/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2007 Johannes Berg * Copyright 2008-2011 Luis R. Rodriguez * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: Wireless regulatory infrastructure * * The usual implementation is for a driver to read a device EEPROM to * determine which regulatory domain it should be operating under, then * looking up the allowable channels in a driver-local table and finally * registering those channels in the wiphy structure. * * Another set of compliance enforcement is for drivers to use their * own compliance limits which can be stored on the EEPROM. The host * driver or firmware may ensure these are used. * * In addition to all this we provide an extra layer of regulatory * conformance. For drivers which do not have any regulatory * information CRDA provides the complete regulatory solution. * For others it provides a community effort on further restrictions * to enhance compliance. * * Note: When number of rules --> infinity we will not be able to * index on alpha2 any more, instead we'll probably have to * rely on some SHA1 checksum of the regdomain for example. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include "core.h" #include "reg.h" #include "regdb.h" #include "nl80211.h" #ifdef CONFIG_CFG80211_REG_DEBUG #define REG_DBG_PRINT(format, args...) \ printk(KERN_DEBUG pr_fmt(format), ##args) #else #define REG_DBG_PRINT(args...) #endif enum reg_request_treatment { REG_REQ_OK, REG_REQ_IGNORE, REG_REQ_INTERSECT, REG_REQ_ALREADY_SET, }; static struct regulatory_request core_request_world = { .initiator = NL80211_REGDOM_SET_BY_CORE, .alpha2[0] = '0', .alpha2[1] = '0', .intersect = false, .processed = true, .country_ie_env = ENVIRON_ANY, }; /* * Receipt of information from last regulatory request, * protected by RTNL (and can be accessed with RCU protection) */ static struct regulatory_request __rcu *last_request = (void __rcu *)&core_request_world; /* To trigger userspace events */ static struct platform_device *reg_pdev; static struct device_type reg_device_type = { .uevent = reg_device_uevent, }; /* * Central wireless core regulatory domains, we only need two, * the current one and a world regulatory domain in case we have no * information to give us an alpha2. * (protected by RTNL, can be read under RCU) */ const struct ieee80211_regdomain __rcu *cfg80211_regdomain; /* * Number of devices that registered to the core * that support cellular base station regulatory hints * (protected by RTNL) */ static int reg_num_devs_support_basehint; static const struct ieee80211_regdomain *get_cfg80211_regdom(void) { return rtnl_dereference(cfg80211_regdomain); } static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) { return rtnl_dereference(wiphy->regd); } static void rcu_free_regdom(const struct ieee80211_regdomain *r) { if (!r) return; kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); } static struct regulatory_request *get_last_request(void) { return rcu_dereference_rtnl(last_request); } /* Used to queue up regulatory hints */ static LIST_HEAD(reg_requests_list); static spinlock_t reg_requests_lock; /* Used to queue up beacon hints for review */ static LIST_HEAD(reg_pending_beacons); static spinlock_t reg_pending_beacons_lock; /* Used to keep track of processed beacon hints */ static LIST_HEAD(reg_beacon_list); struct reg_beacon { struct list_head list; struct ieee80211_channel chan; }; static void reg_todo(struct work_struct *work); static DECLARE_WORK(reg_work, reg_todo); static void reg_timeout_work(struct work_struct *work); static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); /* We keep a static world regulatory domain in case of the absence of CRDA */ static const struct ieee80211_regdomain world_regdom = { .n_reg_rules = 6, .alpha2 = "00", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), /* IEEE 802.11b/g, channels 12..13. */ REG_RULE(2467-10, 2472+10, 40, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS | NL80211_RRF_NO_OFDM), /* IEEE 802.11a, channel 36..48 */ REG_RULE(5180-10, 5240+10, 160, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), /* IEEE 802.11a, channel 52..64 - DFS required */ REG_RULE(5260-10, 5320+10, 160, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS | NL80211_RRF_DFS), /* IEEE 802.11a, channel 100..144 - DFS required */ REG_RULE(5500-10, 5720+10, 160, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS | NL80211_RRF_DFS), /* IEEE 802.11a, channel 149..165 */ REG_RULE(5745-10, 5825+10, 80, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), /* IEEE 802.11ad (60gHz), channels 1..3 */ REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), } }; /* protected by RTNL */ static const struct ieee80211_regdomain *cfg80211_world_regdom = &world_regdom; static char *ieee80211_regdom = "00"; static char user_alpha2[2]; module_param(ieee80211_regdom, charp, 0444); MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); static void reset_regdomains(bool full_reset, const struct ieee80211_regdomain *new_regdom) { const struct ieee80211_regdomain *r; struct regulatory_request *lr; ASSERT_RTNL(); r = get_cfg80211_regdom(); /* avoid freeing static information or freeing something twice */ if (r == cfg80211_world_regdom) r = NULL; if (cfg80211_world_regdom == &world_regdom) cfg80211_world_regdom = NULL; if (r == &world_regdom) r = NULL; rcu_free_regdom(r); rcu_free_regdom(cfg80211_world_regdom); cfg80211_world_regdom = &world_regdom; rcu_assign_pointer(cfg80211_regdomain, new_regdom); if (!full_reset) return; lr = get_last_request(); if (lr != &core_request_world && lr) kfree_rcu(lr, rcu_head); rcu_assign_pointer(last_request, &core_request_world); } /* * Dynamic world regulatory domain requested by the wireless * core upon initialization */ static void update_world_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr; lr = get_last_request(); WARN_ON(!lr); reset_regdomains(false, rd); cfg80211_world_regdom = rd; } bool is_world_regdom(const char *alpha2) { if (!alpha2) return false; return alpha2[0] == '0' && alpha2[1] == '0'; } static bool is_alpha2_set(const char *alpha2) { if (!alpha2) return false; return alpha2[0] && alpha2[1]; } static bool is_unknown_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain was built by driver * but a specific alpha2 cannot be determined */ return alpha2[0] == '9' && alpha2[1] == '9'; } static bool is_intersected_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain is the * result of an intersection between two regulatory domain * structures */ return alpha2[0] == '9' && alpha2[1] == '8'; } static bool is_an_alpha2(const char *alpha2) { if (!alpha2) return false; return isalpha(alpha2[0]) && isalpha(alpha2[1]); } static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) { if (!alpha2_x || !alpha2_y) return false; return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; } static bool regdom_changes(const char *alpha2) { const struct ieee80211_regdomain *r = get_cfg80211_regdom(); if (!r) return true; return !alpha2_equal(r->alpha2, alpha2); } /* * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER * has ever been issued. */ static bool is_user_regdom_saved(void) { if (user_alpha2[0] == '9' && user_alpha2[1] == '7') return false; /* This would indicate a mistake on the design */ if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), "Unexpected user alpha2: %c%c\n", user_alpha2[0], user_alpha2[1])) return false; return true; } static const struct ieee80211_regdomain * reg_copy_regd(const struct ieee80211_regdomain *src_regd) { struct ieee80211_regdomain *regd; int size_of_regd; unsigned int i; size_of_regd = sizeof(struct ieee80211_regdomain) + src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); regd = kzalloc(size_of_regd, GFP_KERNEL); if (!regd) return ERR_PTR(-ENOMEM); memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); for (i = 0; i < src_regd->n_reg_rules; i++) memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], sizeof(struct ieee80211_reg_rule)); return regd; } #ifdef CONFIG_CFG80211_INTERNAL_REGDB struct reg_regdb_search_request { char alpha2[2]; struct list_head list; }; static LIST_HEAD(reg_regdb_search_list); static DEFINE_MUTEX(reg_regdb_search_mutex); static void reg_regdb_search(struct work_struct *work) { struct reg_regdb_search_request *request; const struct ieee80211_regdomain *curdom, *regdom = NULL; int i; rtnl_lock(); mutex_lock(®_regdb_search_mutex); while (!list_empty(®_regdb_search_list)) { request = list_first_entry(®_regdb_search_list, struct reg_regdb_search_request, list); list_del(&request->list); for (i = 0; i < reg_regdb_size; i++) { curdom = reg_regdb[i]; if (alpha2_equal(request->alpha2, curdom->alpha2)) { regdom = reg_copy_regd(curdom); break; } } kfree(request); } mutex_unlock(®_regdb_search_mutex); if (!IS_ERR_OR_NULL(regdom)) set_regdom(regdom); rtnl_unlock(); } static DECLARE_WORK(reg_regdb_work, reg_regdb_search); static void reg_regdb_query(const char *alpha2) { struct reg_regdb_search_request *request; if (!alpha2) return; request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); if (!request) return; memcpy(request->alpha2, alpha2, 2); mutex_lock(®_regdb_search_mutex); list_add_tail(&request->list, ®_regdb_search_list); mutex_unlock(®_regdb_search_mutex); schedule_work(®_regdb_work); } /* Feel free to add any other sanity checks here */ static void reg_regdb_size_check(void) { /* We should ideally BUILD_BUG_ON() but then random builds would fail */ WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); } #else static inline void reg_regdb_size_check(void) {} static inline void reg_regdb_query(const char *alpha2) {} #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ /* * This lets us keep regulatory code which is updated on a regulatory * basis in userspace. Country information is filled in by * reg_device_uevent */ static int call_crda(const char *alpha2) { if (!is_world_regdom((char *) alpha2)) pr_info("Calling CRDA for country: %c%c\n", alpha2[0], alpha2[1]); else pr_info("Calling CRDA to update world regulatory domain\n"); /* query internal regulatory database (if it exists) */ reg_regdb_query(alpha2); return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); } static bool reg_is_valid_request(const char *alpha2) { struct regulatory_request *lr = get_last_request(); if (!lr || lr->processed) return false; return alpha2_equal(lr->alpha2, alpha2); } /* Sanity check on a regulatory rule */ static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; u32 freq_diff; if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) return false; if (freq_range->start_freq_khz > freq_range->end_freq_khz) return false; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->end_freq_khz <= freq_range->start_freq_khz || freq_range->max_bandwidth_khz > freq_diff) return false; return true; } static bool is_valid_rd(const struct ieee80211_regdomain *rd) { const struct ieee80211_reg_rule *reg_rule = NULL; unsigned int i; if (!rd->n_reg_rules) return false; if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) return false; for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; if (!is_valid_reg_rule(reg_rule)) return false; } return true; } static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz) { u32 start_freq_khz, end_freq_khz; start_freq_khz = center_freq_khz - (bw_khz/2); end_freq_khz = center_freq_khz + (bw_khz/2); if (start_freq_khz >= freq_range->start_freq_khz && end_freq_khz <= freq_range->end_freq_khz) return true; return false; } /** * freq_in_rule_band - tells us if a frequency is in a frequency band * @freq_range: frequency rule we want to query * @freq_khz: frequency we are inquiring about * * This lets us know if a specific frequency rule is or is not relevant to * a specific frequency's band. Bands are device specific and artificial * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), * however it is safe for now to assume that a frequency rule should not be * part of a frequency's band if the start freq or end freq are off by more * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the * 60 GHz band. * This resolution can be lowered and should be considered as we add * regulatory rule support for other "bands". **/ static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, u32 freq_khz) { #define ONE_GHZ_IN_KHZ 1000000 /* * From 802.11ad: directional multi-gigabit (DMG): * Pertaining to operation in a frequency band containing a channel * with the Channel starting frequency above 45 GHz. */ u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; if (abs(freq_khz - freq_range->start_freq_khz) <= limit) return true; if (abs(freq_khz - freq_range->end_freq_khz) <= limit) return true; return false; #undef ONE_GHZ_IN_KHZ } /* * Helper for regdom_intersect(), this does the real * mathematical intersection fun */ static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1, const struct ieee80211_reg_rule *rule2, struct ieee80211_reg_rule *intersected_rule) { const struct ieee80211_freq_range *freq_range1, *freq_range2; struct ieee80211_freq_range *freq_range; const struct ieee80211_power_rule *power_rule1, *power_rule2; struct ieee80211_power_rule *power_rule; u32 freq_diff; freq_range1 = &rule1->freq_range; freq_range2 = &rule2->freq_range; freq_range = &intersected_rule->freq_range; power_rule1 = &rule1->power_rule; power_rule2 = &rule2->power_rule; power_rule = &intersected_rule->power_rule; freq_range->start_freq_khz = max(freq_range1->start_freq_khz, freq_range2->start_freq_khz); freq_range->end_freq_khz = min(freq_range1->end_freq_khz, freq_range2->end_freq_khz); freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, freq_range2->max_bandwidth_khz); freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->max_bandwidth_khz > freq_diff) freq_range->max_bandwidth_khz = freq_diff; power_rule->max_eirp = min(power_rule1->max_eirp, power_rule2->max_eirp); power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, power_rule2->max_antenna_gain); intersected_rule->flags = rule1->flags | rule2->flags; if (!is_valid_reg_rule(intersected_rule)) return -EINVAL; return 0; } /** * regdom_intersect - do the intersection between two regulatory domains * @rd1: first regulatory domain * @rd2: second regulatory domain * * Use this function to get the intersection between two regulatory domains. * Once completed we will mark the alpha2 for the rd as intersected, "98", * as no one single alpha2 can represent this regulatory domain. * * Returns a pointer to the regulatory domain structure which will hold the * resulting intersection of rules between rd1 and rd2. We will * kzalloc() this structure for you. */ static struct ieee80211_regdomain * regdom_intersect(const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2) { int r, size_of_regd; unsigned int x, y; unsigned int num_rules = 0, rule_idx = 0; const struct ieee80211_reg_rule *rule1, *rule2; struct ieee80211_reg_rule *intersected_rule; struct ieee80211_regdomain *rd; /* This is just a dummy holder to help us count */ struct ieee80211_reg_rule dummy_rule; if (!rd1 || !rd2) return NULL; /* * First we get a count of the rules we'll need, then we actually * build them. This is to so we can malloc() and free() a * regdomain once. The reason we use reg_rules_intersect() here * is it will return -EINVAL if the rule computed makes no sense. * All rules that do check out OK are valid. */ for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; if (!reg_rules_intersect(rule1, rule2, &dummy_rule)) num_rules++; } } if (!num_rules) return NULL; size_of_regd = sizeof(struct ieee80211_regdomain) + num_rules * sizeof(struct ieee80211_reg_rule); rd = kzalloc(size_of_regd, GFP_KERNEL); if (!rd) return NULL; for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { rule2 = &rd2->reg_rules[y]; /* * This time around instead of using the stack lets * write to the target rule directly saving ourselves * a memcpy() */ intersected_rule = &rd->reg_rules[rule_idx]; r = reg_rules_intersect(rule1, rule2, intersected_rule); /* * No need to memset here the intersected rule here as * we're not using the stack anymore */ if (r) continue; rule_idx++; } } if (rule_idx != num_rules) { kfree(rd); return NULL; } rd->n_reg_rules = num_rules; rd->alpha2[0] = '9'; rd->alpha2[1] = '8'; return rd; } /* * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may * want to just have the channel structure use these */ static u32 map_regdom_flags(u32 rd_flags) { u32 channel_flags = 0; if (rd_flags & NL80211_RRF_PASSIVE_SCAN) channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; if (rd_flags & NL80211_RRF_NO_IBSS) channel_flags |= IEEE80211_CHAN_NO_IBSS; if (rd_flags & NL80211_RRF_DFS) channel_flags |= IEEE80211_CHAN_RADAR; if (rd_flags & NL80211_RRF_NO_OFDM) channel_flags |= IEEE80211_CHAN_NO_OFDM; return channel_flags; } static const struct ieee80211_reg_rule * freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, const struct ieee80211_regdomain *regd) { int i; bool band_rule_found = false; bool bw_fits = false; if (!regd) return ERR_PTR(-EINVAL); for (i = 0; i < regd->n_reg_rules; i++) { const struct ieee80211_reg_rule *rr; const struct ieee80211_freq_range *fr = NULL; rr = ®d->reg_rules[i]; fr = &rr->freq_range; /* * We only need to know if one frequency rule was * was in center_freq's band, that's enough, so lets * not overwrite it once found */ if (!band_rule_found) band_rule_found = freq_in_rule_band(fr, center_freq); bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); if (band_rule_found && bw_fits) return rr; } if (!band_rule_found) return ERR_PTR(-ERANGE); return ERR_PTR(-EINVAL); } const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, u32 center_freq) { const struct ieee80211_regdomain *regd; struct regulatory_request *lr = get_last_request(); /* * Follow the driver's regulatory domain, if present, unless a country * IE has been processed or a user wants to help complaince further */ if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->initiator != NL80211_REGDOM_SET_BY_USER && wiphy->regd) regd = get_wiphy_regdom(wiphy); else regd = get_cfg80211_regdom(); return freq_reg_info_regd(wiphy, center_freq, regd); } EXPORT_SYMBOL(freq_reg_info); #ifdef CONFIG_CFG80211_REG_DEBUG static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) { switch (initiator) { case NL80211_REGDOM_SET_BY_CORE: return "Set by core"; case NL80211_REGDOM_SET_BY_USER: return "Set by user"; case NL80211_REGDOM_SET_BY_DRIVER: return "Set by driver"; case NL80211_REGDOM_SET_BY_COUNTRY_IE: return "Set by country IE"; default: WARN_ON(1); return "Set by bug"; } } static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, const struct ieee80211_reg_rule *reg_rule) { const struct ieee80211_power_rule *power_rule; const struct ieee80211_freq_range *freq_range; char max_antenna_gain[32]; power_rule = ®_rule->power_rule; freq_range = ®_rule->freq_range; if (!power_rule->max_antenna_gain) snprintf(max_antenna_gain, 32, "N/A"); else snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", chan->center_freq); REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, freq_range->max_bandwidth_khz, max_antenna_gain, power_rule->max_eirp); } #else static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, const struct ieee80211_reg_rule *reg_rule) { return; } #endif /* * Note that right now we assume the desired channel bandwidth * is always 20 MHz for each individual channel (HT40 uses 20 MHz * per channel, the primary and the extension channel). */ static void handle_channel(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_channel *chan) { u32 flags, bw_flags = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; struct wiphy *request_wiphy = NULL; struct regulatory_request *lr = get_last_request(); request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); flags = chan->orig_flags; reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); if (IS_ERR(reg_rule)) { /* * We will disable all channels that do not match our * received regulatory rule unless the hint is coming * from a Country IE and the Country IE had no information * about a band. The IEEE 802.11 spec allows for an AP * to send only a subset of the regulatory rules allowed, * so an AP in the US that only supports 2.4 GHz may only send * a country IE with information for the 2.4 GHz band * while 5 GHz is still supported. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && PTR_ERR(reg_rule) == -ERANGE) return; REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); chan->flags |= IEEE80211_CHAN_DISABLED; return; } chan_reg_rule_print_dbg(chan, reg_rule); power_rule = ®_rule->power_rule; freq_range = ®_rule->freq_range; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) bw_flags = IEEE80211_CHAN_NO_HT40; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) bw_flags |= IEEE80211_CHAN_NO_80MHZ; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) bw_flags |= IEEE80211_CHAN_NO_160MHZ; if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { /* * This guarantees the driver's requested regulatory domain * will always be used as a base for further regulatory * settings */ chan->flags = chan->orig_flags = map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = chan->orig_mag = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = chan->orig_mpwr = (int) MBM_TO_DBM(power_rule->max_eirp); return; } chan->dfs_state = NL80211_DFS_USABLE; chan->dfs_state_entered = jiffies; chan->beacon_found = false; chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); chan->max_antenna_gain = min_t(int, chan->orig_mag, MBI_TO_DBI(power_rule->max_antenna_gain)); chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->orig_mpwr) { /* * Devices that have their own custom regulatory domain * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the * passed country IE power settings. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) chan->max_power = chan->max_reg_power; else chan->max_power = min(chan->orig_mpwr, chan->max_reg_power); } else chan->max_power = chan->max_reg_power; } static void handle_band(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) handle_channel(wiphy, initiator, &sband->channels[i]); } static bool reg_request_cell_base(struct regulatory_request *request) { if (request->initiator != NL80211_REGDOM_SET_BY_USER) return false; return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; } bool reg_last_request_cell_base(void) { return reg_request_cell_base(get_last_request()); } #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS /* Core specific check */ static enum reg_request_treatment reg_ignore_cell_hint(struct regulatory_request *pending_request) { struct regulatory_request *lr = get_last_request(); if (!reg_num_devs_support_basehint) return REG_REQ_IGNORE; if (reg_request_cell_base(lr) && !regdom_changes(pending_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } /* Device specific check */ static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); } #else static int reg_ignore_cell_hint(struct regulatory_request *pending_request) { return REG_REQ_IGNORE; } static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return true; } #endif static bool ignore_reg_update(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { struct regulatory_request *lr = get_last_request(); if (!lr) { REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n", reg_initiator_name(initiator)); return true; } if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n", reg_initiator_name(initiator)); return true; } /* * wiphy->regd will be set once the device has its own * desired regulatory domain set */ if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) && !is_world_regdom(lr->alpha2)) { REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n", reg_initiator_name(initiator)); return true; } if (reg_request_cell_base(lr)) return reg_dev_ignore_cell_hint(wiphy); return false; } static bool reg_is_world_roaming(struct wiphy *wiphy) { const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); struct regulatory_request *lr = get_last_request(); if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) return true; if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) return true; return false; } static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, struct reg_beacon *reg_beacon) { struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; bool channel_changed = false; struct ieee80211_channel chan_before; sband = wiphy->bands[reg_beacon->chan.band]; chan = &sband->channels[chan_idx]; if (likely(chan->center_freq != reg_beacon->chan.center_freq)) return; if (chan->beacon_found) return; chan->beacon_found = true; if (!reg_is_world_roaming(wiphy)) return; if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) return; chan_before.center_freq = chan->center_freq; chan_before.flags = chan->flags; if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; channel_changed = true; } if (chan->flags & IEEE80211_CHAN_NO_IBSS) { chan->flags &= ~IEEE80211_CHAN_NO_IBSS; channel_changed = true; } if (channel_changed) nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); } /* * Called when a scan on a wiphy finds a beacon on * new channel */ static void wiphy_update_new_beacon(struct wiphy *wiphy, struct reg_beacon *reg_beacon) { unsigned int i; struct ieee80211_supported_band *sband; if (!wiphy->bands[reg_beacon->chan.band]) return; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } /* * Called upon reg changes or a new wiphy is added */ static void wiphy_update_beacon_reg(struct wiphy *wiphy) { unsigned int i; struct ieee80211_supported_band *sband; struct reg_beacon *reg_beacon; list_for_each_entry(reg_beacon, ®_beacon_list, list) { if (!wiphy->bands[reg_beacon->chan.band]) continue; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } } /* Reap the advantages of previously found beacons */ static void reg_process_beacons(struct wiphy *wiphy) { /* * Means we are just firing up cfg80211, so no beacons would * have been processed yet. */ if (!last_request) return; wiphy_update_beacon_reg(wiphy); } static bool is_ht40_allowed(struct ieee80211_channel *chan) { if (!chan) return false; if (chan->flags & IEEE80211_CHAN_DISABLED) return false; /* This would happen when regulatory rules disallow HT40 completely */ if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) return false; return true; } static void reg_process_ht_flags_channel(struct wiphy *wiphy, struct ieee80211_channel *channel) { struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; unsigned int i; if (!is_ht40_allowed(channel)) { channel->flags |= IEEE80211_CHAN_NO_HT40; return; } /* * We need to ensure the extension channels exist to * be able to use HT40- or HT40+, this finds them (or not) */ for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *c = &sband->channels[i]; if (c->center_freq == (channel->center_freq - 20)) channel_before = c; if (c->center_freq == (channel->center_freq + 20)) channel_after = c; } /* * Please note that this assumes target bandwidth is 20 MHz, * if that ever changes