue_lock); } if (!blkg) { rcu_read_unlock(); return; } bio_associate_blkg(bio, blkg); rcu_read_unlock(); iocg = blkg_to_iocg(blkg); /* bypass IOs for root cgroup */ if (!iocg->level) return; /* always activate so that even 0 cost IOs get protected to some level */ if (!iocg_activate(iocg, &now)) return; /* calculate the absolute vtime cost */ abs_cost = calc_vtime_cost(bio, iocg, false); if (!abs_cost) return; iocg->cursor = bio_end_sector(bio); vtime = atomic64_read(&iocg->vtime); current_hweight(iocg, &hw_active, &hw_inuse); if (hw_inuse < hw_active && time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) { TRACE_IOCG_PATH(inuse_reset, iocg, &now, iocg->inuse, iocg->weight, hw_inuse, hw_active); spin_lock_irq(&ioc->lock); propagate_active_weight(iocg, iocg->weight, iocg->weight); spin_unlock_irq(&ioc->lock); current_hweight(iocg, &hw_active, &hw_inuse); } cost = abs_cost_to_cost(abs_cost, hw_inuse); /* * If no one's waiting and within budget, issue right away. The * tests are racy but the races aren't systemic - we only miss once * in a while which is fine. */ if (!waitqueue_active(&iocg->waitq) && !atomic64_read(&iocg->abs_vdebt) && time_before_eq64(vtime + cost, now.vnow)) { iocg_commit_bio(iocg, bio, cost); return; } /* * We're over budget. If @bio has to be issued regardless, * remember the abs_cost instead of advancing vtime. * iocg_kick_waitq() will pay off the debt before waking more IOs. * This way, the debt is continuously paid off each period with the * actual budget available to the cgroup. If we just wound vtime, * we would incorrectly use the current hw_inuse for the entire * amount which, for example, can lead to the cgroup staying * blocked for a long time even with substantially raised hw_inuse. */ if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) { atomic64_add(abs_cost, &iocg->abs_vdebt); if (iocg_kick_delay(iocg, &now, cost)) blkcg_schedule_throttle(rqos->q, (bio->bi_opf & REQ_SWAP) == REQ_SWAP); return; } /* * Append self to the waitq and schedule the wakeup timer if we're * the first waiter. The timer duration is calculated based on the * current vrate. vtime and hweight changes can make it too short * or too long. Each wait entry records the absolute cost it's * waiting for to allow re-evaluation using a custom wait entry. * * If too short, the timer simply reschedules itself. If too long, * the period timer will notice and trigger wakeups. * * All waiters are on iocg->waitq and the wait states are * synchronized using waitq.lock. */ spin_lock_irq(&iocg->waitq.lock); /* * We activated above but w/o any synchronization. Deactivation is * synchronized with waitq.lock and we won't get deactivated as * long as we're waiting, so we're good if we're activated here. * In the unlikely case that we are deactivated, just issue the IO. */ if (unlikely(list_empty(&iocg->active_list))) { spin_unlock_irq(&iocg->waitq.lock); iocg_commit_bio(iocg, bio, cost); return; } init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); wait.wait.private = current; wait.bio = bio; wait.abs_cost = abs_cost; wait.committed = false; /* will be set true by waker */ __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); iocg_kick_waitq(iocg, &now); spin_unlock_irq(&iocg->waitq.lock); while (true) { set_current_state(TASK_UNINTERRUPTIBLE); if (wait.committed) break; if (lock) { spin_unlock_irq(lock); io_schedule(); spin_lock_irq(lock); } else { io_schedule(); } } /* waker already committed us, proceed */ finish_wait(&iocg->waitq, &wait.wait); } static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio) { struct ioc_gq *iocg; struct blkcg *blkcg; struct blkcg_gq *blkg; struct request_queue *q = rqos->q; struct ioc *ioc = rqos_to_ioc(rqos); sector_t bio_end = bio_end_sector(bio); struct ioc_now now; u32 hw_inuse; u64 abs_cost, cost; /* bypass