we also need to change the below logic * to include that as well. */ if (!is_ht40_allowed(channel_before)) channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; if (!is_ht40_allowed(channel_after)) channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; } static void reg_process_ht_flags_band(struct wiphy *wiphy, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) reg_process_ht_flags_channel(wiphy, &sband->channels[i]); } static void reg_process_ht_flags(struct wiphy *wiphy) { enum ieee80211_band band; if (!wiphy) return; for (band = 0; band < IEEE80211_NUM_BANDS; band++) reg_process_ht_flags_band(wiphy, wiphy->bands[band]); } static void wiphy_update_regulatory(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { enum ieee80211_band band; struct regulatory_request *lr = get_last_request(); if (ignore_reg_update(wiphy, initiator)) return; lr->dfs_region = get_cfg80211_regdom()->dfs_region; for (band = 0; band < IEEE80211_NUM_BANDS; band++) handle_band(wiphy, initiator, wiphy->bands[band]); reg_process_beacons(wiphy); reg_process_ht_flags(wiphy); if (wiphy->reg_notifier) wiphy->reg_notifier(wiphy, lr); } static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; ASSERT_RTNL(); list_for_each_entry(rdev, &cfg80211_rdev_list, list) { wiphy = &rdev->wiphy; wiphy_update_regulatory(wiphy, initiator); /* * Regulatory updates set by CORE are ignored for custom * regulatory cards. Let us notify the changes to the driver, * as some drivers used this to restore its orig_* reg domain. */ if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && wiphy->reg_notifier) wiphy->reg_notifier(wiphy, get_last_request()); } } static void handle_channel_custom(struct wiphy *wiphy, struct ieee80211_channel *chan, const struct ieee80211_regdomain *regd) { u32 bw_flags = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), regd); if (IS_ERR(reg_rule)) { REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", chan->center_freq); chan->flags = IEEE80211_CHAN_DISABLED; return; } chan_reg_rule_print_dbg(chan, reg_rule); power_rule = ®_rule->power_rule; freq_range = ®_rule->freq_range; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) bw_flags = IEEE80211_CHAN_NO_HT40; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80)) bw_flags |= IEEE80211_CHAN_NO_80MHZ; if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160)) bw_flags |= IEEE80211_CHAN_NO_160MHZ; chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); } static void handle_band_custom(struct wiphy *wiphy, struct ieee80211_supported_band *sband, const struct ieee80211_regdomain *regd) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) handle_channel_custom(wiphy, &sband->channels[i], regd); } /* Used by drivers prior to wiphy registration */ void wiphy_apply_custom_regulatory(struct wiphy *wiphy, const struct ieee80211_regdomain *regd) { enum ieee80211_band band; unsigned int bands_set = 0; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (!wiphy->bands[band]) continue; handle_band_custom(wiphy, wiphy->bands[band], regd); bands_set++; } /* * no point in calling this if it won't have any effect * on your device's supported bands. */ WARN_ON(!bands_set); } EXPORT_SYMBOL(wiphy_apply_custom_regulatory); /* This has the logic which determines when a new request * should be ignored. */ static enum reg_request_treatment get_reg_request_treatment(struct wiphy *wiphy, struct regulatory_request *pending_request) { struct wiphy *last_wiphy = NULL; struct regulatory_request *lr = get_last_request(); /* All initial requests are respected */ if (!lr) return REG_REQ_OK; switch (pending_request->initiator) { case NL80211_REGDOM_SET_BY_CORE: return REG_REQ_OK; case NL80211_REGDOM_SET_BY_COUNTRY_IE: if (reg_request_cell_base(lr)) { /* Trust a Cell base station over the AP's country IE */ if (regdom_changes(pending_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (unlikely(!is_an_alpha2(pending_request->alpha2))) return -EINVAL; if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { if (last_wiphy != wiphy) { /* * Two cards with two APs claiming different * Country IE alpha2s. We could * intersect them, but that seems unlikely * to be correct. Reject second one for now. */ if (regdom_changes(pending_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } /* * Two consecutive Country IE hints on the same wiphy. * This should be picked up early by the driver/stack */ if (WARN_ON(regdom_changes(pending_request->alpha2))) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } return REG_REQ_OK; case NL80211_REGDOM_SET_BY_DRIVER: if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { if (regdom_changes(pending_request->alpha2)) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } /* * This would happen if you unplug and plug your card * back in or if you add a new device for which the previously * loaded card also agrees on the regulatory domain. */ if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && !regdom_changes(pending_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_INTERSECT; case NL80211_REGDOM_SET_BY_USER: if (reg_request_cell_base(pending_request)) return reg_ignore_cell_hint(pending_request); if (reg_request_cell_base(lr)) return REG_REQ_IGNORE; if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) return REG_REQ_INTERSECT; /* * If the user knows better the user should set the regdom * to their country before the IE is picked up */ if (lr->initiator == NL80211_REGDOM_SET_BY_USER && lr->intersect) return REG_REQ_IGNORE; /* * Process user requests only after previous user/driver/core * requests have been processed */ if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || lr->initiator == NL80211_REGDOM_SET_BY_USER) && regdom_changes(lr->alpha2)) return REG_REQ_IGNORE; if (!regdom_changes(pending_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } return REG_REQ_IGNORE; } static void reg_set_request_processed(void) { bool need_more_processing = false; struct regulatory_request *lr = get_last_request(); lr->processed = true; spin_lock(®_requests_lock); if (!list_empty(®_requests_list)) need_more_processing = true; spin_unlock(®_requests_lock); if (lr->initiator == NL80211_REGDOM_SET_BY_USER) cancel_delayed_work(®_timeout); if (need_more_processing) schedule_work(®_work); } /** * __regulatory_hint - hint to the wireless core a regulatory domain * @wiphy: if the hint comes from country information from an AP, this * is required to be set to the wiphy that received the information * @pending_request: the regulatory request currently being processed * * The Wireless subsystem can use this function to hint to the wireless core * what it believes should be the current regulatory domain. * * Returns one of the different reg request treatment values. */ static enum reg_request_treatment __regulatory_hint(struct wiphy *wiphy, struct regulatory_request *pending_request) { const struct ieee80211_regdomain *regd; bool intersect = false; enum reg_request_treatment treatment; struct regulatory_request *lr; treatment = get_reg_request_treatment(wiphy, pending_request); switch (treatment) { case REG_REQ_INTERSECT: if (pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { regd = reg_copy_regd(get_cfg80211_regdom()); if (IS_ERR(regd)) { kfree(pending_request); return PTR_ERR(regd); } rcu_assign_pointer(wiphy->regd, regd); } intersect = true; break; case REG_REQ_OK: break; default: /* * If the regulatory domain being requested by the * driver has already been set just copy it to the * wiphy */ if (treatment == REG_REQ_ALREADY_SET && pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) { regd = reg_copy_regd(get_cfg80211_regdom()); if (IS_ERR(regd)) { kfree(pending_request); return REG_REQ_IGNORE; } treatment = REG_REQ_ALREADY_SET; rcu_assign_pointer(wiphy->regd, regd); goto new_request; } kfree(pending_request); return treatment; } new_request: lr = get_last_request(); if (lr != &core_request_world && lr) kfree_rcu(lr, rcu_head); pending_request->intersect = intersect; pending_request->processed = false; rcu_assign_pointer(last_request, pending_request); lr = pending_request; pending_request = NULL; if (lr->initiator == NL80211_REGDOM_SET_BY_USER) { user_alpha2[0] = lr->alpha2[0]; user_alpha2[1] = lr->alpha2[1]; } /* When r == REG_REQ_INTERSECT we do need to call CRDA */ if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) { /* * Since CRDA will not be called in this case as we already * have applied the requested regulatory domain before we just * inform userspace we have processed the request */ if (treatment == REG_REQ_ALREADY_SET) { nl80211_send_reg_change_event(lr); reg_set_request_processed(); } return treatment; } if (call_crda(lr->alpha2)) return REG_REQ_IGNORE; return REG_REQ_OK; } /* This processes *all* regulatory hints */ static void reg_process_hint(struct regulatory_request *reg_request, enum nl80211_reg_initiator reg_initiator) { struct wiphy *wiphy = NULL; if (WARN_ON(!reg_request->alpha2)) return; if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) { kfree(reg_request); return; } switch (__regulatory_hint(wiphy, reg_request)) { case REG_REQ_ALREADY_SET: /* This is required so that the orig_* parameters are saved */ if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) wiphy_update_regulatory(wiphy, reg_initiator); break; default: if (reg_initiator == NL80211_REGDOM_SET_BY_USER) schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); break; } } /* * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* * Regulatory hints come on a first come first serve basis and we * must process each one atomically. */ static void reg_process_pending_hints(void) { struct regulatory_request *reg_request, *lr; lr = get_last_request(); /* When last_request->processed becomes true this will be rescheduled */ if (lr && !lr->processed) { REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n"); return; } spin_lock(®_requests_lock); if (list_empty(®_requests_list)) { spin_unlock(®_requests_lock); return; } reg_request = list_first_entry(®_requests_list, struct regulatory_request, list); list_del_init(®_request->list); spin_unlock(®_requests_lock); reg_process_hint(reg_request, reg_request->initiator); } /* Processes beacon hints -- this has nothing to do with country IEs */ static void reg_process_pending_beacon_hints(void) { struct cfg80211_registered_device *rdev; struct reg_beacon *pending_beacon, *tmp; /* This goes through the _pending_ beacon list */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(pending_beacon, tmp, ®_pending_beacons, list) { list_del_init(&pending_beacon->list); /* Applies the beacon hint to current wiphys */ list_for_each_entry(rdev, &cfg80211_rdev_list, list) wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); /* Remembers the beacon hint for new wiphys or reg changes */ list_add_tail(&pending_beacon->list, ®_beacon_list); } spin_unlock_bh(®_pending_beacons_lock); } static void reg_todo(struct work_struct *work) { rtnl_lock(); reg_process_pending_hints(); reg_process_pending_beacon_hints(); rtnl_unlock(); } static void queue_regulatory_request(struct regulatory_request *request) { request->alpha2[0] = toupper(request->alpha2[0]); request->alpha2[1] = toupper(request->alpha2[1]); spin_lock(®_requests_lock); list_add_tail(&request->list, ®_requests_list); spin_unlock(®_requests_lock); schedule_work(®_work); } /* * Core regulatory hint -- happens during cfg80211_init() * and when we restore regulatory settings. */ static int regulatory_hint_core(const char *alpha2) { struct regulatory_request *request; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_CORE; queue_regulatory_request(request); return 0; } /* User hints */ int regulatory_hint_user(const char *alpha2, enum nl80211_user_reg_hint_type user_reg_hint_type) { struct regulatory_request *request; if (WARN_ON(!alpha2)) return -EINVAL; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = WIPHY_IDX_INVALID; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_USER; request->user_reg_hint_type = user_reg_hint_type; queue_regulatory_request(request); return 0; } /* Driver hints */ int regulatory_hint(struct wiphy *wiphy, const char *alpha2) { struct regulatory_request *request; if (WARN_ON(!alpha2 || !wiphy)) return -EINVAL; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_DRIVER; queue_regulatory_request(request); return 0; } EXPORT_SYMBOL(regulatory_hint); void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, const u8 *country_ie, u8 country_ie_len) { char alpha2[2]; enum environment_cap env = ENVIRON_ANY; struct regulatory_request *request = NULL, *lr; /* IE len must be evenly divisible by 2 */ if (country_ie_len & 0x01) return; if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return; request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) return; alpha2[0] = country_ie[0]; alpha2[1] = country_ie[1]; if (country_ie[2] == 'I') env = ENVIRON_INDOOR; else if (country_ie[2] == 'O') env = ENVIRON_OUTDOOR; rcu_read_lock(); lr = get_last_request(); if (unlikely(!lr)) goto out; /* * We will run this only upon a successful connection on cfg80211. * We leave conflict resolution to the workqueue, where can hold * the RTNL. */ if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->wiphy_idx != WIPHY_IDX_INVALID) goto out; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; request->country_ie_env = env; queue_regulatory_request(request); request = NULL; out: kfree(request); rcu_read_unlock(); } static void restore_alpha2(char *alpha2, bool reset_user) { /* indicates there is no