if disabled */ if (!ioc->enabled) return; rcu_read_lock(); blkcg = bio_blkcg(bio); bio_associate_blkcg(bio, &blkcg->css); blkg = blkg_lookup(blkcg, q); if (unlikely(!blkg)) { rcu_read_unlock(); return; } bio_associate_blkg(bio, blkg); rcu_read_unlock(); iocg = blkg_to_iocg(blkg); /* bypass for root cgroup */ if (!iocg->level) return; abs_cost = calc_vtime_cost(bio, iocg, true); if (!abs_cost) return; ioc_now(ioc, &now); current_hweight(iocg, NULL, &hw_inuse); cost = abs_cost_to_cost(abs_cost, hw_inuse); /* update cursor if backmerging into the request at the cursor */ if (blk_rq_pos(rq) < bio_end && blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) iocg->cursor = bio_end; /* * Charge if there's enough vtime budget and the existing request * has cost assigned. Otherwise, account it as debt. See debt * handling in ioc_rqos_throttle() for details. */ if (rq->bio && rq->bio->bi_iocost_cost && time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) iocg_commit_bio(iocg, bio, cost); else atomic64_add(abs_cost, &iocg->abs_vdebt); } static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) { struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); if (iocg && bio->bi_iocost_cost) atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); } static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) { struct ioc *ioc = rqos_to_ioc(rqos); u64 on_q_ns, rq_wait_ns; int pidx, rw; if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) return; switch (req_op(rq) & REQ_OP_MASK) { case REQ_OP_READ: pidx = QOS_RLAT; rw = READ; break; case REQ_OP_WRITE: pidx = QOS_WLAT; rw = WRITE; break; default: return; } on_q_ns = ktime_get_ns() - rq->alloc_time_ns; rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC) this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met); else this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed); this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns); } static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) { struct ioc *ioc = rqos_to_ioc(rqos); spin_lock_irq(&ioc->lock); ioc_refresh_params(ioc, false); spin_unlock_irq(&ioc->lock); } static void ioc_rqos_exit(struct rq_qos *rqos) { struct ioc *ioc = rqos_to_ioc(rqos); blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); spin_lock_irq(&ioc->lock); ioc->running = IOC_STOP; spin_unlock_irq(&ioc->lock); del_timer_sync(&ioc->timer); free_percpu(ioc->pcpu_stat); kfree(ioc); } static struct rq_qos_ops ioc_rqos_ops = { .throttle = ioc_rqos_throttle, .merge = ioc_rqos_merge, .done_bio = ioc_rqos_done_bio, .done = ioc_rqos_done, .queue_depth_changed = ioc_rqos_queue_depth_changed, .exit = ioc_rqos_exit, }; static int blk_iocost_init(struct request_queue *q) { struct ioc *ioc; struct rq_qos *rqos; int ret; ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) return -ENOMEM; ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); if (!ioc->pcpu_stat) { kfree(ioc); return -ENOMEM; } rqos = &ioc->rqos; rqos->id = RQ_QOS_COST; rqos->ops = &ioc_rqos_ops; rqos->q = q; spin_lock_init(&ioc->lock); timer_setup(&ioc->timer, ioc_timer_fn, 0); INIT_LIST_HEAD(&ioc->active_iocgs); ioc->running = IOC_IDLE; atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); seqcount_init(&ioc->period_seqcount); ioc->period_at = ktime_to_us(ktime_get()); atomic64_set(&ioc->cur_period, 0); atomic_set(&ioc->hweight_gen, 0); spin_lock_irq(&ioc->lock); ioc->autop_idx = AUTOP_INVALID; ioc_refresh_params(ioc, true); spin_unlock_irq(&ioc->lock); rq_qos_add(q, rqos); ret = blkcg_activate_policy(q, &blkcg_policy_iocost); if (ret) { rq_qos_del(q, rqos); free_percpu(ioc->pcpu_stat); kfree(ioc); return ret; } return 0; } static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) { struct ioc_cgrp *iocc; iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); if (!iocc) return