alpha2 to consider for restoration */ alpha2[0] = '9'; alpha2[1] = '7'; /* The user setting has precedence over the module parameter */ if (is_user_regdom_saved()) { /* Unless we're asked to ignore it and reset it */ if (reset_user) { REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); user_alpha2[0] = '9'; user_alpha2[1] = '7'; /* * If we're ignoring user settings, we still need to * check the module parameter to ensure we put things * back as they were for a full restore. */ if (!is_world_regdom(ieee80211_regdom)) { REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } } else { REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", user_alpha2[0], user_alpha2[1]); alpha2[0] = user_alpha2[0]; alpha2[1] = user_alpha2[1]; } } else if (!is_world_regdom(ieee80211_regdom)) { REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } else REG_DBG_PRINT("Restoring regulatory settings\n"); } static void restore_custom_reg_settings(struct wiphy *wiphy) { struct ieee80211_supported_band *sband; enum ieee80211_band band; struct ieee80211_channel *chan; int i; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; chan->flags = chan->orig_flags; chan->max_antenna_gain = chan->orig_mag; chan->max_power = chan->orig_mpwr; chan->beacon_found = false; } } } /* * Restoring regulatory settings involves ingoring any * possibly stale country IE information and user regulatory * settings if so desired, this includes any beacon hints * learned as we could have traveled outside to another country * after disconnection. To restore regulatory settings we do * exactly what we did at bootup: * * - send a core regulatory hint * - send a user regulatory hint if applicable * * Device drivers that send a regulatory hint for a specific country * keep their own regulatory domain on wiphy->regd so that does does * not need to be remembered. */ static void restore_regulatory_settings(bool reset_user) { char alpha2[2]; char world_alpha2[2]; struct reg_beacon *reg_beacon, *btmp; struct regulatory_request *reg_request, *tmp; LIST_HEAD(tmp_reg_req_list); struct cfg80211_registered_device *rdev; ASSERT_RTNL(); reset_regdomains(true, &world_regdom); restore_alpha2(alpha2, reset_user); /* * If there's any pending requests we simply * stash them to a temporary pending queue and * add then after we've restored regulatory * settings. */ spin_lock(®_requests_lock); list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) continue; list_move_tail(®_request->list, &tmp_reg_req_list); } spin_unlock(®_requests_lock); /* Clear beacon hints */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } spin_unlock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } /* First restore to the basic regulatory settings */ world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) restore_custom_reg_settings(&rdev->wiphy); } regulatory_hint_core(world_alpha2); /* * This restores the ieee80211_regdom module parameter * preference or the last user requested regulatory * settings, user regulatory settings takes precedence. */ if (is_an_alpha2(alpha2)) regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); spin_lock(®_requests_lock); list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); spin_unlock(®_requests_lock); REG_DBG_PRINT("Kicking the queue\n"); schedule_work(®_work); } void regulatory_hint_disconnect(void) { REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); restore_regulatory_settings(false); } static bool freq_is_chan_12_13_14(u16 freq) { if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) return true; return false; } static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) { struct reg_beacon *pending_beacon; list_for_each_entry(pending_beacon, ®_pending_beacons, list) if (beacon_chan->center_freq == pending_beacon->chan.center_freq) return true; return false; } int regulatory_hint_found_beacon(struct wiphy *wiphy, struct ieee80211_channel *beacon_chan, gfp_t gfp) { struct reg_beacon *reg_beacon; bool processing; if (beacon_chan->beacon_found || beacon_chan->flags & IEEE80211_CHAN_RADAR || (beacon_chan->band == IEEE80211_BAND_2GHZ && !freq_is_chan_12_13_14(beacon_chan->center_freq))) return 0; spin_lock_bh(®_pending_beacons_lock); processing = pending_reg_beacon(beacon_chan); spin_unlock_bh(®_pending_beacons_lock); if (processing) return 0; reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); if (!reg_beacon) return -ENOMEM; REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", beacon_chan->center_freq, ieee80211_frequency_to_channel(beacon_chan->center_freq), wiphy_name(wiphy)); memcpy(®_beacon->chan, beacon_chan, sizeof(struct ieee80211_channel)); /* * Since we can be called from BH or and non-BH context * we must use spin_lock_bh() */ spin_lock_bh(®_pending_beacons_lock); list_add_tail(®_beacon->list, ®_pending_beacons); spin_unlock_bh(®_pending_beacons_lock); schedule_work(®_work); return 0; } static void print_rd_rules(const struct ieee80211_regdomain *rd) { unsigned int i; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; const struct ieee80211_power_rule *power_rule = NULL; pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; freq_range = ®_rule->freq_range; power_rule = ®_rule->power_rule; /* * There may not be documentation for max antenna gain * in certain regions */ if (power_rule->max_antenna_gain) pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, freq_range->max_bandwidth_khz, power_rule->max_antenna_gain, power_rule->max_eirp); else pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, freq_range->max_bandwidth_khz, power_rule->max_eirp); } } bool reg_supported_dfs_region(u8 dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: case NL80211_DFS_FCC: case NL80211_DFS_ETSI: case NL80211_DFS_JP: return true; default: REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", dfs_region); return false; } } static void print_dfs_region(u8 dfs_region) { if (!dfs_region) return; switch (dfs_region) { case NL80211_DFS_FCC: pr_info(" DFS Master region FCC"); break; case NL80211_DFS_ETSI: pr_info(" DFS Master region ETSI"); break; case NL80211_DFS_JP: pr_info(" DFS Master region JP"); break; default: pr_info(" DFS Master region Unknown"); break; } } static void print_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr = get_last_request(); if (is_intersected_alpha2(rd->alpha2)) { if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { struct cfg80211_registered_device *rdev; rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); if (rdev) { pr_info("Current regulatory domain updated by AP to: %c%c\n", rdev->country_ie_alpha2[0], rdev->country_ie_alpha2[1]); } else pr_info("Current regulatory domain intersected:\n"); } else pr_info("Current regulatory domain intersected:\n"); } else if (is_world_regdom(rd->alpha2)) { pr_info("World regulatory domain updated:\n"); } else { if (is_unknown_alpha2(rd->alpha2)) pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); else { if (reg_request_cell_base(lr)) pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", rd->alpha2[0], rd->alpha2[1]); else pr_info("Regulatory domain changed to country: %c%c\n", rd->alpha2[0], rd->alpha2[1]); } } print_dfs_region(rd->dfs_region); print_rd_rules(rd); } static void print_regdomain_info(const struct ieee80211_regdomain *rd) { pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_rd_rules(rd); } /* Takes ownership of rd only if it doesn't fail */ static int __set_regdom(const struct ieee80211_regdomain *rd) { const struct ieee80211_regdomain *regd; const struct ieee80211_regdomain *intersected_rd = NULL; struct wiphy *request_wiphy; struct regulatory_request *lr = get_last_request(); /* Some basic sanity checks first */ if (!reg_is_valid_request(rd->alpha2)) return -EINVAL; if (is_world_regdom(rd->alpha2)) { update_world_regdomain(rd); return 0; } if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && !is_unknown_alpha2(rd->alpha2)) return -EINVAL; /* * Lets only bother proceeding on the same alpha2 if the current * rd is non static (it means CRDA was present and was used last) * and the pending request came in from a country IE */ if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { /* * If someone else asked us to change the rd lets only bother * checking if the alpha2 changes if CRDA was already called */ if (!regdom_changes(rd->alpha2)) return -EALREADY; } /* * Now lets set the regulatory domain, update all driver channels * and finally inform them of what we have done, in case they want * to review or adjust their own settings based on their own * internal EEPROM data */ if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected:\n"); print_regdomain_info(rd); return -EINVAL; } request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (!request_wiphy && (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { schedule_delayed_work(®_timeout, 0); return -ENODEV; } if (!lr->intersect) { if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) { reset_regdomains(false, rd); return 0; } /* * For a driver hint, lets copy the regulatory domain the * driver wanted to the wiphy to deal with conflicts */ /* * Userspace could have sent two replies with only * one kernel request. */ if (request_wiphy->regd) return -EALREADY; regd = reg_copy_regd(rd); if (IS_ERR(regd)) return PTR_ERR(regd); rcu_assign_pointer(request_wiphy->regd, regd); reset_regdomains(false, rd); return 0; } /* Intersection requires a bit more work */ if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); if (!intersected_rd) return -EINVAL; /* * We can trash what CRDA provided now. * However if a driver requested this specific regulatory * domain we keep it for its private use */ if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) { const struct ieee80211_regdomain *tmp; tmp = get_wiphy_regdom(request_wiphy); rcu_assign_pointer(request_wiphy->regd, rd); rcu_free_regdom(tmp); } else { kfree(rd); } rd = NULL; reset_regdomains(false, intersected_rd); return 0; } return -EINVAL; } /* * Use this call to set the current regulatory domain. Conflicts with * multiple drivers can be ironed out later. Caller must've already * kmalloc'd the rd structure. */ int set_regdom(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr; int r; lr = get_last_request(); /* Note that this doesn't update the wiphys, this is done below */ r = __set_regdom(rd); if (r) { if (r == -EALREADY) reg_set_request_processed(); kfree(rd); return r; } /* This would make this whole thing pointless */ if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) return -EINVAL; /* update all wiphys now with the new established regulatory domain */ update_all_wiphy_regulatory(lr->initiator); print_regdomain(get_cfg80211_regdom()); nl80211_send_reg_change_event(lr); reg_set_request_processed(); return 0; } int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) { struct regulatory_request *lr; u8 alpha2[2]; bool add = false; rcu_read_lock(); lr = get_last_request(); if (lr && !lr->processed) { memcpy(alpha2, lr->alpha2, 2); add = true; } rcu_read_unlock(); if (add) return add_uevent_var(env, "COUNTRY=%c%c", alpha2[0], alpha2[1]); return 0; } void wiphy_regulatory_register(struct wiphy *wiphy) { struct regulatory_request *lr; if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint++; lr = get_last_request(); wiphy_update_regulatory(wiphy, lr->initiator); } void wiphy_regulatory_deregister(struct wiphy *wiphy) { struct wiphy *request_wiphy = NULL; struct regulatory_request *lr; lr = get_last_request(); if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint--; rcu_free_regdom(get_wiphy_regdom(wiphy)); rcu_assign_pointer(wiphy->regd, NULL); if (lr) request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (!request_wiphy || request_wiphy != wiphy) return; lr->wiphy_idx = WIPHY_IDX_INVALID; lr->country_ie_env = ENVIRON_ANY; } static void reg_timeout_work(struct work_struct *work) { REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); rtnl_lock(); restore_regulatory_settings(true); rtnl_unlock(); } int __init regulatory_init(void) { int err = 0; reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); if (IS_ERR(reg_pdev)) return PTR_ERR(reg_pdev); reg_pdev->dev.type = ®_device_type; spin_lock_init(®_requests_lock); spin_lock_init(®_pending_beacons_lock); reg_regdb_size_check(); rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); user_alpha2[0] = '9'; user_alpha2[1] = '7'; /* We always try to get an update for the static regdomain */ err = regulatory_hint_core(cfg80211_world_regdom->alpha2); if (err) { if (err == -ENOMEM) return err; /* * N.B. kobject_uevent_env() can fail mainly for when we're out * memory which is handled and propagated appropriately above * but it can also fail during a netlink_broadcast() or during * early boot for call_usermodehelper(). For now treat these * errors as non-fatal. */ pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); } /* * Finally, if the user set the module parameter treat it * as a user hint. */ if (!is_world_regdom(ieee80211_regdom)) regulatory_hint_user(ieee80211_regdom, NL80211_USER_REG_HINT_USER); return 0; } void regulatory_exit(void) { struct regulatory_request *reg_request, *tmp; struct reg_beacon *reg_beacon, *btmp; cancel_work_sync(®_work); cancel_delayed_work_sync(®_timeout); /* Lock to suppress warnings */ rtnl_lock(); reset_regdomains(true, NULL); rtnl_unlock(); dev_set_uevent_suppress(®_pdev->dev, true); platform_device_unregister(reg_pdev); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { list_del(®_request->list); kfree(reg_request); } }