NULL; iocc->dfl_weight = CGROUP_WEIGHT_DFL; return &iocc->cpd; } static void ioc_cpd_free(struct blkcg_policy_data *cpd) { kfree(container_of(cpd, struct ioc_cgrp, cpd)); } static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, struct blkcg *blkcg) { int levels = blkcg->css.cgroup->level + 1; struct ioc_gq *iocg; iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]), gfp, q->node); if (!iocg) return NULL; return &iocg->pd; } static void ioc_pd_init(struct blkg_policy_data *pd) { struct ioc_gq *iocg = pd_to_iocg(pd); struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); struct ioc *ioc = q_to_ioc(blkg->q); struct ioc_now now; struct blkcg_gq *tblkg; unsigned long flags; ioc_now(ioc, &now); iocg->ioc = ioc; atomic64_set(&iocg->vtime, now.vnow); atomic64_set(&iocg->done_vtime, now.vnow); atomic64_set(&iocg->abs_vdebt, 0); atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); INIT_LIST_HEAD(&iocg->active_list); iocg->hweight_active = HWEIGHT_WHOLE; iocg->hweight_inuse = HWEIGHT_WHOLE; init_waitqueue_head(&iocg->waitq); hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); iocg->waitq_timer.function = iocg_waitq_timer_fn; hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); iocg->delay_timer.function = iocg_delay_timer_fn; iocg->level = blkg->blkcg->css.cgroup->level; for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { struct ioc_gq *tiocg = blkg_to_iocg(tblkg); iocg->ancestors[tiocg->level] = tiocg; } spin_lock_irqsave(&ioc->lock, flags); weight_updated(iocg); spin_unlock_irqrestore(&ioc->lock, flags); } static void ioc_pd_free(struct blkg_policy_data *pd) { struct ioc_gq *iocg = pd_to_iocg(pd); struct ioc *ioc = iocg->ioc; if (ioc) { spin_lock(&ioc->lock); if (!list_empty(&iocg->active_list)) { propagate_active_weight(iocg, 0, 0); list_del_init(&iocg->active_list); } spin_unlock(&ioc->lock); hrtimer_cancel(&iocg->waitq_timer); hrtimer_cancel(&iocg->delay_timer); } kfree(iocg); } static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, int off) { const char *dname = blkg_dev_name(pd->blkg); struct ioc_gq *iocg = pd_to_iocg(pd); if (dname && iocg->cfg_weight) seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight); return 0; } static int ioc_weight_show(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); seq_printf(sf, "default %u\n", iocc->dfl_weight); blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, &blkcg_policy_iocost, seq_cft(sf)->private, false); return 0; } static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct blkcg *blkcg = css_to_blkcg(of_css(of)); struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); struct blkg_conf_ctx ctx; struct ioc_gq *iocg; u32 v; int ret; if (!strchr(buf, ':')) { struct blkcg_gq *blkg; if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) return -EINVAL; if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) return -EINVAL; spin_lock(&blkcg->lock); iocc->dfl_weight = v; hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { struct ioc_gq *iocg = blkg_to_iocg(blkg); if (iocg) { spin_lock_irq(&iocg->ioc->lock); weight_updated(iocg); spin_unlock_irq(&iocg->ioc->lock); } } spin_unlock(&blkcg->lock); return nbytes; } ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); if (ret) return ret; iocg = blkg_to_iocg(ctx.blkg); if (!strncmp(ctx.body, "default", 7)) { v = 0; } else { if (!sscanf(ctx.body, "%u", &v)) goto einval; if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) goto einval; } spin_lock(&iocg->ioc->lock); iocg->cfg_weight = v; weight_updated(iocg); spin_unlock(&iocg->ioc->lock); blkg_conf_finish(&ctx); return nbytes; einval: blkg_conf_finish(&ctx); return -EINVAL; } static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, int off) { const char *dname = blkg_dev_name(pd->blkg); struct ioc *ioc = pd_to_iocg(pd)->ioc; if (!dname) return 0; seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", ioc->params.qos[QOS_RPPM] / 10000, ioc->params.qos[QOS_RPPM] % 10000 / 100, ioc->params.qos[QOS_RLAT], ioc->params.qos[QOS_WPPM] / 10000, ioc->params.qos[QOS_WPPM] % 10000 / 100, ioc->params.qos[QOS_WLAT], ioc->params.qos[QOS_MIN] / 10000, ioc->params.qos[QOS_MIN] % 10000 / 100, ioc->params.qos[QOS_MAX] / 10000, ioc->params.qos[QOS_MAX] % 10000 / 100); return 0; } static int ioc_qos_show(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, &blkcg_policy_iocost, seq_cft(sf)->private, false); return 0; } static const match_table_t qos_ctrl_tokens = { { QOS_ENABLE, "enable=%u" }, { QOS_CTRL, "ctrl=%s" }, { NR_QOS_CTRL_PARAMS, NULL }, }; static const match_table_t qos_tokens = { { QOS_RPPM, "rpct=%s" }, { QOS_RLAT, "rlat=%u" }, { QOS_WPPM, "wpct=%s" }, { QOS_WLAT, "wlat=%u" }, { QOS_MIN, "min=%s" }, { QOS_MAX, "max=%s" }, { NR_QOS_PARAMS, NULL }, }; static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, size_t nbytes, loff_t off) { struct gendisk *disk; struct ioc *ioc; u32 qos[NR_QOS_PARAMS]; bool enable, user; char *p; int ret; disk = blkcg_conf_get_disk(&input); if (IS_ERR(disk)) return PTR_ERR(disk); ioc = q_to_ioc(disk->queue); if (!ioc) { ret = blk_iocost_init(disk->queue); if (ret) goto err; ioc = q_to_ioc(disk->queue); } spin_lock_irq(&ioc->lock); memcpy(qos, ioc->params.qos, sizeof(qos)); enable = ioc->enabled; user = ioc->user_qos_params; spin_unlock_irq(&ioc->lock); while ((p = strsep(&input, " \t\n"))) { substring_t args[MAX_OPT_ARGS]; char buf[32]; int tok; s64 v; if (!*p) continue; switch (match_token(p, qos_ctrl_tokens, args)) { case QOS_ENABLE: match_u64(&args[0], &v); enable = v; continue; case QOS_CTRL: match_strlcpy(buf, &args[0], sizeof(buf)); if (!strcmp(buf, "auto")) user = false; else if (!strcmp(buf, "user")) user = true; else goto einval; continue; } tok = match_token(p, qos_tokens, args); switch (tok) { case QOS_RPPM: case QOS_WPPM: if (match_strlcpy(buf, &args[0], sizeof(buf)) >= sizeof(buf)) goto einval; if (cgroup_parse_float(buf, 2, &v)) goto einval; if (v < 0 || v > 10000) goto einval; qos[tok] = v * 100; break; case QOS_RLAT: case QOS_WLAT: if (match_u64(&args[0], &v)) goto einval; qos[tok] = v; break; case QOS_MIN: case QOS_MAX: if (match_strlcpy(buf, &args[0], sizeof(buf)) >= sizeof(buf)) goto einval; if (cgroup_parse_float(buf, 2, &v)) goto einval; if (v < 0) goto einval; qos[tok] = clamp_t(s64, v * 100, VRATE_MIN_PPM, VRATE_MAX_PPM); break; default: goto einval; } user = true; } if (qos[QOS_MIN] > qos[QOS_MAX]) goto einval; spin_lock_irq(&ioc->lock); if (enable) { blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); ioc->enabled = true; } else { blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); ioc->enabled = false; } if (user) { memcpy(ioc->params.qos, qos, sizeof(qos)); ioc->user_qos_params = true; } else { ioc->user_qos_params = false; } ioc_refresh_params(ioc, true); spin_unlock_irq(&ioc->lock); put_disk_and_module(disk); return nbytes; einval: ret = -EINVAL; err: put_disk_and_module(disk); return ret; } static u64 ioc_cost_model_prfill(struct seq_file *sf, struct blkg_policy_data *pd, int off) { const char *dname = blkg_dev_name(pd->blkg); struct ioc *ioc = pd_to_iocg(pd)->ioc; u64 *u = ioc->params.i_lcoefs; if (!dname) return 0; seq_printf(sf, "%s ctrl=%s model=linear " "rbps=%llu rseqiops=%llu rrandiops=%llu " "wbps=%llu wseqiops=%llu wrandiops=%llu\n", dname, ioc->user_cost_model ? "user" : "auto", u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); return 0; } static int ioc_cost_model_show(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, &blkcg_policy_iocost, seq_cft(sf)->private, false); return 0; } static const match_table_t cost_ctrl_tokens = { { COST_CTRL, "ctrl=%s" }, { COST_MODEL, "model=%s" }, { NR_COST_CTRL_PARAMS, NULL }, }; static const match_table_t i_lcoef_tokens = { { I_LCOEF_RBPS, "rbps=%u" }, { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, { I_LCOEF_WBPS, "wbps=%u" }, { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, { NR_I_LCOEFS, NULL }, }; static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, size_t nbytes, loff_t off) { struct gendisk *disk; struct ioc *ioc; u64 u[NR_I_LCOEFS]; bool user; char *p; int ret; disk = blkcg_conf_get_disk(&input); if (IS_ERR(disk)) return PTR_ERR(disk); ioc = q_to_ioc(disk->queue); if (!ioc) { ret = blk_iocost_init(disk->queue); if (ret) goto err; ioc = q_to_ioc(disk->queue); } spin_lock_irq(&ioc->lock); memcpy(u, ioc->params.i_lcoefs, sizeof(u)); user = ioc->user_cost_model; spin_unlock_irq(&ioc->lock); while ((p = strsep(&input, " \t\n"))) { substring_t args[MAX_OPT_ARGS]; char buf[32]; int tok; u64 v; if (!*p) continue; switch (match_token(p, cost_ctrl_tokens, args)) { case COST_CTRL: match_strlcpy(buf, &args[0], sizeof(buf)); if (!strcmp(buf, "auto")) user = false; else if (!strcmp(buf, "user")) user = true; else goto einval; continue; case COST_MODEL: match_strlcpy(buf, &args[0], sizeof(buf)); if (strcmp(buf, "linear")) goto einval; continue; } tok = match_token(p, i_lcoef_tokens, args); if (tok == NR_I_LCOEFS) goto einval; if (match_u64(&args[0], &v)) goto einval; u[tok] = v; user = true; } spin_lock_irq(&ioc->lock); if (user) { memcpy(ioc->params.i_lcoefs, u, sizeof(u)); ioc->user_cost_model = true; } else { ioc->user_cost_model = false; } ioc_refresh_params(ioc, true); spin_unlock_irq(&ioc->lock); put_disk_and_module(disk); return nbytes; einval: ret = -EINVAL; err: put_disk_and_module(disk); return ret; } static u64 ioc_stat_prfill(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkcg_gq *blkg = pd->blkg; const char *dname = blkg_dev_name(blkg); struct ioc_gq *iocg = blkg_to_iocg(blkg); struct ioc *ioc = iocg->ioc; if (!dname) return 0; seq_printf(sf, "%s is_active=%d active=%u inuse=%u " \ "hweight_active=%u hweight_inuse=%u vrate=%llu\n", dname, !list_empty(&iocg->active_list), iocg->active, iocg->inuse, iocg->hweight_active, iocg->hweight_inuse, (unsigned long long)atomic64_read(&ioc->vtime_rate)); return 0; } static int ioc_cost_print_stat(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); blkcg_print_blkgs(sf, blkcg, ioc_stat_prfill, &blkcg_policy_iocost, seq_cft(sf)->private, false); return 0; } static struct cftype ioc_files[] = { { .name = "cost.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = ioc_weight_show, .write = ioc_weight_write, }, { .name = "cost.qos", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = ioc_qos_show, .write = ioc_qos_write, }, { .name = "cost.model", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = ioc_cost_model_show, .write = ioc_cost_model_write, }, {} }; static struct cftype ioc_legacy_files[] = { { .name = "cost.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = ioc_weight_show, .write = ioc_weight_write, }, { .name = "cost.qos", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = ioc_qos_show, .write = ioc_qos_write, }, { .name = "cost.model", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = ioc_cost_model_show, .write = ioc_cost_model_write, }, { .name = "cost.stat", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = ioc_cost_print_stat, }, {} }; static struct blkcg_policy blkcg_policy_iocost = { .dfl_cftypes = ioc_files, .legacy_cftypes = ioc_legacy_files, .cpd_alloc_fn = ioc_cpd_alloc, .cpd_free_fn = ioc_cpd_free, .pd_alloc_fn = ioc_pd_alloc, .pd_init_fn = ioc_pd_init, .pd_free_fn = ioc_pd_free, }; static int __init ioc_init(void) { return blkcg_policy_register(&blkcg_policy_iocost); } static void __exit ioc_exit(void) { return blkcg_policy_unregister(&blkcg_policy_iocost); } module_init(ioc_init); module_exit(ioc_exit);